参数方程教案

合集下载

参数方程》教案(新人教选修

参数方程》教案(新人教选修

“参数方程》教案(新人教选修)”一、教学目标1. 理解参数方程的定义和特点。

2. 学会将直角坐标方程转换为参数方程。

3. 能够解参数方程并将其转换回直角坐标方程。

4. 掌握参数方程在实际问题中的应用。

二、教学内容1. 参数方程的定义和特点引入参数方程的概念,解释参数方程中的参数意义。

分析参数方程与直角坐标方程的关系。

2. 参数方程的转换教授如何将直角坐标方程转换为参数方程。

练习将给定的直角坐标方程转换为参数方程。

3. 解参数方程讲解参数方程的解法步骤。

练习解给定的参数方程并将其转换回直角坐标方程。

4. 参数方程的应用通过实际问题引入参数方程的应用。

练习解决实际问题,运用参数方程。

三、教学方法1. 讲授法:讲解参数方程的定义、特点和转换方法。

2. 练习法:通过练习题让学生巩固参数方程的转换和解法。

3. 问题解决法:通过实际问题引导学生运用参数方程解决实际问题。

四、教学准备1. 教学PPT:制作参数方程的相关PPT课件。

2. 练习题:准备一些参数方程的练习题供学生练习。

3. 实际问题:准备一些实际问题供学生解决。

五、教学过程1. 引入参数方程的概念,解释参数方程中的参数意义。

2. 讲解如何将直角坐标方程转换为参数方程,并进行练习。

3. 讲解参数方程的解法步骤,并进行练习。

4. 通过实际问题引入参数方程的应用,并进行练习。

教学反思:在课后对教学效果进行反思,观察学生对参数方程的理解程度和应用能力。

根据学生的反馈情况进行调整教学方法和教学内容,以便更好地达到教学目标。

六、教学评估1. 课堂问答:通过提问学生,了解他们对参数方程的理解程度。

2. 练习题:布置一些参数方程的练习题,评估学生的掌握情况。

3. 实际问题解决:让学生解决一些实际问题,观察他们运用参数方程的能力。

七、拓展与延伸1. 讲解参数方程在实际应用中的更深入例子,如工程、物理等领域。

2. 介绍参数方程与其他数学概念的联系,如极坐标方程。

3. 引导学生进行参数方程的相关研究项目,加深对参数方程的理解。

《参数方程》教案(新人教选修)

《参数方程》教案(新人教选修)

《参数方程》教案(新人教选修)第一章:参数方程的概念与基本形式1.1 参数方程的定义解释参数方程的概念,强调参数在方程中的作用。

举例说明参数方程的常见形式,如直线参数方程和圆参数方程。

1.2 参数方程的表示方法介绍参数方程的表示方法,包括参数图和参数曲线。

讲解如何从参数方程中得出曲线或图形的几何性质。

第二章:参数方程的求解与变换2.1 参数方程的求解讲解如何求解参数方程中的参数值,重点讲解代数方法和解的存在性。

举例说明求解参数方程的步骤和技巧。

2.2 参数方程的变换介绍参数方程之间的变换方法,如参数替换和变量替换。

讲解如何将一个参数方程转换为另一个参数方程,并解释其几何意义。

第三章:参数方程的应用3.1 物体的运动方程讲解参数方程在物体运动中的应用,如匀速直线运动和圆周运动。

举例说明如何根据物体的运动特点建立参数方程。

3.2 优化问题的参数方程解决方法介绍参数方程在优化问题中的应用,如最短路径问题和最大值问题。

讲解如何利用参数方程来解决优化问题,并给出实例。

第四章:参数方程与普通方程的互化4.1 参数方程与直角坐标方程的互化讲解如何将参数方程转换为直角坐标方程,反之亦然。

举例说明互化过程中的注意事项和转换方法。

4.2 参数方程与极坐标方程的互化讲解如何将参数方程转换为极坐标方程,反之亦然。

举例说明互化过程中的关键点和转换方法。

第五章:参数方程的综合应用5.1 参数方程在几何问题中的应用讲解参数方程在几何问题中的应用,如求解曲线的长度、面积和角度等。

举例说明如何利用参数方程解决几何问题。

5.2 参数方程在实际问题中的应用介绍参数方程在实际问题中的应用,如电子束聚焦和运动规划。

讲解如何将实际问题转化为参数方程问题,并给出解决方法。

第六章:参数方程在物理问题中的应用6.1 经典力学中的参数方程讲解参数方程在经典力学中的应用,如在描述抛体运动、圆周运动等问题。

举例说明如何根据物理定律建立参数方程,并分析其物理意义。

初中数学参数方程讲解教案

初中数学参数方程讲解教案

初中数学参数方程讲解教案
教学目标:
1. 理解参数方程的概念,掌握参数方程的表示方法。

2. 能够将实际问题转化为参数方程,并运用参数方程解决简单问题。

3. 理解参数方程与普通方程的区别和联系,能够进行相互转化。

教学重点:
1. 参数方程的概念及其表示方法。

2. 参数方程的实际应用。

教学难点:
1. 参数方程与普通方程的转化。

教学准备:
1. 教学课件或黑板。

2. 相关实际问题素材。

教学过程:
一、导入(5分钟)
1. 引入参数方程的概念,让学生回顾普通方程的概念。

2. 提问:普通方程与参数方程有什么区别和联系?
二、新课讲解(20分钟)
1. 讲解参数方程的概念,解释参数方程的表示方法。

2. 通过示例,让学生理解参数方程的实际应用。

3. 讲解参数方程与普通方程的转化方法。

三、课堂练习(15分钟)
1. 让学生独立完成课堂练习题目,巩固参数方程的概念和应用。

2. 引导学生思考如何将实际问题转化为参数方程。

四、总结与拓展(10分钟)
1. 对本节课的内容进行总结,强调参数方程的概念和应用。

2. 提问:如何判断一个方程是不是参数方程?
3. 拓展思考:参数方程在实际生活中的应用有哪些?
教学反思:
本节课通过讲解参数方程的概念和表示方法,让学生了解参数方程的实际应用,并掌握参数方程与普通方程的转化方法。

在课堂练习环节,学生能够独立完成相关题目,巩固所学知识。

但在拓展思考环节,学生对于参数方程在实际生活中的应用还不够清晰,需要在今后的教学中加强实例讲解和练习。

参数方程的概念(教案)

参数方程的概念(教案)

参数方程的概念(教案)第一章:引言1.1 目的:使学生理解参数方程的概念,并了解其在实际问题中的应用。

1.2 内容:引入参数方程的概念。

举例说明参数方程在实际问题中的应用。

1.3 教学方法:通过讲解和举例,引导学生理解参数方程的概念,并激发学生对参数方程应用的兴趣。

1.4 教学工具:投影仪、黑板、教学PPT。

第二章:参数方程的定义2.1 目的:使学生理解参数方程的定义,并能正确写出参数方程。

2.2 内容:讲解参数方程的定义。

引导学生通过示例写出参数方程。

2.3 教学方法:通过讲解和示例,引导学生理解参数方程的定义,并培养学生的实际操作能力。

2.4 教学工具:黑板、教学PPT。

第三章:参数方程的图像3.1 目的:使学生能绘制参数方程的图像,并理解参数方程与普通方程的区别。

3.2 内容:讲解参数方程的图像特点。

引导学生通过绘制参数方程的图像,理解参数方程与普通方程的区别。

3.3 教学方法:通过讲解和绘图,引导学生理解参数方程的图像特点,并通过对比加深对参数方程与普通方程区别的理解。

3.4 教学工具:投影仪、黑板、教学PPT。

第四章:参数方程的应用4.1 目的:使学生了解参数方程在实际问题中的应用,并能解决相关问题。

4.2 内容:举例说明参数方程在实际问题中的应用。

引导学生通过参数方程解决实际问题。

4.3 教学方法:通过讲解和示例,引导学生了解参数方程的应用,并培养学生的实际问题解决能力。

4.4 教学工具:黑板、教学PPT。

第五章:总结与拓展5.1 目的:使学生对参数方程的概念和应用有一个全面的理解,并激发学生对参数方程进一步学习的兴趣。

5.2 内容:对本章内容进行总结。

提出与参数方程相关的拓展问题。

5.3 教学方法:通过总结和提问,帮助学生巩固所学内容,并激发学生的学习兴趣。

5.4 教学工具:黑板、教学PPT。

第六章:简单曲线族的参数方程6.1 目的:使学生了解简单曲线族的参数方程,并能识别和应用。

《参数方程的概念曲线的参数方程》教案(新人教选修)

《参数方程的概念曲线的参数方程》教案(新人教选修)

《参数方程的概念-曲线的参数方程》教案(新人教选修)第一章:参数方程的概念1.1 参数方程的定义解释参数方程的概念,强调参数方程与普通方程的区别。

通过实际例子展示参数方程的形式。

1.2 参数方程的应用探讨参数方程在实际问题中的应用,如物理、工程等领域。

分析参数方程的优势和局限性。

第二章:曲线的参数方程2.1 曲线参数方程的定义解释曲线参数方程的概念,强调参数方程与曲线方程的关系。

通过实际例子展示曲线参数方程的形式。

2.2 曲线参数方程的应用探讨曲线参数方程在几何、物理、工程等领域中的应用。

分析曲线参数方程的优势和局限性。

第三章:参数方程的图像3.1 参数方程图像的绘制介绍如何绘制参数方程的图像,强调参数方程与图像之间的关系。

通过实际例子展示参数方程图像的绘制方法。

3.2 参数方程图像的特点分析参数方程图像的特点,如曲线的形状、斜率等。

探讨参数方程图像在解决问题中的应用。

第四章:参数方程的变换4.1 参数方程的变换公式介绍参数方程的变换公式,强调变换公式的应用和意义。

通过实际例子展示参数方程的变换过程。

4.2 参数方程的变换应用探讨参数方程的变换在几何、物理、工程等领域中的应用。

分析参数方程的变换的优势和局限性。

第五章:参数方程的综合应用5.1 参数方程在实际问题中的应用分析参数方程在实际问题中的应用,如物体运动、曲线变形等。

探讨参数方程在解决问题中的优势和局限性。

5.2 参数方程在数学研究中的应用介绍参数方程在数学研究中的应用,如代数方程的求解、几何问题的研究等。

强调参数方程在数学研究中的重要性。

第六章:参数方程与极坐标方程的转换6.1 极坐标方程的基本概念回顾极坐标方程的定义和基本性质。

强调极坐标方程与直角坐标方程之间的关系。

6.2 参数方程与极坐标方程的转换方法介绍如何将参数方程转换为极坐标方程。

通过实际例子展示参数方程与极坐标方程之间的转换过程。

第七章:参数方程在几何中的应用7.1 参数方程与几何图形的性质探讨参数方程在描述几何图形方面的优势。

《参数方程》教案(新人教选修)

《参数方程》教案(新人教选修)

《参数方程》教案(新人教选修)第一章:参数方程的基本概念1.1 参数方程的定义与形式引导学生了解参数方程的定义,理解参数方程与普通方程的区别。

举例说明参数方程的形式,如圆的参数方程、直线的参数方程等。

1.2 参数方程的应用场景通过实际问题引入参数方程的应用,如物体的运动轨迹、几何图形的构造等。

引导学生理解参数方程在实际问题中的优势。

第二章:参数方程的求解方法2.1 参数方程的求解步骤介绍参数方程求解的一般步骤,如确定参数的范围、求解参数的值等。

通过具体例子演示参数方程的求解过程。

2.2 参数方程的图像分析引导学生了解参数方程的图像特征,如曲线的变化趋势、交点等。

通过绘制参数方程的图像,帮助学生直观理解参数方程的性质。

第三章:常见参数方程的类型及解法3.1 三角函数型参数方程介绍三角函数型参数方程的特点和解法,如正弦曲线、余弦曲线等。

通过例题讲解三角函数型参数方程的求解方法。

3.2 反比例函数型参数方程介绍反比例函数型参数方程的特点和解法,如双曲线等。

通过例题讲解反比例函数型参数方程的求解方法。

第四章:参数方程与普通方程的互化4.1 参数方程与直角坐标方程的互化引导学生了解参数方程与直角坐标方程的关系,掌握互化的方法。

通过例题演示参数方程与直角坐标方程的互化过程。

4.2 参数方程与极坐标方程的互化引导学生了解参数方程与极坐标方程的关系,掌握互化的方法。

通过例题演示参数方程与极坐标方程的互化过程。

第五章:参数方程在实际问题中的应用5.1 参数方程在物理学中的应用通过实际问题引入参数方程在物理学中的应用,如抛物线运动、电磁波等。

引导学生理解参数方程在物理学中的重要作用。

5.2 参数方程在工程中的应用通过实际问题引入参数方程在工程中的应用,如优化问题、设计问题等。

引导学生理解参数方程在工程中的实际意义。

第六章:参数方程的优化问题6.1 参数方程优化问题的定义与特点引导学生了解参数方程优化问题的定义,理解优化问题的实际意义。

参数方程的概念(教案)

参数方程的概念(教案)

参数方程的概念(教案)第一章:参数方程的引入1.1 参数方程的定义与意义解释参数方程的概念,强调参数在方程中的作用举例说明参数方程与普通方程的区别和联系1.2 参数方程的表示方法介绍参数方程的表示方法,包括曲线方程和参数方程的转换演示如何将普通方程转换为参数方程,以及反之第二章:参数方程的图像2.1 参数方程的图像特点分析参数方程图像的性质,如曲线的形状、方向等举例说明不同类型的参数方程产生的图像特点2.2 参数方程图像的绘制方法介绍参数方程图像的绘制方法,包括直接绘制和变换法演示如何利用图形软件或手工绘制参数方程图像第三章:参数方程的应用3.1 参数方程在几何中的应用探讨参数方程在几何领域中的应用,如圆的参数方程、双曲线的参数方程等举例说明参数方程在几何问题解决中的作用3.2 参数方程在物理中的应用介绍参数方程在物理学中的应用,如质点运动轨迹的参数方程举例说明参数方程在物理问题解决中的作用第四章:参数方程的转换与化简4.1 参数方程的转换探讨参数方程之间的转换方法,如代数法、三角法等举例说明如何将一个参数方程转换为另一个参数方程4.2 参数方程的化简介绍参数方程化简的方法和技巧,如消元法、代入法等举例说明如何将复杂的参数方程化简为简单的形式第五章:参数方程的解法5.1 参数方程的解法概述解释参数方程的解法概念,强调解法的重要性和方法举例说明参数方程解法的基本步骤和注意事项5.2 参数方程的解法实例通过具体实例演示参数方程解法的具体步骤和技巧探讨不同类型的参数方程解法方法和解的意义第六章:参数方程与直角坐标系的转换6.1 参数方程与直角坐标系的转换方法介绍参数方程与直角坐标系之间的转换方法演示如何将参数方程转换为直角坐标方程,以及反之6.2 转换过程中应注意的问题探讨在转换过程中可能遇到的问题及解决方法举例说明转换过程中可能出现的困难和解决方法第七章:参数方程在优化问题中的应用7.1 参数方程在优化问题中的应用概述解释参数方程在优化问题中的应用,强调其作用和意义举例说明参数方程在优化问题解决中的作用7.2 参数方程在实际优化问题中的应用探讨参数方程在实际优化问题中的应用,如曲线拟合、参数优化等举例说明参数方程在实际优化问题解决中的作用第八章:参数方程在工程中的应用8.1 参数方程在工程中的应用概述介绍参数方程在工程领域中的应用,如电路设计、机械设计等举例说明参数方程在工程问题解决中的作用8.2 参数方程在特定工程问题中的应用探讨参数方程在特定工程问题中的应用,如antenna design、optimal control 等举例说明参数方程在特定工程问题解决中的作用第九章:参数方程在科学研究中的应用9.1 参数方程在科学研究中的应用概述解释参数方程在科学研究中的应用,强调其作用和意义举例说明参数方程在科学研究问题解决中的作用9.2 参数方程在特定科学研究领域中的应用探讨参数方程在特定科学研究领域中的应用,如astrophysics、biological modeling 等举例说明参数方程在特定科学研究问题解决中的作用第十章:参数方程的综合应用与实践10.1 参数方程在综合应用中的实例分析通过具体实例分析参数方程在综合应用中的重要作用强调参数方程在实际问题解决中的灵活运用10.2 参数方程实践操作与练习指导学生进行参数方程实践操作,如绘制图像、解决实际问题等提供参数方程练习题目,让学生巩固所学知识重点和难点解析重点环节一:参数方程的定义与意义重点关注参数方程的概念和作用,理解参数在方程中的重要性。

《参数方程》教案(新人教选修

《参数方程》教案(新人教选修

《参数方程》教案(新人教选修)第一章:参数方程简介1.1 参数方程的概念引导学生了解参数方程的定义和特点举例说明参数方程在实际问题中的应用1.2 参数方程的表示方法介绍参数方程的表示方法,包括参数和变量的关系练习将直角坐标方程转换为参数方程第二章:参数方程的图像2.1 参数方程的图像特点分析参数方程图像的性质和特点举例说明参数方程图像的形状和变化趋势2.2 参数方程的图像绘制学习如何绘制参数方程的图像练习绘制不同类型的参数方程图像第三章:参数方程的应用3.1 参数方程在几何中的应用利用参数方程解决几何问题,如计算线段长度、角度等举例说明参数方程在圆锥曲线中的应用3.2 参数方程在物理中的应用介绍参数方程在物理学中的应用,如描述物体的运动轨迹练习解决物理问题,如求解物体在参数方程下的速度和加速度第四章:参数方程的转换4.1 参数方程与直角坐标方程的转换学习如何将参数方程转换为直角坐标方程练习将参数方程转换为直角坐标方程,并解决相关问题4.2 参数方程与其他形式的方程的转换介绍参数方程与其他形式的方程(如极坐标方程)的转换方法练习将参数方程转换为其他形式的方程,并进行问题求解第五章:参数方程的综合应用5.1 参数方程在实际问题中的应用分析实际问题,建立合适的参数方程模型练习解决实际问题,如计算曲线的长度、面积等5.2 参数方程在数学竞赛中的应用介绍参数方程在数学竞赛中的应用,如解决综合题练习解决数学竞赛中的参数方程问题第六章:参数方程与曲线积分6.1 参数方程下的曲线积分概念引入曲线积分的概念,解释其在参数方程中的应用举例说明曲线积分的计算方法6.2 参数方程下的曲线积分计算学习如何利用参数方程计算曲线积分练习计算不同类型曲线积分问题第七章:参数方程与曲面面积7.1 参数方程下的曲面面积概念引入曲面面积的概念,解释其在参数方程中的应用举例说明曲面面积的计算方法7.2 参数方程下的曲面面积计算学习如何利用参数方程计算曲面面积练习计算不同类型曲面面积问题第八章:参数方程与优化问题8.1 参数方程在优化问题中的应用引入优化问题的概念,解释参数方程在优化问题中的应用举例说明参数方程在优化问题中的解法8.2 参数方程优化问题的解决方法学习如何利用参数方程解决优化问题练习解决实际优化问题,如最短路径问题等第九章:参数方程与微分方程9.1 参数方程与微分方程的关系解释参数方程与微分方程之间的联系举例说明微分方程在参数方程中的应用9.2 参数方程微分方程的求解方法学习如何利用微分方程求解参数方程练习求解不同类型的参数方程微分方程问题第十章:参数方程的综合应用案例分析10.1 参数方程在工程中的应用案例分析分析实际工程问题,利用参数方程进行问题建模练习解决工程问题,并进行案例分析10.2 参数方程在科学研究中的应用案例分析分析实际科学研究问题,利用参数方程进行问题建模练习解决科学研究问题,并进行案例分析重点和难点解析重点一:参数方程的概念与特点学生需要理解参数方程的定义,即变量与参数之间的关系强调参数方程在解决实际问题中的应用价值重点二:参数方程的图像特点与绘制方法学生应掌握参数方程图像的性质和变化趋势练习将参数方程转换为图像,并分析图像的特点重点三:参数方程在几何和物理中的应用学生需要学会利用参数方程解决几何问题,如计算线段长度、角度等强调参数方程在物理学中的应用,如描述物体的运动轨迹重点四:参数方程的转换方法学生应掌握参数方程与直角坐标方程、极坐标方程等的转换方法练习将参数方程转换为其他形式的方程,并解决相关问题重点五:参数方程在曲线积分、曲面面积和优化问题中的应用学生需要理解参数方程在曲线积分和曲面面积计算中的作用强调参数方程在解决优化问题中的应用,如最短路径问题重点六:参数方程与微分方程的关系和求解方法学生应理解参数方程与微分方程之间的联系练习利用微分方程求解参数方程,并解决实际问题重点七:参数方程的综合应用案例分析学生需要学会将参数方程应用于工程和科学研究问题强调案例分析的重要性,通过实际问题加深对参数方程的理解本教案围绕参数方程的概念、图像、应用和转换等方面进行了详细的讲解和练习。

高中数学参数方程全集教案

高中数学参数方程全集教案

高中数学参数方程全集教案教学目标:1. 了解参数方程的概念与特点。

2. 掌握参数方程表示的直线、抛物线、圆等几何图形的方法。

3. 能够应用参数方程解决实际问题。

教学内容:1. 参数方程的概念与意义。

2. 直线的参数方程。

3. 抛物线的参数方程。

4. 圆的参数方程。

5. 应用题解析。

教学流程:一、导入(5分钟)通过展示一道简单的参数方程题目引起学生对参数方程的兴趣。

二、教学理论与实践(30分钟)1. 参数方程的概念与意义。

2. 直线、抛物线、圆的参数方程推导与展示。

3. 学生跟随教师完成一些简单的参数方程练习。

三、示范与练习(20分钟)1. 教师示范更复杂的参数方程计算方法。

2. 学生分组完成一些参数方程应用题。

四、梳理知识(10分钟)1. 整理参数方程的要点。

2. 鼓励学生提出问题与疑惑。

五、拓展应用(15分钟)1. 学生尝试解决更具挑战性的参数方程应用题。

2. 学生展示解题过程与答案。

六、作业布置(5分钟)安排相关参数方程题目作业,并要求学生在下节课前完成。

教学反馈:在下节课开始时,教师可以让学生展示他们的参数方程作业,并进行讨论和纠正。

教学资源:1. 教材《高中数学参数方程》。

2. 大黑板、彩色粉笔等。

教学评价:通过观察学生在课堂上的表现以及他们完成的作业,评估学生对参数方程的理解与掌握情况,并根据需要调整后续教学计划。

备注:本教案仅作示范参考,具体实施时可根据学生情况和教学进度做出适当调整。

高中数学参数方程模板教案

高中数学参数方程模板教案

高中数学参数方程模板教案教学目标:1. 了解参数方程的概念和特点;2. 掌握参数方程的基本形式和简单变形;3. 能够根据给定条件,求解参数的取值范围;4. 能够运用参数方程解决实际问题。

教学重点:1. 参数方程的基本形式和简单变形;2. 求解参数的取值范围;3. 运用参数方程解决实际问题。

教学难点:1. 掌握参数方程的概念和特点;2. 运用参数方程解决实际问题。

教学准备:1. PPT课件或黑板;2. 教材上关于参数方程的知识点;3. 习题集或练习题;4. 讲解示例。

教学步骤:1. 导入:通过示例引入参数方程的概念和基本形式;2. 概念讲解:讲解参数方程的定义和特点,介绍常见的参数方程形式;3. 讲解示例:通过举例讲解参数方程的简单变形和求解;4. 练习巩固:让学生进行练习,巩固参数方程的知识;5. 拓展应用:引导学生运用参数方程解决实际问题,提高解题能力;6. 总结反思:总结参数方程的重点知识,让学生反思学习过程中的不足之处。

教学案例:已知直线的参数方程为:\[ \begin{cases} x = 2t + 1 \\ y = 3t - 2 \end{cases} \]求直线的方程。

解析:将参数方程中的参数t消去,可得:\[ \begin{cases} x = 2t + 1 \\ y = 3t - 2 \end{cases} \]因此,直线的方程为:\[ y = \dfrac{3}{2}x - \dfrac{7}{2} \]教学反思:本节课主要介绍了参数方程的基本形式和简单变形,通过示例讲解和练习巩固,帮助学生理解和掌握了参数方程的相关知识。

同时,引导学生运用参数方程解决实际问题,提高解题能力和思维能力。

在教学过程中,需要注意引导学生思考和分析问题,培养其独立解决问题的能力。

参数方程的概念》教案(新人教选修

参数方程的概念》教案(新人教选修

《参数方程的概念》教案(新人教选修)一、教学目标1. 理解参数方程的定义和特点;2. 掌握参数方程的表示方法和求解方法;3. 能够将实际问题转化为参数方程,并解决实际问题。

二、教学重难点1. 参数方程的定义和表示方法;2. 参数方程的求解方法;3. 将实际问题转化为参数方程。

三、教学准备1. 教师准备PPT,包括参数方程的定义、表示方法和求解方法的讲解;2. 准备一些实际问题,用于引导学生将问题转化为参数方程。

四、教学过程1. 引入:通过讲解PPT,引导学生了解参数方程的定义和表示方法;2. 讲解:通过PPT,详细讲解参数方程的求解方法,包括求解步骤和注意事项;3. 练习:让学生独立完成一些参数方程的求解练习题;4. 应用:引导学生将实际问题转化为参数方程,并解决实际问题。

五、课后作业1. 完成PPT上的练习题;2. 选择一个实际问题,将其转化为参数方程,并解决。

教学反思:在课后,教师应认真反思本节课的教学效果,包括学生的参与度、理解程度和应用能力。

根据学生的反馈,及时调整教学方法和策略,提高教学质量。

六、教学评估1. 课堂练习:观察学生在课堂练习中的表现,了解他们对参数方程的理解程度和应用能力;2. 课后作业:检查学生的课后作业,评估他们对参数方程的掌握情况;3. 学生反馈:收集学生的反馈意见,了解他们对本节课的教学内容和教学方法的满意度。

七、教学拓展1. 介绍其他相关的数学概念,如普通方程和函数方程等,让学生了解参数方程在数学中的地位和作用;2. 引导学生探索参数方程在实际问题中的应用,如物理、工程和经济学等领域。

八、教学计划1. 下一节课内容:介绍参数方程的进一步应用,如优化问题和动态系统等;2. 教学方法:采用案例教学法,结合实际问题,引导学生深入理解参数方程的应用;3. 教学目标:使学生能够灵活运用参数方程解决实际问题,提高他们的数学应用能力。

九、教学资源1. PPT:制作参数方程的进一步应用的PPT,包括案例分析和练习题;2. 实际问题案例:收集一些与参数方程应用相关的实际问题案例,用于课堂讲解和练习。

圆的参数方程公开课教案(通用6篇)

圆的参数方程公开课教案(通用6篇)

圆的参数方程公开课教案圆的参数方程公开课教案(通用6篇)圆的参数方程公开课教案1㈠课时目标1.掌握圆的一般式方程及其各系数的几何特征。

2.待定系数法之应用。

㈡问题导学问题1:写出圆心为(a,b),半径为r的圆的方程,并把圆方程改写成二元二次方程的形式。

—2ax—2by+ =0问题2:下列方程是否表示圆的方程,判断一个方程是否为圆的方程的标准是什么?① ;② 1③ 0;④ —2x+4y+4=0⑤ —2x+4y+5=0;⑥ —2x+4y+6=0㈢教学过程[情景设置]把圆的标准方程展开得—2ax—2by+ =0可见,任何一个圆的方程都可以写成下面的形式:+Dx+Ey+F=0 ①提问:方程表示的曲线是不是圆?一个方程表示的曲线是否为圆有标准吗?[探索研究]将①配方得:将方程②与圆的标准方程对照。

⑴当>0时,方程②表示圆心在(—),半径为的圆。

⑵当 =0时,方程①只表示一个点(—)。

⑶当<0时,方程①无实数解,因此它不表示任何图形。

结论:当>0时,方程①表示一个圆,方程①叫做圆的一般方程。

圆的标准方程的优点在于明确地指出了圆心和半径,而一般方程突出了形式上的特点:⑴ 和的系数相同,不等于0;⑵没有xy这样的二次项。

以上两点是二元二次方程A +Bxy+C +Dx+Ey+F=0表示圆的必要条件,但不是充分条件[知识应用与解题研究][例1] 求下列各圆的半径和圆心坐标。

⑴ —6x=0;⑵ +2by=0(b≠0)[例2]求经过O(0,0),A(1,1),B(2,4)三点的圆的方程,并指出圆心和半径。

分析:用待定系数法设方程为+Dx+Ey+F=0 ,求出D,E,F即可。

[例3]已知一曲线是与两个定点O(0,0)、A(3,0)距离的比为的点的轨迹,求此曲线的方程,并画出曲线。

分析:本题直接给出点,满足条件,可直接用坐标表示动点满足的条件得出方程。

反思研究:到O(0,0),A(1,1)的距离之比为定植k(k>0)的点的轨迹又如何?当k=1时为直线,k>0时且k≠1时为圆。

《参数方程》教案(新人教选修

《参数方程》教案(新人教选修

《参数方程》教案(新人教选修)第一章:参数方程的概念与基本形式1.1 参数方程的定义介绍参数方程的概念,理解参数方程与普通方程的区别。

举例说明参数方程在实际问题中的应用。

1.2 基本形式的参数方程介绍直线、圆、椭圆、双曲线等基本图形的参数方程形式。

通过图形直观地理解参数方程的含义和作用。

第二章:参数方程的求解与变换2.1 参数方程的求解讲解如何从参数方程中求解出坐标值。

练习求解直线、圆等基本图形的参数方程。

2.2 参数方程的变换介绍参数方程之间的变换方法。

讲解如何将一个参数方程转换为另一个参数方程。

第三章:参数方程的应用3.1 动点轨迹的参数方程讲解如何利用参数方程描述动点的轨迹。

举例说明参数方程在描述物体运动轨迹中的应用。

3.2 优化问题的参数方程求解介绍如何利用参数方程求解优化问题。

举例说明参数方程在实际问题中的应用。

第四章:参数方程与普通方程的互化4.1 直线、圆的参数方程与普通方程互化讲解如何将直线的参数方程转化为普通方程,以及反之。

讲解如何将圆的参数方程转化为普通方程,以及反之。

4.2 椭圆、双曲线的参数方程与普通方程互化讲解如何将椭圆、双曲线的参数方程转化为普通方程,以及反之。

第五章:参数方程的综合应用5.1 参数方程在几何中的应用讲解参数方程在几何问题中的应用,如计算图形的面积、体积等。

5.2 参数方程在物理中的应用举例说明参数方程在物理问题中的应用,如描述波动、运动轨迹等。

第六章:参数方程与极坐标方程的转换6.1 极坐标方程的基本概念介绍极坐标系的定义和极坐标方程的概念。

理解极坐标方程与直角坐标方程之间的关系。

6.2 参数方程与极坐标方程的转换方法讲解如何将参数方程转换为极坐标方程。

举例说明并练习参数方程与极坐标方程之间的转换。

第七章:参数方程在实际问题中的应用7.1 参数方程在工程中的应用讲解参数方程在工程问题中的应用,如优化设计、路径规划等。

举例说明参数方程在工程问题中的具体应用。

《参数方程》教案(新人教选修)

《参数方程》教案(新人教选修)

《参数方程》教案(新人教选修)第一章:参数方程的概念与基本形式1.1 参数方程的定义引入参数方程的概念,让学生理解参数方程是一种描述曲线运动的数学工具。

通过实际例子,让学生了解参数方程在现实中的应用。

1.2 参数方程的基本形式介绍参数方程的两种基本形式:圆锥曲线的参数方程和直线的参数方程。

通过图形和实例,让学生理解参数方程与普通方程之间的关系。

第二章:参数方程的图像与性质2.1 参数方程的图像利用图形软件,绘制常见参数方程的图像,让学生直观地了解参数方程的特点。

引导学生观察图像,探讨参数方程与坐标轴之间的关系。

2.2 参数方程的性质引导学生研究参数方程的单调性、周期性和奇偶性等性质。

通过实例,让学生了解参数方程的性质在实际问题中的应用。

第三章:参数方程的变换与化简3.1 参数方程的变换介绍参数方程的基本变换,如平移、旋转和缩放等。

通过实例,让学生学会如何对参数方程进行变换。

3.2 参数方程的化简引导学生利用数学方法对参数方程进行化简,使其形式更加简洁。

通过实例,让学生了解参数方程化简的意义和应用。

第四章:参数方程的应用4.1 参数方程在物理中的应用以机械运动为例,介绍参数方程在描述物体运动中的应用。

引导学生利用参数方程解决实际物理问题。

4.2 参数方程在工程中的应用以电子电路为例,介绍参数方程在描述系统动态行为中的应用。

引导学生利用参数方程解决实际工程问题。

第五章:参数方程的综合练习5.1 参数方程的解题技巧通过实例,让学生学会如何运用不同的技巧解决参数方程问题。

5.2 综合练习题提供一系列与参数方程相关的综合练习题,让学生巩固所学知识。

对练习题进行讲解和解析,帮助学生提高解题能力。

第六章:参数方程在圆锥曲线中的应用6.1 圆锥曲线的参数方程复习圆锥曲线的普通方程,并引入其参数方程。

通过图形和实例,让学生了解圆锥曲线的参数方程表示方法。

6.2 圆锥曲线的参数性质引导学生研究圆锥曲线的参数性质,如渐近线、焦点、顶点等。

参数方程的概念(教案)

参数方程的概念(教案)

参数方程的概念(教案)第一章:参数方程的引入1.1 参数方程的定义与意义解释参数方程的概念强调参数方程在描述曲线上的重要性1.2 参数方程与普通方程的对比举例说明参数方程与普通方程的区别和联系强调参数方程在解决特定问题上的优势第二章:参数方程的基本形式2.1 参数方程的通用形式介绍参数方程的通用形式:\(x = f(t)\), \(y = g(t)\)解释参数\(t\) 的作用和意义2.2 参数方程的简化形式介绍参数方程的简化形式:参数\(t\) 的取值范围、参数\(t\) 的速度和加速度强调简化形式在实际问题中的应用和重要性第三章:参数方程的应用3.1 参数方程在物理问题中的应用以物体运动为例,解释参数方程在描述物体位置和速度上的应用强调参数方程在物理问题中的重要性3.2 参数方程在几何问题中的应用以圆的参数方程为例,解释参数方程在描述几何形状上的应用强调参数方程在几何问题中的优势和灵活性第四章:参数方程的图像与分析4.1 参数方程的图像绘制介绍如何绘制参数方程的图像强调参数方程图像的特点和规律4.2 参数方程的分析与变换介绍如何分析参数方程的图像和性质介绍参数方程的变换方法,如平移、旋转等第五章:参数方程的综合应用5.1 参数方程在实际问题中的应用以实际问题为例,综合运用参数方程进行问题解决强调参数方程在实际问题中的应用能力和灵活性5.2 参数方程的进一步探索引导学生在参数方程的基础上进行进一步的探索和创新鼓励学生发现参数方程在更多领域中的应用和价值第六章:参数方程与极坐标方程的转换6.1 极坐标方程的基本概念回顾极坐标方程的定义和基本形式解释极坐标方程与直角坐标系的关系6.2 参数方程与极坐标方程的转换方法介绍如何将参数方程转换为极坐标方程强调转换方法在解决特定问题上的应用和重要性第七章:参数方程与普通方程的转换7.1 普通方程的基本形式回顾普通方程的定义和常见形式强调普通方程在解决问题中的基本作用7.2 参数方程与普通方程的转换方法介绍如何将参数方程转换为普通方程强调转换方法在问题解决中的灵活应用第八章:参数方程的综合应用案例分析8.1 参数方程在工程问题中的应用案例分析一个工程问题,如桥梁设计、电路模拟等,展示参数方程的应用过程强调参数方程在工程问题中的重要作用8.2 参数方程在科学研究中的应用案例分析一个科学研究问题,如天体运动、生物种群动态等,展示参数方程的应用过程强调参数方程在科学研究中的重要性和灵活性第九章:参数方程的教学实践与反思9.1 参数方程的教学实践分享教学参数方程的经验和做法强调教学实践中的重点和难点9.2 参数方程的教学反思反思教学过程中的优点和不足提出改进教学方法和策略的建议第十章:参数方程的扩展与深化10.1 参数方程的扩展介绍参数方程在其他领域的应用,如计算机图形学、控制理论等强调参数方程在不同领域中的广泛应用和潜力10.2 参数方程的深化研究引导学生在参数方程的基础上进行深入研究,如研究更复杂的参数方程、探索参数方程的新性质等鼓励学生发挥创新精神,发现参数方程的更多价值和意义重点和难点解析重点环节一:参数方程的定义与意义重点关注学生对参数方程概念的理解,以及参数方程与普通方程的区别和联系。

数学参数方程教学教案

数学参数方程教学教案

数学参数方程教学教案一、教学目标1. 理解参数方程的概念和基本性质;2. 能够将函数用参数方程的形式表示,并能相互转化;3. 熟练掌握参数方程在几何图形的表示和分析中的应用;4. 培养数学建模能力,能够利用参数方程解决实际问题。

二、教学重点1. 参数方程的基本概念及性质;2. 参数方程与函数表达式的转化。

三、教学难点1. 参数方程在几何图形的表示和分析中的应用;2. 利用参数方程解决实际问题的能力培养。

四、教学过程导入:引入参数方程的概念,将平面直角坐标系中的一条曲线分别用笛卡尔坐标方程和参数方程表示,并讲解两种表示方法的区别和联系。

主体:1. 参数方程的定义与基本性质介绍参数方程的定义:将变量 x 和 y 表示为另外两个参数 t 和 u 的函数形式,即 x = f(t)、y = g(u),并解释参数 t 和 u 在参数方程中的作用。

讲解参数方程的基本性质:包括唯一性、方程的定义域与值域、参数方程中的自变量和因变量的交换等。

2. 参数方程与函数表达式的转化讲解如何从函数表达式转化为参数方程:- 对于直角坐标方程 y = f(x),可通过选取合适的参数 t,用 x = t 表示,并将 y = f(t) 作为 y 的参数方程;- 对于其他形式的直角坐标方程,可根据函数表达式的特点找到合适的参数方程表示。

示例演练,让学生通过具体的例子来巩固转化的方法和技巧。

3. 参数方程在几何图形的表示和分析中的应用讲解如何利用参数方程准确地描述和分析平面曲线以及空间曲线,引导学生通过调整参数 t 和 u 的范围来观察曲线的运动和形态的变化。

以常见的数学曲线如圆、椭圆、抛物线等为例,演示如何通过参数方程得到这些图形,并讨论参数方程在描述这些图形时的优势和特点。

4. 利用参数方程解决实际问题通过实际问题的讲解,培养学生利用参数方程解决实际问题的能力。

如通过给定条件,建立适当的参数方程模型,解决与运动、几何形状相关的问题。

参数方程的概念(教案)

参数方程的概念(教案)

1. 让学生理解参数方程的定义和特点。

2. 让学生掌握参数方程的表示方法和求解方法。

3. 培养学生运用参数方程解决实际问题的能力。

二、教学内容1. 参数方程的定义2. 参数方程的表示方法3. 参数方程的求解方法4. 参数方程的应用三、教学重点与难点1. 重点:参数方程的定义、表示方法和求解方法。

2. 难点:参数方程的应用。

四、教学方法1. 采用问题驱动的教学方法,引导学生从实际问题中提出参数方程的需求。

2. 使用多媒体课件,直观展示参数方程的定义和应用。

3. 利用数学软件或图形计算器,动态演示参数方程的图形变化。

五、教学过程1. 导入:通过一个实际问题,引入参数方程的概念。

2. 讲解:详细讲解参数方程的定义、表示方法和求解方法。

3. 案例分析:分析几个典型的参数方程案例,引导学生掌握参数方程的应用。

4. 练习:布置一些练习题,让学生巩固所学内容。

5. 总结:对本节课的内容进行总结,强调参数方程在实际问题中的应用价值。

1. 引入实例:通过简单的实际问题,如物体运动轨迹的描述,引入参数方程的概念。

2. 概念讲解:详细讲解参数方程的定义,解释参数与变量之间的关系。

3. 表示方法:介绍参数方程的表示方法,包括参数方程的一般形式和特殊形式。

4. 求解方法:讲解参数方程的求解方法,包括代入法和消元法。

5. 应用练习:提供一些应用题,让学生练习如何建立和应用参数方程解决问题。

七、教学评估1. 课堂问答:通过提问方式检查学生对参数方程概念的理解程度。

2. 练习解答:评估学生完成练习题的情况,检验学生对参数方程表示方法和求解方法的掌握。

3. 小组讨论:观察学生在小组讨论中的表现,了解学生对参数方程应用的理解和应用能力。

八、教学资源1. 多媒体课件:使用PPT或其他软件制作多媒体课件,展示参数方程的图形和实际应用。

2. 数学软件:利用数学软件或图形计算器,演示参数方程的图形变化和求解过程。

3. 练习题库:准备一些参数方程的练习题,包括基础题和应用题。

参数方程》教案(新人教选修

参数方程》教案(新人教选修

参数方程》教案(新人教选修)第一章:参数方程简介1.1 参数方程的概念解释参数方程的定义举例说明参数方程的应用场景1.2 参数方程的表示方法介绍参数方程的表示方法展示不同类型的参数方程示例1.3 参数方程的解法介绍参数方程的解法方法演示解题过程,并提供练习题第二章:简单参数方程的求解2.1 线性参数方程的求解解释线性参数方程的定义展示线性参数方程的求解方法2.2 非线性参数方程的求解解释非线性参数方程的定义展示非线性参数方程的求解方法2.3 参数方程的图像解释参数方程的图像表示绘制不同参数方程的图像,并进行分析第三章:参数方程的应用3.1 参数方程在几何中的应用介绍参数方程在几何中的应用展示参数方程在几何问题求解中的例子3.2 参数方程在物理中的应用介绍参数方程在物理中的应用展示参数方程在物理问题求解中的例子3.3 参数方程在工程中的应用介绍参数方程在工程中的应用展示参数方程在工程问题求解中的例子第四章:参数方程的变换4.1 参数方程的线性变换解释参数方程的线性变换展示参数方程的线性变换方法4.2 参数方程的非线性变换解释参数方程的非线性变换展示参数方程的非线性变换方法4.3 参数方程的合成解释参数方程的合成概念展示参数方程的合成方法第五章:参数方程的综合应用5.1 参数方程在曲线设计中的应用介绍参数方程在曲线设计中的应用展示参数方程在曲线设计中的例子5.2 参数方程在优化问题中的应用介绍参数方程在优化问题中的应用展示参数方程在优化问题求解中的例子5.3 参数方程在其他领域的应用介绍参数方程在其他领域的应用展示参数方程在其他领域问题求解中的例子第六章:参数方程与极坐标方程的转换6.1 极坐标方程的基本概念解释极坐标方程的定义展示极坐标方程的表示方法6.2 参数方程与极坐标方程的转换方法介绍参数方程与极坐标方程的转换方法展示参数方程转换为极坐标方程的示例6.3 极坐标方程的应用介绍极坐标方程在几何中的应用展示极坐标方程在几何问题求解中的例子第七章:参数方程与直角坐标系的转换7.1 直角坐标系的基本概念解释直角坐标系的定义和表示方法展示直角坐标系的特点和应用7.2 参数方程与直角坐标系的转换方法介绍参数方程与直角坐标系的转换方法展示参数方程转换为直角坐标系的示例7.3 直角坐标系中的应用介绍参数方程在直角坐标系中的应用展示参数方程在直角坐标系问题求解中的例子第八章:参数方程与函数的关系8.1 函数的基本概念解释函数的定义和表示方法展示函数的特点和应用8.2 参数方程与函数的关系介绍参数方程与函数的关系展示参数方程表示的函数示例8.3 函数图像是参数方程的应用介绍函数图像是参数方程的应用展示函数图像是参数方程的示例第九章:参数方程在实际问题中的应用9.1 参数方程在物理学中的应用介绍参数方程在物理学中的应用展示参数方程在物理学问题求解中的例子9.2 参数方程在工程学中的应用介绍参数方程在工程学中的应用展示参数方程在工程学问题求解中的例子9.3 参数方程在其他领域的应用介绍参数方程在其他领域的应用展示参数方程在其他领域问题求解中的例子第十章:参数方程的综合案例分析10.1 参数方程的综合案例介绍一个综合性的参数方程案例分析并解决该案例中的问题10.2 参数方程的解题策略介绍解决参数方程问题的策略和方法提供一些建议和技巧以提高解题效率10.3 参数方程的练习题和解答提供一些关于参数方程的综合练习题给出详细的解答和解释重点和难点解析重点一:参数方程的概念与表示方法重点关注参数方程的定义,理解参数方程与普通方程的区别。

高中数学参数方程模板教案

高中数学参数方程模板教案

课时:2课时教学目标:1. 理解参数方程的概念和意义。

2. 掌握参数方程的解法,并能应用于解决实际问题。

3. 熟悉参数方程在解析几何中的应用。

教学重点:1. 参数方程的概念和意义。

2. 参数方程的解法。

教学难点:1. 参数方程的应用。

教学过程:第一课时一、导入1. 回顾直角坐标系和坐标轴。

2. 引入参数方程的概念,提出本节课的学习目标。

二、新课讲解1. 参数方程的定义:在平面直角坐标系中,如果曲线上任意一点的坐标x,y都是某个变数t的函数xf(t)、yg(t),并且对于t的每一个允许值,由上述方程组所确定的点M(x,y)都在这条曲线上,那么上述方程则为这条曲线的参数方程。

2. 参数方程的解法:a. 直接解法:将参数方程中的参数消去,得到普通方程。

b. 换元法:将参数方程中的参数用其他变量表示,得到普通方程。

3. 参数方程的应用:a. 圆的参数方程:x=acosθ,y=bsinθ(a,b为圆的半径,θ为参数)。

b. 椭圆的参数方程:x=acosθ,y=bsinθ(a,b为椭圆的半轴,θ为参数)。

c. 双曲线的参数方程:x=asecθ,y=btanθ(a,b为双曲线的半轴,θ为参数)。

d. 抛物线的参数方程:x=at²,y=2at(a为参数)。

三、课堂练习1. 完成教材中的例题,巩固参数方程的解法。

2. 解决实际问题,如计算物体在运动过程中的位置。

四、课堂小结1. 回顾本节课的学习内容,强调参数方程的概念和意义。

2. 总结参数方程的解法,指出直接解法和换元法的适用范围。

第二课时一、导入1. 回顾上一节课的学习内容,提出本节课的学习目标。

二、新课讲解1. 参数方程的应用实例:a. 物体在运动过程中的位置。

b. 圆锥曲线的轨迹。

c. 投影问题。

2. 参数方程与普通方程的关系:a. 普通方程可以转化为参数方程。

b. 参数方程可以转化为普通方程。

三、课堂练习1. 完成教材中的例题,巩固参数方程的应用。

《参数方程》教案(新人教选修)

《参数方程》教案(新人教选修)

《参数方程》教案(新人教选修)第一章:参数方程的概念1.1 参数方程的定义与形式引入参数的概念,解释参数方程与普通方程的区别。

举例说明参数方程的形式,如圆的参数方程。

1.2 参数方程的图像利用图形展示参数方程所表示的曲线。

引导学生观察参数变化时,曲线的变化情况。

1.3 参数方程的应用结合实际问题,介绍参数方程的应用,如物体的运动轨迹。

引导学生理解参数方程在实际问题中的作用。

第二章:参数方程的变换2.1 参数变换的概念引入参数变换的概念,解释参数变换的作用。

举例说明参数变换的形式,如从直角坐标系到极坐标系的变换。

2.2 参数变换的方法引导学生掌握参数变换的方法,如代数变换、三角变换等。

利用实例演示参数变换的过程。

2.3 参数变换的应用结合实际问题,介绍参数变换的应用,如解三角方程。

引导学生理解参数变换在实际问题中的作用。

第三章:参数方程的求解3.1 参数方程的求解概念引入参数方程的求解概念,解释求解的目的。

举例说明参数方程的求解方法,如代数方法、图形方法等。

3.2 参数方程的求解方法引导学生掌握参数方程的求解方法,如代数求解、图形求解等。

利用实例演示参数方程的求解过程。

3.3 参数方程的求解应用结合实际问题,介绍参数方程的求解应用,如求解物理问题。

引导学生理解参数方程的求解在实际问题中的作用。

第四章:参数方程的综合应用4.1 参数方程与普通方程的转换引导学生理解参数方程与普通方程之间的转换关系。

利用实例演示参数方程与普通方程的转换过程。

4.2 参数方程在实际问题中的应用结合实际问题,介绍参数方程在实际问题中的应用,如工程问题、物理问题等。

引导学生理解参数方程在实际问题中的重要性。

4.3 参数方程的综合实例分析提供综合实例,让学生运用所学知识解决实际问题。

引导学生进行讨论和思考,提高学生解决问题的能力。

第五章:参数方程的进一步研究5.1 参数方程的性质研究引导学生研究参数方程的性质,如对称性、周期性等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

参数方程目标点击:1. 理解参数方程的概念,了解某些参数的几何意义和物理意义;2. 熟悉参数方程与普通方程之间的联系和区别,掌握他们的互化法则;3. 会选择最常见的参数,建立最简单的参数方程,能够根据条件求出直线、圆锥曲线等常用曲线的一些参数方程并了解其参数的几何意义; 4. 灵活运用常见曲线的参数方程解决有关的问题.基础知识点击:1、 曲线的参数方程在取定的坐标系中,如果曲线上任意一点的坐标x,y 都是某个变数t 的函数,⎩⎨⎧==)()(t g y t f x (1) 并且对于t 的每一个允许值,由方程组(1)所确定的点M(x,y)都在这条曲线上,那么方程组(1)叫做这条曲线的参数方程. 联系x 、y 之间关系的变数叫做参变数,简称参数.2、 求曲线的参数方程求曲线参数方程一般程序: (1) 设点:建立适当的直角坐标系,用(x,y)表示曲线上任意一点M 的坐标; (2) 选参:选择合适的参数; (3) 表示:依据题设、参数的几何或物理意义,建立参数与x ,y 的关系 式,并由此分别解出用参数表示的x 、y 的表达式. (4) 结论:用参数方程的形式表示曲线的方程 3、 曲线的普通方程相对与参数方程来说,把直接确定曲线C 上任一点的坐标(x,y )的方程F (x,y )=0叫做曲线C 的普通方程. 4、 参数方程的几个基本问题 (1) 消去参数,把参数方程化为普通方程. (2) 由普通方程化为参数方程. (3) 利用参数求点的轨迹方程. (4) 常见曲线的参数方程. 5、 几种常见曲线的参数方程 1. 直线的参数方程(ⅰ)过点P 0(00,y x ),倾斜角为α的直线的参数方程是⎩⎨⎧+=+=ααs i n c o s 00t y y t x x (t 为参数)t 的几何意义:t 表示有向线段P P 0的数量,P(y x ,)为直线上任意一点.(ⅱ)过点P 0(00,y x ),斜率为abk =的直线的参数方程是⎩⎨⎧+=+=bty y atx x 00 (t 为参数)(2)圆的参数方程(ⅰ)圆222r y x =+的参数方程为⎩⎨⎧==ϕϕsin cos r y r x (ϕ为参数)ϕ的几何意义为“圆心角”(ⅱ)圆22020)()(r y y x x =-+-的参数方程是⎩⎨⎧+=+=ϕϕs i n c o s 00r y y r x x (ϕ为参数)ϕ的几何意义为“圆心角”(3)椭圆的参数方程(ⅰ)椭圆12222=+b y a x (0>>b a ) 的参数方程为⎩⎨⎧==ϕϕsin cos b y a x (ϕ为参数)(ⅱ)椭圆1)()(220220=-+-by y a x x (0>>b a )的参数方程是 ⎩⎨⎧+=+=ϕϕs i nc o s 00b y y a x x (ϕ为参数)ϕ的几何意义为“离心角”(4)双曲线的参数方程(ⅰ)双曲线12222=-b y a x 的参数方程为⎩⎨⎧==ϕϕbtg y a x sec (ϕ为参数)(ⅱ)双曲线1)()(220220=---by y a x x 的参数方程是 ⎩⎨⎧+=+=ϕϕb t g y y a x x 00s ec (ϕ为参数)ϕ的几何意义为“离心角”(5) 抛物线的参数方程px y 22= (p>0) 的参数方程为⎩⎨⎧==pty pt x 222(t 为参数) 其中t 的几何意义是抛物线上的点与原点连线的斜率的倒数(顶点除外).考点简析:参数方程属每年高考的必考内容,主要考查基础知识、基本技能,从两个方面考查(1)参数方程与普通方程的互化与等价性判定;(2)参数方程所表示的曲线的性质. 题型一般为选择题、填空题.1. 参数方程的概念一)目标点击:1. 理解参数方程的概念,能识别参数方程给出的曲线或曲线上点的坐标; 2. 熟悉参数方程与普通方程之间的联系和区别,掌握他们的互化法则; 3. 能掌握消去参数的一些常用技巧:代人消参法、三角消参等; 4. 能了解参数方程中参数的意义,运用参数思想解决有关问题;二)概念理解:1、例题回放: 问题1:(请你翻开黄岗习题册P122,阅读例题)已知圆C 的方程为1)2(22=+-y x ,过点P 1(1,0) 作圆C 的任意弦, 交圆C 于另一点P 2,求P 1P 2的中点M 的轨迹方程.书中列举了六种解法,其中解法六运用了什么方法求得M 点的轨迹方程?此种方法是如何设置参数的,其几何意义是什么?设M(y x ,) ,由⎪⎪⎩⎪⎪⎨⎧+=++=222112k ky k k x ,消去k,得41)23(22=+-y x ,因M 与P 1不重合,所以M 点的轨迹方程为41)23(22=+-y x (1≠x )解法六的关键是没有直接寻求中点M 的轨迹方程0),(=y x F ,而是通过引入第三个变量k (直线的斜率),间接地求出了x 与y 的关系式,从而求得M 点的轨迹方程.实际上方程⎪⎪⎩⎪⎪⎨⎧+=++=222112k k y k k x (1)和41)23(22=+-y x (1≠x )(2)都表示同一个曲线,都是M 点的轨迹方程.这两个方程是曲线方程的两种形式.方程组(1)是曲线的参数方程,变数k 是参数,方程(2)是曲线的普通方程. 由此可以看出参数方程和普通方程是同一曲线的两种不同的表达形式.我们对参数方程并不陌生,在求轨迹方程的过程中,我们通过设参变量k,先求得曲线的参数方程再化为普通方程,进而求得轨迹方程.参数法是求轨迹方程的一种比较简捷、有效的方法.问题2:几何课本3.1曲线的参数方程一节中,从研究炮弹发射后的运动规律, 得出弹道曲线的方程.在这个过程中,选择什么量为参数,其物理意 义是什么?参数的取值范围?通过研究炮弹发射后弹道曲线的方程说明:【例1】 形如⎩⎨⎧==)()(t g y t f x 的方程组,描述了运动轨道上的每一个位置(y x ,)和时间t 的对应关系.【例2】 我们利用“分解与合成”的方法研究和认识了形如⎩⎨⎧==)()(t g y t f x 的方程组表示质点的运动规律.3)参数t 的取值范围是由t 的物理意义限制的. 2、曲线的参数方程与曲线C 的关系在选定的直角坐标系中,曲线的参数方程⎩⎨⎧==)()(t g y t f x t D ∈ (*)与曲线C 满足以下条件:(1) 对于集合D 中的每个t 0,通过方程组(*)所确定的点()(),(00t g t f ) 都在曲线C 上;(2)对于曲线C 上任意点(00,y x ),都至少存在一个t 0,满足⎩⎨⎧==)()(0000t g y t f x则 曲线C ⇔ 参数方程⎩⎨⎧==)()(t g y t f x t D ∈3、曲线的普通方程与曲线的参数方程的区别与联系曲线的普通方程),(y x F =0是相对参数方程而言,它反映了坐标变量x 与y之间的直接联系;而参数方程⎩⎨⎧==)()(t g y t f x t D ∈是通过参数t 反映坐标变量x 与y之间的间接联系.曲线的普通方程中有两个变数,变数的个数比方程的个数多1;曲线的参数方程中,有三个变数两个方程,变数的个数比方程的个数多1个.从这个意义上讲,曲线的普通方程和参数方程是“一致”的.参数方程 普通方程 ; 普通方程 参数方程这时普通方程和参数方程是同一曲线的两种不同表达形式.问题3:方程222a y x =+(0≠a );方程λ=-2222by a x (0≠λ)是参数方程吗?参数方程与含参数的方程一样吗?方程222a y x =+(0≠a )表示圆心在原点的圆系,方程λ=-2222by a x (0≠λ)表示共渐近线的双曲线系。

曲线的参数方程⎩⎨⎧==)()(t g y t f x (t 为参数,t D ∈)是表示一条确定的曲线;含参数的方程),,(t y x F =0却表示具有某一共同属性的曲线系,两者是有原则区别的.三)基础知识点拨:例1:已知参数方程⎩⎨⎧==θθsin 2cos 2y x ∈θ[0,2π)判断点A(1,3)和B(2,1)是否在方程的曲线上.解:把A 、B 两点坐标分别代入方程得⎩⎨⎧==θθsin 23cos 21 (1),⎩⎨⎧==θθsin 21cos 22(2),在[0,2π)内,方程组(1)的解是3πθ=,而方程组(2)无解,故A 点在方程的曲线上,而B 点不在方程的曲线上. 1、参数方程化普通方程例2:化参数方程⎩⎨⎧+=-=142t y t x (t ≥0,t 为参数)为普通方程,说明方程的曲线是什么图形.解:⎩⎨⎧+=-=(2)1(1) 42t y t x 由(2)解出t ,得t=y -1,代入(1)中,得2)1(4--=y x(y ≥1)即x y 41)1(2-=- (y ≥1)方程的曲线是顶点为(0,1),对称轴平行于x 轴,开口向左的抛物线的一部分.点拨:先由一个方程解出t ,再代入另一个方程消去参数t,得到普通方程,这种方法是代入消参法.消去参数 恰当选择参数例3:当t ∈R 时,参数方程⎪⎪⎩⎪⎪⎨⎧+-=+-=2224448t t y t t x (t 为参数),表示的图形是( ) A 双曲线 B 椭圆 C 抛物线 D 圆解法1:原方程可化为⎪⎩⎪⎨⎧+=++-=(2) 481(1) 4822t y t t x (1)÷(2)得:代入(2)得1422=+y x (y ≠-1) 答案选B 解法2:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧+-=++⋅-=)2(1)2(11 )2(1)2(2)2(222t t y t t x 令tg θ=2(2ππθ+≠k t ∈k Z) 则⎩⎨⎧=-=θθ2cos 2sin 2y x 消去ϑ,得1422=+y x (y ≠-1) 点拨:解法1使用了代数消元法,解法2观察方程(1)、(2)的“外形”很像三角函数中的万能公式,使用了三角消参法.当x 和y 是t 的有理整函数时,多用代入或加减消元法消去参数; 当x 和y 是t 的有理分式函数时,也可以用代入消参法,但往往需要做 些技巧性的处理.至于三角消参法,只在比较巧合的情况下使用. 例4:将下列方程化为普通方程:(1) ⎪⎪⎩⎪⎪⎨⎧+=+=)sin 1(212sin 2cos θθθy x (θ为参数) (2) ⎪⎪⎩⎪⎪⎨⎧-=+=--22t t tt e e y e e x (t 为参数) 解:(1)做y x 22-=(cos 22θ+sin 22θ+sin θ)-(1+sin θ)=0y x 22-=0,但由于)4sin(2πθ+=x ,即0≤x ≤2.∴参数方程只表示抛物线的一部分,即y x 22=(0≤x ≤2)(2)解方程组得t e y x =+(1) t e y x -=- (2) (1)×(2)得22y x -=1从2tt e e x -+=知x ≥1(提示应用均值定理)所求的普通方程为22y x -=1 (x ≥1)点拨:(1)从方程组的结构看含绝对值,三角函数,通过平方去绝对值,利用三角消参法化为普通方程;(2)观察方程组的结构,先利用消元法,求出t e ,t e -,再消t.方法总结:将参数方程化普通方程方法:(基本思想是消参)(1)代入消参法; (2)代数变换法(+,-,×,÷,乘方) (3)三角消参法注意:参数取值范围对y x ,取值范围的限制.(参数方程与普通方程的等价性) 2、普通方程化参数方程例5:设θsin 1+-=y ,为参数,化方程0182422=++-+y x y x 为参数方程。

相关文档
最新文档