舵机工作原理

合集下载

舵机的工作原理

舵机的工作原理

舵机的工作原理舵机是一种常见的控制设备,广泛应用于机械、电子、航空航天等领域。

它的工作原理基于电机和反馈系统的协同作用,能够将电信号转化为机械运动,实现精确的角度控制。

一、舵机的构成和工作原理舵机主要由电机、减速器、位置反馈元件和控制电路组成。

1. 电机:舵机通常采用直流电机作为驱动源。

电机的转动方向和速度由控制电路中的PWM信号控制,通过调节PWM信号的占空比,可以控制舵机的转动角度。

2. 减速器:舵机的电机通常采用高速低扭矩的设计,为了增加扭矩并减小转速,舵机内部通常会采用减速器来实现。

减速器可以将电机的高速低扭矩转换为低速高扭矩输出。

3. 位置反馈元件:为了实现精确的角度控制,舵机内部通常会搭载位置反馈元件。

常见的位置反馈元件有光电编码器、霍尔传感器等。

位置反馈元件可以实时检测舵机的转动角度,并将反馈信号传输给控制电路。

4. 控制电路:控制电路是舵机的核心部分,它接收来自外部的控制信号,并根据信号的变化来控制电机的转动。

控制电路通常由微控制器或专用的控制芯片组成,它会根据接收到的控制信号和位置反馈信号进行比较,计算出误差,并通过驱动电路控制电机的转动,使得舵机的转动角度与控制信号一致。

二、舵机的工作过程舵机的工作过程可以分为三个阶段:信号输入、误差计算和输出控制。

1. 信号输入:舵机通过信号线接收来自外部的控制信号。

通常情况下,舵机的控制信号采用PWM(脉宽调制)信号,信号的周期通常为20ms,脉宽范围为1ms到2ms。

其中,1ms对应舵机的最小角度,2ms对应舵机的最大角度。

2. 误差计算:控制电路会根据接收到的控制信号和位置反馈信号计算出误差。

误差通常通过将控制信号与位置反馈信号相减得出,如果误差为正,则电机需要顺时针转动;如果误差为负,则电机需要逆时针转动。

3. 输出控制:控制电路会根据计算得出的误差信号,通过驱动电路控制电机的转动。

驱动电路会根据误差信号的大小和方向,输出适当的电流给电机,使得舵机的转动角度逐渐接近控制信号指定的角度。

舵机的工作原理

舵机的工作原理

舵机的工作原理舵机是一种常见的电机控制装置,广泛应用于机器人、无人机、模型飞机等领域。

它通过控制电机的转动来实现精确的角度调整,使得被控制的机械部件能够按照预定的角度运动。

本文将详细介绍舵机的工作原理及其组成部分。

一、舵机的组成部分舵机主要由电机、减速器、控制电路和反馈装置组成。

1. 电机:舵机通常采用直流电机作为驱动源。

电机的特点是转速高、转矩大,能够提供足够的动力来驱动被控制的机械部件。

2. 减速器:舵机中的减速器主要用于减小电机的转速,增加输出的扭矩。

减速器通常采用齿轮传动的方式,通过不同大小的齿轮组合来实现减速。

3. 控制电路:控制电路是舵机的核心部分,它接收来自外部的控制信号,并根据信号的大小和方向来控制电机的转动。

控制电路通常由芯片、电容、电阻等元件组成。

4. 反馈装置:舵机的反馈装置主要用于检测输出轴的实际位置,并将其反馈给控制电路。

常见的反馈装置有光电编码器、霍尔传感器等。

二、舵机的工作原理可以简单概括为:接收控制信号→控制电路处理信号→驱动电机转动→输出轴运动。

1. 接收控制信号:舵机通常通过三线接口与外部设备连接,其中一条线用于接收控制信号。

控制信号通常是一个脉冲宽度调制(PWM)信号,脉冲的高电平时间决定了舵机输出轴的位置。

2. 控制电路处理信号:控制电路接收到控制信号后,会根据信号的高电平时间来判断输出轴应该转动到哪个位置。

控制电路会将输入信号与反馈信号进行比较,通过调整电机的转速和方向来使输出轴移动到目标位置。

3. 驱动电机转动:控制电路根据控制信号的大小和方向来控制电机的转动。

电机通过减速器传递转动力矩到输出轴,从而使输出轴按照预定的角度运动。

4. 输出轴运动:输出轴的运动受到驱动电机的控制,它会根据控制信号的变化而改变位置。

输出轴的位置通过反馈装置检测,并实时反馈给控制电路,以便进行修正。

三、舵机的工作特点舵机具有以下几个工作特点:1. 精确控制:舵机能够实现精确的角度控制,通常可以达到0.1°的精度。

舵机工作原理

舵机工作原理

引言概述:舵机是一种常用于机械控制系统中的装置,主要用于控制运动装置的旋转或线性运动。

它在航空、机械工程、汽车、无人机等领域中都有广泛的应用。

本文将详细介绍舵机的工作原理,包括其结构、原理、控制信号等方面的内容。

正文:一、舵机的基本结构舵机通常由电机、减速器、位置传感器和电子控制电路等组成。

1. 电机:舵机一般采用直流电机,包括转子和定子。

电机通过转动来控制舵机的位置。

2. 减速器:舵机中的减速器用于减小电机的转速,并通过齿轮和齿条等机械传动装置将转动转化为线性或旋转运动。

3. 位置传感器:舵机常用的位置传感器有光电传感器和磁性传感器等,用于测量舵机的位置并反馈给电子控制电路。

4. 电子控制电路:舵机的电子控制电路负责接收控制信号,并根据控制信号控制电机和减速器的运转。

二、舵机的工作原理1. 控制信号输入:舵机的工作由控制信号决定,控制信号一般为脉冲宽度调制(PWM)信号。

信号的脉宽决定了舵机的位置。

2. 位置控制:控制信号被电子控制电路接收后,经过一定的处理,电子控制电路会根据控制信号的脉宽决定舵机的位置。

3. 反馈控制:舵机的位置传感器会不断测量舵机的位置,并将测量结果反馈给电子控制电路。

电子控制电路通过与目标位置的比较,调整电机和减速器的运转,以实现舵机的稳定控制。

4. 输出控制:根据电子控制电路的控制信号,舵机的电机和减速器会运转,从而实现位置的控制。

三、舵机的控制信号1. 脉宽范围:舵机的控制信号通常具有一个特定的脉宽范围,一般为1ms到2ms之间。

脉宽的最小值和最大值对应舵机的最左和最右位置。

2. 中立位置:控制信号的脉宽为舵机的中立位置。

舵机通过将控制信号设置为中立位置,可以保持在中间位置不动。

3. 工作速度:舵机的工作速度受控制信号的脉宽变化速度影响,脉宽变化越快,舵机的响应速度越快。

4. 工作精度:舵机的工作精度由控制信号和位置传感器的精度共同决定,控制信号的精度越高,舵机的工作精度越高。

舵机的工作原理

舵机的工作原理

舵机的工作原理引言概述:舵机是一种常见的电机控制装置,广泛应用于机器人、遥控模型、航空模型等领域。

它的工作原理是通过接收控制信号,控制电机的转动角度,从而实现精确的位置控制。

本文将详细介绍舵机的工作原理。

一、电机驱动部分1.1 电机类型舵机常用的电机类型有直流电机和步进电机。

直流电机具有转速高、输出扭矩大的特点,适用于需要快速响应和高扭矩输出的应用场景。

而步进电机则具有精确控制位置的能力,适用于需要高精度定位的场合。

1.2 电机驱动电路舵机的电机驱动电路通常由电机驱动芯片和功率放大器组成。

电机驱动芯片负责接收控制信号,并将其转化为电机的转动角度。

功率放大器则负责驱动电机,提供足够的电流和电压,以确保电机能够正常工作。

1.3 控制信号舵机的控制信号通常采用脉冲宽度调制(PWM)信号。

控制信号的脉冲宽度决定了舵机的转动角度,通常以周期为20ms的方波信号为基准,通过改变高电平的脉冲宽度来控制舵机的位置。

二、反馈传感器部分2.1 位置反馈舵机通常内置有位置反馈传感器,用于实时监测电机的转动角度。

位置反馈传感器可以是光电编码器、霍尔传感器等,通过检测转子的位置变化来反馈给控制系统,以实现闭环控制。

2.2 电流反馈除了位置反馈外,舵机还可以通过电流传感器来实现电流反馈。

电流反馈可以监测电机的负载情况,以避免过载或过电流的情况发生,并保护舵机的安全运行。

2.3 温度反馈舵机还可以通过温度传感器来实现温度反馈。

温度反馈可以监测舵机的工作温度,一旦温度过高,就可以及时采取措施进行散热或降低负载,以保护舵机的正常运行。

三、控制算法部分3.1 位置控制算法舵机的位置控制算法通常采用PID控制算法。

PID控制算法通过不断调整舵机的控制信号,使得实际位置与目标位置之间的误差最小化,从而实现精确的位置控制。

3.2 速度控制算法除了位置控制外,舵机还可以实现速度控制。

速度控制算法通常基于位置控制算法的基础上,通过对位置误差的微分来计算速度指令,从而实现对舵机转速的控制。

舵机的工作原理

舵机的工作原理

舵机的工作原理介绍舵机是一种常见的电动机械驱动装置,广泛应用于遥控模型、机器人、无人机等领域。

舵机的工作原理是通过电路控制电机的转动,并通过一系列机械装置将旋转的运动转化为线性的运动,产生所需的输出力矩。

工作原理舵机的核心是一个直流电机,通常为有刷直流电机。

舵机内部由电机、减速装置和位置反馈装置组成。

其工作原理可以简单分为以下几个步骤:1. 控制信号输入控制信号是通过舵机的控制线输入的,控制线通常使用PWM信号控制。

PWM信号的频率通常为50Hz,控制脉宽的占空比决定了舵机的角度位置。

2. 位置反馈舵机内置一个位置反馈装置,用于检测舵机当前的角度位置。

位置反馈装置通常是一个旋转可变电阻或光电编码器。

3. 控制电路接收到控制信号后,控制电路会根据信号的脉宽来决定控制电机的方向和速度。

控制电路一般由芯片和一些电子元件组成,可以实现对电机的精确控制。

4. 电机驱动控制电路将控制信号转化为适合电机驱动的信号,通过驱动电路将电流传递给电机。

电机驱动通常采用H桥电路,可以实现电机的正反转。

5. 转动和输出力矩电机根据接收到的驱动信号进行转动,通过减速装置将电机的高速旋转转化为舵机输出杆的线性运动。

舵机输出杆的运动产生了力矩,可以控制外部装置的运动。

舵机的应用舵机因其精准的控制能力和可靠的性能,在许多领域得到了广泛应用。

1. 遥控模型舵机常用于遥控模型的控制,例如飞机的方向舵、升降舵,汽车的转向舵等。

舵机可以根据遥控信号实现模型的各种运动,提升遥控模型的趣味性和可玩性。

2. 机器人舵机在机器人领域中也有重要应用,可以控制机器人的肢体运动。

通过配合多个舵机的工作,可以实现机器人的各种复杂动作,如行走、抓取等。

3. 无人机在无人机领域,舵机被广泛用于控制无人机的旋翼和舵面。

舵机可以实现无人机的姿态调整,使其保持平衡和稳定飞行。

舵机的选择和使用注意事项选择合适的舵机对于系统的性能至关重要。

在选择舵机时,需要考虑以下几个因素:1. 动力需求舵机的工作电压和电流要符合系统的需求。

舵机工作原理

舵机工作原理

舵机工作原理舵机是一种常用于控制机械装置运动的设备,被广泛应用于无人机、机器人、车辆航模等领域。

它通过接收来自控制器的信号,控制舵机的位置和角度,从而实现对机械装置的精确控制。

本文将详细介绍舵机的工作原理和操作方式。

一、舵机的组成舵机由电机、减速器、控制电路和反馈机构组成。

1. 电机:舵机通常采用DC有刷电机作为驱动源。

直流电机的特点是转速高、响应快。

2. 减速器:舵机中的减速器主要用来减小电机输出轴的转速,增加扭矩输出。

常见的舵机减速器有齿轮减速器、行星减速器等。

3. 控制电路:舵机的控制电路是用来控制电机的转动方向和角度的关键部分。

控制电路通常采用H桥驱动电路来控制电机的正反转。

4. 反馈机构:舵机中的反馈机构用来实时检测舵机的位置和角度信息,并将其反馈给控制电路。

通常采用位置传感器(如光电编码器)或角度传感器(如霍尔效应传感器)来实现。

二、舵机的工作原理舵机通过控制电路接收外部信号,并通过电机和减速器转动输出轴来改变机械装置的位置或角度。

舵机工作原理的核心是控制电路中的位置控制回路和PID控制算法。

1. 位置控制回路:位置控制回路是舵机工作的基础。

它的主要任务是接收外部信号,将其转化为控制信号,并控制电机转动到相应的位置。

位置控制回路主要由控制芯片和位置传感器组成。

控制芯片负责解析控制信号,并将其转化为电机驱动信号。

位置传感器则实时监测舵机输出轴的位置,并将其反馈给反馈机构。

控制芯片根据反馈信号和目标位置信号的比较结果,调整电机的转动方向和速度,使得输出轴转动到目标位置。

2. PID控制算法:舵机的PID控制算法用于精确控制舵机输出轴的位置。

PID控制算法通过比较目标位置和实际位置的差异,产生一个误差信号,然后根据误差信号计算出控制信号。

PID控制器包括三个部分:比例(P)控制器、积分(I)控制器和微分(D)控制器。

比例控制器根据误差信号的大小来调整输出信号的大小;积分控制器根据误差信号的累积值来调整输出信号的积累量;微分控制器根据误差信号的变化速率来调整输出信号的变化速率。

舵机的工作原理

舵机的工作原理

舵机的工作原理舵机是一种常见的电动机械装置,广泛应用于机器人、无人机、航模、机械臂等设备中,用于控制和调节机械部件的运动。

舵机的工作原理主要涉及到电机、电子电路和反馈控制。

一、舵机的组成部分舵机主要由电机、电子电路和反馈系统组成。

1. 电机:舵机通常采用直流电机或步进电机作为驱动源。

电机通过转动输出轴来驱动机械部件的运动。

2. 电子电路:舵机内部的电子电路主要包括控制电路、驱动电路和信号处理电路。

控制电路接收来自外部的控制信号,将其转换为电流或电压信号,用于驱动电机。

驱动电路则负责将控制电路输出的信号转换为电机所需的电流或电压。

信号处理电路则用于处理反馈信号,实现闭环控制。

3. 反馈系统:舵机通常配备有位置反馈装置,例如旋转电位器或编码器。

反馈系统可以实时监测舵机输出轴的位置,并将信息反馈给控制电路,从而实现精确的位置控制。

二、舵机的工作原理舵机的工作原理可以简单分为三个步骤:接收控制信号、驱动电机、反馈控制。

1. 接收控制信号:舵机通过接收来自外部的控制信号来确定输出轴的位置。

常见的控制信号是脉冲宽度调制(PWM)信号。

PWM信号的周期一般为20ms,脉宽范围通常为1ms到2ms。

舵机根据接收到的脉宽信号来确定输出轴的位置。

2. 驱动电机:控制电路接收到控制信号后,将其转换为电流或电压信号,通过驱动电路传递给电机。

电机根据接收到的信号来产生相应的转矩,驱动输出轴的运动。

电机的转动方向和速度取决于控制信号的脉宽和频率。

3. 反馈控制:舵机通常配备有位置反馈装置,反馈系统实时监测输出轴的位置,并将信息反馈给控制电路。

控制电路根据反馈信号与控制信号的差异来调整输出轴的位置,实现闭环控制。

通过不断的反馈控制,舵机可以精确地控制输出轴的位置。

三、舵机的应用舵机广泛应用于各种机械设备中,以实现精确的位置控制和运动调节。

以下是一些舵机的应用场景:1. 机器人:舵机用于控制机器人的关节,实现机器人的各种动作,例如行走、抓取、转动等。

舵机的工作原理

舵机的工作原理

舵机的工作原理引言概述:舵机是一种常见的控制装置,广泛应用于机器人、遥控模型、无人机等领域。

它通过接收控制信号来实现精确的角度控制,具有快速响应和高精度的特点。

本文将详细介绍舵机的工作原理,包括信号解析、电机驱动、反馈控制等方面。

一、信号解析1.1 脉冲宽度调制(PWM)舵机接收的控制信号是一种脉冲宽度调制信号(PWM)。

脉冲的周期通常为20毫秒,高电平的脉冲宽度决定了舵机的角度位置。

通常,1.5毫秒的脉冲宽度对应舵机的中立位置,较短的脉冲宽度使舵机转到一侧,较长的脉冲宽度使舵机转到另一侧。

1.2 控制信号解码舵机内部的电路会解析接收到的控制信号。

首先,它会将脉冲信号进行整形和增益放大,然后通过一个比较器将脉冲信号转换为数字信号。

接着,舵机会将数字信号与一个内部的角度表进行比较,以确定舵机应该转到哪个角度位置。

1.3 信号频率舵机还可以通过控制信号的频率来判断是否处于异常工作状态。

通常,合法的控制信号频率为50赫兹,如果接收到的频率超出了合法范围,舵机会进入错误状态或保护状态。

二、电机驱动2.1 直流电机舵机内部通常采用直流电机来实现角度调节。

直流电机由一个电枢和一个永磁体组成,电枢通过电流控制来产生转矩。

舵机内部的驱动电路可以根据控制信号的大小和方向,控制电流的流向和大小,从而驱动电机转动到指定的角度位置。

2.2 驱动电路舵机的驱动电路通常由一个H桥电路组成。

H桥电路可以实现电流的正反向控制,从而控制电机的转向。

通过改变电流的方向和大小,舵机可以根据控制信号精确地调整到指定的角度位置。

2.3 电机驱动的注意事项在实际应用中,为了保护电机和延长舵机的寿命,需要注意控制信号的合理范围和频率。

过大的电流或频繁的启停会导致电机过热或损坏,因此需要根据舵机的规格和工作要求来选择合适的控制信号。

三、反馈控制3.1 位置反馈为了提高舵机的精度和稳定性,一些高级舵机还配备了位置反馈装置。

位置反馈装置可以实时监测舵机的角度位置,并将实际位置与控制信号要求的位置进行比较。

舵机的工作原理

舵机的工作原理

舵机的工作原理舵机是一种常见的电动执行器,广泛应用于机器人、航模、无人机、自动化设备等领域。

它通过接收控制信号来控制输出轴的角度位置,从而实现精确的位置控制。

舵机的工作原理主要涉及到电机、电子电路和反馈控制系统。

一、电机部分舵机的核心部件是一种直流电机,通常采用永磁直流电机。

该电机由电机转子、电机定子、电刷和永磁体组成。

当电流通过电机定子产生磁场时,磁场与永磁体之间的相互作用会产生转矩,使电机转子转动。

二、电子电路部分舵机内部还包含了一套电子电路,用于接收控制信号并将其转化为电机驱动信号。

电子电路主要由控制芯片、驱动电路和位置反馈电路组成。

1. 控制芯片:舵机的控制芯片通常是一种专用的集成电路,能够接收来自外部的控制信号,并根据信号的脉冲宽度来确定输出轴的位置。

常见的控制芯片有NE555、ATmega328等。

2. 驱动电路:驱动电路负责将控制芯片输出的信号放大,并通过适当的电流控制电机的转动。

驱动电路通常包括功率放大器、电流限制器等元件。

3. 位置反馈电路:为了实现精确的位置控制,舵机通常还配备了位置反馈电路。

位置反馈电路能够实时监测输出轴的位置,并将实际位置反馈给控制芯片,从而实现闭环控制。

三、反馈控制系统舵机的反馈控制系统是舵机工作的关键部分,它通过不断比较控制信号与实际位置反馈信号的差异,调整驱动电路的输出,使输出轴的位置能够精确地达到控制信号所要求的位置。

反馈控制系统通常采用PID控制算法,即比例-积分-微分控制算法。

PID控制算法根据当前位置与目标位置之间的差异,计算出一个控制量,用于调整输出轴的位置。

比例项决定了控制量与差异的线性关系,积分项用于消除稳态误差,微分项用于抑制系统的超调和震荡。

四、工作过程舵机的工作过程如下:1. 接收信号:舵机通过信号线接收来自控制器的控制信号,通常是一种PWM 信号。

2. 解码信号:舵机内部的控制芯片将接收到的信号进行解码,提取出脉冲宽度信息。

3. 位置控制:控制芯片根据脉冲宽度信息计算出输出轴的目标位置,并与实际位置进行比较。

舵机的工作原理

舵机的工作原理

舵机的工作原理舵机是一种常见的机电控制装置,广泛应用于机器人、无人机、航模、机械臂等领域。

它通过接收电信号来控制输出轴的位置,从而实现精确的角度调节。

本文将详细介绍舵机的工作原理,包括内部结构、信号控制和工作过程。

一、内部结构舵机的内部结构主要包括机电、减速装置、位置反馈装置和控制电路。

机电负责提供动力,减速装置用于减小输出轴的转速并增加扭矩,位置反馈装置用于检测输出轴的位置,控制电路则根据输入信号来控制机电的运转。

1. 机电:舵机通常采用直流机电,其转子通过电流产生转矩。

机电的转速和扭矩与输入电流成正比,因此控制电路可以通过控制电流来控制舵机的运动。

2. 减速装置:为了增加舵机的扭矩并减小转速,舵机通常会使用减速装置。

减速装置普通采用齿轮传动或者行星齿轮传动,通过减小机电输出轴的转速来提供足够的扭矩。

3. 位置反馈装置:为了实现精确的角度调节,舵机通常配备位置反馈装置。

位置反馈装置可以是电位器、光电编码器或者磁编码器等,用于检测输出轴的位置并将信号反馈给控制电路。

4. 控制电路:控制电路是舵机的核心部份,它接收输入信号并根据信号的大小和方向来控制机电的运动。

控制电路通常由微控制器、驱动电路和反馈电路组成。

二、信号控制舵机的工作原理基于接收到的控制信号,通常使用PWM(脉宽调制)信号来控制舵机的位置。

PWM信号是一种周期性的方波信号,通过调整方波的高电平时间来控制舵机的角度。

1. 脉宽范围:舵机通常接收的PWM信号脉宽范围为0.5ms到2.5ms,其中1.5ms为中间位置。

较小的脉宽会使舵机转到最小角度,较大的脉宽会使舵机转到最大角度。

2. 控制精度:舵机的控制精度取决于PWM信号的分辨率,即方波周期内脉宽的划分数量。

通常,舵机的控制精度在10比特(1024个划分)到16比特(65536个划分)之间。

3. 控制频率:舵机的控制频率是指PWM信号的重复频率,通常为50Hz或者更高。

较高的控制频率可以提供更平滑的运动,但也会增加系统的计算和通信负担。

舵机的工作原理

舵机的工作原理

舵机的工作原理舵机是一种常用于控制机械运动的电子设备,广泛应用于机器人、航模、无人机等领域。

它能够根据输入的控制信号,精确地控制输出轴的位置,实现精确的运动控制。

本文将详细介绍舵机的工作原理。

一、舵机的组成结构舵机主要由电机、减速器、位置反馈装置和控制电路组成。

1. 电机:舵机采用直流电机作为驱动源,能够提供足够的转矩来驱动输出轴的运动。

2. 减速器:舵机的减速器用于减小电机输出的转速,同时增加输出轴的扭矩,以提供更精确的控制。

3. 位置反馈装置:舵机内部装有位置反馈装置,通常是一种称为“电位器”的装置。

它通过检测输出轴的位置,将实际位置信息反馈给控制电路。

4. 控制电路:舵机的控制电路接收外部的控制信号,根据信号的脉宽来确定输出轴的位置。

控制电路通过比较输入信号与反馈信号的差异,控制电机的转动,使输出轴达到预定的位置。

二、舵机的工作原理基于PWM(脉宽调制)信号的控制。

PWM信号是一种周期性的方波信号,其脉冲宽度可以调整。

舵机通过接收PWM信号来确定输出轴的位置。

当PWM信号的脉冲宽度为最小值时,舵机的输出轴会转到一个极限位置,通常是最左侧。

当脉冲宽度逐渐增大时,输出轴会逐渐向右转动,直到达到最大脉冲宽度时,输出轴会转到另一个极限位置,通常是最右侧。

舵机的控制电路会根据输入的PWM信号脉冲宽度来控制输出轴的位置。

当输入信号的脉冲宽度与输出轴的实际位置相同时,控制电路会停止电机的转动,保持输出轴的位置稳定。

三、舵机的工作模式舵机通常有三种工作模式:位置控制模式、速度控制模式和扭矩控制模式。

1. 位置控制模式:在位置控制模式下,舵机会根据输入信号的脉冲宽度来确定输出轴的位置。

较小的脉冲宽度会使输出轴转到最左侧,较大的脉冲宽度会使输出轴转到最右侧。

2. 速度控制模式:在速度控制模式下,舵机会根据输入信号的脉冲频率来确定输出轴的转速。

较高的脉冲频率会使输出轴转动得更快,较低的脉冲频率会使输出轴转动得更慢。

舵机的工作原理

舵机的工作原理

舵机的工作原理舵机是一种常用的电机驱动装置,广泛应用于机器人、无人机、航模、机械臂等领域。

它的主要作用是控制机械装置的角度或位置,实现精确的运动控制。

在本文中,我们将详细介绍舵机的工作原理。

一、舵机的基本结构舵机主要由电机、减速机、控制电路和反馈装置组成。

1. 电机:舵机通常采用直流电机或无刷电机作为驱动源。

电机的转动产生动力,驱动舵机的输出轴运动。

2. 减速机:舵机的减速机主要由齿轮组成,通过减速比将电机的高速转动转换为输出轴的低速高扭矩转动。

3. 控制电路:舵机的控制电路是舵机的核心部分,它接收外部的控制信号,并根据信号的脉宽来控制舵机的角度或位置。

4. 反馈装置:舵机通常内置有位置反馈装置,如光电编码器或霍尔传感器,用于实时监测输出轴的位置,并将信息反馈给控制电路,以实现闭环控制。

二、舵机的工作原理舵机的工作原理可以简单概括为:接收控制信号→解码信号→驱动电机→输出轴运动→反馈装置监测位置→控制电路调整驱动信号。

1. 接收控制信号:舵机通过接收外部的控制信号来确定输出轴的位置。

控制信号通常采用脉冲宽度调制(PWM)信号,脉宽的变化对应着不同的角度或位置。

2. 解码信号:控制电路接收到控制信号后,会对信号进行解码,提取出脉宽信息。

3. 驱动电机:解码后的信号被送入舵机的驱动电路,驱动电路根据信号的脉宽信息来控制电机的转动。

通常情况下,舵机的驱动电路采用H桥电路来实现正反转和速度控制。

4. 输出轴运动:驱动电机的转动通过减速机传递给输出轴,使得输出轴按照设定的角度或位置运动。

5. 反馈装置监测位置:舵机内置的反馈装置会实时监测输出轴的位置,并将位置信息反馈给控制电路。

6. 控制电路调整驱动信号:控制电路根据反馈装置提供的位置信息,与输入信号进行比较,如果输出轴的位置与设定位置不一致,控制电路会调整驱动信号,使输出轴逐渐接近设定位置,实现闭环控制。

三、舵机的特点和应用舵机具有以下几个特点:1. 高精度:舵机能够实现较高的角度或位置控制精度,通常可以达到数度甚至更小的角度。

舵机的工作原理

舵机的工作原理

舵机的工作原理引言概述:舵机是一种常见的电子设备,广泛应用于机器人、遥控模型等领域。

它能够实现精确的角度控制,具有较高的工作精度和可靠性。

本文将详细介绍舵机的工作原理,包括电机原理、反馈控制原理、位置控制原理、信号控制原理和工作模式。

一、电机原理:1.1 电机类型:舵机通常采用直流电机作为驱动源,常见的有核心式电机和无核心式电机两种类型。

1.2 电机结构:核心式电机由电枢、永磁体和电刷组成,无核心式电机则是通过电磁感应原理实现转动。

1.3 电机工作原理:舵机的电机通过电流控制实现转动,电流的方向和大小决定了舵机的转动方向和角度。

二、反馈控制原理:2.1 反馈装置:舵机内置了一个反馈装置,通常是一个旋转电位器或光电编码器,用于检测舵机的角度。

2.2 反馈信号:反馈装置会输出一个反馈信号,表示当前舵机的角度位置。

2.3 反馈控制:通过比较反馈信号和目标角度信号,舵机可以根据误差进行调整,实现精确的角度控制。

三、位置控制原理:3.1 控制信号:舵机接收一个控制信号,通常是一个脉冲宽度调制(PWM)信号。

3.2 脉宽解读:舵机通过解读控制信号的脉冲宽度来确定目标角度。

3.3 控制算法:舵机根据控制信号的脉冲宽度和反馈信号的角度,采用控制算法计算出驱动电机的电流,从而实现位置控制。

四、信号控制原理:4.1 控制信号范围:舵机的控制信号通常在0.5ms到2.5ms的脉宽范围内变化。

4.2 脉宽对应角度:脉宽的变化对应着舵机的角度变化,通常0.5ms对应最小角度,2.5ms对应最大角度。

4.3 中立位置:控制信号的脉宽为1.5ms时,舵机处于中立位置,即角度为0度。

五、工作模式:5.1 位置模式:舵机可以在位置模式下工作,根据控制信号的脉宽来实现精确的角度控制。

5.2 速度模式:舵机还可以在速度模式下工作,根据控制信号的脉宽来实现转速的控制。

5.3 扭矩模式:舵机在扭矩模式下工作时,根据控制信号的脉宽来实现扭矩的控制,可以用于对外力的响应。

舵机的工作原理

舵机的工作原理

舵机的工作原理舵机是一种常见的控制装置,广泛应用于机器人、无人机、模型飞机等领域。

它能够根据输入的控制信号,精确地控制输出轴的位置或角度。

本文将详细介绍舵机的工作原理,包括舵机的构造、工作方式、控制原理以及常见的舵机类型。

一、舵机的构造舵机主要由电机、减速机构、位置反馈装置和控制电路组成。

1. 电机:舵机通常采用直流无刷电机(BLDC)或直流有刷电机(DC)作为驱动力源。

这些电机具有高转速、高扭矩和高效率的特点,能够提供足够的动力来驱动输出轴的运动。

2. 减速机构:舵机的输出轴通常需要具备较大的扭矩和较低的转速,因此减速机构被用来减小电机输出的转速,并增加输出轴的扭矩。

减速机构通常由齿轮、传动杆和轴承等构件组成。

3. 位置反馈装置:为了实现精确的位置控制,舵机通常配备了位置反馈装置。

位置反馈装置可以是光电编码器、霍尔传感器或磁编码器等,用于监测输出轴的位置并反馈给控制电路。

4. 控制电路:舵机的控制电路负责接收输入的控制信号,并根据信号的大小和方向来控制电机的转动。

控制电路通常由微控制器或专用的控制芯片组成,能够实现精确的位置控制和速度控制。

二、舵机的工作方式舵机的工作方式可以分为开环控制和闭环控制两种。

1. 开环控制:开环控制是指舵机根据输入的控制信号直接控制电机的转动。

在开环控制中,舵机不会对输出轴的位置进行反馈,因此无法实现精确的位置控制。

开环控制适用于一些简单的应用场景,如模型飞机的舵机控制。

2. 闭环控制:闭环控制是指舵机通过位置反馈装置对输出轴的位置进行监测,并根据反馈信号来调整电机的转动。

闭环控制能够实现精确的位置控制,适用于需要高精度控制的应用场景,如机器人的关节控制。

三、舵机的控制原理舵机的控制原理主要包括脉宽调制(PWM)信号和位置反馈控制。

1. 脉宽调制信号:舵机接收的控制信号通常是一种脉宽调制信号,即脉冲的宽度来表示控制信号的大小和方向。

通常情况下,舵机接收一个周期为20毫秒的脉冲信号,脉冲宽度的范围一般在1毫秒到2毫秒之间。

舵机的工作原理

舵机的工作原理

舵机的工作原理舵机是一种常见的电机控制设备,它在各种电子设备中起着重要的作用。

舵机的工作原理是通过电信号控制舵机内部的电机,使其能够精确地旋转到特定的角度。

本文将详细介绍舵机的工作原理,帮助读者更好地理解这一电机控制设备。

一、舵机的基本结构1.1 电机部分:舵机内部包含一个直流电机,通过电流控制电机的转动。

1.2 减速器:舵机中还包含一个减速器,可以将电机的高速旋转转换为舵机臂的缓慢移动。

1.3 反馈装置:舵机还配备了一个反馈装置,可以实时监测舵机的位置,确保舵机能够准确旋转到指定位置。

二、舵机的工作原理2.1 电信号输入:当接收到控制信号时,舵机内部的控制电路会解析信号,并将其转换为电流信号。

2.2 电机驱动:电流信号通过舵机内部的电机,驱动电机旋转。

2.3 位置反馈:舵机内部的反馈装置会实时监测舵机的位置,并将反馈信息传递给控制电路,确保舵机旋转到指定位置。

三、舵机的控制方式3.1 PWM控制:舵机常用的控制方式是PWM(脉宽调制)控制,通过改变PWM信号的占空比,可以实现舵机的精确控制。

3.2 位置控制:舵机可以根据控制信号的不同,精确地旋转到指定的角度位置。

3.3 速度控制:通过控制电流的大小,可以控制舵机的旋转速度,实现不同速度的旋转。

四、舵机的应用领域4.1 机器人领域:舵机在机器人的关节部分起着至关重要的作用,可以实现机器人的各种动作。

4.2 模型制作:舵机常用于模型制作中,可以实现模型的各种动态效果。

4.3 工业自动化:舵机在工业自动化领域也有广泛的应用,可以实现各种精确的控制任务。

五、舵机的优缺点5.1 优点:舵机具有精确的控制能力,可以实现精准的位置控制;结构简单,易于安装和使用。

5.2 缺点:舵机的成本较高,且在高负载情况下容易受损;响应速度相对较慢。

综上所述,舵机是一种常见的电机控制设备,通过电信号控制电机旋转到指定位置。

舵机的工作原理包括基本结构、工作原理、控制方式、应用领域和优缺点等方面,希望本文能够帮助读者更好地理解舵机的工作原理。

舵机的工作原理

舵机的工作原理

舵机的工作原理舵机是一种常见的电机控制装置,广泛应用于机器人、无人机、航模等领域。

它的主要功能是控制机械装置的角度或位置,使其按照预定的路径运动。

本文将详细介绍舵机的工作原理,包括舵机的构造、工作原理、控制信号以及常见问题解决方法。

一、舵机的构造舵机主要由电机、减速器、位置反馈装置和控制电路组成。

1. 电机:舵机采用直流电机或无刷电机作为驱动力源。

直流电机通常由电刷和电枢组成,通过电流和磁场相互作用产生转矩。

无刷电机则通过电子控制器控制电流和磁场来产生转矩。

2. 减速器:舵机的电机输出轴通过减速器与舵机的输出轴相连,减速器主要用于降低电机的转速并增加输出的扭矩。

常见的减速器类型有齿轮减速器和行星减速器。

3. 位置反馈装置:舵机的位置反馈装置用于测量舵机输出轴的角度或位置,并将其反馈给控制电路。

常见的位置反馈装置有旋转电位器、霍尔传感器和光电编码器等。

4. 控制电路:舵机的控制电路根据输入的控制信号,通过控制电机的电流和方向来控制舵机输出轴的角度或位置。

控制电路通常由微控制器或专用的舵机控制芯片组成。

二、舵机的工作原理舵机的工作原理可以简单分为两个阶段:位置检测和位置控制。

1. 位置检测:舵机的位置检测是通过位置反馈装置实现的。

当舵机接收到控制信号后,控制电路会将电流传递给电机,驱动电机旋转。

同时,位置反馈装置会不断监测输出轴的角度或位置,并将其反馈给控制电路。

2. 位置控制:控制电路根据位置反馈装置的反馈信号,与输入的控制信号进行比较,计算出误差值。

然后,控制电路会根据误差值调整电机的电流和方向,使输出轴逐渐接近目标位置。

当输出轴达到目标位置时,控制电路会停止调整电流,舵机保持在目标位置。

三、舵机的控制信号舵机的控制信号通常是一个脉冲宽度调制(PWM)信号。

PWM信号的周期一般为20毫秒,其中高电平的脉冲宽度决定了舵机的角度或位置。

舵机的控制信号一般具有以下特点:1. 脉冲周期:舵机的控制信号周期一般为20毫秒,即每个脉冲的时间间隔为20毫秒。

舵机的工作原理

舵机的工作原理

舵机的工作原理引言概述:舵机是一种常用的电动执行器,广泛应用于机器人、航模、车模等领域。

它通过接收控制信号,能够精确控制输出轴的角度位置,从而实现对机械装置的精确控制。

本文将详细介绍舵机的工作原理。

正文内容:1. 舵机的基本组成1.1 电机部分:舵机采用直流电机作为驱动力源,通常为核心电机或无刷电机。

1.2 减速器:舵机的输出轴通常需要具备较大的输出力矩,因此采用减速器来降低电机的转速并增加输出力矩。

1.3 位置反馈装置:为了实现准确的位置控制,舵机内部配备了位置反馈装置,通常是一种旋转式的电位器或编码器。

2. 舵机的工作原理2.1 控制信号解码:舵机接收到控制信号后,首先需要将信号进行解码,通常采用脉宽调制(PWM)信号。

2.2 位置反馈:舵机通过位置反馈装置获取当前输出轴的角度位置,并与控制信号进行比较,以确定需要调整的角度。

2.3 控制电路:舵机内部的控制电路根据控制信号和位置反馈的差异,通过控制电流的大小和方向,驱动电机旋转到目标位置。

2.4 闭环控制:舵机通过不断地进行位置反馈和调整,实现闭环控制,使输出轴能够精确地停留在目标位置。

3. 舵机的工作特点3.1 高精度:舵机通过位置反馈和闭环控制,能够实现高精度的角度控制,通常误差在几度以内。

3.2 高输出力矩:舵机通过减速器的作用,能够提供较大的输出力矩,适用于需要承受一定负载的应用场景。

3.3 快速响应:舵机的控制电路响应速度较快,能够在短时间内调整到目标位置。

4. 舵机的应用领域4.1 机器人:舵机广泛应用于机器人的关节驱动,能够实现机器人的灵活运动和精确控制。

4.2 航模:舵机用于控制航模的翼面、尾翼等部件,实现飞行姿态的调整。

4.3 车模:舵机用于控制车模的转向和油门,实现车辆的前进、后退和转向。

总结:舵机作为一种常见的电动执行器,通过接收控制信号和位置反馈,实现对输出轴角度位置的精确控制。

它具备高精度、高输出力矩和快速响应的特点,在机器人、航模、车模等领域有着广泛的应用。

舵机的工作原理

舵机的工作原理

舵机的工作原理舵机是一种常用的电机控制设备,广泛应用于机器人、航模、智能家居等领域。

它通过接收电信号来控制输出轴的位置,从而实现对机械装置的精确控制。

舵机的工作原理可以简单描述如下:1. 电机驱动:舵机内部包含一个直流电机,通常是一种直流有刷电机。

该电机通过电源提供的电流来驱动,并通过齿轮传动系统将转动运动转化为线性运动。

2. 位置反馈:舵机内部还配备了一个位置反馈装置,通常是一个旋转变阻器或光电编码器。

该装置可以感知输出轴的位置,并将其转化为电信号反馈给舵机控制电路。

3. 控制电路:舵机的控制电路接收来自外部的控制信号,通常是一个脉冲宽度调制(PWM)信号。

控制电路将该信号与位置反馈信号进行比较,并通过调整电机驱动电流的大小和方向来实现输出轴位置的调节。

4. 闭环控制:舵机的控制电路采用闭环控制系统,即根据输出轴位置的反馈信息进行实时调整。

当控制信号发生变化时,控制电路会根据反馈信号的差异来调整电机驱动,使输出轴尽可能接近期望位置。

5. 力矩输出:舵机的输出轴通常配备一个输出臂,用于连接到需要控制的机械装置。

当舵机工作时,输出轴的运动会产生一定的力矩,用于驱动机械装置的运动。

需要注意的是,舵机的工作原理是基于电机驱动和位置反馈的闭环控制系统。

控制信号的频率和脉宽决定了舵机的响应速度和转动角度范围。

不同型号的舵机具有不同的工作特性和性能参数,如转动角度范围、响应时间、扭矩等。

总结起来,舵机的工作原理是通过控制电路接收控制信号,并根据位置反馈信息调整电机驱动,实现对输出轴位置的精确控制。

它在机器人、航模等领域中具有广泛的应用前景。

舵机的工作原理

舵机的工作原理

舵机的工作原理舵机是一种常见的电动机械装置,广泛应用于机械控制系统中,用于控制船舶、飞机、机器人等设备的方向或位置。

舵机的工作原理是通过接收控制信号,将电能转化为机械运动,从而实现对舵机输出轴位置的控制。

舵机主要由电机、减速机、位置反馈装置和控制电路组成。

下面将详细介绍舵机的工作原理。

1. 电机部分:舵机的电机通常采用直流无刷电机或步进电机。

电机通过电源供电,产生转矩,驱动舵机输出轴的运动。

电机的转速和转矩与输入电压的大小成正比,通过调节输入电压可以控制舵机的运动速度和力矩。

2. 减速机部分:舵机的减速机主要由齿轮组成,用于减小电机的转速并增加输出轴的转矩。

减速机的结构设计决定了舵机的输出轴的精度和可靠性。

常见的减速机类型包括行星齿轮、斜齿轮和蜗轮蜗杆等。

3. 位置反馈装置:舵机的位置反馈装置用于检测输出轴的位置,并将位置信息反馈给控制电路。

常见的位置反馈装置包括光电编码器、霍尔传感器和磁编码器等。

位置反馈装置可以提供准确的位置反馈信号,使得舵机能够精确控制输出轴的位置。

4. 控制电路:舵机的控制电路负责接收控制信号,并根据信号的大小和方向来控制电机的运动。

控制电路通常采用微控制器或专用的控制芯片,通过PWM(脉宽调制)信号来控制电机的转速和方向。

控制电路还可以根据位置反馈信号来实现闭环控制,提高舵机的运动精度和稳定性。

舵机的工作原理可以简单总结为:控制电路接收控制信号,根据信号的大小和方向来控制电机的运动,电机通过减速机驱动输出轴的运动,位置反馈装置检测输出轴的位置并将信息反馈给控制电路,控制电路根据位置反馈信号进行闭环控制,从而实现对舵机输出轴位置的精确控制。

舵机的工作原理使得它在许多应用中具有重要作用。

例如,在机器人中,舵机可以控制机械臂的运动;在航空航天领域,舵机可以控制飞机的方向;在模型制作中,舵机可以控制模型车辆的转向。

舵机的工作原理的深入理解对于设计和应用舵机都具有重要意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

转叶式液压舵机产品介绍
上海海事大学摘编2010-01-18
关键字:液压舵机浏览量:627
大型船舶几乎全部采用液压舵机。

电动舵机仅仅用于一些小型船舶上。

液压舵机是利用液体的不可压缩性及流量、流向的可控性达到操舵的目的。

转叶式液压舵机是一种新型的液压舵机。

它与其他类型的舵机相比,具有体积小、重量轻、结构简单、制造容易、维护保养方便等一系列优点。

一、国内外研究现状:
转叶式液压舵机至今已有近60年的历史,但这种新舵机并非所有从事船舶制造的国家都能生产,目前只有少数几个国家掌握了这门设计和生产技术。

例如:德国、挪威、俄罗斯和日本等他们从二次世界大战后50年代初开始先后研究和生产这种新舵机。

德国AEG通用电气公司生产转叶式液压舵机已闻名世界并占垄断地位,产品较多,是目前远洋船舶上所经常选用的设备之一。

该公司生产四种不同系列,分为RD型;RDC型;RC型;RB型。

最高压力12.5MPa;最大扭矩890吨米。

由于采用翻边式结构,金属条密封形式,结构合理,翻边受力变形量小,可使用较高压力,容积效率也较高。

但是安装工艺较复杂(与端盖式比较),不过RBZ(RB)系列组装化程度较高,安全阀,电动机,油泵机组均安装在转叶油缸两侧,可整体套入舵轴(与舵轴联接方式均为套装式)。

大大简化了船上安装工作量。

英国布朗公司、日本三井公司、三菱公司和美国等国家凭德国AEG公司专利进行成批生产各种系列的转叶式液压舵机。

挪威FRYDENBO公司生产的转叶式液压舵机,工作压力2.5MPa,安全阀调节压力为5MPa,最大扭矩为600吨米。

液压系统是以螺杆泵做主泵的定量泵系统。

由手动和电动液压操纵组成一体。

该公司产品的特点是采用端盖式带凹形橡胶密封,与舵轴联接形式为套装式,转叶舵机固定在船壳底座上,无缓冲装置,由于其使用压力较低,采用高粘度油液,故使用可靠,安装、维护保养简单。

俄罗斯于1959年在目前的乌克兰境内试制了首台转叶式液压舵机,并在1962年装在船上考验其性能,而后进行了批量生产。

这种舵机的结构形式为端盖式,金属条密封,工作压力小于6.5MPa。

与舵轴联接方式为对接式。

我国自1969年在广州研制成功第一台转叶式舵机以来,由于这种舵机具有一系列优点,因此发展很快。

现在这种舵机品种规格很多,结构不一。

有翻边式结构(江南造船厂);端盖
式结构(广州造船厂);浮动端盖式结构(马尾造船厂)等。

密封形式也很多。

有金属条密封(广州造船厂);塑料密封(新港造船厂);橡胶密封(温州鱼机厂)等。

工作压力从2.5MPa到10MPa,扭矩从0.5吨米至65吨米。

目前南京贝德船用(液压)设备有限公司、兴化市开源液压舵机机械有限公司、山东鄄城华宇通用机械设备厂、扬州吉信船舶设备制造有限公司、兴化市方正有限公司、南京中船绿洲机器有限公司、无锡市海联舰船附件有限公司等单位都在生产液压舵机。

二、国内转叶式液压舵机介绍
1中船绿洲公司研制的转叶式液压舵机
转叶式舵机是船舶的关键设备,具有体积小、重量轻、噪音小、寿命长的优点,已成为船用舵的主流配套设备。

然而,转叶式舵机市场长期被欧洲制造商垄断,目前该产品在国内市场上供不应求。

为改变这一局面,中船绿洲公司于2006年开始自主研发转叶式舵机。

截至目前,该公司已掌握了4160吨米转叶式舵机的核心技术,490吨米产品得到中国、挪威、法国、德国等船级社认可,成为国内独家拥有转叶式舵机自主知识产权和多项专利、并已形成批量生产能力的企业。

如图1为南京中船绿洲机器有限公司的HD型转叶式舵机,具有结构紧凑,运动部件少,操舵平稳,舵角范围宽,安装方便,操作维护简单,占地面积小等优点,因此,它是一种理想的操舵装置,能适应各类船舶不同的需要。

以下介绍一下南京中船绿洲的HD型舵机装置。

图1 HD型转叶式液压舵机
1.HD型舵机装置进行简述
本舵机装置的液压部分主要由动力泵组、转叶式舵马达、储备邮箱等组成。

A. 动力泵组-----它是由泵、电磁阀、控制阀等集装而成,非常紧凑,泵组接受电磁操纵系统的控制
B. 转叶式舵马达----马达腔内动叶接受来自泵组压力油的作用,带动转子并将扭矩传递给舵柱,以达到转舵的目的
C. 储备邮箱----它为本操作装置液压系统上的一个附件,为液压油的膨胀和系统的补油所需。

2.本操舵装置的配置和控制形式
本操舵通过操纵手柄的控制,根据舵工作需要,两泵组可交替使用,也可同时使用。

在应急情况下,泵组除了电气控制,还可通过设在电磁阀两端的按钮进行手控。

3.舵机装置的基本结构和原理
舵机装置的液压部分主要由动力泵组、舵马达、储备邮箱及其管路组成。

舵马达通过转子将扭矩传递给舵杆,其液压舵动力来自动力泵组,而它是电机驱动的,两台电动机油泵可以交替使用,也可以同时使用供油,舵机液压系统原理图。

(1)舵机启动
启动电动机油泵组,油泵从邮箱吸油,在无操舵信号情况下,压力油经电磁溢流换向阀卸荷通过过滤器返回邮箱。

(2)舵机的运转
舵机的转向取决于操舵仪的讯号,操舵讯号使电磁阀左边(或右边)的电磁铁通电,则压力油经液压阀进入油缸,从回油腔排出的回油经电磁阀、滤器返回邮箱,当操舵讯号被切断时电磁阀的阀芯在复位弹簧作用下回到中间位置,知识舵被停在某一角度上。

(3)舵马达基本结构及原理:
舵马达主要由圆筒形缸体、转子和端盖组成,转子在舵马达底部和顶部的两支承内转动。

转子上的动叶接受油压后输出扭矩,转角运动受到缸内扇形体的限制,扇形体由螺钉固定在定子壳体上,使之在舵马达的进油侧和排油侧之间形成挡板。

此扇形体在舵作满舵操作时也作为舵止动器,在转子叶片上置有一个机械控制的释放阀,当舵转到满舵位置时,阀杆接触到扇形体,打开阀门使得油流入另一侧。

(回油侧)从而制止了压力升高。

缸底置有轴向轴承,其大小和功能足以承受整个舵、舵柱和转子的重量,无需使用其他轴向轴承。

在舵马达的转子上设有轴向、径向密封条,作为舵马达运动密封件。

它选用的优质耐油合成橡胶条,确保舵机马达保持良好的密封,能够长期有效工作。

2.无锡市海联舰船附件有限公司研制的转叶式液压舵机
目前无锡市海联舰船附件有限公司技术中心、机械制造部通力合作,由中国船级社主持的转叶式液压舵机于2009年5月通过CCS船检型式认可。

图2为转叶式液压舵马达和电动液压泵组,图3为转叶式液压舵马达的技术规格。

该舵机针对现有舵机存在的各种问题所开发研究设计的新型舵机,其采用新的转叶式结构,解决了以往传统活塞式舵机占地面积大,噪音大,操作不方便,使用范围小等一系列问题,同时也进一步提高了舵机的性能和可靠性。

该舵机已获得实用新型专利,与往复柱塞式和回转柱塞、活塞式相比,结构紧凑、占地面积小(约为其它型式舵机的40%~60%左右)、操舵平稳、舵角范围宽(可以转到±75°)、安装方便、操作维护简单,并且解决了转叶式液压舵机传统的内泄漏等问题。

该产品以SOLAS 公约要求和各船级社规范船标CB/T972-94、军标GJB2855-97等要求为标准,舵机研发运用先进的计算机辅助设计制造,该产品的性能指标在国外同类产品具有先进技术水平,在国内同行业中达到领先水平。

图2 转叶式液压舵马达和
电动液压泵组
图3 转叶式液压舵马达的技术规格
参考文献:
1.邓攀.转叶式液压舵机加载试验台的研制[D].哈尔滨工业大学硕士学位论文,2007
2.南京中船绿洲环保有限公司产品介绍
3.无锡市海联舰船附件有限公司产品介绍。

相关文档
最新文档