教师职称考试(初中数学试卷)
教师职称考试试题及答案数学
教师职称考试试题及答案数学一、选择题(每题2分,共20分)1. 下列哪个选项是函数的奇偶性描述?A. f(x) = x^2B. f(x) = |x|C. f(x) = sin(x)D. f(x) = cos(x)答案:B2. 直线y = 2x + 3与x轴的交点坐标是:A. (0, 3)B. (1, 5)C. (-3/2, 0)D. (0, 0)答案:C3. 圆的标准方程为(x-a)^2 + (y-b)^2 = r^2,其中(a, b)是圆的:A. 半径B. 直径C. 圆心D. 切点答案:C4. 以下哪个是二次方程的判别式?A. b^2 - 4acB. a + b + cC. a^2 + b^2D. b^2 + 4ac答案:A5. 函数y = ln(x)的定义域是:A. x > 0B. x < 0C. x ≥ 0D. x ≤ 0答案:A6. 以下哪个是三角函数的周期性描述?A. sin(x) + cos(x)B. tan(x)C. sin(2x)D. cos(x + π)答案:B7. 以下哪个是向量的数量积(点积)?A. a × bB. a ⋅ bC. a / bD. a + b答案:B8. 以下哪个是矩阵的行列式?A. det(A)B. trace(A)C. rank(A)D. inverse(A)答案:A9. 以下哪个是复数的共轭?A. z + z*B. z - z*C. z / z*D. z * z*答案:B10. 以下哪个是概率论中的期望值?A. E(X)B. Var(X)C. SD(X)D. Mode(X)答案:A二、填空题(每题2分,共20分)11. 若f(x) = 3x^2 - 2x + 1,f'(x) = _______。
答案:6x - 212. 圆的面积公式为A = πr^2,其中r是圆的_______。
答案:半径13. 函数y = 2^x的反函数是_______。
中学数学教师职称考试试题及答案
中学数学教师职称考试试题及答案一、选择题(每题3分,共30分)1. 下列选项中,哪个数是实数?A. -√-4B. √-9C. √9D. 3i答案:C2. 下列函数中,哪个函数是单调递增函数?A. y = x²B. y = x³C. y = -x²D. y = |x|答案:B3. 下列哪个图形是平行四边形?A. 矩形B. 正方形C. 梯形答案:D4. 下列哪个图形的面积公式是 S = 1/2 a b sinC?A. 三角形B. 矩形C. 梯形D. 圆答案:A5. 已知函数 f(x) = x² - 4x + 3,求 f(x) 的最小值。
A. -1B. 0C. 1D. 3答案:A6. 下列哪个数是黄金分割比?A. 0.618B. 1.618C. 0.382D. 1.3827. 下列哪个数列是等比数列?A. 2, 4, 8, 16B. 1, 3, 5, 7C. 1, 4, 9, 16D. 2, 6, 12, 20答案:A8. 下列哪个数是π的近似值?A. 3.14B. 3.1416C. 3.14159D. 3.1415926答案:B9. 下列哪个图形的周长最小?A. 矩形B. 正方形C. 梯形D. 圆答案:D10. 下列哪个数学家提出了勾股定理?A. 毕达哥拉斯B. 欧几里得C. 陈景润D. 高斯答案:A二、填空题(每题3分,共30分)1. 若 a = 3,b = 4,则 a² + b² = _______。
答案:252. 两个平行线的斜率分别为 k1 和 k2,则它们的斜率乘积 k1 k2 = _______。
答案:-13. 一次函数 y = kx + b 的图像与 y 轴的交点为_______。
答案:(0, b)4. 在直角坐标系中,点 A(2, 3) 关于原点的对称点坐标为 _______。
答案:(-2, -3)5. 若等差数列的前三项分别为 a, b, c,且 a + c = 2b,则该等差数列的公差为 _______。
初中数学教师高级职称考试试题(含解析)
教师职务评审考核笔试卷类别:中一、中高学科:初中数学一、教学理论 ( 共 10 分 )1.为了从以“教”为中心转向以“学”为中心,教师研究教法你认为首先要研究什么?为什么要从这里入手研究?答:首先要研究学法 . 理由:⑴. 强调教师的“教”一定要重视学生学习方法的指导;⑵. 学习者是学习的主人,学习质量的高低最终取决于学习者的自身;⑶ . “授人以鱼”不如“授人以渔” .2.实施新课程,校本教研是其中重要的内容。
你认为校本教研要真正对教师的专业成长起作用,下面几个因素中哪三个是最重要的?请简述理由 .答:⑴ . 校长支持;⑵ . 制度保证;⑶ . 同伴互助;⑷ . 专家引领;⑸ .自我反思与行为跟进 .自我反思与行为跟进、同伴互助、专家引领、自觉主动的反思和行为跟进是教师进步的内在动力;教研组(备课组)是一个学习共同体,同伴之间相互探讨可以营造教研的良好外部环境;专家的引领可以使校本教研方向对路、方法正确、减时增效.二、课程标准(共10 分)1.请你谈谈“数学思考”的具体内涵.答:数学思考的内涵:① .经历运用数学符号和图形描述现实世界的过程,建立初步的数感和符号感,发展抽象思维 .② .丰富对现实空间及图形的认识,建立初步的空间观念,发展形象思维 .③.经历运用数据描述信息,作出推断的过程,发展统计观念 .④.经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力能有条理地、清晰地阐述自己的观念现象,去解决日常生活和其他学科学习中的有关问题,并建立起良好的进一步学习的情感 .. 我们应该把学生的数学思考作为整个教学活动的核心,更多地关注学生的数学思考,学生在思考什么,怎样思考的,思考的结果怎样,这样的课堂才是真实的、有效的、智慧的、精彩的 . 然而在日常教学活动中,我们却会不自觉地忘却学生的需求,忘却教学的本质,常常为了赶进度而忽视学生的感受,喜欢用现成的答案来取代学生的自主学习,用教师的讲解来替代学生的数学思考;久而久之,学生养成了“衣来伸手,饭来张口”的习惯,既失去了原有的学习兴趣,也丧失了本该具备的思考能力,导致教学效率低下. 一个不争的事实就是现在有疑问的学生越来越少,甚至有许多学生常年不问老师一个问题;学生没有疑问,难道他们真的是什么问题都弄清楚了吗?细致地了解一下就会发现,其实他们还有许多问题没有弄懂,或者似懂非懂. 课堂上,我们教师讲得太多了,但教师所讲的未必是学生想听的,教学上最可怕的失误,就是把学生的主要精力用到消极地掌握知识上去. “学而不思则罔”,让学生学会数学思考,成为数学教学中一个亟待解决的问题.数学思考是《全日制义务教育数学课程标准( 实验稿 ) 》首次提出的数学教育目标之一 . 可以从抽象思考、形象思考、统计思考、推理思考等方面去理解数学思考的内涵 . 数学思考的培养, 需要教师转变重结果、轻过程的教学观念, 注重采用问题解决的教学形式, 创设数学交流环境, 以培养、提升学生的数学思考.培养学生的数学思维方法,对学生进行数学在实际生活的应用,启发学生解决问题的能力,培养学生对数学学习的兴趣.2.请你结合新课程理念与教学实践 , 谈谈在初中阶段如何实施“空间与图形”的教学的 , 并说明可以从哪些方面来培养学生的空间观念?答:① .通过具体的例子,体现空间观念,以学生经验为基础发展空间观念 .② . 多样化发展空间观念的途径:生活经验的回忆、实物观察、动手操作、想象、描述和表示、联想、模拟、分析和推理等 . ③. 在发展过程中逐步形成空间观念 . ④ . 通过学生自主探索与合作交流,解决问题,促进空间观念的发展,有助于学生更好地认识和理解人类生存的空间,培养学生的创新精神,从中获得必需的知识和必要的技能,学会推理 .附:初中数学空间与图形课堂教学应注意的问题参考材料:一、本类教学内容的教学设计:数学教学的本质是帮助学生获取知识,形成技能的一种思维过程,其根本价 1. 教学设计中要注意初中数学空间与图形与实际生活中(或是抽象出来的图值在于让学生学会运用数学的思维方式去观察、思考、分析现实生活中的有关形)之间的联系,引导学生学习兴趣,引导学生对证明的理解,注重一般的方三、教材教法(共 30 分)法,但不追求证明的技巧与数量.数学学习是数学活动的教学 , 学生是学习的主人 , 教师是学生数学学2. 教学设计要运用系统的观点,从教学内容的研究、学生状况的研究、教学习的组织者 , 引导者和合作者 . 教师的教学设计直接关系到课堂教学的目标的确定、教学重点难点的确定和教学过程的设计等五个环节进行,每个环成败 . 学生从小学进入初中后 , 要学习有理数的概念和运算 .节的具体设置都值得研究 .1.教科书中呈现了所给的内容 :人教版七年级数学上册 1.2.2 “数轴”3. 从教学设计中的目标的制定、数学活动的安排和信息技术的整合等几个方这一节 . 请你针对这一内容进行教学设计 . (参考《教案》 21 页)面,谈我们应该注意的问题 .二、初中阶段“空间与图形”的教学内容标准的理解 2. 请你针对以上设计进行说明 .( 其中包括教学设计的根据 , 教学设计1. 学会合作、交流、表达,在探索图形性质、与他人合作交流等活动过程中,的特点 , 写出教学反思 ).发展合情推理,进一步学习有条理的思考与表达.2. 学会简单推理,在积累了一定的活动经验与图形性质的基础上,从几个基四、基础知识(共 50 分)本的事实出发,证明一些有关三角形、四边形的基本性质,从而体会证明的必要性,理解证明的基本过程,掌握用综合法证明的格式,初步感受公理化思想.3. 注重联系实际,在教学中,应注重所学内容与现实生活的联系,注重使学(一).选择题 (每题 3分,共 9分)1. 我省一短跑运动员在十运会前刻苦进行100 米跑训练,教练对他10 次的训练生经历观察、操作、推理、想像等探索过程,能解决一些生活中较简单问题.成绩进行统计分析,判断他的成绩是否稳定,则教练需要知道该运动员10 次成三、关于《空间与图形》教学的五环节的认识绩的()1. 教学内容分析:分析将要让学生掌握什么知识点,这与学生已有的知识结构有何联系,本知识点的重要性认识;在围绕知识点教学过程中,涉及到什么样的数学思维方法,让学生掌握这些方法;在教学内容的处理中,适当地取材,不必限于课本,为的是更能激活思维,实现教学目标,实现“从生活走进课程,从课程走进社会”的理念 .2.学生需求分析:应分析学生的知识基础、认知能力、学习习惯等,有针对性地制定出恰当的教学目标,才能选取有效的教学方法和教学手段,更好地为学生服务 . 在课堂教学过程中努力贯彻“教师为主导、学生为主体、探究为主线、思维为核心”的教学思想,通过引导学生观察、分析和动手操作,使学生充分地动手、动口、动脑,参与教学全过程.3.教学目标制定:教学目标要具体;教学目标要能达成;要从知识与能力,过程与方法,情感与态度等几个方面系统地确定教学目标.4.重点难点的确定:要认真分析本节课的核心内容及学生的思维障碍,要设A .平均数B.方差C.众数D.频数分析:方差是反映事物波动大小的. 在同样条件下“方差越大,波动越大;方差越小,波动越小”B.故选 .2. 按如图 (1) 、(2) 、 (3)、⋯⋯的规律继续叠放小正方体木块,至第(10)个叠放的图形中,小正方体木块总数应是()A .91B.120C.153D.190计出突出重点、突破难点的具体的方式方法.5.教学过程的设计:教学设计一般分为引入新课、学习新知、应用新知、课堂小结、布置作业等五个环节,有的教师认为这是“老五环”,其实在每个环节中,你完全可以创新,以适合现代教育的需要 . 比如,需要设计出在具体的教学环节中,运用怎样有效的教学方法、实施哪些必要的教学手段、采取何种的交流方式,如何进行评价活动等方面去完成教学目标。
2024年教师资格考试初中学科知识与教学能力数学试卷与参考答案
2024年教师资格考试初中数学学科知识与教学能力复习试卷(答案在后面)一、单项选择题(本大题有8小题,每小题5分,共40分)1、在下列函数中,属于一次函数的是:A.(f(x)=x2+3x−2)B.(g(x)=2x+4)C.(ℎ(x)=√x+5)+3)D.(j(x)=1x2、下列关于三角形内角和定理的说法正确的是:A. 任何三角形的内角和小于180°B. 等边三角形的内角和等于360°C. 所有三角形的内角和等于180°D. 任何三角形的内角和大于180°3、题干:在平面直角坐标系中,点A的坐标为(3,4),点B的坐标为(-2,1)。
下列关于点B的坐标的描述正确的是()A. 点B在第二象限B. 点B在第三象限C. 点B在第四象限D. 点B在x轴上4、题干:若等差数列{an}的首项为2,公差为3,则第10项an的值为()A. 25B. 28C. 31D. 345、下列关于函数图像的说法正确的是()A. 函数y=x^2的图像是一个开口向上的抛物线B. 函数y=√x的图像是一个开口向下的抛物线C. 函数y=2x+1的图像是一条直线,斜率为2,y轴截距为1D. 函数y=|x|的图像是一个开口向左的绝对值函数6、下列关于一元二次方程的解法,错误的是()A. 因式分解法可以求解一元二次方程B. 配方法可以求解一元二次方程C. 求根公式法可以求解一元二次方程D. 降次法不能求解一元二次方程7、在下列函数中,属于二次函数的是())A.(y=1xB.(y=x2+2x+1)C.(y=√x)D.(y=x3−2x2+x+1)8、已知函数(f(x)=2x2−3x+1),则函数的对称轴是())A.(x=−34)B.(x=34)C.(y=−34)D.(y=34二、简答题(本大题有5小题,每小题7分,共35分)第一题请结合初中数学学科特点,谈谈如何有效运用信息技术进行数学教学?第二题题目:简述在教授初中数学时如何运用直观演示法,并举例说明其在几何教学中的应用。
初中教师职称考试数学试卷
一、选择题(每题2分,共20分)1. 若一个数的平方等于1,则这个数是()A. ±1B. ±2C. ±3D. ±42. 在下列各数中,有理数是()A. √2B. πC. 3.14D. -23. 若a、b是实数,且a+b=0,则下列选项中正确的是()A. a=0,b=0B. a=0,b≠0C. a≠0,b=0D. a≠0,b≠04. 若a、b、c是等差数列,且a+b+c=0,则下列选项中正确的是()A. a=b=cB. a≠b≠cC. a+b+c=0D. a+c=2b5. 若函数f(x)=ax+b的图像经过点(1,3),则下列选项中正确的是()A. a=1,b=2B. a=2,b=1C. a=3,b=1D. a=1,b=36. 若等腰三角形底边长为8,腰长为10,则该三角形的面积是()A. 40B. 48C. 50D. 527. 若x²+4x+3=0,则x的值为()A. -1,-3B. 1,-3C. -1,3D. 1,38. 若a、b、c是等比数列,且a+b+c=0,则下列选项中正确的是()A. a=b=cB. a≠b≠cC. a+b+c=0D. a+c=2b9. 若函数f(x)=x²+2x+1的图像是()A. 顶点在x轴上B. 顶点在y轴上C. 顶点在第一象限D. 顶点在第二象限10. 若等腰梯形上底长为4,下底长为6,高为2,则该梯形的面积是()A. 8B. 10C. 12D. 14二、填空题(每题2分,共20分)11. 若x²-5x+6=0,则x=______。
12. 若a、b、c是等差数列,且a+b+c=0,则a+c=______。
13. 若函数f(x)=2x+1的图像是直线,则斜率为______。
14. 若等腰三角形底边长为6,腰长为8,则该三角形的面积是______。
15. 若x²-4x+4=0,则x=______。
教师评职称考试试题数学
教师评职称考试试题数学在数学教育领域,教师评职称考试是衡量教师教学能力和专业知识的重要方式。
以下是一份模拟的教师评职称考试试题,旨在考察教师对数学知识的掌握程度和解题能力。
一、选择题(每题3分,共30分)1. 以下哪个选项是实数集的子集?A. 整数集B. 有理数集C. 无理数集D. 复数集2. 函数f(x) = 2x + 3的反函数是:A. f^(-1)(x) = (x - 3) / 2B. f^(-1)(x) = (x + 3) / 2C. f^(-1)(x) = 2x - 3D. f^(-1)(x) = x / 2 - 33. 以下哪个命题是正确的?A. 所有的偶数都是整数B. 所有的整数都是有理数C. 所有的有理数都是实数D. 所有的实数都是复数4. 一个圆的半径是5,那么它的面积是:A. 25πB. 50πC. 100πD. 200π5. 以下哪个是黄金分割比?A. 1:1B. 2:1C. √5 - 1 : 2D. 1 : √5 - 16. 一个数列的前三项是1, 4, 9,那么第四项是:A. 16B. 25C. 36D. 497. 如果一个函数是奇函数,那么它的图象关于:A. 原点对称B. y轴对称C. x轴对称D. 直线y=x对称8. 以下哪个是二项式定理的展开式?A. (a + b)^n = Σ (n choose k) a^(n-k) b^kB. (a + b)^n = Σ (n choose k) a^k b^(n-k)C. (a + b)^n = Σ (n choose k) a^(n-k) b^kD. (a + b)^n = Σ (n choose k) a^k b^(n-k)9. 以下哪个是矩阵的转置?A. 行列互换B. 行不变,列互换C. 行互换,列不变D. 行列不变10. 以下哪个是线性方程组的解?A. 唯一解B. 无穷多解C. 无解D. 以上都是二、填空题(每题4分,共20分)1. 如果一个三角形的内角和是180°,那么一个四边形的内角和是______°。
初中数学教师高级职称考试试题(含解析)
初中数学教师高级职称考试试题(含解析)初中数学教师高级职称考试试题(含解析).,初中数学教师高级职称考试试题,数学课程的基本理念,初中数学教师申报高级职称总结材料,上海数学高级职称考试,初中数学高级职称试题,山西省初中数学高级职称考试试题,天津市高级职称初中数学试题,初中数学高级职称考试试题,初中数学教师晋升高级职称答辩题教师职务评审考核笔试卷类别:中一、中高学科:初中数学一、教学理论(共10分)1.为了从以“教”为中心转向以“学”为中心,教师研究教法你认为首先要研究什么?为什么要从这里入手研究?答:首先要研究学法.理由:⑴.强调教师的“教”一定要重视学生学习方法的指导;⑵.学习者是学习的主人,学习质量的高低最终取决于学习者的自身;⑶.“授人以鱼”不如“授人以渔”.2.实施新课程,校本教研是其中重要的内容。
你认为校本教研要真正对教师的专业成长起作用,下面几个因素中哪三个是最重要的?请简述理由.答:⑴.校长支持;⑵.制度保证;⑶.同伴互助;⑷.专家引领;⑸.自我反思与行为跟进.自我反思与行为跟进、同伴互助、专家引领、自觉主动的反思和行为跟进是教师进步的内在动力;教研组(备课组)是一个学习共同体,同伴之间相互探讨可以营造教研的良好外部环境;专家的引领可以使校本教研方向对路、方法正确、减时增效.二、课程标准(共10分)1.请你谈谈“数学思考”的具体内涵.答:数学思考的内涵:①.经历运用数学符号和图形描述现实世界的过程,建立初步的数感和符号感,发展抽象思维.②.丰富对现实空间及图形的认识,建立初步的空间观念,发展形象思维.③.经历运用数据描述信息,作出推断的过程,发展统计观念.④.经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力能有条理地、清晰地阐述自己的观念参考材料:数学教学的本质是帮助学生获取知识,形成技能的一种思维过程,其根本价值在于让学生学会运用数学的思维方式去观察、思考、分析现实生活中的有关现象,去解决日常生活和其他学科学习中的有关问题,并建立起良好的进一步学习的情感..我们应该把学生的数学思考作为整个教学活动的核心,更多地关注学生的数学思考,学生在思考什么,怎样思考的,思考的结果怎样,这样的课堂才是真实的、有效的、智慧的、精彩的.然而在日常教学活动中,我们却会不自觉地忘却学生的需求,忘却教学的本质,常常为了赶进度而忽视学生的感受,喜欢用现成的答案来取代学生的自主学习,用教师的讲解来替代学生的数学思考;久而久之,学生养成了“衣来伸手,饭来张口”的习惯,既失去了原有的学习兴趣,也丧失了本该具备的思考能力,导致教学效率低下.一个不争的事实就是现在有疑问的学生越来越少,甚至有许多学生常年不问老师一个问题;学生没有疑问,难道他们真的是什么问题都弄清楚了吗?细致地了解一下就会发现,其实他们还有许多问题没有弄懂,或者似懂非懂.课堂上,我们教师讲得太多了,但教师所讲的未必是学生想听的,教学上最可怕的失误,就是把学生的主要精力用到消极地掌握知识上去.“学而不思则罔”,让学生学会数学思考,成为数学教学中一个亟待解决的问题.数学思考是《全日制义务教育数学课程标准(实验稿)》首次提出的数学教育目标之一.可以从抽象思考、形象思考、统计思考、推理思考等方面去理解数学思考的内涵.数学思考的培养,需要教师转变重结果、轻过程的教学观念,注重采用问题解决的教学形式,创设数学交流环境,以培养、提升学生的数学思考.培养学生的数学思维方法,对学生进行数学在实际生活的应用,启发学生解决问题的能力,培养学生对数学学习的兴趣.2.请你结合新课程理念与教学实践,谈谈在初中阶段如何实施“空间与图形”的教学的,并说明可以从哪些方面来培养学生的空间观念?答:①.通过具体的例子,体现空间观念,以学生经验为基础发展空间观念.②.多样化发展空间观念的途径:生活经验的回忆、实物观察、动手操作、想象、描述和表示、联想、模拟、分析和推理等.③.在发展过程中逐步形成空间观念.④.通过学生自主探索与合作交流,解决问题,促进空间观念的发展,有助于学生更好地认识和理解人类生存的空间,培养学生的创新精神,从中获得必需的知识和必要的技能,学会推理.附:初中数学空间与图形课堂教学应注意的问题初中数学教师高级职称考试试题(含解析).,初中数学教师高级职称考试试题,数学课程的基本理念,初中数学教师申报高级职称总结材料,上海数学高级职称考试,初中数学高级职称试题,山西省初中数学高级职称考试试题,天津市高级职称初中数学试题,初中数学高级职称考试试题,初中数学教师晋升高级职称答辩题一、本类教学内容的教学设计:2.教学设计要运用系统的观点,从教学内容的研究、学生状况的研究、教学目标的确定、教学重点难点的确定和教学过程的设计等五个环节进行,每个环节的具体设置都值得研究.3.从教学设计中的目标的制定、数学活动的安排和信息技术的整合等几个方面,谈我们应该注意的问题.二、初中阶段“空间与图形”的教学内容标准的理解1.学会合作、交流、表达,在探索图形性质、与他人合作交流等活动过程中,发展合情推理,进一步学习有条理的思考与表达.2.学会简单推理,在积累了一定的活动经验与图形性质的基础上,从几个基本的事实出发,证明一些有关三角形、四边形的基本性质,从而体会证明的必要性,理解证明的基本过程,掌握用综合法证明的格式,初步感受公理化思想.生经历观察、操作、推理、想像等探索过程,能解决一些生活中较简单问题.三、关于《空间与图形》教学的五环节的认识1.教学内容分析:分析将要让学生掌握什么知识点,这与学生已有的知识结样的数学思维方法,让学生掌握这些方法;在教学内容的处理中,适当地取材,不必限于课本,为的是更能激活思维,实现教学目标,实现“从生活走进课程,从课程走进社会”的理念.2.学生需求分析:应分析学生的知识基础、认知能力、学习习惯等,有针对性地制定出恰当的教学目标,才能选取有效的教学方法和教学手段,更好地为学生服务.在课堂教学过程中努力贯彻“教师为主导、学生为主体、探究为主线、思维为核心”的教学思想,通过引导学生观察、分析和动手操作,使学生充分地动手、动口、动脑,参与教学全过程.3.教学目标制定:教学目标要具体;教学目标要能达成;要从知识与能力,过程与方法,情感与态度等几个方面系统地确定教学目标.4.重点难点的确定:要认真分析本节课的核心内容及学生的思维障碍,要设计出突出重点、突破难点的具体的方式方法.5.教学过程的设计:教学设计一般分为引入新课、学习新知、应用新知、课堂小结、布置作业等五个环节,有的教师认为这是“老五环”,其实在每个环节中,你完全可以创新,以适合现代教育的需要.比如,需要设计出在具体的教学环节中,运用怎样有效的教学方法、实施哪些必要的教学手段、采取何种的交流方式,如何进行评价活动等方面去完成教学目标。
中学数学教师职称晋升考试试卷(四套)含答案
中学数学教师职称考试试卷(一)第一部分数学教育理论与实践一、简答题(10分)教育改革已经紧锣密鼓,教学中应确立这样的思想“以促进学生的全面发展为本,以提高全体学生的数学素质为纲”,作为教师要该如何去做呢?谈谈高中数学新课程改革对教师的要求。
二、论述题(10分)如何提高课堂上情境创设、合作学习、自主探究的实效性?第二部分数学专业基础知识一、选择题(本题共10小题,每小题3分,共30分)在每小题给出的四个选项中,只有一项是符合题目要求的。
1.复数(1+i)(1-i)=()A.2B.-2C.2i D.-2i2.(3x2+k)dx=10,则k=()A.1B.2C.3D.43.在二项式(x-1)6的展开式中,含x3的项的系数是()A.-15B.15C.-20D.204.200辆汽车通过某一段公路时的时速的频率分布直方图如右图所示,时速在[50,60)的汽车大约有()A.30辆B.40辆C.60辆D.80辆5.某市在一次降雨过程中,降雨量y(mm)与时间t(min)的函数关系可近似地表示为f(t)=,则在时刻t=10 min的降雨强度为()A.mm/min B.mm/min C.mm/min D.1 mm/min6.定义在R上的函数f(x)满足f(x+y)=f(x)+f(y)+2xy(x,y∈R),f(1)=2,则f(-3)等于()A.2 B.3 C.6 D.97.已知函数f(x)=2x+3,f-1(x)是f(x)的反函数,若mn=16(m,n∈R+),则f-1(m)+f-1(n)的值为()A.-2B.1 C.4 D.108.双曲线=1(a>0,b>0)的左、右焦点分别是F1,F2,过F1作倾斜角为30°的直线交双曲线右支于M点,若MF2垂直于x轴,则双曲线的离心率为()A.B.C.D.9.如图,α⊥β,α∩β=l,A∈α,B∈β,A,B到l的距离分别是a和b,AB与α,β所成的角分别是θ和φ,AB在α,β内的射影分别是m和n,若a>b,则()A.θ>φ,m>n B.θ>φ,m<nC.θ<φ,m<n D.θ<φ,m>ny≥110.已知实数x,y满足y≤2x-1如果目标函数z=x-y的最小值为-1,则实数m等于( )x+y≤mA.7 B.5 C.4 D.3二、填空题(本大题共5小题,每小题3分,共15分)把答案填在题中横线上。
教师职称考试(初中数学试卷)详解
中小学教师教学能力水平考核初中数学试卷应考教师须知:1.本卷分三个部分,共9道题,满分100分,考试时间120分钟.2.答题前,请在密封区内填写市(县)名、校名、姓名、准考证号和所申报的职称.3.答题要做到书写端正,字迹清楚,行款整齐,卷面整洁.4.加*号的试题, 申报高级职称者必做, 申报中级职称者不做.第一部分(30分)1.《数学课程标准》在课程的目标中,不仅使用“了解, 理解, 掌握和灵活运用”等刻画知识技能的目标动词, 而且使用了“经历(感受), 体验(体会), 探索”等刻画数学活动水平的过程性目标动词. 请结合你的具体教学, 谈谈你在教学中如何实施这些过程性的目标.根据《基础教育课程改革纲要(试行)》,结合数学教育的特点,《标准》明确了义务教育阶段数学课程的总目标,并从知识与技能、数学思考、解决问题、情感与态度等四个方面作出了进一步的阐述. ..《标准》中不仅使用了"了解(认识)、理解、掌握、灵活运用"等刻画知识技能的目标动词,而且使用了"经历(感受)、体验(体会)、探索"等刻画数学活动水平的过程性目标动词,从而更好地体现了《标准》对学生在数学思考、解决问题以及情感与态度等方面的要求.知识技能目标了解(认识)能从具体事例中,知道或能举例说明对象的有关特征(或意义);能根据对象的特征,从具体情境中辨认出这一对象. 理解能描述对象的特征和由来;能明确地阐述此对象与有关对象之间的区别和联系..掌握能在理解的基础上,把对象运用到新的情境中.灵活运用能综合运用知识,灵活、合理地选择与运用有关的方法完成特定的数学任务。
过程性目标经历(感受)在特定的数学活动中,获得一些初步的经验.体验(体会)参与特定的数学活动,在具体情境中初步认识对象的特征,获得一些经验.题号第一部分第二部分第三部分总分得分探索主动参与特定的数学活动,通过观察、实验、推理等活动发现对象的某些特征或与其他对象的区别和联系.2.目前我们已经进入了信息时代, 计算机在人类生产生活中起到了举足轻重的作用. 请说明数学与计算机的结合有着哪些重要意义? 数学课程的设计应如何重视现代信息技术的运用? 数学与计算机的结合,使得数学在研究领域、研究方式和应用范围等方面得到了空前的发展,使得数学可以更好地帮助我们探求客观世界的规律,并对现代社会中大量纷繁复杂的信息作出恰当的选择与判断,同时为我们交流信息提供了一种有效而简捷的手段。
初中数学教师高级职称考试试题(含解析)
1 / 4类别: 中一、中高 一、教学理论(共10分)1.答:首先要研究学法.理由:⑴.习方法的指导;⑵.学习者的自身;⑶.2.述理由.答:⑴.校长支持;⑵.自我反思与行为跟进.自我反思与行为跟进、为跟进是教师进步的内在动力;同伴之间相互探讨可以营造教研的良好外部环境;专家的引领可以使校本教研方向对路、方法正确、减时增效 . 二、课程标准(共10分)1.请你谈谈“数学思考”的具体内涵.答:数学思考的内涵:①.经历运用数学符号和图形描述现实世界的过程,建立初步的数感和符号感,发展抽象思维.②.丰富对现实空间及图形的认识,建立初步的空间观念,发展形象思维.③.经历运用数据描述信息,作出推断的过程,发展统计观念.④.经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力能有条理地、清晰地阐述自己的观念参考材料:数学教学的本质是帮助学生获取知识,形成技能的一种思维过程,其根本价值在于让学生学会运用数学的思维方式去观察、思考、分析现实生活中的有关现象,去解决日常生活和其他学科学习中的有关问题,并建立起良好的进一步学习的情感..我们应该把学生的数学思考作为整个教学活动的核心,更多地关注学生的数学思考,学生在思考什么,怎样思考的,思考的结果怎样,这样的与图形”的教学的,并说明可以从哪些方面来培养学生的空间观念? 答:①.通过具体的例子,体现空间观念,以学生经验为基础发展空间观念.②.多样化发展空间观念的途径:生活经验的回忆、实物观察、动手操作、想象、描述和表示、联想、模拟、分析和推理等.③.在发展过程中逐步形成空间观念.④.通过学生自主探索与合作交流,解决问题,促进空间观念的发展,有助于学生更好地认识和理解人类生存的空间,培养学生的创新精神,从中获得必需的知识和必要的技能,学会推理.附:初中数学空间与图形课堂教学应注意的问题一、本类教学内容的教学设计:1.教学设计中要注意初中数学空间与图形与实际生活中(或是抽象出来的图形)之间的联系,引导学生学习兴趣,引导学生对证明的理解,注重一般的方法,但不追求证明的技巧与数量.2.教学设计要运用系统的观点,从教学内容的研究、学生状况的研究、教学目标的确定、教学重点难点的确定和教学过程的设计等五个环节进行,每个环节的具体设置都值得研究.3.从教学设计中的目标的制定、数学活动的安排和信息技术的整合等几个方面,谈我们应该注意的问题.二、初中阶段“空间与图形”的教学内容标准的理解1.学会合作、交流、表达,在探索图形性质、与他人合作交流等活动过程中,发展合情推理,进一步学习有条理的思考与表达.2.学会简单推理,在积累了一定的活动经验与图形性质的基础上,从几个基本的事实出发,证明一些有关三角形、四边形的基本性质,从而体会证明的必要性,理解证明的基本过程,掌握用综合法证明的格式,初步感受公理化思想.3.注重联系实际,在教学中,应注重所学内容与现实生活的联系,注重使学生经历观察、操作、推理、想像等探索过程,能解决一些生活中较简单问题.三、关于《空间与图形》教学的五环节的认识1.教学内容分析:分析将要让学生掌握什么知识点,这与学生已有的知识结构有何联系,本知识点的重要性认识;在围绕知识点教学过程中,涉及到什么样的数学思维方法,让学生掌握这些方法;在教学内容的处理中,适当地取材,不必限于课本,为的是更能激活思维,实现教学目标,实现“从生活走进课程,从课程走进社会”的理念.2.学生需求分析:应分析学生的知识基础、认知能力、学习习惯等,有针对性地制定出恰当的教学目标,才能选取有效的教学方法和教学手段,更好地为学生服务. 在课堂教学过程中努力贯彻“教师为主导、学生为主体、探究为主线、思维为核心”的教学思想,通过引导学生观察、分析和动手操作,使学生充分地动手、动口、动脑,参与教学全过程.3.教学目标制定:教学目标要具体;教学目标要能达成;要从知识与能力,过程与方法,情感与态度等几个方面系统地确定教学目标.4.重点难点的确定:要认真分析本节课的核心内容及学生的思维障碍,要设计出突出重点、突破难点的具体的方式方法.5.教学过程的设计:教学设计一般分为引入新课、学习新知、应用新知、课堂小结、布置作业等五个环节,有的教师认为这是“老五环”,其实在每个环节中,你完全可以创新,以适合现代教育的需要.比如,需要设计出在具体的教学环节中,运用怎样有效的教学方法、实施哪些必要的教学手段、采取何种的交流方式,如何进行评价活动等方面去完成教学目标。
中学数学教师职称晋升考试试卷(五套)
中学数学教师职称考试试卷(一)题次 一 二 三 四 总分 得分一、选择题(本题有5小题,每小题2分,共10分)1.下列图形中,轴对称图形有……………………………………………………………………〖 〗A .1个B .2个C . 3个D .4个2.如果小明、小华、小颖各写一个0、1、2、3、4、5、6、7、8、9中的数,则其中有两个数相同的概率是………………………………………………………………〖 〗 A .大于0.5 B .0.7 C .0.3 D .0.283.衢州与杭州相距280km ,甲车在衢州,乙车在杭州,两车同时出发,相向而行,在A 地相遇,两车交换货物后,均需按原路返回出发地. 如果两车交换货物后,甲车立即按原路回到衢州, 设每车在行驶过程中速度保持不变,两车间的距 离y (km )与时间t (时)的函数关系如图,则甲、 乙两车的速度分别为…………………………〖 〗A .70、70B .60、80C .70、80D .条件不足,不能求 4.在备战足球赛的训练中,一队员在距离球门12米处的远射, 正好射中了2. 4米高的球门横梁.若足球运行的路线是抛物 线y=ax 2+bx +c (如图),则下列结论:①a <-160 ;②-160 <a <0;③a -b +c >0;④0<b <-12a .其中正确的结论是…………………………………………………………………〖 〗 A .①③ B . ①④ C .②③ D .②④5.已知一次函数y = kx+b ,当自变量x 的取值在-2≤x ≤6时,相应的函数值y 的取值 是-11≤y ≤9,则此函数的表达式是……………………………………………〖 〗 A .y = 2. 5x -6 B .y =-2 . 5x +4 C .y = 2 .5x -6或y =-2 .5x +4 D .以上都不对0 1 2 3 4 5 x/时 280 140y/km二、填空题(本题有5小题,共12分)6.如图,已知五边形ABCDE ,分别以五边形的顶点 为圆心作单位圆,且互不相交.则图中阴影部分 的面积为 .7.在直角坐标系中,将△ABO 第一次变换成△A 1B 1O ,第二次变换成△A 2B 2O ,第三次变换成△A 3B 3O , 已知A (1,3)、A 1(2,3)、A 2(4,3)、A 3(8,3)、 B (2,0)、B 1(4,0)、B 2(8,0)、B 3(16,0).按上述变换的规律再将△A 3B 3O 变换成△A 4B 4O ,则点A 4、B 4的坐标分别为A 4( , )、B 4( , ).8.已知y =(x -a )(b -x )-1 ,且b a <,若α,β是方程y =0的根(α<β),则实数a ,b, α,β的大小关系是9.一群鸽子放飞回来,如果每只笼里飞进4只,还有19只在天空飞翔;如果每只笼里飞进6只,还有一只笼里不到6只鸽子.则有鸽子 只,有笼 只. 10.在下列的横线上填数,使这列数具有某种规律.3,5,7, , , .小颖在第一格填上11;则第二格填上 ,其规律是 ; 小刚在第一格填上17;则第三格填上 ,其规律是 . 三、解答题(本题有5个小题,共28分) 11.(6分)画图题(1)如图所示, 在正方体1111ABCD A B C D -的侧面1AB 内有一动点P , P 到直线11A B 的距离与到直线BC 的距离相等.在侧面1AB 上,请你大致画出动点P 所在的曲线.ABCDE(2)如图,有一棵大树AB和一棵小树CD,在大树的左侧还有一盏高悬的路灯EF(EF>AB),灯杆、大树、小树的底部在一条直线上.在这盏灯的照射下,大树的影子一定长吗?请画图说明.12.(4分)请用框图或结构图或其它合适的方法描述平行四边形,矩形,菱形,正方形之间的关系。
2024年教师资格考试初级中学学科知识与教学能力数学试题及解答参考
2024年教师资格考试初级中学数学学科知识与教学能力复习试题(答案在后面)一、单项选择题(本大题有8小题,每小题5分,共40分)1、已知函数(f(x)=x2−4x+5),则该函数的最小值是多少?•A) 1•B) 2•C) 3•D) 42、在直角坐标系中,点P(3, -4) 关于原点对称的点Q 的坐标是?•A) (-3, 4)•B) (3, 4)•C) (-3, -4)•D) (3, -4)3、在平面直角坐标系中,点A(2,-3)关于直线y=-x的对称点B的坐标是()A.(3,2)B.(-3,-2)C.(-2,-3)D.(-3,3)4、下列函数中,函数值y随自变量x增大而减小的是()A. y=2x+3B. y=-x+5C. y=x^2+1D. y=-3x^25、下列关于三角形的内角和的说法,正确的是()A、三角形的内角和一定等于180度B、三角形的内角和可能大于180度C、三角形的内角和可能小于180度D、三角形的内角和可以根据三角形形状变化6、对于函数 y = 2^x,当 x > 0 时,关于该函数的性质描述正确的是()A、y 的值小于 2B、y 的值大于 2C、y 的值随 x 的增大而减小D、y 的值随 x 的增大而增大7、在数学教学中,为了更好地帮助学生理解抽象的数学概念,教师采用的具体教学策略是()。
A. 多次重复讲解法B. 利用多媒体辅助教学C. 实例教学与比较教学相结合D. 直接抽象教学8、在组织学生进行探究活动时,教师应关注的重点不包括以下几点中的()。
A. 确保学生安全B. 学生是否遵循了探究步骤C. 探究活动对学生兴趣的激发D. 探究活动是否达到了教学目标二、简答题(本大题有5小题,每小题7分,共35分)第一题请简述数学学科核心素养的主要内容及其在初中数学教学中的体现。
第二题题目:简述基于问题解决的教学模式及其在初中数学教学中的应用,并举例说明。
第三题请简述课堂提问的艺术,并举例说明教师在设计提问时应该注意的几点。
初中数学教师职称考试试题(共四套附答案)
初中数教师教师职称考试试题(一)一、选择题(每题2分,共12分)1、“数学是一种文化体系。
”这是数学家( C)于1981年提出的。
A、华罗庚B、柯朗C怀尔德D、J.G.Glimm2、“指导学生如何学?”这句话表明数学教学设计应以( A)为中心。
A、学生B、教材C、教师D、师生3、现实中传递着大量的数学信息,如反映人民生活水平的“恩格尔系数”、预测天气情况的“降雨概率”、表示空气污染程度的“空气指数”、表示儿童智能状况的“智商”等,这表明数学术语日趋(B )A、人本化B、生活化C、科学化D、社会化a 当a>0时;4、当a≧0时|a|=a ,当a<0时;|a|=-a这体现数学( A )思想方法A、分类B、对比C、概括D、化归5、直角三角形斜边上的中线等于斜边长的一半。
其判断形式是(C)A、全称肯定判断(SAP)B、全称否定判断(SEP)C、特称肯定判断(SIP)D、特称否定判断(SOP)6、数学测验卷的编制步骤一般为(D)A、制定命题原则,明确测验目的,编拟双向细目表,精选试题。
B、明确测验目的,制定命题原则,精选试题,编拟双向细目表。
C明确测验目的,编拟双向细目表,精选试题,制定命题原则。
C、确测验目的,制定命题原则,编拟双向细目表,精选试题。
二、填空题(每格2分,共44分)7、在20世纪,数学学习理论经历了从行为主义向认知主义的发展历程。
8、2001年7月,教育部颁发了依据《基础教育课程改革(试行)》而研制的《义务教育数学课程标准(实验稿)>>,这是我国数学教育史上的划时代大事。
9、义务教育阶段的数学课程标准应体现基础性、普及性、发展性,使数学教育面向全体学生,实现:①人人学有价值的数学;②人人都获得必需的数学;③不同的人在数学上得到不同的发展。
10、建构主义数学学习观认为:“数学学习是主动建构的过程;也是一个充满生动活泼、主动和富有个性的过程。
”11、“数学活动”的数学教学观认为:数学教学要关注学生的已有的知识和经验。
初中数学教师高级职称考试试题(含解析).docx
教师职务评审考核笔试卷类别:中一、中高学科:初中数学一、教学理论 ( 共 10 分 )1.为了从以“教”为中心转向以“学”为中心,教师研究教法你认为首先要研究什么?为什么要从这里入手研究?答:首先要研究学法 . 理由:⑴. 强调教师的“教”一定要重视学生学习方法的指导;⑵. 学习者是学习的主人,学习质量的高低最终取决于学习者的自身;⑶ . “授人以鱼”不如“授人以渔” .2.实施新课程,校本教研是其中重要的内容。
你认为校本教研要真正对教师的专业成长起作用,下面几个因素中哪三个是最重要的?请简述理由 .答:⑴ . 校长支持;⑵ . 制度保证;⑶ . 同伴互助;⑷ . 专家引领;⑸ .自我反思与行为跟进 .自我反思与行为跟进、同伴互助、专家引领、自觉主动的反思和行为跟进是教师进步的内在动力;教研组(备课组)是一个学习共同体,同伴之间相互探讨可以营造教研的良好外部环境;专家的引领可以使校本教研方向对路、方法正确、减时增效 ?.二、课程标准(共 10 分)1.请你谈谈“数学思考”的具体内涵.答:数学思考的内涵:① .经历运用数学符号和图形描述现实世界的过程,建立初步的数感和符号感,发展抽象思维 .② .丰富对现实空间及图形的认识,建立初步的空间观念,发展形象思维 .③.经历运用数据描述信息,作出推断的过程,发展统计观念 .④.经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力能有条理地、清晰地阐述自己的观念参考材料:数学教学的本质是帮助学生获取知识,形成技能的一种思维过程,其根本价值在于让学生学会运用数学的思维方式去观察、思考、分析现实生活中的有关现象,去解决日常生活和其他学科学习中的有关问题,并建立起良好的进一步学习的情感 .. 我们应该把学生的数学思考作为整个教学活动的核心,更多地关注学生的数学思考,学生在思考什么,怎样思考的,思考的结果怎样,这样的课堂才是真实的、有效的、智慧的、精彩的 . 然而在日常教学活动中,我们却会不自觉地忘却学生的需求,忘却教学的本质,常常为了赶进度而忽视学生的感受,喜欢用现成的答案来取代学生的自主学习,用教师的讲解来替代学生的数学思考;久而久之,学生养成了“衣来伸手,饭来张口”的习惯,既失去了原有的学习兴趣,也丧失了本该具备的思考能力,导致教学效率低下. 一个不争的事实就是现在有疑问的学生越来越少,甚至有许多学生常年不问老师一个问题;学生没有疑问,难道他们真的是什么问题都弄清楚了吗?细致地了解一下就会发现,其实他们还有许多问题没有弄懂,或者似懂非懂. 课堂上,我们教师讲得太多了,但教师所讲的未必是学生想听的,教学上最可怕的失误,就是把学生的主要精力用到消极地掌握知识上去. “学而不思则罔”,让学生学会数学思考,成为数学教学中一个亟待解决的问题.数学思考是《全日制义务教育数学课程标准( 实验稿 ) 》首次提出的数学教育目标之一 . 可以从抽象思考、形象思考、统计思考、推理思考等方面去理解数学思考的内涵 . 数学思考的培养, 需要教师转变重结果、轻过程的教学观念, 注重采用问题解决的教学形式, 创设数学交流环境, 以培养、提升学生的数学思考.培养学生的数学思维方法,对学生进行数学在实际生活的应用,启发学生解决问题的能力,培养学生对数学学习的兴趣.2.请你结合新课程理念与教学实践 , 谈谈在初中阶段如何实施“空间与图形”的教学的 , 并说明可以从哪些方面来培养学生的空间观念?答:① . 通过具体的例子,体现空间观念,以学生经验为基础发展空间观念 . ② . 多样化发展空间观念的途径:生活经验的回忆、实物观察、动手操作、想象、描述和表示、联想、模拟、分析和推理等. ③. 在发展过程中逐步形成空间观念. ④ . 通过学生自主探索与合作交流,解决问题,促进空间观念的发展,有助于学生更好地认识和理解人类生存的空间,培养学生的创新精神,从中获得必需的知识和必要的技能,学会推理 .附:空间与图形应注意的问题一、本类教学内容的:1.中要注意空间与图形与实际生活中(或是抽象出来的图形)之间的联系,引导学生学习兴趣,引导学生对证明的理解,注重一般的方法,但不追求证明的技巧与数量 .2.要运用系统的观点,从教学内容的研究、学生状况的研究、教学目标的确定、教学重点难点的确定和的设计等五个环节进行,每个环节的具体设置都值得研究 .3.从教学设计中的目标的制定、数学活动的安排和信息技术的整合等几个方面,谈我们应该注意的问题.二、初中阶段“空间与图形”的教学内容标准的理解1.学会合作、交流、表达,在探索形性、与他人合作交流等活程中,展合情推理,一步学有条理的思考与表达.2.学会推理,在累了一定的活与形性的基上,从几个基本的事出,明一些有关三角形、四形的基本性,从而体会明的必要性,理解明的基本程,掌握用合法明的格式,初步感受公理化思想.3.注重系,在教学中,注重所学内容与生活的系,注重使学生察、操作、推理、想像等探索程,能解决一些生活中.三、关于教学的五的1.教学内容分析:分析将要学生掌握什么知点,与学生已有的知构有何系,本知点的重要性;在知点中,涉及到什么的数学思方法,学生掌握些方法;在教学内容的理中,适当地取材,不必限于本,的是更能激活思,教学目,“从生活走程,从程走社会”的理念 .2.学生需求分析:分析学生的知基、知能力、等,有性地制定出恰当的教学目,才能取有效的教学方法和教学手段,更好地学生服.在程中努力“教主、学生主体、探究主、思核心”的教学思想,通引学生察、分析和手操作,使学生充分地手、口、,参与教学全程.3.教学目制定:教学目要具体;教学目要能达成;要从知与能力,程与方法,情感与度等几个方面系地确定教学目.4.重点点的确定:要真分析本的核心内容及学生的,要出突出重点、突破点的具体的方式方法.5.的:教学一般分引入新、学新知、用新知、堂小、布置作等五个,有的教是“老五”,其在每个中,你完全可以新,以适合代教育的需要 . 比如,需要出在具体的教学中,运用怎有效的教学方法、施哪些必要的教学手段、采取何种的交流方式,如何行价活等方面去完成教学目。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中小学教师教学能力水平考核初中数学试卷应考教师须知:1.本卷分三个部分,共9道题,满分100分,考试时间120分钟.2.答题前,请在密封区内填写市(县)名、校名、姓名、准考证号和所申报的职称.3.答题要做到书写端正,字迹清楚,行款整齐,卷面整洁.4.加*号的试题, 申报高级职称者必做, 申报中级职称者不做.第一部分(30分)1.《数学课程标准》在课程的目标中,不仅使用“了解, 理解, 掌握和灵活运用”等刻画知识技能的目标动词, 而且使用了“经历(感受), 体验(体会), 探索”等刻画数学活动水平的过程性目标动词. 请结合你的具体教学, 谈谈你在教学中如何实施这些过程性的目标.根据《基础教育课程改革纲要(试行)》,结合数学教育的特点,《标准》明确了义务教育阶段数学课程的总目标,并从知识与技能、数学思考、解决问题、情感与态度等四个方面作出了进一步的阐述...《标准》中不仅使用了"了解(认识)、理解、掌握、灵活运用"等刻画知识技能的目标动词,而且使用了"经历(感受)、体验(体会)、探索"等刻画数学活动水平的过程性目标动词,从而更好地体现了《标准》对学生在数学思考、解决问题以及情感与态度等方面的要求.知识技能目标了解(认识)能从具体事例中,知道或能举例说明对象的有关特征(或意义);能根据对象的特征,从具体情境中辨认出这一对象.理解能描述对象的特征和由来;能明确地阐述此对象与有关对象之间的区别和联系..掌握能在理解的基础上,把对象运用到新的情境中.灵活运用能综合运用知识,灵活、合理地选择与运用有关的方法完成特定的数学任务。
过程性目标经历(感受)在特定的数学活动中,获得一些初步的经验.中高级晋升考试第 1页(共 16页)第 2页(共 16页)体验(体会)参与特定的数学活动,在具体情境中初步认识对象的特征,获得一些经验.探索主动参与特定的数学活动,通过观察、实验、推理等活动发现对象的某些特征或与其他对象的区别和联系.2.目前我们已经进入了信息时代, 计算机在人类生产生活中起到了举足轻重的作用. 请说明数学与计算机的结合有着哪些重要意义? 数学课程的设计应如何重视现代信息技术的运用?数学与计算机的结合,使得数学在研究领域、研究方式和应用范围等方面得到了空前的发展,使得数学可以更好地帮助我们探求客观世界的规律,并对现代社会中大量纷繁复杂的信息作出恰当的选择与判断,同时为我们交流信息提供了一种有效而简捷的手段。
在数学课程的设计中,应充分考虑计算器对数学学习内容和方式的影响,大力开发并向学生提供更为丰富的学习资源,把现代信息技术作为学生学习数学和解决问题的强有力工具,使学生乐意并有更多的精力投入到现实的,探索性的数学活动中.第二部分(30分)3. 同一个数学问题, 由于观察的角度不同, 对问题的分析,理解的层次不同, 就可以导致转化目标与方法的不同. 但共同的目的都是为了做到化繁为简,化隐为显,化难为易,化未知为已知,化一般为特殊,化抽象为具体……请说明在利用化归思想解决思想问题时, 重点要注意的问题是什么? 并举出一个你印象最为深刻的利用化归思想解题的例子.参考答案:一、方程思想的运用所谓方程思想,就是从分析问题的数量关系入手,通过设定未知数,把问题中的已知与未知量的数量关系,转化为方程或方程组等数学模型,然后利用方程的理论或方法,使问题得到解决。
用方程思想分析、处理问题,思路清晰,灵活、简便.用方程思想的核心是揭示题目中隐含的数量关系,设未知数、构造方程,沟通已知与未知的联系,从而使问题得到解决.二、数形结合的思想运用数学是研究现实世界空间形式和数量关系的科学。
“数”与“形”是数学中的两个最基本的概念,每一个几何图形中都蕴含着一定的数量关系;而数量关系又常常可以通过几何图形做出直观的反映和描述,所以数形中高级晋升考试第 3页(共 16页)第 4页(共 16页)结合也就成为研究数学问题的重要思想方法。
也就是说教师、学生都要投入到教学活动中来。
学生的参与尤其重要,如果没有学生的积极参与,这样的教学活动绝不会是成功的.如定理教学是数学教学的重点.如何使学生发现定理的形成过程、定理证明思维来历,特别是辅助线的添加方法一直是教学中研究的重点.在《三角形中位线定理》一节课的教学中,我们运用计算机辅助教学手段,采用《几何面板》软件,给学生创设了一个理想的情境,所画的三角形可以任意变化,(体现定理对于任意三角形都成立)可测算出一组同位角始终相等,中位线的长是第三边长的一半.学生经过对图形的观察很容易得到定理的结论.定理的证明实质是经过平移变换或旋转变换,将三角形图形转化为平行四边形而证明的.(几何画板)能很好地演示上述过程。
所以,定理的证明思路、辅助线的添加方法都显得十分自然.在教师的引导下,学生积极地参与,整个教学过程是学生的思维步步深入的过程,达到了理想的教学效果.数形结合的思想,就是把问题中的数量关系和空间形式结合起来加以考察的思想。
在解题方法上,“数”与“形”相互转化,从而使问题化难为易、化繁为简,达到解决问题的目的。
数形结合思想的应用分为两种情形:一种是借助于数的精确性来阐明形的某些属性,即“以数论形”;另一种是借助于形的几何直观性来表示数之间的某些关系,即“以形促数”。
运用数形结合思想解题,易于寻找解题途径,可避免繁杂的计算和推理,简化解题过程。
我国著名数学家华罗庚曾说过:“数缺形时少直观,形少数时难入微;数形结合百般好,隔离分家万事休。
”数学中,数和形是两个最主要的研究对象,它们之间有着十分密切的联系,在一定条件下,数和形之间可以相互转化,相互渗透.三、分类讨论思想运用分类讨论思想是根据数学本质属性的相同点和不同点,把数学的研究对象区分为不同种类的一种数学思想。
正确应用分类思想,是完整解题的基础。
例如,在学了角的比较大小后,对于小于平角的角分为锐角、直角、钝角三类,就是分类思想的体现。
同一类事物按不同标准可进行不同的分类,但在同一标准下必须做到不重、不漏.把一个数学问题的研究对象按一定的标准分成几个部分或几种情况,化整为零,一一解决,实际上是一种“分而治之,各个击破”的策略。
其步骤为:1.确定分类对象—理解分类概念;2.恰当合理分类—掌握分类原则;3.逐步逐级讨论—学会分类方法;4.综合概括叙述—培养逻辑思维。
分类讨论的原则是:对象确定,标准统一;分层次,不越级;不重复,不遗漏.中高级晋升考试第 5页(共 16页)第 6页(共 16页)有关分类讨论思想的数学问题在数学学习过程中之所以占有重要位置,原因是它具有明显的逻辑性特点,能很好地训练一个人的思维的条理性和概括性。
四、转化化归思想的运用复杂的问题转化为简单的问题来解,未知的问题转化为已知的问题来解……数学问题往往是在不断的转化中达到解决目的。
同一个数学问题,由于观察的角度不同,对问题的分析、理解的层次不同,可以导致目标的不同与解题方法的不同,但目的只有一个—尽量做到化繁为简、化难为易、化未知为已知、化一般为特殊、化抽象为具体。
转化包括等价转化和非等价转化两种。
等价转化要求转化过程中的前因后果是互相可推的。
但事实上并不是所有的转化都是等价的,因此,在转化过程中,一定要注意转化前后的等价性,如出现不等价转化,则需附加约束条件。
总之,数学思想反映着数学概念、原理及规律的联系和本质,是形成数学能力、数学意识的桥梁,是灵活运用数学知识、技能、方法的关键。
数学思想方法是中学数学教学的重要内容之一。
任何数学难题的解决无不以数学思想为指导,以数学方法为手段。
数学思想是教材体系的灵魂,是教学设计的指导,是课堂教学的统帅,是解题思维的指南。
把数学知识的精髓—数学思想方法纳入基础知识的范畴,是加强数学素质教育的一个重要举措。
随着对数学思想方法教学研究的深入,在教学中渗透数学思想方法的实施,必将进一步提高数学教学质量.4.“等腰三角形”是一种特殊而重要的三角形, 是学习几何图形的基础,也是图形变换和演绎推理的重要元素之一. 请你针对“等腰三角形的判定”这一教学内容(老教材浙教版第三册9.13节“等腰三角形的判定定理”; 新教材华师大版七年级下9.3-2“等腰三角形的识别”), 写出教学设计过程中的教学目标, 重点难点和注意事项. (请说明自己的教学设计根据的教材版本, 不需整堂课的设计).参考答案:目标:⑴.增加识别等腰三角形的方法;⑵.与等腰三角形的性质作比较;⑶.引申到等边三角形的判定.重点难点:第一次利用辅助线证明或折叠对称合情说理.注意事项:中高级晋升考试第 7页(共 16页)第 8页(共 16页)⑴.添辅助线的意义,表述和要求;⑵.合情说理和演绎证明的关系;⑶.等边对等角和等角对等边的互逆关系;⑷.等边三角形和等腰直角三角形两个特例;⑸.与实际问题联系.5、(此题为申报高级职称的教师加试题) 有人认为数学是教会的,即数学是通过教师的教,从而转化为学生的数学;也有人认为数学是学会的,即数学是通过学生自己的学,才能转化为学生的数学. 对以上两种教学指导观你的看法怎么样?你在数学教学中遵循的是什么样的指导观?请作简单介绍.参考答案:含义:发现学习是教师启发学生独立发现事物意义的学习;接受学习是教师引导学生接受事物意义的学习.看法应包括两种学习方式的优势及限制,两种学习方式的综合运用,指出两种学习方式是课堂教学,可以共存的互补的. 第三部分(40分)6. 当m为整数时, 关于x的方程()()22m1x2m1x--+10+=是否有有理根? 如果有,求出m的值; 如果没有, 请说明理由.略解:当m为整数时,当m为整数时, 关于x的方程()22m1x--()2m1x10++=没有有理根.理由如下:①. 当m为整数时,若原方程有有理根,则要△=2b4ac-为完全平方数,否则开方不尽,则有根则为无理根.而△=2b4ac-()()()2222m142m14m4m52m14 +-⨯-=-+=-+设△=2n,即()222m14n-+=(n为整数)故有()()2m1n2m1n4-+--=-.没有中高级晋升考试第 9页(共 16页)第 10页(共 16页)中高级晋升考试 第 11页(共 16页) 第 12页 (共 16页)7. 如图, 两圆同心, 半径分别为6与8, 又矩形ABCD 的边AB 和 CD 分别为小大两圆的弦. 矩形ABCD 面积最大时, 求此矩形的周长.略解:作OM AD ⊥于点M ,ON AB ⊥于点N ,OP BC ⊥于点P ,则四边形ANOM 是矩形.∴S △AOM =S △AON .同理:S △OBN =S △OPB∵ON AB ⊥ ∴AN BN =,则OM OP =.∴△OAM ≌△OBP∴S △AOM =S 14矩形MPAB ∴S △AOD =S 14矩形ABCD又S △AOD OA OD sin AOD sin AOD =⋅∠=∠1242当AOD ∠=90,S △AOD 的面积最大,此时矩形ABCD 的面积最大.在Rt △AOD 中,OA 6,OD 8==∴2222AD OA OD 6810=+=+=,则BC AD 10==.∵S △AOD AD OM OA OD =⋅=⋅1122 ∴OA OD 68OM 4.8cm AD 10⋅⨯=== ∴AB CD 2AN 2OM 9.6cm ==== 则矩形ABCD 的周长是:()29.61039.2cm +=.8.在一个抛物线型的隧道模型中,用了三种正方形的钢筋支架,画设计图时,如果在直角坐标系中,抛物线的解析式为2y x c =-+,正方形ABCD 的边长和正方形EFGH 边长之比为5:1,求正方形MNPQ 的边长.略解:⑴.因各点坐标都关于y 轴对称,可以设特殊坐 点的标;由抛物线的函数解析式2y x c =-+.∵AB BC = 设AB a =,则a EF 5=又∵抛物线关于y 轴对称故可得a a 6a B ,a F ,255⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭、代入2y x c =-+建立方程组中高级晋升考试 第 13页(共 16页) 第 14页 (共 16页)22a c a 4a 6c a1005⎧-+=⎪⎪⎨⎪-+=⎪⎩ 解得:5a 6145c 144⎧=⎪⎪⎨⎪=⎪⎩ 故抛物线的解析式2y x c =-+中c 的值为145144与正方形EFGH 边长之比为5:∴1151BC AB a ,FG a 65566=====⨯=∴根据对称性等可知a a F ,a 105⎛⎫+ ⎪⎝⎭,即1F ,112⎛⎫⎪⎝⎭设MN NP b ==,则 b N ,b 1⎛⎫+ ⎪所以正方形MNPQ 的边长为26-. 9.某单位化50万元买回一台高科技设备. 根据对这种型号设备的跟踪调查显示, 该设备投入使用后, 若将养护和维修的费用均摊到每一天, 则有结论: 第x 天应付的养护和维修费为()1x 15004⎡⎤-+⎢⎥⎣⎦元.⑴.如果将该设备从开始投入使用到报废所付的养护费, 维修费及设备购买费之和均摊到每一天, 叫做日平均损耗. 请你将日平均损耗y (元)表示为x (天)的函数; ⑵.按照此行业的技术和安全管理要求, 当此设备的日平均损耗达到最小值时, 就应当报废. 问该设备投入使用多少天应当报废?注: 在解本题时可能要用到以下两个知识点, 如果需要可直接引用结论.①.对于任意正整数n , 有()n n 1123n 2+++++=;②.对于任意正数a,b 和正实数x , 有:a x y xb =+≥=当x b a x+时, 函数y 可取到最小值略解:⑴.由题意知从第一天到第x 天所付的养护费,维修费用中高级晋升考试 第 15页(共 16页) 第 16页 (共 16页) 的总和为(单位:元):()()x x 1115005002x 1500500x 448-⎛⎫⎡⎤++⨯++-+=+⎪⎢⎥⎝⎭⎣⎦所以日平均损耗函数:()x x 13999x 500000y 500x 500000x 888x -⎡⎤=+⨯÷=++⎢⎥⎣⎦.⑵.由3999x 50000039993999y 50088x 88=++≥+=+79998=即()17999x 150048-+= 解得:x 2000.5= 故设备投入使用2000天应当报废. 答:该设备投入使用应当报废.。