追击相遇问题专题讲解
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
追击相遇问题专题讲解
追击与相遇专题讲解
学员姓名
辅导
科目
物
理
就读
年级
高
一
辅导
教师
唐
老师
课
型
新授课
教学目标1.相遇和追击问题的实质
研究的两物体能否在相同的时刻到达相同的空间位置的问题。
2. 解相遇和追击问题的关键
画出物体运动的情景图,理清三大关系(1)时间关系:
t
t
t
B
A
±
=(2)位移关系:
A B
x x x
=±
(3)速度关系:
两者速度相等。它往往是物体间能否追上或(两者)距离最大、最小的临界条件,也是分析判断的切入点。
重点难点考重点:对题上的时间进行分析难点:位移的相差是多少
1.速度小者追速度大者: 类型 图象
说明 匀加速追匀速
①t=t 0以前,后面物体与前面物体间距离增大
②t=t 0时,两物体相距最远为x 0+Δx
③t=t 0以后,后面物体与前面物体间距离减小
④能追及且只能相遇一次
匀速追匀减速
匀加速追匀减速
点 课时
1课时
教学过程
2.速度大者追速度小者:
匀减速追匀速
开始追及时,后面物体与前面物体间的距离在减小,当两物体速度相等时,即t=t0时刻:
①若Δx=x0,则恰能追及,两物体只能相遇一次,这也是避免相撞的临界条件
②若Δx 匀速追匀加速 匀减速追匀加速 ③若Δx>x0,则 相遇两次,设 t1时刻Δ x1=x0,两物体 第一次相遇, 则t2时刻两物 体第二次相遇 说明: ①表中的Δx是开始追及以后,后面物体因速度大而比前面物体多运动的位移; ②x 是开始追及以前两物体之间的距离; ③t 2-t =t -t 1 ; ④v 1是前面物体的速度,v 2 是后面物体的速 度. 考点1 追击问题 1、追及问题中两者速度大小与两者距离变化的关系。 甲物体追赶前方的乙物体,若甲的速度大于乙的速度,则两者之间的距离。若甲的速度小于乙的速度,则两者之间的距离。若开始甲的速度小于乙的速度过 一段时间后两者速度相等,则两者之间的距离(填最大或最小)。 2、追及问题的特征及处理方法: “追及”主要条件是:两个物体在追赶过程中处在同一位置,常见的情形有三种: ⑴初速度为零的匀加速运动的物体甲追赶同 方向的匀速运动的物体乙,一定能追上,追上前有最大距离的条件:两物体速度,。 即v v 乙 甲 ⑵匀速运动的物体甲追赶同向匀加速运动的物体乙,存在一个能否追上的问题。 ⑶匀减速运动的物体追赶同向的匀速运动的物体时,情形跟⑵类似。 判断方法是:假定速度相等,从位置关系判断。 ①当甲乙速度相等时,甲的位置在乙的后方,则追不上,此时两者之间的距离最小。 ②当甲乙速度相等时,甲的位置在乙的前方,则追上,此情况还存在乙再次追上甲。 ③当甲乙速度相等时,甲乙处于同一位置,则恰好追上,为临界状态。 解决问题时要注意二者是否同时出发,是否从同 一地点出发。 追击问题分析方法:⑴要抓住一个条件,两个关系:一个条件是两物体的速度满足的临界条件,如两物体距离最大、最小,恰好追上或恰好追不上等。两个关系是时间关系和位移关系,通过画草图找两物体的位移关系是解题的突破口。 ⑵若被追赶的物体做匀减速运动,一定要注意追上前该物体是否已经停止运动。 ⑶仔细审题,充分挖掘题目中的隐含条件,同时注意v t 图象的应用。 【例1】物体A、B同时从同一地点,沿同一方向运动,A以10m/s的速度匀速前进,B 以2m/s2的加速度从静止开始做匀加速直 线运动,求A、B再次相遇前两物体间的 最大距离. 【解析一】物理分析法 A做υA=10 m/s的匀速直线运动,B做初速度为零、加速度a=2 m/s2的匀加速直线运动.根据题意,开始一小段时间内,A的速度大于B的速度,它们间的距离逐渐变大,当B的速度加速到大于A的速度后,它们间的距离又逐渐变小; A、B间距离有最大值的临界条件是υA= υB.① 设两物体经历时间t相距最远,则υA=at ② 把已知数据代入①②两式联立得t=5 s 在时间t内,A、B两物体前进的距离分别为s A=υA t=10×5 m=50 m s B=1 2 at2= 1 2 ×2×52 m=25 m A、B再次相遇前两物体间的最大距离为 Δs m=s A-s B=50 m-25 m=25 m 【解析二】相对运动法 因为本题求解的是A、B间的最大距离,所以可利用相对运动求解.选B为参考系,则A相对B的初速度、末速度、加速度分别是υ0=10 m/s、υ t =υA-υB=0、a=-2 m/s2. 根据υt2-υ0=2as.有0-102=2×(-2)×s AB 解得A、B间的最大距离为s AB=25 m. 【解析三】极值法 物体A、B的位移随时间变化规律分别是s A= 10t,s B=1 2 at2= 1 2 ×2×t2=t5.