武大电气matlab电路仿真实验报告

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一:直流电路

1.电阻电路的计算

程序:

1电阻电路的计算

第1题

%本题选用回路法,列出的方程为Z*I=U的形式,求出回路电流,然后进一步求解Z=[ 20 -12 0; %阻抗矩阵

-12 32 -12;

0 -12 18];

U=[10 0 0]'; %电压向量

I=inv(Z)*U; %回路电路向量

i3=I(1)-I(2); %求i3

u4=I(2)*8; %求u4

u7=I(3)*2; %求u7

fprintf('(1) i3= %8.4fA\n u4= %8.4fV\n U7= %8.4fV\n',i3,u4,u7)

us=10/u4*4; %根据电路线性性质,由上题的u4变化的倍数求出us

Ub=[us 0 0]'; %变化后的电压向量

Ib=inv(Z)*Ub; %变化后的回路电流向量

ib3=Ib(1)-Ib(2); %变化后的i3

ub7=Ib(3)*2; %变化后的u7

fprintf('(2) us= %8.4fV\n i3= %8.4fA \n U7= %8.4fV\n',us,ib3,ub7)

输出结果:(1) i3= 0.3571A

u4= 2.8571V

U7= 0.4762V

(2) us= 14.0000V

i3= 0.5000A

U7= 0.6667V

2、求解电路里的电压

程序:

%导纳矩阵A

A=[ 0.6 0.125 -0.125 -0.1 0 -5 0

1 -1 0 0 0 0 -10

0 -0.125 0.325 -0.2 0 0 0

0 0 1 -1 0 0 5

-0.1 0 -0.2 0.55 -0.25 0 0

0 0 0 0 1 0 0

1 0 0 -1 0 -1 0];

%电流矩阵B

B=[0 0 5 0 0 24 0]';

V=inv(A)*B;

fprintf('V(1)=%f V\nV(2)=%f V\nV(3)=%f V\nV(4)=%f V\nV(5)=%f V\n',V(1),V(2),V(3),V(4),V(5));

输出结果:V(1)=117.479167

V(2)=299.770833

V(3)=193.937500

V(4)=102.791667

V(5)=24.000000

1.求解含有受控源的电路里的电流

程序:

%A为阻抗方程

A=[ 0 0 1 0 0 0

4 0 -4 12 -4 -4

-4 0 0 -4 8 0

0 0.5 0 0 0 1

0 -1 0 0 1 0

-1 0 0 1 0 -1];

B=[2 0 0 0 0 0]';%B为电压方程

I=inv(A)*B;

fprintf('i1= %.0f A\ni2= %.0f A\n',I(1),I(2));

输出结果:i1= 1 A

i2= 1 A

实验二:直流电路(2)

1.求最大功率损耗

程序:

A=[ 1 0

-1/10000 1/10000];

is=0;

B=[10 is]'

x 104

-3V=A\B; Uoc=V(2); is=1;

B=[0 is]'; V=A\B;

Req=[V(2)-V(1)]/is; Pmax=Uoc.^2/(4.*Req)

fprintf('The maximum power occurs at %f ¦¸\n',Req) fprintf('The maximum powerdissipation is %f W',Pmax) RL=0:50000;

VL=10.*RL./(10000+RL); PL=VL.^2./RL;

figure(1),plot(RL,PL),grid

输出结果:The maximum power occurs at 10000.000000 Ω

The maximum powerdissipation is 0.002500 W

输出图形如下

则从图上可验证当RL 为10K Ω时,最大功率约为2.5×W

2. 求消耗的功率

程序: A=[1 0 0 0

-1/5 1/5+1/2+1/20 -1/2 0 0 -1/2 1/2+1/24+1/1.2 -1/1.2 0 0 -1/1.2 1/1.2]; V1=inv(A)*[75 0 0 0]'; Uoc=V1(4); is=1;

V2=inv(A)*[0 0 0 is]'; Req=V2(4)/is;

RL=[0 2 4 6 10 18 24 42 90 186];

REQ=[Req Req Req Req Req Req Req Req Req Req];

B=REQ+RL;

for i=1:1:10;

UL=Uoc.*RL(i)/B(i);

IL=Uoc./B(i);

PL=UL.*IL;

fprintf('(%2d)',i);

fprintf(' RL= %6.0f ¦¸',RL(i));

fprintf(' IL= %6.3f A',IL);

fprintf(' UL= %6.3f V',UL);

fprintf(' PL= %6.3f W\n',PL);

end

输出结果:( 1) RL= 0 Ω IL= 8.000 A UL= 0.000 V PL= 0.000 W ( 2) RL= 2 Ω IL= 6.000 A UL= 12.000 V PL= 72.000 W

( 3) RL= 4 Ω IL= 4.800 A UL= 19.200 V PL= 92.160 W

( 4) RL= 6 Ω IL= 4.000 A UL= 24.000 V PL= 96.000 W

( 5) RL= 10 Ω IL= 3.000 A UL= 30.000 V PL= 90.000 W

( 6) RL= 18 Ω IL= 2.000 A UL= 36.000 V PL= 72.000 W

( 7) RL= 24 Ω IL= 1.600 A UL= 38.400 V PL= 61.440 W

( 8) RL= 42 Ω IL= 1.000 A UL= 42.000 V PL= 42.000 W

( 9) RL= 90 Ω IL= 0.500 A UL= 45.000 V PL= 22.500 W

(10) RL= 186 Ω IL= 0.250 A UL= 46.500 V PL= 11.625 W 实验三:正弦稳态

1.求各支路的电流相量和电压相量

程序:

%设置变量

R1=2;R2=3;R3=4;XL=2;XC1=3;XC2=5;

Us1=8;Us2=6;Us3=8;Us4=15;

%求阻抗

Z1=(j*XL*R1)/(j*XL+R1);Z2=R2*(-j*XC1)/[(R2-j*XC1)];

Z3=R3*(-j*XC2)/(R3-j*XC2);

Y1=1/Z1;Y2=1/Z2;Y3=1/Z3;

%导纳矩阵Y

Y=[Y1+Y2 -Y2

-Y2 Y2+Y3];

%电流矩阵I

I=[Us1/(j*XL)+Us2/R2

相关文档
最新文档