复数的加减法

合集下载

复数的四则运算公式

复数的四则运算公式

复数的四则运算公式复数是数学中的一个概念,它可以表示为实部与虚部的和。

在复数的四则运算中,包括加法、减法、乘法和除法。

下面将分别介绍这四种运算。

一、复数的加法复数的加法是指将两个复数相加的操作。

假设有两个复数a+bi和c+di,其中a、b、c、d分别为实数部分和虚数部分。

则两个复数的加法可以表示为:(a+bi) + (c+di) = (a+c) + (b+d)i即实部相加,虚部相加。

二、复数的减法复数的减法是指将两个复数相减的操作。

假设有两个复数a+bi和c+di,其中a、b、c、d分别为实数部分和虚数部分。

则两个复数的减法可以表示为:(a+bi) - (c+di) = (a-c) + (b-d)i即实部相减,虚部相减。

三、复数的乘法复数的乘法是指将两个复数相乘的操作。

假设有两个复数a+bi和c+di,其中a、b、c、d分别为实数部分和虚数部分。

则两个复数的乘法可以表示为:(a+bi) × (c+di) = (ac-bd) + (ad+bc)i即实部相乘减虚部相乘,并将结果相加。

四、复数的除法复数的除法是指将两个复数相除的操作。

假设有两个复数a+bi和c+di,其中a、b、c、d分别为实数部分和虚数部分。

则两个复数的除法可以表示为:(a+bi) ÷ (c+di) = [(ac+bd)÷(c^2+d^2)] + [(bc-ad)÷(c^2+d^2)]i即将实部和虚部分别除以除数的实部和虚部的平方和。

通过以上介绍,我们了解了复数的四则运算公式。

在实际应用中,复数的四则运算常常用于电路分析、信号处理等领域。

对于复数的运算要求掌握加减法的运算规则,以及乘法和除法的计算方法。

复数的四则运算在解决实际问题中起到了重要的作用,对于深入理解复数的概念和应用具有重要意义。

因此,掌握复数的四则运算公式对于数学学习和实际应用都是非常重要的。

希望通过本文的介绍,读者能够对复数的四则运算有更深入的了解,并能够熟练运用于实际问题的解决中。

复数的运算

复数的运算
的虚部减虚部减去它的得的差是 3, 求复数ω. 2 3 + 3i 2
回顾总结
1.复数的四则运算; 2.复数运算的乘方形式; 3.共轭复数的相关运算性质; 4.复数运算中的常用结论。
如你看后满意,请把此页面删掉,以免打扰你正常使用,我们万分感谢!
本站敬告: 一、本课件由“半岛教学资源( :// 228668 )”提供下载, 官网是 :// zjbandao ,网站创办人杨影,真名实姓,绝不虚假,系广东 省徐闻县徐城中学语文教师,兼任电脑课,拥有多年网站和课件制作经验,欢迎查实。 二、此课件为作者原作,如你看后有不满意的地方,我们提供专业技术修改,具体如下: 1、修改最低起点15元,负责给你修改4个以内页面,24小时内完成,不完成全额退款; 2、修改4个页面以上的,每加1个页面收5元,插入你发来图片并制作动画特效每张1元; 3、帮你制作一个动画或一个FLASH按钮并插入你指定的页面内收10元; 4、帮你把一个音频或视频文件剪成一个或几个并插入你指定的页面内并制特效收10元。 三、成交方法: 1、根据上面第二点的4个小点,算下你的修改要多少钱,然后付款,付款方法有二: 1)网上在线付款:在我们的网站 :// 228668 或 :// zjbandao 里注册会员后登录进会员中心在线付款到我们网站里; 2)银行汇款:到银行柜台转账或汇款,开户行:工商银行,账号:9558 8220 1500 0448136 收款人:杨影 2、把你要修改的课件发到我们的邮箱228668338@qq 或mmzwzy@139 里,并 在邮件里写明你在我们网站里的会员账号和付款是多少钱,以便我们查询。 3、把你要修改的要求写在发来的邮件里,如果需要我们帮剪辑音频或视频文件的,要 把文件一并发来,要插入图片的也要把图片发来(我们不提供找图片服务)。 四、加急请联系: 13030187488,QQ228668338 ,短信:13692343839 五、温馨提示:请在修改要求中尽可能详细的说明你的要求,我们做好发给你后只给你 提供一次重改机会,因你说明不清楚造成要修改第三次的,要补交半数费用。

复数的计算公式

复数的计算公式

复数的计算公式作为高中数学中的数学知识点之一,复数在各种科学领域都有着广泛的应用。

那么,什么是复数呢?简单来说,复数是由实数部分和虚数部分组成的数,书写形式为 a+bi,其中 a 和 b 分别表示实数和虚数部分,i 是虚数单位,满足i²=-1。

接下来,我们来探讨一下复数的基本计算公式。

1. 复数的加法和减法对于两个复数 a+bi 和 c+di,它们的加法和减法如下:a+bi + c+di = (a+c) + (b+d)ia+bi - (c+di) = (a-c) + (b-d)i也就是说,复数的加减法,可以将实部和虚部分别相加或相减得到结果。

需要注意的是,排序不影响结果,即 a+bi 和 b+ai 是相等的。

2. 复数的乘法对于两个复数 a+bi 和 c+di,在进行乘法运算时,我们可以使用如下公式:(a+bi)×(c+di) = (ac-bd) + (ad+bc)i也就是说,复数的乘法运算,实部之间互相乘,虚部之间互相乘,再将两个结果相加得到最终的结果。

需要注意的是,复数的乘法满足交换律和结合律,即 ab=ba,a(bc)=(ab)c。

3. 复数的除法复数的除法可以通过乘以倒数来完成。

也就是说,对于两个复数a+bi 和 c+di,我们可以将它们相除,得到如下结果:(a+bi)÷(c+di) = (a+bi)×(c-di) ÷ (c+di)×(c-di) =[(ac+bd)+(bc-ad)i]÷(c²+d²)需要注意的是,如果除数等于 0,则无法进行复数除法运算。

除此之外,还有一些常用的复数运算公式,比如幂运算和开方运算。

对于幂运算,如 a+bi 的 n 次幂为:(a+bi)ⁿ = (a+bi)×(a+bi)×...×(a+bi)可以使用二项式定理进行展开。

对于开方运算,如y = √(a+bi),则y² = a+bi,可以通过解二次方程来求解。

复数的加减法运算

复数的加减法运算

例:已知复数 z = x + yi ( x , y ∈ R )满足 | z − ( −1 + 3 i ) |= 1, y (1)求 | z | 的范围 (2)求 的范围 x (1 ) z 对应的点表示以 ( − 1, 3 )为圆心, 为半径的圆 为圆心, 1
| z | 表示该圆上一点与原点 的距离
∴ 整理得:( x − 1 ) 2 + ( y + 1 ) 2 = 2 整理得:
∴ 轨迹是以 (1, − 1)为圆心, 2为半径的圆 为圆心,
复数的减法运算: 复数的减法运算:
如果两个复数 z1 = a + bi , z 2 = c + di (a , b, c , d ∈ R )
则定义: 则定义: z 1 − z 2 = ( a − c ) + ( b − d ) i
∴ Re( x ) = ± 1
且 xy = | x | ⇒ Im( x ) = ± | x | − (Re( x )) = ± 1
2 2 2
∴ x = 1 + i , y = 1 − i或 x = 1 − i , y = 1 + i 或 x = − 1 + i , y = − 1 − i或 x = − 1 − i , y = − 1 + i
5 − 4 a ∈ [1 , 3 ]
5 − 4a
∴| z − 2 |∈ [1, 3 ]
∵ a ∈ [ − 1,1] ⇒
法二: 法二:几何法
∴| z − 2 |∈ [1, 3 ]
( 2,0 )
法三: 法三:利用 | z 1 | − | z 2 |≤ | z 1 ± z 2 |≤ | z 1 | + | z 2 | ∴|| z | − 2 |≤ | z − 2 |≤ | z | + 2 ∴| z − 2 |∈ [1, 3 ]

复数的加减法_2022年学习资料

复数的加减法_2022年学习资料

3.复数减法运算的几何意义?-复数21一z2对应的向量为0Z10Z,-y-Z a,b-Zc,d-X
应用举例-例1.计算-11+3+-4+2i-5-432-548车-01-2$45-X
2-2--3+4i-Y-个-5-42+-54$1-2845-X
思考-21Z2表示什么?表示复平面上两点乙,Z2的距离-Z a,b-Zc,d-X-0
3.3复数加减运算及其几何意义
知识回顾-1、复数z的模|z|=√a2+b2-z-a+bi o-Za,b-X-2、Iz=r复数z对应的点Z 轨迹是以原点-为圆心,以r为半径的圆。
讲解新课-1.复数加法的运算-法则:-实数运算法则:-交换律-已知两复数z1=M+bi,z2=C+di-a b=b+a-a,b,c,d是实数-ab ba-结合律-z1+忆2=a+c+b+di;-a+b+c=a+b+ -abc =abc-分配律-任何1322,∈C,有-ab+c=ab+ac-交换律3+忆2=乙2+1-结合律 +2+,=3+32+3
应用举例-例2、已知复数z对应点Z,说明下列各式所表示的-几何意义.-1z-(1+2i-点Z到点(1,2的 离-2z+1+2i-点Z到点(一1,一2)的距离-31z-1-点Z到点1,0的距离-4z+2i-点Z到点0 一2的距离
口答:由复数加减法的几何意义说明满足下-列条件的平行四边形是什么图形-Z1+Z2-1、z1=z2-B-平行 边形OABC是菱形-2、|z1+z2Fz1z2-平行四边形0ABC是矩形-3、z1=|z2l,z+2F|z z2-平行四边形0ABC是正方形

复数运算法则

复数运算法则

复数运算法则复数是一个十分重要的数学概念,在很多种情况下都需要对其进行各种运算,复数运算法则就是专门用来解决这些运算问题的规则和方法。

一般来说,复数运算法则主要涉及到六大类:1、加减法:复数的加减法的计算原则是:实部加减,虚部加减。

比如:(2 + 3i) + (4 - 5i) = (2+4) + (3-5)i2、乘法:复数的乘法的计算原则是:实部乘虚部的和,实部的平方加虚部的平方的差。

比如:(2 + 3i) * (4 - 5i) = (2*4 + 3*(-5)) + (2*(-5) + 3*4)i3、除法:复数的乘法原则是:实部乘虚部的和,实部的平方减虚部的平方的差,除以实部乘虚部的差。

比如:(2 + 3i) / (4 - 5i) = (2*4 - 3*(-5)) / (2*(-5) - 3*4)i 4、复数乘方:复数乘方的原则是:复数的实部和虚部都相乘,然后求幂,再乘以复数的模的n次方。

比如:(2 + 3i)^3 = (2^3 + 3^3i) * (5^3)5、复数的模:复数的模定义为复数的实部和虚部的平方和的开方,比如:|2 + 3i| = (2^2 + 3^2) =136、复数的余弦定理:复数的余弦定理表达式为:(a + bi)^2 = (a^2 - b^2) + (2ab)i,这个定理可以用来解决很多问题,比如求复数的平方根之类的。

复数运算法则的应用复数运算法则不仅仅可以用在数学上,同样可以用在物理、电子、信号处理等等领域。

在物理中,复数可以用来描述力学领域的各种系统,例如震动振荡系统,复数运算法则可以用来解决这类系统的特定问题。

在电子学中,复数运算法则可以用来描述各种电路系统,例如滤波器系统,它可以用来解决一些特定的问题,比如电子设计中噪声抑制、信号削弱等,也可以用来求解一些复杂的电路系统。

此外,复数运算法则也可以用于信号处理领域,比如滤波、图像处理、数据压缩等,都可以使用复数运算法则来解决各种问题。

复数加减混合运算的五种运算技巧

复数加减混合运算的五种运算技巧

复数加减混合运算的五种运算技巧
1. 分解法
使用分解法可以将复数加减混合运算简化为两个简单的复数加减法运算。

首先,用分解法将混合运算式分解成两个部分,分别针对实部和虚部进行计算。

然后,将两个部分的计算结果合并得到最终的答案。

2. 共轭复数法
共轭复数法是一种常用的复数加减混合运算技巧。

对于复数a+bi,它的共轭复数为a-bi。

在进行复数加减混合运算时,可以利用共轭复数的性质简化计算。

首先,将复数中的虚部乘以-1,然后进行实部和虚部的加减运算。

3. 代数法
代数法是一种基于代数运算规律的复数加减混合运算技巧。

通过将复数用代数式表示,然后应用代数运算规律进行计算。

这种方法能够简化复杂的复数加减混合运算,提高计算效率。

4. 利用模长和辐角
复数可以用模长和辐角表示,利用这些参数可以简化复数的加减运算。

首先,将复数表示为极坐标形式,然后进行模长和辐角的加减运算。

最后,将得到的结果转换回复数形式。

5. 利用数轴
利用数轴可以直观地展示复数加减运算的过程,帮助理解和计算。

将复数在数轴上表示出来,根据加减法规则进行计算。

这种方法适用于简单的复数加减运算,能够提升计算的准确性和效率。

以上是复数加减混合运算的五种运算技巧,通过灵活运用这些方法,可以简化复杂的运算过程,提高计算的准确性和效率。

希望对您有所帮助!。

复数的加减法及其几何意义

复数的加减法及其几何意义

复数的加减法及其几何意义一、复数的加减法1. 复数的定义- 设z = a+bi,其中a,b∈ R,a称为复数z的实部,记作Re(z)=a;b称为复数z的虚部,记作Im(z) = b。

- 例如,z = 3 + 2i,实部a = 3,虚部b=2。

2. 复数的加法法则- 设z_{1}=a_{1}+b_{1}i,z_{2}=a_{2}+b_{2}i,则z_{1}+z_{2}=(a_{1}+a_{2})+(b_{1}+b_{2})i。

- 例如,若z_{1}=2 + 3i,z_{2}=1 - 2i,则z_{1}+z_{2}=(2 + 1)+(3-2)i=3 + i。

3. 复数的减法法则- 设z_{1}=a_{1}+b_{1}i,z_{2}=a_{2}+b_{2}i,则z_{1}-z_{2}=(a_{1}-a_{2})+(b_{1}-b_{2})i。

- 例如,若z_{1}=4+5i,z_{2}=2 + 3i,则z_{1}-z_{2}=(4 - 2)+(5 -3)i=2+2i。

二、复数加减法的几何意义1. 复数的几何表示- 在复平面内,复数z = a+bi可以用点Z(a,b)来表示,也可以用向量→OZ来表示,其中O为坐标原点。

- 例如,复数z = 3+2i对应的点为(3,2),对应的向量→OZ,起点为O(0,0),终点为Z(3,2)。

2. 复数加法的几何意义- 设z_{1}=a_{1}+b_{1}i,z_{2}=a_{2}+b_{2}i,它们对应的向量分别为→OZ_{1}和→OZ_{2}。

- 那么z_{1}+z_{2}对应的向量为→OZ_{1}+→OZ_{2},即平行四边形法则:以→OZ_{1}和→OZ_{2}为邻边作平行四边形,则对角线→OZ对应的复数就是z_{1}+z_{2}。

- 例如,z_{1}=2 + i,z_{2}=1+2i,→OZ_{1}=(2,1),→OZ_{2}=(1,2),以→OZ_{1}和→OZ_{2}为邻边的平行四边形的对角线向量→OZ=→OZ_{1}+→OZ_{2}=(3,3),对应的复数z_{1}+z_{2}=3 + 3i。

复数公式大全

复数公式大全

复数公式大全复数公式是数学中的重要概念,它涉及到实数和虚数的运算。

在本文中,我们将为大家介绍一些常见的复数公式,帮助大家更好地理解和掌握这一概念。

1. 复数的定义复数是由实数和虚数构成的数,通常表示为a+bi,其中a和b都是实数,i是虚数单位,满足i²=-1。

2. 复数的加减法复数的加减法与实数的加减法类似,只需要将实部和虚部分别相加或相减即可。

例如:(a+bi) + (c+di) = (a+c) + (b+d)i(a+bi) - (c+di) = (a-c) + (b-d)i3. 复数的乘法复数的乘法需要用到虚数单位i的平方等于-1的性质。

例如:(a+bi) × (c+di) = (ac-bd) + (ad+bc)i4. 复数的除法复数的除法需要用到共轭复数的概念,即将复数的虚部取相反数。

例如:(a+bi) ÷ (c+di) = [(ac+bd)÷(c²+d²)] + [(bc-ad)÷(c²+d²)]i5. 欧拉公式欧拉公式是复数运算中的重要公式,它将复数表示为指数形式。

例如:e^(ix) = cos(x) + i sin(x)其中,e是自然对数的底数,i是虚数单位,x是实数。

6. 欧拉公式的推论欧拉公式的推论包括欧拉公式的逆推、欧拉公式的平方和欧拉公式的立方等。

这些推论可以帮助我们更好地理解欧拉公式的应用。

7. 欧拉公式的应用欧拉公式在复数运算中有着广泛的应用,例如在三角函数、傅里叶级数、微积分等领域中都有着重要的作用。

总之,复数公式是数学中的重要概念,掌握它们对于理解和应用复数运算都有着重要的意义。

希望本文能够帮助大家更好地理解和掌握复数公式。

复数的加法与减法

复数的加法与减法

的取值范围是[0,2].
二、复数加减法的几何意义:
1.复数的加法可以按向量的加法法则进行, 即遵循平行四边形法则. 2.两个复数的差z1-z2(即OZ1-OZ2)与连结 两个向量终点并指向被减数的向量对应. 3.两点间的距离公式 (1)设复数z1、z2在复平面内对应的点分别为Z1、Z2, 则Z1、Z2两点间的距离公式为d=|z1-z2|. (2)以复数p的对应点为圆心,r为半径的圆的方程为: |z-p|=r.
故z+3-4i的对应点的轨迹是以3-4i的对应点为圆心, 2为半径的圆.
三、小结:
1.复数加、减法的运算法则是复数集中最基本的运算, 可结合多项式运算记忆法则,运算过程中应善于利用 共轭复数及模的概念与性质,以达到化繁为简的目的. 2.复数的模及其运算的几何意义是复数问题几何化的 保证,必须熟练把握. 3.复数轨迹问题的求法有二: (1)设轨迹上任一点,对应的复数为z=x+yi(x,y∈R),把 问题转化为解析几何中的求轨迹问题. (2)直接建立轨迹上的点Z对应的复数z的方程,据方程 所呈现的几何特征给出轨迹形状.
(3)以复数z1、z2的对应点为端点的线段的垂直平分线 方程为:|z-z1|=|z-z2|.
(4)方程|z-z1|+|z-z2|=2a,当|z1-z2|<2a时表示以z1、z2 的对应点为焦点,2a为长轴长的椭圆; 若|z1-z2|=2a,则以z1、z2的对应点为端点的线段. (5)方程|z-z1|-|z-z2|= 2a,当|z1-z2|>2a时表示以z1、 z2的对应点为焦点,2a为实轴长的双曲线.若|z1-z2| =2a,则表示两条射线. 4.复数模的两个重要性质:
4.根据复数差及模的几何意义可知,两复数差的模即为 其在复平面内对应的两点间距离,所以解析几何中,凡 是用距离定义的曲线,其方程都可用复数的形式来表 示,如圆、椭圆、双曲线、线段及其垂直平分线等.

复数的运算公式

复数的运算公式

复数的运算公式复数的四则运算公式:加减法运算:(a+bi)±(c+di)=(a±c)+(b±d)i乘法运算:(a+bi)(c+di)=(ac-bd)+(bc+ad)i除法运算:(c+di)(x+yi)=(a+bi)了解复数的运算公式之前,应该先明白复数的定义,在定义的基础上理解、运用复数的运算公式。

一、复数的定义复数是形如a+bi的数。

式中a,b为实数,i是一个满足i=-1的数,因为任何实数的平方不等于-1,所以i不是实数,而是实数以外的新的数。

在复数a+bi中,a称为复数的实部,b称为复数的虚部,i称为虚数单位。

当虚部等于零时,这个复数就是实数;当虚部不等于零时,这个复数称为虚数,虚数的实部如果等于零,则称为纯虚数。

由上可知,复数集包含了实数集,因而是实数集的扩张。

复数常用形式z=a+bi叫做代数式。

二、复数的四则运算公式加减法运算设z1=a+bi,z2=c+di是任意两个复数,它的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和:(a+bi)±(c+di)=(a±c)+(b±d)i。

乘法运算设z1=a+bi,z2=c+di是任意两个复数,则:(a+bi)(c+di)=(ac-bd)+(bc+ad)i。

其实就是把两个复数相乘,类似两个多项式相乘,结果中i=-1,把实部与虚部分别合并。

两个复数的积仍然是一个复数。

除法运算复数除法定义:满足(c+di)(x+yi)=(a+bi)的复数x+yi(x,y∈R)叫复数a+bi除以复数c+di的商。

运算方法:可以把除法换算成乘法做,将分子分母同时乘上分母的共轭复数,再用乘法运算。

例:求(a+bi)/(c+di)我们设结果为x+yi只需解方程(a+bi)=(c+di)(x+yi)即可也就是方程组cx-dy=a cy+dx=b解得x=(ac+ba)/(c+d) y=(bc-ad)/(c+d)三、小结总的来说,复数的基本运算很简单,把它当做是关于i的多项式进行计算即可。

复数运算公式知识点总结

复数运算公式知识点总结

复数运算公式知识点总结1. 复数的加减法复数的加减法和实数的加减法类似,只需将实部和虚部分别相加或相减即可。

例如,对于两个复数z1=a1+b1i和z2=a2+b2i,它们的和与差分别为:z1+z2 = (a1+a2) + (b1+b2)iz1-z2 = (a1-a2) + (b1-b2)i2. 复数的乘法复数的乘法可以使用分配律进行计算,即将复数的实部和虚部分别进行乘法运算,然后再相加。

例如,对于两个复数z1=a1+b1i和z2=a2+b2i,它们的乘积为:z1*z2 = (a1*a2 - b1*b2) + (a1*b2 + a2*b1)i3. 复数的除法复数的除法可以通过乘以复数的共轭来实现。

给定两个复数z1=a1+b1i和z2=a2+b2i,其中z2≠0,它们的商为:z1/z2 = (a1*b2 + b1*a2)/(a2²+b2²) + (b1*a2 - a1*b2)/(a2²+b2²)i4. 复数的模复数的模表示复数与原点之间的距离,通常用|z|表示。

对于复数z=a+bi,它的模为:|z| = √(a²+b²)5. 复数的幂运算复数的幂运算可以通过将复数化为指数形式实现。

给定一个复数z=a+bi和一个自然数n,它们的幂为:zⁿ = |z|ⁿ*(cos(n*θ) + i*sin(n*θ))其中,|z|表示复数z的模,θ表示复数z的幅角。

6. 复数的共轭复数的共轭表示将复数的虚部取相反数得到的新复数。

对于复数z=a+bi,它的共轭为:z* = a-bi7. 复数的实部和虚部给定一个复数z=a+bi,它的实部和虚部分别为a和b。

实部用Re(z)表示,虚部用Im(z)表示。

综上所述,复数运算规则包括加减法、乘除法、模和幂运算等内容。

学生在学习复数运算时需要掌握这些规则,并通过练习加深理解,以提高对复数运算的熟练度。

同时,掌握复数的性质和运算规则可以帮助学生更好地理解数学问题和解决实际应用中的计算问题。

复数的运算

复数的运算

复数的运算
我们可以借助实数的四则运算法则来定义复数的四则运算。

复数的加减法为(a+bi)+(c+di)=(a+c)+(b+d)i
注意到i2=-1,定义复数的乘法为
(a+bi)(c+di)=ac+adi+bci+bdi2
=(ac-bd+(ad+bc)i
可以看到,两个复数的乘积为0当且仅当其中一个复数为0,这与实数的情况是一样的。

特别称a-bi为a+bi的共扼,两个共扼复数的乘积为实数,即
(a+bi)(a-bi)=a2+b2
当c和d不同时为零时,令分子分母同乘分母的共钜,定义复数的除法为
(a+bi)/(c+di)=(ac+bd)/(c2+d2)+[(bc-ad)/(c2+d3)]i
有了上面的定义,我们就可以求任意二次方程的解了,比如
x2-2x+20,由韦达公式可以得到两个解为x1=1+i和x2=1-i。

高斯非常认真地研究了复数,他在1801年发表地《算术研究》中考虑了复整数地问题,即复数a+bi中a和b均为整数的问题;他考虑了复素数的问题,所谓的复素数是指:不能分解为除+1和+i以外复整数乘积的形式的复数。

这样,在实数集合R中的素数在复数集合C中就不一定是复素数了,比如5在实数集合是一个素数,但在复数集合中却可以表示为两个共扼数乘积的形式,即
5=(1+2i)(1-2i),因此,5在C中就不是素数。

特别是,高斯证明
了我们在《数的性质》一讲中提到的“任何一个整数都可以唯表示为若千个素数的乘积的形式”这个事实对于复整数也成立,于是,就开辟了今天被称为代数数论的新的研究邻域.。

复数的四则运算

复数的四则运算

练习、计算
• 1.
(1).(3 4i)( 2 3i) (2).(7 6i)( 3i) (3).(1 2i)(3 4 i)( 2 i) (4).( 3 2i)( 3 2 i) (5).(1 i)
2
• 2
1 i (1). 1 i 1 (2). i 7i (3). 3 4i ( 1 i )(2 i ) (4). i
复数除法的法则是: ac bd bc ad a bi c di 2 2 2 2 i c di 0. c d c d
由此可见 , 两个复数相除 除数不为 0 , 所得的商 是一个确定的复数 .
在进行复数除法运算时通常先把 a bi c di , a bi 写成 的形式, 再把分子与分母都乘于 分母的 c di 共轭复数 c di , 化简后就可得到上面的 结果.这与 作根式除法时的处理是 很类似的在作根式除法时 . , 分子分母都乘以分母的有理化因式 , 从而使分母 " " " 有理化 " .这里分子分母都乘以分 母的 " 实数化因 式" (共轭复数), 从而使分母"实数化".
例2 计算1 2i3 4i 2 i.

例3
1 2i3 4i 2 i 11 2i 2 i 20 15i. 2 计算 : 13 4i3 4i; 21 i .
分析 本例可以用复数乘法法 则计算 也可以用乘法 , 公式计算.
例4 计算 1 2i 3 4i.
解 1 2i 1 2i 3 4i 3 4i 3 8 6i 4i 2 2 3 4
1 2i3 4i 3 4i3 4i

复数的四则运算

复数的四则运算

5.有关正整数指数幂的运算结论: (1)i1 =i (2)i4k = 1 i2 = −1 i4k+1 = i i3 = −i i4k+2 = −1 i4 = 1 i4k+3 = −i (k ∈ N) 1+i = i 1−i 1−i = −i 1+i
(3)(1 + i)2 = 2i
6. 复数的除法:
2.复数的乘法: 设z 1 = a + bi,z2 = c + di (a,b,c,d ∈ R) z1 * z2 = (a + bi)(c + di) = ac + adi + bci + bdi2 = (ac − bd) + (ad + bc) i 两个复数的积仍然是一个复数; 复数的乘法与多项式的乘法是类似的(即两个二项式相乘) 其中i2 = −1,要把i2换成-1。
(1 − i)2 = −2i
令z1 = a + bi, z2 = c + di.(a,b,c,d ∈ R) z1 a + bi (a + bi)(c − di) (ac + bd) + (bc − ad) i = = = z2 c + di (c + di)(c − di) c2 + d 2 ac + bd bc − ad = 2 + 2 i (其中c,d不全为0) 2 2 c +d c +d 分式中的分子、分母都乘上分母的共轭复数,使分母实数化, 分子上就成了两复数的相乘。
7. 模与共轭复数的相关性质: (1)zz = z
2
= z
2
≠ z2;
(2) z = z ; (3) z1z2 = z1 z2 ; z1 n z1 n = (z2 ≠ 0); z = z ; z2 z2

复数的加减法

复数的加减法

∴满足|Z+ 2- 2i |≤1 所对应的点Z,
组成以C(- 2, 2)点为圆心,以r为半
x
径的圆的内部(如图), |Z|就是圆
C及其内部各点到圆点的距离,使|Z|取得最大值与最小值
的点就是OC与圆C的两个交点。
直线OC的方程是y=-x,圆C的方程是
(x+ 2)²+(y+ 2)² =1 18
二、复数加法与减法运算的几何意义
同理可证: Z1-=Z2 -Z1 Z2 .
7
二、复数加法与减法运算的几何意义
1、复数加法的运算的几何意义
设:oz, 1
o分#43;di
,
8
二、复数加法与减法运算的几何意义
(1) o,z 不oz共线
1
2
y
Z
Z2
Z1
S
0
QP
R
x
ZZ1S~= Z2OQ , 且 Z1 PRS 是矩形,因此
3
一、复数加法与减法的运算法则
2、复数减法的运算法则 复数减法规定是加法的逆运算 (a+bi )-(c+di) = x+yi ,
(c+di )+(x+yi) = a+bi ,
由复数相等定义,有 c+x=a , d+y=b
由此,x=a-c , y=b-d ∴ (a+bi )-(c+di) = (a-c) + (b-d)i
14
二、复数加法与减法运算的几何意义
y
B
0
A
C
x
(3)
如图(3),在 OBAC中, =OC =BA -OA OB
∴ C对O 应的复数是

数学公式知识:复数的加减乘除及其运算性质

数学公式知识:复数的加减乘除及其运算性质

数学公式知识:复数的加减乘除及其运算性质复数是数学中的一种扩展,它是有一个实数部分和一个虚数部分组成的数,形式上表示为a+bi,其中a和b分别为实数部分和虚数部分。

复数的加减乘除及其运算性质是数学中的一些基本概念,在代数学和几何学等许多领域中都有广泛的应用。

下面我们就来详细介绍一下复数的加减乘除及其运算性质。

一、复数的加减运算复数的加减运算是最基本的运算,其规则和普通数的加减法类似。

具体来说,对于两个复数z1和z2,其加法表示为:z1+z2=(a1+a2)+(b1+b2)i其中,a1和b1分别是z1的实部和虚部,a2和b2分别是z2的实部和虚部。

复数的减法也可以用类似的方法表示:z1-z2=(a1-a2)+(b1-b2)i二、复数的乘法运算和加减运算相比,复数的乘法运算更加复杂,但也更加有趣。

对于两个复数z1=a1+b1i和z2=a2+b2i,它们的积可表示为:z1z2=(a1a2-b1b2)+(a1b2+a2b1)i其中,a1a2和b1b2分别是两个复数的实部的乘积,而a1b2和a2b1则是两个复数的虚部的乘积。

可以看出,两个复数相乘,其实就是多项式的乘积。

三、复数的除法运算复数的除法运算也有其特殊的规则,其计算方法为:(z1/z2)=((a1a2+b1b2)/(a2^2+b2^2))+((a2b1-a1b2)/(a2^2+b2^2))i其中,分母的a2^2+b2^2表示了两个复数模的平方之和,而分子中的a1a2+b1b2则是两个复数的实部的乘积加上虚部的乘积。

四、复数的运算性质在实际应用中,复数的运算性质也是相当重要的,下面就简要介绍一下。

1.复数的加法和乘法都是可交换的,即z1+z2=z2+z1和z1z2=z2z1;2.复数的乘法满足结合律,即(z1z2)z3=z1(z2z3);3.复数的乘法对加法有分配律,即z1(z2+z3)=z1z2+z1z3;4.对于所有复数z,存在一个唯一的复数0,使得z+0=0+z=z;5.对于所有复数z,存在一个唯一的复数1,使得z1×1=1×z1=z1;6.对于所有复数z,存在一个唯一的逆元-z,使得z+(-z)=(-z)+z=0;7.对于所有非零复数z,其逆元也有唯一一个,即1/z,使得z×(1/z)=1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课堂练习:
已知复数z满足|z-2|=1,求复数z的模的
取值范围。
课堂练习:
已知复数z满足|z-2|=1,求复数z的模的 取值范围。
文件名
y
Z1(a,b)
Z
o
Z2(c,d)
x
应用举例
例1.计算 (1)(1 3i) (4 2i) Y 5 4 3 2 1
-5 -4 -3 -2 -1 0 1 2 3 4 5 -1
X
-2
-3
-4
-5
ቤተ መጻሕፍቲ ባይዱ
(2) (2 i) (3 4i)
Y 5 4 3 2 1
-5 -4 -3 -2 -1 0 1 2 3 4 5 -1
例3、已知复数z满足|z|=1,求复数z-2 的模的取值范围。
文件名
课堂小结
• (1)复数加减法的运算仍适用交换律和结 合律
• (2)复数加减法运算的几何意义:平行四 边形法则
• (3)巧妙运用数形结合的思想
作业布置
• 必做题: 课本P82 第2,3,5题 练习册P52 第2,3,6 • 选做题: 练习册P53 第7,8题
文件名
3、已知复数z1=1+2i, z2=2+1i.若复数z满足
等式|z-z1|=|z-z2|,则z所对应的点的集合是什么
图形?
3、已知复数z1=1+2i, z2=2+1i.若复数z满足
等式|z-z1|=|z-z2|,则z所对应的点的集合是什么
图形?
文件名
例3、已知复数z满足|z|=1,求复数z-2 的模的取值范围。
1.复数加法的运算 法则:
已知两复数z1=a+bi, z2=c+di (a,b,c,d是实数)
z1+z2=(a+c)+(b+d)i;
任何 z ,z ,z ∈C,有 123
交换律 z +z =z +z 1221
结合律(z +z )+z =z +(z +z ) 12 31 23
思考: 若z1 a bi, z2 c di。 求证:z1-z2=(a c) (b d)i
点Z到点(1,0)的距离 点Z到点(0, -2)的距离
口答:由复数加减法的几何意义说明满足下
列条件的平行四边形是什么图形
1、|z1|= |z2| 平行四边形OABC是 菱形
C
z2 z2-z1
2、| z1+ z2|= | z1- z2|
平行四边形OABC是 矩形 o
z1 A
z1+z2
B
3、 |z1|= |z2|,| z1+ z2|= | z1- z2| 平行四边形OABC是 正方形
课堂练习:
1、设z1,z2∈C, |z1|= |z2|=1 |z2+z1|= 2, 求|z2-z1|
Z2
o
Z1
2、已知复数z1=2-3i,若复数z满足等式 |z-z1|=4,则z所对应的点的集合是什么图形?
2、已知复数z1=2-3i,若复数z满足等式 |z-z1|=4,则z所对应的点的集合是什么图形?
13.3复数加减运算及其几何意义
知识回顾
1、复数z的模 | z | a2 b2
y z=a+bi
Z (a,b)
O
x
2、| z | r 复数z对应的点Z的轨迹是以原点 为圆心,以r为半径的圆。
讲解新课
实数运算法则: 交换律 abba ab ba 结合律 (a b) c a (b c) (ab)c a(bc) 分配律 a(b c) ab ac
X
-2
-3
-4
-5
思考
|z1-z2|表示什么? 表示复平面上两点Z1 ,Z2的距离
Z1(a,b)
Z
o
Z2(c,d)
x
应用举例
例2、已知复数z对应点Z,说明下列各式所表示的 几何意义.
(1)|z-(1+2i)| 点Z到点(1,2)的距离
(2)|z+(1+2i)| 点Z到点(-1, -2)的距离
(3)|z-1| (4)|z+2i|
(1)减法法则:z1-z2=(a-c)+(b-d)i.
(2)复数减法为加法的逆运算
讲解新课
2.复数加法运算的几何意义?
z1+ z2对应的向量为OZ1+OZ2
符合向量加法 的平行四边形
法则.
y
Z1(a,b)
Z(a+c,b+d)
Z2(c,d)
o
x
3.复数减法运算的几何意义?
复数z1-z2对应的向量为 OZ1—OZ2
相关文档
最新文档