综合运用多种方法解决较复杂行程问题的技巧
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
综合运用多种方法解决较复杂行程问题的技巧
教学目标:
1、 能够利用以前学习的知识理清变速变道问题的关键点;
2、 能够利用线段图、算术、方程方法解决变速变道等综合行程题;
3、 变速变道问题的关键是如何处理“变”;
4、 掌握寻找等量关系的方法来构建方程,利用方程解行程题.
知识精讲:
比例的知识是小学数学最后一个重要内容,从某种意义上讲仿佛扮演着一个小学“压轴知识点”的角色。
从一个工具性的知识点而言,比例在解很多应用题时有着“得天独厚”的优势,往往体现在方法的灵活性和思维的巧妙性上,使得一道看似很难的题目变得简单明了。比例的技巧不仅可用于解行程问题,对于工程问题、分数百分数应用题也有广泛的应用。
我们常常会应用比例的工具分析2个物体在某一段相同路线上的运动情况,我们将甲、
乙的速度、时间、路程分别用,,v v t t s s 乙乙乙甲甲甲,
;;来表示,大体可分为以下两种情况: 1. 当2个物体运行速度在所讨论的路线上保持不变时,经过同一段时间后,他们走过
的路程之比就等于他们的速度之比。
s v t s v t =⨯⎧⎨=⨯⎩甲甲甲乙乙乙
,这里因为时间相同,即t t t ==乙甲,所以由s s t t v v ==甲乙乙甲乙甲, 得到s s t v v ==甲乙乙甲,s v s v =甲甲乙乙
,甲乙在同一段时间t 内的路程之比等于速度比 2. 当2个物体运行速度在所讨论的路线上保持不变时,走过相同的路程时,2个物体
所用的时间之比等于他们速度的反比。
s v t s v t =⨯⎧⎨=⨯⎩甲甲甲乙乙乙
,这里因为路程相同,即s s s ==乙甲,由s v t s v t =⨯=⨯乙乙乙甲甲甲, 得s v t v t =⨯=⨯乙乙甲甲,v t v t =甲乙乙甲
,甲乙在同一段路程s 上的时间之比等于速度比的反比。
行程问题常用的解题方法有
⑴公式法
即根据常用的行程问题的公式进行求解,这种方法看似简单,其实也有很多技巧,使用公式不仅包括公式的原形,也包括公式的各种变形形式;有时条件不是直接给出的,这就需要对公式非常熟悉,可以推知需要的条件;
⑵图示法
在一些复杂的行程问题中,为了明确过程,常用示意图作为辅助工具.示意图包括线段图和折线图.图示法即画出行程的大概过程,重点在折返、相遇、追及的地点.另外在多次
相遇、追及问题中,画图分析往往也是最有效的解题方法;
⑶比例法
行程问题中有很多比例关系,在只知道和差、比例时,用比例法可求得具体数值.更重要的是,在一些较复杂的题目中,有些条件(如路程、速度、时间等)往往是不确定的,在没有具体数值的情况下,只能用比例解题;
⑷分段法
在非匀速即分段变速的行程问题中,公式不能直接适用.这时通常把不匀速的运动分为匀速的几段,在每一段中用匀速问题的方法去分析,然后再把结果结合起来;
⑸方程法
在关系复杂、条件分散的题目中,直接用公式或比例都很难求解时,设条件关系最多的未知量为未知数,抓住重要的等量关系列方程常常可以顺利求解.
例题精讲:
模块一、时间相同速度比等于路程比
【例 1】 甲、乙二人分别从 A 、 B 两地同时出发,相向而行,甲、乙的速度之比是 4 : 3,
二人相遇后继续行进,甲到达 B 地和乙到达 A 地后都立即沿原路返回,已知二
人第二次相遇的地点距第一次相遇的地点 30千米,则 A 、 B 两地相距多少千
米?
【解析】 两个人同时出发相向而行,相遇时时间相等,路程比等于速度之比,即两个人相遇
时所走过的路程比为 4 : 3.第一次相遇时甲走了全程的4/7;第二次相遇时甲、乙
两个人共走了 3个全程,三个全程中甲走了
453177
⨯=个全程,与第一次相遇地点的距离为542(1)777--=个全程.所以 A 、 B 两地相距2301057÷= (千米).
【例 2】 B 地在A ,C 两地之间.甲从B 地到A 地去送信,甲出发10分后,乙从B 地出
发到C 地去送另一封信,乙出发后10分,丙发现甲、乙刚好把两封信拿颠倒了,
于是他从B 地出发骑车去追赶甲和乙,以便把信调过来.已知甲、乙的速度相等,
丙的速度是甲、乙速度的3倍,丙从出发到把信调过来后返回B 地至少要用多少
时间。
【解析】 根据题意当丙发现甲、乙刚好把两封信拿颠倒了此时甲、乙位置如下:
因为丙的速度是甲、乙的3倍,分步讨论如下:
(1) 若丙先去追及乙,因时间相同丙的速度是乙的3倍,比乙多走两倍乙走需
要10分钟,所以丙用时间为:10÷(3-1)=5(分钟)此时拿上乙拿错的
信
10分钟
当丙再回到B 点用5分钟,此时甲已经距B 地有10+10+5+5=30(分钟),同理丙追及时间为30÷(3-1)=15(分钟),此时给甲应该送的信,换回乙应该送的信
在给乙送信,此时乙已经距B 地:10+5+5+15+15=50(分钟),
此时追及乙需要:50÷(3-1)=25(分钟),返回B 地需要25分钟
所以共需要时间为5+5+15+15+25+25=90(分钟)
(2) 同理先追及甲需要时间为120分钟
【例 3】 (“圆明杯”数学邀请赛) 甲、乙两人同时从A 、B 两点出发,甲每分钟行80米,
乙每分钟行60米,出发一段时间后,两人在距中点的C 处相遇;如果甲出发后在途中某地停留了7分钟,两人将在距中点的D 处相遇,且中点距C 、D 距离相等,问A 、B 两点相距多少米?
【分析】 甲、乙两人速度比为80:604:3=,相遇的时候时间相等,路程比等于速度之比,相遇时甲走了全程的47,乙走了全程的37
.第二次甲停留,乙没有停留,且前后两次相遇地点距离中点相等,所以第二次乙行了全程的47,甲行了全程的37
.由于甲、乙速度比为4:3,根据时间一定,路程比等于速度之比,所以甲行走期间乙走了3374⨯,所以甲停留期间乙行了43317744
-⨯=,所以A 、B 两点的距离为1607=16804
⨯÷(米).
【例 4】 甲、乙两车分别从 A 、 B 两地同时出发,相向而行.出发时,甲、乙的速度之
比是 5 : 4,相遇后甲的速度减少 20%,乙的速度增加 20%.这样当甲到达 B 地时,乙离 A 地还有 10 千米.那么 A 、B 两地相距多少千米?
【解析】 两车相遇时甲走了全程的59,乙走了全程的49
,之后甲的速度减少 20%,乙的速度增加 20%,此时甲、乙的速度比为5(120%):4(120%)5:6⨯-⨯+= ,所以甲到达 B 地时,乙又走了
4689515⨯=,距离 A 地58191545-=,所以 A 、 B 两地的距离为11045045
÷= (千米).
【例 5】 早晨,小张骑车从甲地出发去乙地.下午 1 点,小王开车也从甲地出发,前往乙
地.下午 2 点时两人之间的距离是 15 千米.下午 3 点时,两人之间的距离还是 l5 千米.下午 4 点时小王到达乙地,晚上 7 点小张到达乙地.小张是早晨几点出发? 5分钟5分钟10分钟