导数知识点总结及应用

合集下载

(完整版)导数知识点总结及应用

(完整版)导数知识点总结及应用

《导数及其应用》知识点总结一、导数的概念和几何意义1. 函数的平均变化率:函数()f x 在区间12[,]x x 上的平均变化率为:2121()()f x f x x x --。

2. 导数的定义:设函数()y f x =在区间(,)a b 上有定义,0(,)x a b ∈,若x ∆无限趋近于0时,比值00()()f x x f x y x x+∆-∆=∆∆无限趋近于一个常数A ,则称函数()f x 在0x x =处可导,并称该常数A 为函数()f x 在0x x =处的导数,记作0()f x '。

函数()f x 在0x x =处的导数的实质是在该点的瞬时变化率。

3. 求函数导数的基本步骤:(1)求函数的增量00()()y f x x f x ∆=+∆-;(2)求平均变化率:00()()f x x f x x +∆-∆;(3)取极限,当x ∆无限趋近与0时,00()()f x x f x x+∆-∆无限趋近与一个常数A ,则0()f x A '=.4. 导数的几何意义:函数()f x 在0x x =处的导数就是曲线()y f x =在点00(,())x f x 处的切线的斜率。

由此,可以利用导数求曲线的切线方程,具体求法分两步:(1)求出()y f x =在x 0处的导数,即为曲线()y f x =在点00(,())x f x 处的切线的斜率; (2)在已知切点坐标和切线斜率的条件下,求得切线方程为000()()y y f x x x '-=-。

当点00(,)P x y 不在()y f x =上时,求经过点P 的()y f x =的切线方程,可设切点坐标,由切点坐标得到切线方程,再将P 点的坐标代入确定切点。

特别地,如果曲线()y f x =在点00(,())x f x 处的切线平行与y 轴,这时导数不存在,根据切线定义,可得切线方程为0x x =。

5. 导数的物理意义:质点做直线运动的位移S 是时间t 的函数()S t ,则()V S t '=表示瞬时速度,()a v t '=表示瞬时加速度。

导数知识点总结及应用

导数知识点总结及应用

导数知识点总结及应用导数是微积分中的基本概念,是描述函数变化率的工具。

它具有广泛的应用,不仅在数学中起着重要作用,也在其他学科中有着广泛的应用,如物理学、经济学、工程学等。

本文将总结导数的基本知识点以及其应用。

一、导数的定义和性质导数可以通过极限的计算来定义,假设函数f(x)在点x_0处有定义。

那么f(x)在x_0处的导数可以定义为:f'(x_0)=lim(x→x_0) (f(x)-f(x_0))/(x-x_0)导数的计算方法有很多,其中最基本的有以下几种:1.使用导数定义的极限计算法;2.利用导数的基本性质:线性性、乘法法则、链式法则等。

导数具有以下基本性质:1.若函数f(x)在点x_0处可导,则f(x)在该点连续;2.若函数f(x)在点x_0处可导,则f(x)在该点的函数值变化率为f'(x_0)。

二、导数的应用1.函数的极值与图像的凹凸性导数的一个重要应用是用于确定函数的最大值和最小值。

根据函数的图像和导数的符号,可以判断函数的增减性以及极值点。

具体来说,函数在极值点的导数为零,并且在极值点的导数变号。

另外,导数的符号还可以用来确定函数图像的凹凸性。

如果函数的导数在其中一区间上恒大于零,则函数在这一区间上是严格递增的,图像是凸的。

如果函数的导数在其中一区间上恒小于零,则函数在这一区间上是严格递减的,图像是凹的。

2.切线与法线函数的导数可以用来确定函数图像上任意一点处的切线和法线。

在其中一点x_0处,函数图像上的切线的斜率等于函数在该点处的导数值,即切线的斜率为f'(x_0)。

切线的方程可以通过点斜式来确定。

3.函数的近似计算函数的导数可以用来近似计算函数在其中一点处的函数值。

根据导数的定义,函数在该点的导数等于函数在该点的函数值变化率。

所以,如果已知其中一点的导数,可以通过导数乘以函数值变化的增量来估计函数值的增量。

4.曲线的弯曲程度导数还可以用来衡量曲线的弯曲程度。

导数及其应用知识点总结

导数及其应用知识点总结

导数及其应用知识点总结导数及其应用是微积分中的重要概念,它可以用来描述一个函数在其中一点的变化率,进而用于求解曲线的切线、求解最值、优化问题等。

在学习导数及其应用的过程中,我们需要掌握导数的定义、导数的计算法则、导数与函数性质的关系以及导数在几何和物理问题中的应用等知识点。

一、导数的定义1.函数在其中一点的导数:函数f(x)在点x=a处的导数定义为:f'(a) = lim(h→0) (f(a+h)-f(a))/h2.函数的导函数:函数f(x)在定义域上每一点的导数所构成的新函数,被称为函数f(x)的导函数,记作f'(x)。

二、导数的计算法则1.常数法则:对于常数k,有:(k)'=0。

2.幂函数法则:对于幂函数y=x^n,其中n为常数,则有:(x^n)'=n*x^(n-1)。

3.基本初等函数法则:对于基本初等函数(如幂函数、指数函数、对数函数、三角函数和反三角函数),可以通过求导法则求得其导函数。

4.乘积法则:对于函数u(x)和v(x),有:(u*v)'=u'*v+u*v'。

5.商数法则:对于函数u(x)和v(x),有:(u/v)'=(u'*v-u*v')/v^26.复合函数法则:对于复合函数y=f(g(x)),有:y'=f'(g(x))*g'(x)。

三、导数与函数性质的关系1.导函数与函数的单调性:若函数f(x)在区间I上可导,则f'(x)在I上的符号与f(x)在I上的单调性一致。

2.导函数与函数的极值:若函数f(x)的导函数在点x=a处存在,且导数的符号在x=a左侧从正数变为负数,那么函数在点x=a处取得极大值;若导数的符号在x=a左侧从负数变为正数,那么函数在点x=a处取得极小值。

3.导函数与函数的凹凸性:函数f(x)的导函数f''(x)的符号与函数f(x)的凹凸性一致。

导数知识点归纳及应用

导数知识点归纳及应用

导数知识点归纳及应用导数是微积分的基础知识之一,它描述了一个函数在其中一点的变化率。

导数的概念非常重要,广泛应用于科学和工程领域中的各种问题的建模和解决。

一、导数的定义及基本性质1.导数的定义:对于一个函数f(x),它的导数可以通过以下极限定义求得:f'(x) = lim ( h -> 0 ) [ f(x+h) - f(x) ] / h导数表示了函数f(x)在x点处的变化率。

如果导数存在,则称f(x)在该点可导。

2.导数的图像表示:导数可以表示为函数f(x)的图像上的斜率线,也就是切线的斜率。

3.导数的几何意义:a.函数图像在特定点的切线的斜率等于该点的导数。

b.导数为正,表示函数在该点上升;导数为负,表示函数在该点下降;导数为零,表示函数在该点取得极值。

4.基本导数公式:a.常数函数的导数为0。

b.幂函数f(x)=x^n的导数为f'(x)=n*x^(n-1)。

c. 指数函数 f(x) = a^x 的导数为 f'(x) = ln(a) * a^x。

d. 对数函数 f(x) = log_a(x) 的导数为 f'(x) = 1 / (x * ln(a))。

二、导数的计算方法1.导数的基本定义法:根据导数的定义,通过计算极限来求得导数。

2.导数的运算法则:a.和差法则:(f(x)±g(x))'=f'(x)±g'(x)。

b.乘法法则:(f(x)*g(x))'=f'(x)*g(x)+f(x)*g'(x)。

c.商法则:(f(x)/g(x))'=(f'(x)*g(x)-f(x)*g'(x))/(g(x))^2d.复合函数法则:(f(g(x)))'=f'(g(x))*g'(x)。

3.链式法则:对于复合函数f(g(x)),可以利用链式法则求导数:(f(g(x)))'=f'(g(x))*g'(x)。

导数在函数中的应用知识点讲解+例题讲解(含解析)

导数在函数中的应用知识点讲解+例题讲解(含解析)

导数在函数中的应用一、知识梳理1.函数的单调性与导数的关系函数y=f(x)在某个区间内可导,则:(1)若f′(x)>0,则f(x)在这个区间内单调递增;(2)若f′(x)<0,则f(x)在这个区间内单调递减;(3)若f′(x)=0,则f(x)在这个区间内是常数函数.2.函数的极值与导数形如山峰形如山谷3.函数的最值与导数(1)函数f(x)在[a,b]上有最值的条件如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.(2)求y=f(x)在[a,b]上的最大(小)值的步骤①求函数y=f(x)在(a,b)内的极值;②将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值二、例题精讲 + 随堂练习1.判断下列结论正误(在括号内打“√”或“×”)(1)若函数f (x )在(a ,b )内单调递增,那么一定有f ′(x )>0.( )(2)如果函数f (x )在某个区间内恒有f ′(x )=0,则f (x )在此区间内没有单调性.( ) (3)函数的极大值一定大于其极小值.( )(4)对可导函数f (x ),f ′(x 0)=0是x 0为极值点的充要条件.( )(5)函数的最大值不一定是极大值,函数的最小值也不一定是极小值.( ) 解析 (1)f (x )在(a ,b )内单调递增,则有f ′(x )≥0. (3)函数的极大值也可能小于极小值.(4)x 0为f (x )的极值点的充要条件是f ′(x 0)=0,且x 0两侧导函数异号. 答案 (1)× (2)√ (3)× (4)× (5)√2.如图是f (x )的导函数f ′(x )的图象,则f (x )的极小值点的个数为( )A.1B.2C.3D.4解析 由题意知在x =-1处f ′(-1)=0,且其两侧导数符号为左负右正. 答案 A3.函数f (x )=2x -x ln x 的极值是( ) A.1eB.2eC.eD.e 2解析 因为f ′(x )=2-(ln x +1)=1-ln x ,令f ′(x )=0,所以x =e ,当f ′(x )>0时,解得0<x <e ;当f ′(x )<0时,解得x >e ,所以x =e 时,f (x )取到极大值,f (x )极大值=f (e)=e. 答案 C4.(2019·青岛月考)函数f (x )=cos x -x 在(0,π)上的单调性是( ) A.先增后减 B.先减后增 C.单调递增D.单调递减解析易知f′(x)=-sin x-1,x∈(0,π),则f′(x)<0,所以f(x)=cos x-x在(0,π)上递减.答案D5.(2017·浙江卷)函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是()解析设导函数y=f′(x)与x轴交点的横坐标从左往右依次为x1,x2,x3,由导函数y=f′(x)的图象易得当x∈(-∞,x1)∪(x2,x3)时,f′(x)<0;当x∈(x1,x2)∪(x3,+∞)时,f′(x)>0(其中x1<0<x2<x3),所以函数f(x)在(-∞,x1),(x2,x3)上单调递减,在(x1,x2),(x3,+∞)上单调递增,观察各选项,只有D选项符合.答案D6.(2019·豫南九校考评)若函数f(x)=x(x-c)2在x=2处有极小值,则常数c的值为()A.4B.2或6C.2D.6解析函数f(x)=x(x-c)2的导数为f′(x)=3x2-4cx+c2,由题意知,在x=2处的导数值为12-8c+c2=0,解得c=2或6,又函数f(x)=x(x-c)2在x=2处有极小值,故导数在x=2处左侧为负,右侧为正,而当e=6时,f(x)=x(x-6)2在x=2处有极大值,故c=2.答案C考点一 求函数的单调区间【例1】 已知函数f (x )=ax 3+x 2(a ∈R )在x =-43处取得极值. (1)确定a 的值;(2)若g (x )=f (x )e x ,求函数g (x )的单调减区间. 解 (1)对f (x )求导得f ′(x )=3ax 2+2x ,因为f (x )在x =-43处取得极值,所以f ′⎝ ⎛⎭⎪⎫-43=0,即3a ·⎝ ⎛⎭⎪⎫-432+2·⎝ ⎛⎭⎪⎫-43=16a 3-83=0,解得a =12.(2)由(1)得g (x )=⎝ ⎛⎭⎪⎫12x 3+x 2e x ,故g ′(x )=12x (x +1)(x +4)e x . 令g ′(x )<0,即x (x +1)(x +4)<0, 解得-1<x <0或x <-4,所以g (x )的单调减区间为(-1,0),(-∞,-4). 规律方法 1.求函数单调区间的步骤:(1)确定函数f (x )的定义域;(2)求f ′(x );(3)在定义域内解不等式f ′(x )>0,得单调递增区间;(4)在定义域内解不等式f ′(x )<0,得单调递减区间. 2.若所求函数的单调区间不止一个时,用“,”与“和”连接.【训练1】 (1)已知函数f (x )=x ln x ,则f (x )( ) A.在(0,+∞)上递增 B.在(0,+∞)上递减 C.在⎝ ⎛⎭⎪⎫0,1e 上递增 D.在⎝ ⎛⎭⎪⎫0,1e 上递减 (2)已知定义在区间(-π,π)上的函数f (x )=x sin x +cos x ,则f (x )的单调递增区间为________.解析 (1)因为函数f (x )=x ln x ,定义域为(0,+∞),所以f ′(x )=ln x +1(x >0),当f ′(x )>0时,解得x >1e ,即函数的单调递增区间为⎝ ⎛⎭⎪⎫1e ,+∞;当f ′(x )<0时,解得0<x <1e ,即函数的单调递减区间为⎝ ⎛⎭⎪⎫0,1e .(2)f ′(x )=sin x +x cos x -sin x =x cos x .令f ′(x )=x cos x >0,则其在区间(-π,π)上的解集为⎝ ⎛⎭⎪⎫-π,-π2和⎝ ⎛⎭⎪⎫0,π2,即f (x )的单调递增区间为⎝ ⎛⎭⎪⎫-π,-π2,⎝ ⎛⎭⎪⎫0,π2.答案 (1)D (2)⎝ ⎛⎭⎪⎫-π,-π2,⎝ ⎛⎭⎪⎫0,π2考点二 讨论函数的单调性【例2】 (2017·全国Ⅰ卷改编)已知函数f (x )=e x (e x -a )-a 2x ,其中参数a ≤0. (1)讨论f (x )的单调性; (2)若f (x )≥0,求a 的取值范围.解 (1)函数f (x )的定义域为(-∞,+∞),且a ≤0. f ′(x )=2e 2x -a e x -a 2=(2e x +a )(e x -a ).①若a =0,则f (x )=e 2x ,在(-∞,+∞)上单调递增. ②若a <0,则由f ′(x )=0,得x =ln ⎝ ⎛⎭⎪⎫-a 2.当x ∈⎝ ⎛⎭⎪⎫-∞,ln ⎝ ⎛⎭⎪⎫-a 2时,f ′(x )<0;当x ∈⎝ ⎛⎭⎪⎫ln ⎝ ⎛⎭⎪⎫-a 2,+∞时,f ′(x )>0.故f (x )在⎝ ⎛⎭⎪⎫-∞,ln ⎝ ⎛⎭⎪⎫-a 2上单调递减,在区间⎝ ⎛⎭⎪⎫ln ⎝ ⎛⎭⎪⎫-a 2,+∞上单调递增.(2)①当a =0时,f (x )=e 2x ≥0恒成立.②若a <0,则由(1)得,当x =ln ⎝ ⎛⎭⎪⎫-a 2时,f (x )取得最小值,最小值为f ⎝ ⎛⎭⎪⎫ln ⎝ ⎛⎭⎪⎫-a 2=a 2⎣⎢⎡⎦⎥⎤34-ln ⎝⎛⎭⎪⎫-a 2, 故当且仅当a 2⎣⎢⎡⎦⎥⎤34-ln ⎝⎛⎭⎪⎫-a 2≥0, 即0>a ≥-2e 34时,f (x )≥0.综上,a 的取值范围是[-2e 34,0].【训练2】 已知f (x )=x 22-a ln x ,a ∈R ,求f (x )的单调区间.解 因为f (x )=x 22-a ln x ,x ∈(0,+∞),所以f ′(x )=x -a x =x 2-ax .(1)当a ≤0时,f ′(x )>0,所以f (x )在(0,+∞)上为单调递增函数. (2)当a >0时,f ′(x )=(x +a )(x -a )x,则有①当x ∈(0,a )时,f ′(x )<0,所以f (x )的单调递减区间为(0,a ). ②当x ∈(a ,+∞)时,f ′(x )>0,所以f (x )的单调递增区间为(a ,+∞). 综上所述,当a ≤0时,f (x )的单调递增区间为(0,+∞),无单调递减区间. 当a >0时,函数f (x )的单调递减区间为(0,a ),单调递增区间为(a ,+∞).考点三 函数单调性的简单应用 角度1 比较大小或解不等式【例3-1】 (1)已知函数y =f (x )对于任意的x ∈⎝ ⎛⎭⎪⎫0,π2满足f ′(x )cos x +f (x )sin x =1+ln x ,其中f ′(x )是函数f (x )的导函数,则下列不等式成立的是( ) A.2f ⎝ ⎛⎭⎪⎫π3<f ⎝ ⎛⎭⎪⎫π4B.2f ⎝ ⎛⎭⎪⎫π3>f ⎝ ⎛⎭⎪⎫π4C.2f ⎝ ⎛⎭⎪⎫π6>3f ⎝ ⎛⎭⎪⎫π4D.3f ⎝ ⎛⎭⎪⎫π3>f ⎝ ⎛⎭⎪⎫π6(2)已知函数f ′(x )是函数f (x )的导函数,f (1)=1e ,对任意实数都有f (x )-f ′(x )>0,设F (x )=f (x )e x ,则不等式F (x )<1e 2的解集为( ) A.(-∞,1) B.(1,+∞) C.(1,e)D.(e ,+∞)解析 (1)令g (x )=f (x )cos x ,则g ′(x )=f ′(x )cos x -f (x )(-sin x )cos 2x =1+ln x cos 2x .由⎩⎪⎨⎪⎧0<x <π2,g ′(x )>0,解得1e <x <π2;由⎩⎪⎨⎪⎧0<x <π2,g ′(x )<0,解得0<x <1e .所以函数g (x )在⎝ ⎛⎭⎪⎫0,1e 上单调递减,在⎝ ⎛⎭⎪⎫1e ,π2上单调递增,又π3>π4,所以g ⎝ ⎛⎭⎪⎫π3>g ⎝ ⎛⎭⎪⎫π4,所以f ⎝ ⎛⎭⎪⎫π3cos π3>f ⎝ ⎛⎭⎪⎫π4cos π4, 即2f ⎝ ⎛⎭⎪⎫π3>f ⎝ ⎛⎭⎪⎫π4.(2)F ′(x )=f ′(x )e x -e x f (x )(e x )2=f ′(x )-f (x )e x ,又f (x )-f ′(x )>0,知F ′(x )<0, ∴F (x )在R 上单调递减.由F (x )<1e 2=F (1),得x >1, 所以不等式F (x )<1e 2的解集为(1,+∞).答案 (1)B (2)B角度2 根据函数单调性求参数【例3-2】 (2019·日照质检)已知函数f (x )=ln x ,g (x )=12ax 2+2x . (1)若函数h (x )=f (x )-g (x )存在单调递减区间,求实数a 的取值范围; (2)若函数h (x )=f (x )-g (x )在[1,4]上单调递减,求实数a 的取值范围. 解 h (x )=ln x -12ax 2-2x ,x >0.∴h ′(x )=1x -ax -2.(1)若函数h (x )在(0,+∞)上存在单调减区间, 则当x >0时,1x -ax -2<0有解,即a >1x 2-2x 有解. 设G (x )=1x 2-2x ,所以只要a >G (x )min . 又G (x )=⎝ ⎛⎭⎪⎫1x -12-1,所以G (x )min =-1.所以a >-1.即实数a 的取值范围是(-1,+∞). (2)由h (x )在[1,4]上单调递减,∴当x ∈[1,4]时,h ′(x )=1x -ax -2≤0恒成立, 则a ≥1x 2-2x 恒成立,设G (x )=1x 2-2x , 所以a ≥G (x )max . 又G (x )=⎝ ⎛⎭⎪⎫1x -12-1,x ∈[1,4],因为x ∈[1,4],所以1x ∈⎣⎢⎡⎦⎥⎤14,1,所以G (x )max =-716(此时x =4),所以a ≥-716.又当a =-716时,h ′(x )=1x +716x -2=(7x -4)(x -4)16x,∵x ∈[1,4],∴h ′(x )=(7x -4)(x -4)16x ≤0,当且仅当x =4时等号成立. ∴h (x )在[1,4]上为减函数. 故实数a 的取值范围是⎣⎢⎡⎭⎪⎫-716,+∞.规律方法 1.利用导数比较大小,其关键在于利用题目条件构造辅助函数,把比较大小的问题转化为先利用导数研究函数的单调性,进而根据单调性比较大小. 2.根据函数单调性求参数的一般思路(1)利用集合间的包含关系处理:y =f (x )在(a ,b )上单调,则区间(a ,b )是相应单调区间的子集.(2)f (x )是单调递增的充要条件是对任意的x ∈(a ,b )都有f ′(x )≥0且在(a ,b )内的任一非空子区间上,f ′(x )不恒为零,应注意此时式子中的等号不能省略,否则漏解.(3)函数在某个区间存在单调区间可转化为不等式有解问题.【训练3】 (1)已知f (x )是定义在区间(0,+∞)内的函数,其导函数为f ′(x ),且不等式xf ′(x )<2f (x )恒成立,则( ) A.4f (1)<f (2) B.4f (1)>f (2) C.f (1)<4f (2)D.f (1)>4f ′(2)(2)(2019·淄博模拟)若函数f (x )=kx -ln x 在区间(2,+∞)上单调递增,则k 的取值范围是( )A.(-∞,-2]B.⎣⎢⎡⎭⎪⎫12,+∞ C.[2,+∞) D.⎝ ⎛⎦⎥⎤-∞,12解析 (1)设函数g (x )=f (x )x 2(x >0),则g ′(x )=x 2f ′(x )-2xf (x )x 4=xf ′(x )-2f (x )x 3<0,所以函数g (x )在(0,+∞)内为减函数,所以g (1)>g (2),即f (1)12>f (2)22,所以4f (1)>f (2).(2)由于f ′(x )=k -1x ,f (x )=kx -ln x 在区间(2,+∞)上单调递增,等价于f ′(x )=k -1x ≥0在(2,+∞)上恒成立,由于k ≥1x ,而0<1x <12,所以k ≥12.即k 的取值范围是⎣⎢⎡⎭⎪⎫12,+∞. 答案 (1)B (2)B三、课后练习1.(2017·山东卷)若函数e x f (x )(e =2.718 28…是自然对数的底数)在f (x )的定义域上单调递增,则称函数f (x )具有M 性质.下列函数中具有M 性质的是( ) A.f (x )=2-x B.f (x )=x 2 C.f (x )=3-xD.f (x )=cos x解析 设函数g (x )=e x ·f (x ),对于A ,g (x )=e x ·2-x =⎝ ⎛⎭⎪⎫e 2x,在定义域R 上为增函数,A 正确.对于B ,g (x )=e x ·x 2,则g ′(x )=x (x +2)e x ,由g ′(x )>0得x <-2或x >0,∴g (x )在定义域R 上不是增函数,B 不正确.对于C ,g (x )=e x ·3-x =⎝ ⎛⎭⎪⎫e 3x在定义域R 上是减函数,C 不正确.对于D ,g (x )=e x ·cos x ,则g ′(x )=2e x cos ⎝ ⎛⎭⎪⎫x +π4,g ′(x )>0在定义域R 上不恒成立,D 不正确. 答案 A2.(2019·上海静安区调研)已知函数f (x )=x sin x +cos x +x 2,则不等式f (ln x )+f ⎝ ⎛⎭⎪⎫ln 1x <2f (1)的解集为( ) A.(e ,+∞)B.(0,e)C.⎝ ⎛⎭⎪⎫0,1e ∪(1,e) D.⎝ ⎛⎭⎪⎫1e ,e 解析 f (x )=x sin x +cos x +x 2是偶函数,所以f ⎝ ⎛⎭⎪⎫ln 1x =f (-ln x )=f (ln x ).则原不等式可变形为f (ln x )<f (1)⇔f (|ln x |)<f (1). 又f ′(x )=x cos x +2x =x (2+cos x ), 由2+cos x >0,得x >0时,f ′(x )>0.所以f (x )在(0,+∞)上单调递增. ∴|ln x |<1⇔-1<ln x <1⇔1e <x <e. 答案 D3.若函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)单调递增,则a 的取值范围是________.解析 f ′(x )=1-23cos 2x +a cos x =1-23(2cos 2x -1)+a cos x =-43cos 2 x +a cos x +53,f (x )在R 上单调递增,则f ′(x )≥0在R 上恒成立.令cos x =t ,t ∈[-1,1],则-43t 2+at +53≥0在[-1,1]上恒成立,即4t 2-3at -5≤0在t ∈[-1,1]上恒成立. 令g (t )=4t 2-3at -5,则⎩⎨⎧g (1)=4-3a -5≤0,g (-1)=4+3a -5≤0,解得-13≤a ≤13. 答案 ⎣⎢⎡⎦⎥⎤-13,134.已知函数f (x )=a ln x -ax -3(a ∈R ). (1)求函数f (x )的单调区间;(2)若函数y =f (x )的图象在点(2,f (2))处的切线的倾斜角为45°,对于任意的t ∈[1,2],函数g (x )=x 3+x 2·⎣⎢⎡⎦⎥⎤f ′(x )+m 2在区间(t ,3)上总不是单调函数,求m 的取值范围.解 (1)函数f (x )的定义域为(0,+∞), 且f ′(x )=a (1-x )x, 当a >0时,f (x )的递增区间为(0,1), 递减区间为(1,+∞);当a <0时,f (x )的递增区间为(1,+∞),递减区间为(0,1); 当a =0时,f (x )为常函数.(2)由(1)及题意得f ′(2)=-a 2=1,即a =-2,∴f (x )=-2ln x +2x -3,f ′(x )=2x -2x .∴g (x )=x 3+⎝ ⎛⎭⎪⎫m 2+2x 2-2x , ∴g ′(x )=3x 2+(m +4)x -2.∵g (x )在区间(t ,3)上总不是单调函数, 即g ′(x )在区间(t ,3)上有变号零点.由于g ′(0)=-2,∴⎩⎨⎧g ′(t )<0,g ′(3)>0.当g ′(t )<0时,即3t 2+(m +4)t -2<0对任意t ∈[1,2]恒成立, 由于g ′(0)<0,故只要g ′(1)<0且g ′(2)<0, 即m <-5且m <-9,即m <-9;由g ′(3)>0,即m >-373. ∴-373<m <-9.即实数m 的取值范围是⎝ ⎛⎭⎪⎫-373,-9.。

大学求导知识点总结大全

大学求导知识点总结大全

大学求导知识点总结大全一、导数的概念1. 导数的定义:如果函数 f(x) 在某一点 x_0 处的导数存在,那么函数 f(x) 在这一点处的导数就是该点处函数的斜率。

2. 导数的几何意义:导数可以解释为函数曲线在某一点处的切线斜率,也可以解释为函数曲线在该点处的瞬时变化率。

3. 导数的物理意义:导数也可以用来描述物理学中的速度、加速度等概念,导数可解释为某一物理量对时间的变化率。

二、常见函数的导数1. 常数函数的导数:常数函数 f(x) = c 的导数为 f'(x) = 0。

2. 幂函数的导数:幂函数 f(x) = x^n 的导数为 f'(x) = nx^(n-1)。

3. 指数函数的导数:指数函数 f(x) = a^x 的导数为 f'(x) = a^x * ln(a)。

4. 对数函数的导数:对数函数 f(x) = log_a(x) 的导数为 f'(x) = 1/x * ln(a)。

5. 三角函数的导数:常见三角函数的导数为 sin(x) 的导数为 cos(x),cos(x) 的导数为 -sin(x),tan(x) 的导数为 sec^2(x)。

三、导数的运算法则1. 和差法则:(f(x) ± g(x))' = f'(x) ± g'(x)。

2. 积法则:(f(x) * g(x))' = f'(x) * g(x) + f(x) * g'(x)。

3. 商法则:(f(x) / g(x))' = (f'(x) * g(x) - f(x) * g'(x)) / g(x)^2。

4. 复合函数的导数:若 y = f[g(x)],则 y' = f'(g(x)) * g'(x)。

四、高阶导数1. 一阶导数:表示函数的导数。

2. 二阶导数:表示一阶导数的导数,记作 f''(x) 或 d^2y/dx^2。

(完整版)导数知识点归纳及应用

(完整版)导数知识点归纳及应用

导数知识点归纳及应用●知识点归纳一、相关概念1.导数的概念函数y=f(x),如果自变量x 在x 处有增量,那么函数y 相应地有增量=f (x +0x ∆y ∆0)-f (x ),比值叫做函数y=f (x )在x 到x +之间的平均变化率,即x ∆0xy∆∆00x ∆=。

如果当时,有极限,我们就说函数y=f(x)在点x x y ∆∆xx f x x f ∆-∆+)()(000→∆x x y ∆∆处可导,并把这个极限叫做f (x )在点x 处的导数,记作f’(x )或y’|。

000x x =即f (x )==。

00lim →∆x x y∆∆0lim →∆x xx f x x f ∆-∆+)()(00说明:(1)函数f (x )在点x 处可导,是指时,有极限。

如果不存在极限,00→∆x x y ∆∆xy∆∆就说函数在点x 处不可导,或说无导数。

0(2)是自变量x 在x 处的改变量,时,而是函数值的改变量,可以是x ∆00≠∆x y ∆零。

由导数的定义可知,求函数y=f (x )在点x 处的导数的步骤:0① 求函数的增量=f (x +)-f (x );y ∆0x ∆0② 求平均变化率=;x y ∆∆xx f x x f ∆-∆+)()(00③ 取极限,得导数f’(x )=。

0xyx ∆∆→∆lim 例:设f(x)= x|x|, 则f ′( 0)= .[解析]:∵ ∴f ′( 0)=00||lim ||lim )(lim )0()0(lim0000=∆=∆∆∆=∆∆=∆-∆+→∆→∆→∆→∆x xxx x x f x f x f x x x x 2.导数的几何意义函数y=f (x )在点x 处的导数的几何意义是曲线y=f (x )在点p (x ,f (x ))000处的切线的斜率。

也就是说,曲线y=f (x )在点p (x ,f (x ))处的切线的斜率00是f’(x )。

0相应地,切线方程为y -y =f /(x )(x -x )。

导数知识点总结及其应用

导数知识点总结及其应用

导数知识点总结及其应用导数是微积分中的重要概念,它是描述函数变化率的工具,可以帮助我们求解曲线的斜率、最值、凹凸性等问题。

在数学和物理中,导数有着广泛的应用,特别是在描述物体的运动、变化以及求解最优化问题等方面。

本文将对导数的定义、性质、求导法则以及其应用进行详细的总结和讨论。

一、导数的定义导数的定义是描述函数在某一点的变化率,可以理解为函数图像在该点处的斜率。

在数学上,导数可以通过极限的概念和定义得出。

给定函数f(x),则f(x)在x=a处的导数定义为:\[ f'(a) = \lim_{h \to 0} \frac{f(a+h)-f(a)}{h} \]其中,f'(a)表示函数f(x)在x=a处的导数,h表示自变量的增量。

这个定义可以直观地理解为f(x)在x=a处的切线斜率。

当h趋于0时,极限就表示函数在点a处的斜率,也就是导数。

二、导数的性质1. 可导性函数在某一点可导意味着该点附近存在唯一的切线,也就是说函数在该点处光滑连续。

一般来说,几乎所有的函数都有导数,也就是可导的。

2. 连续性若函数在某一点可导,则该点处是连续的。

但反之不一定成立,即函数在某点处连续不一定可导。

3. 导数运算规则(1)常数导数若f(x)=c,c为常数,则f'(x)=0。

(2)幂函数导数若f(x)=x^n,则f'(x)=nx^{n-1}。

(3)和差导数若f(x)=g(x)+h(x),则f'(x)=g'(x)+h'(x)。

(4)积导数若f(x)=g(x)·h(x),则f'(x)=g'(x)·h(x)+g(x)·h'(x)。

(5)商导数若f(x)=\frac{g(x)}{h(x)},则f'(x)=\frac{g'(x)·h(x)-g(x)·h'(x)}{(h(x))^2}。

导数知识点

导数知识点

导数知识点一、基础知识1.导数的定义:='='===0|)()()1(00x x y x f x x x f y 处的导数:在函数='='=y x f x f y )()()2(的导数:函数2.导数的几何意义(1)切点的性质:函数()y f x =在点()()00,P x f x 处切线=切线k ;()()00,P x f x 既在()y f x =上,又在切线上.(2)曲线()y f x =在点()()00,P x f x 处切线方程是: 。

(3)曲线()y f x =过点()00,P x y 处切线:先设切点,切点为 ,则斜率=切线k ,相应的切线方程是: ,再将 代入最后求斜率=切线k '()f a ,确定切线方程。

3.导数的运算:='])()([x g x f ='])([x kf (3)复合函数(())y f g x =的导数求法:①换元,令=u ,则=y ②='y ③回代()u g x = 4.导数的应用 (1)单调性函数)(x f 的导数0)('>x f 在定义域内的解集为I ⇒ 函数)(x f 的导数0)('<x f 在定义域内的解集为I ⇒ 函数)(x f 在区间I 上单调递增⇒ 函数)(x f 在区间I 上单调递减⇒ (2)极值若函数)(x f 在1x 附近 ()('x f 在1x 附近 ),则1x 是)(x f 的 , 是)(x f 的极大值;若函数)(x f 在2x 附近 ()('x f 在2x 附近 ) ,则2x 是)(x f 的 , 是)(x f 的极小值.方程0)('=x f 的解为0x 0x 是)(x f 的极值点;0x 是)(x f 的极值点⇒ . (3) 函数)(x f 在],[b a 的最值假设b x x a <<<21,21,x x 分别是极大值点,极小值点,列出)(),(,'x f x f x 的表格.max min .二、方法总结1.求参数的取值范围的方法:(1)分离参数法(首选);(2)分类讨论.2.不等式的证明:)()(,x g x f I x >∈∀(1)构造法: =)(x F(2)结合最值和图像:在)(x F 最小值不易求的情况,证明max min )()(x g x f ≥或)(x f 图像在)(x g 上方.(3)分析法:)()()()(x q x p x g x f >>等价于证要证,再用(1)或(2)方法证明.2.恒成立,能成立问题(1)⇔≥≤∈∀恒成立))(()(,m x f M x f I x (2)⇒≥≤∈∃成立使得))(()(,m x f Mx f I x(3)⇔≥∈∀恒成立)()(,,t g s f I t s (4)⇒≥∈∃成立使得)()(,,t g s f I t s(5)⇒≥∈∀∈∃成立使得)()(,,,t g s f H s I s (6)⇔≤-∈∀恒成立M t f s f I t s |)()(|,,3.二阶导数(即对函数进行二次求导)(1)求函数],[),(b a x x f y ∈=,要求函数)(x f 的最大值或最小值.(2)求得函数)(x f 的导数)('x f ,令0)('=x f ,但不易求得极值点的情况下.(3)令)()('x f x g =,再求导得)('x g ,并通过判断)('x g 的正负得到)()('x f x g =的单调性,进一步确定)('x f 的正负,得)(x f 的单调性.4.方程的解或函数的零点或两个函数的交点问题(1)方程0)(=x f 在定义域内根的个数,转化成)(x f y =图像在定义域内与x 轴交点的个数,通过求导,确定单调性,极值点来刻画函数)(x f y =的图像;(2)已知0)(),()()(≠-=x h x h m g x f y 有n 个零点个根有方程n x h m g x f 0)()()(=-⇔个交点有与函数n x h m g y x f y )()()(==⇔,求m 的范围.处理的方法:转化得)()()(x h x f m g =⇒直线)(m g y =与函数)()(x h x f y =有n 个交点,看图确定m 的取值范围.例:函数kx e x f x-=)(在)2,0(上有两个零点,求实数k 的取值范围.分析:kx e x f x-=)(在)2,0(上有两个零点⇔方程kx e x=在)2,0(有两个根⇔xe k x=,即直线k y =与函数xe x g x=)(在)2,0(上有两个交点. 求导,结合单调性,极值作出)(x g 图像.观察可得k 范围.。

《导数和应用》知识点总结

《导数和应用》知识点总结

《导数和应用》知识点总结导数是微积分中的重要概念,它是用来描述函数变化率的工具。

本文将总结导数的定义、性质以及它在数学、物理和经济等领域中的应用。

一、导数的定义在数学中,导数是描述函数变化率的概念。

对于一个函数f(x),在x 点处的导数表示函数在这一点的变化率。

导数的定义如下:f'(x) = lim(h -> 0) [f(x+h) - f(x)] / h其中f'(x)表示f(x)在x点处的导数,h表示一个无限小的增量。

二、导数的性质1.导数的存在性:如果函数f(x)在x点处可导,则它在这一点的导数存在。

2.导数的基本运算法则:- 常数法则:如果c是一个常数,且f(x)是可导函数,则(cf(x))' = cf'(x)。

-和差法则:如果f(x)和g(x)是可导函数,则(f(x)±g(x))'=f'(x)±g'(x)。

-积法则:如果f(x)和g(x)是可导函数,则(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)。

-商法则:如果f(x)和g(x)是可导函数,并且g(x)≠0,则(f(x)/g(x))'=[f'(x)g(x)-f(x)g'(x)]/[g(x)]²。

3.链式法则:如果函数f(x)和g(x)分别是可导函数,则复合函数(f(g(x)))'=f'(g(x))g'(x)。

4.导数的求解法则:- 幂函数法则:对于f(x) = axⁿ,其中a是常数,n是自然数,有f'(x) = anxⁿ⁻¹。

-指数函数法则:对于f(x)=eˣ,有f'(x)=eˣ。

- 对数函数法则:对于f(x) = ln(x),有f'(x) = 1/x。

- 三角函数法则:对于f(x) = sin(x)和f(x) = cos(x),有f'(x) = cos(x)和f'(x) = -sin(x)。

导数在函数极值中的应用例题和知识点总结

导数在函数极值中的应用例题和知识点总结

导数在函数极值中的应用例题和知识点总结在数学的广袤天地中,导数无疑是一座连接函数性质与实际应用的重要桥梁。

而在函数的研究中,极值问题又占据着关键地位。

通过导数来求解函数的极值,不仅能让我们更深入地理解函数的变化规律,还能为解决实际问题提供有力的工具。

接下来,我们将通过具体的例题和详细的知识点总结,来探讨导数在函数极值中的应用。

一、知识点回顾1、导数的定义函数\(y = f(x)\)在\(x = x_0\)处的导数\(f'(x_0)\)定义为:\(f'(x_0) =\lim_{\Delta x \to 0} \frac{f(x_0 +\Delta x) f(x_0)}{\Delta x}\)2、导数的几何意义导数\(f'(x_0)\)表示函数\(y = f(x)\)在\(x = x_0\)处的切线斜率。

3、函数的单调性与导数的关系若\(f'(x) > 0\),则函数\(f(x)\)在区间内单调递增;若\(f'(x) < 0\),则函数\(f(x)\)在区间内单调递减。

4、函数的极值设函数\(f(x)\)在\(x_0\)处可导,且在\(x_0\)处附近左增右减,则\(x_0\)为函数的极大值点,\(f(x_0)\)为极大值;若在\(x_0\)处附近左减右增,则\(x_0\)为函数的极小值点,\(f(x_0)\)为极小值。

5、求函数极值的步骤(1)求导数\(f'(x)\);(2)解方程\(f'(x) = 0\),求出函数的驻点;(3)分析驻点左右两侧导数的符号,确定极值点;(4)将极值点代入函数,求出极值。

二、例题讲解例 1:求函数\(f(x) = x^3 3x^2 + 1\)的极值。

解:首先,对函数求导:\(f'(x) = 3x^2 6x\)令\(f'(x) = 0\),即\(3x^2 6x = 0\),解得\(x = 0\)或\(x = 2\)当\(x < 0\)时,\(f'(x) > 0\),函数单调递增;当\(0 < x < 2\)时,\(f'(x) < 0\),函数单调递减;当\(x > 2\)时,\(f'(x) > 0\),函数单调递增。

导数知识点总结与应用

导数知识点总结与应用

导数知识点总结与应用一、导数的定义导数的定义是一个函数在某一点的变化率,通俗地说就是函数在某一点的斜率。

数学上我们用极限的概念来定义导数,设函数y=f(x),在点x0处的导数定义为:f'(x0) = lim (Δx→0) (f(x0+Δx)- f(x0))/Δx如果这个极限存在的话,我们就称这个导数为存在的。

导数在几何意义上就是函数在某一点的切线的斜率。

二、导数的意义导数不仅仅是一个数学概念,更是反映了函数在不同点的变化情况。

导数告诉我们了函数在某一点的变化率,也就是函数在该点上的速度。

导数在物理中也有广泛的应用,比如在求物体的速度、加速度等等。

在经济学中,导数也有广泛的应用,比如在边际收益、边际成本等等。

三、导数的常用性质1、导数的和差规则:设函数f(x)和g(x)都在点x0具有导数,那么它们的和、差的导数就可以用下面的关系式来表示:(f(x)±g(x))' = f'(x)±g'(x)2、导数的数乘规则:设函数f(x)在点x0具有导数,那么它的数乘k的导数可以用下面的关系式来表示:(k*f(x))' = k*f'(x)3、导数的积法则:设函数f(x)和g(x)都在点x0具有导数,那么它们的积的导数可以用下面的关系式来表示:(f(x)*g(x))' = f'(x)*g(x) + f(x)*g'(x)4、导数的商法则:设函数f(x)和g(x)都在点x0具有导数,并且g(x0)≠0,那么它们的商的导数可以用下面的关系式来表示:(f(x)/g(x))' = (f'(x)*g(x) - f(x)*g'(x))/[g(x)]^2四、高阶导数由导函数可以得到二阶导数,三阶导数···,n阶导数的定义分别为f''(x) = [f'(x)]'f'''(x) = [f''(x)]'···f^(n)(x) = [f^(n-1)(x)]'几何意义上就是函数在该点的曲率、弯曲程度。

函数的导数与导数应用知识点总结

函数的导数与导数应用知识点总结

函数的导数与导数应用知识点总结函数的导数是微积分中的重要概念,用来描述函数在某一点的变化率。

导数应用则是指在解决实际问题时利用导数的性质和计算方法进行分析和求解。

下面将对函数的导数与导数应用的知识点进行总结。

一、函数的导数函数的导数在数学中是指函数在某一点的变化率,可以用来描述函数的变化速度和曲线的陡峭程度。

导数常用符号表示为f'(x),表示函数f(x)在点x处的导数。

1. 导数的定义函数f(x)在点x处的导数定义为:f'(x) = lim(h→0) [f(x+h) - f(x)] / h,其中lim表示极限,h表示x的增量。

2. 导数的几何意义函数在某一点的导数等于该点切线的斜率,也就是函数曲线在该点处的斜率。

3. 导数的基本性质导数具有以下基本性质:- 函数常数的导数为0,即常数函数的导数为0。

- 导数的和差法则,即导数的和(差)等于各导数的和(差)。

- 导数的常数倍法则,即函数乘以一个常数后,导数等于该常数乘以原函数的导数。

- 导数的乘积法则,即两个函数的乘积的导数等于其中一个函数的导数乘以另一个函数加上另一个函数的导数乘以其中一个函数。

- 导数的商法则,即两个函数的商的导数等于分子函数的导数乘以分母函数减去分母函数的导数乘以分子函数,再除以分母函数的平方。

二、导数应用导数应用广泛应用于数学、物理、经济等领域,在解决实际问题时具有重要的意义。

以下是几个常见的导数应用知识点。

1. 最值问题导数可以用来求函数的最值问题,即求函数在一段区间上的最大值或最小值。

要求函数在区间内取得最值,需找到导数等于零或不存在的点,然后通过二阶导数的正负来判断最值是极大值还是极小值。

2. 函数图像的凹凸性和拐点导数可以用来分析函数图像的凹凸性和拐点。

当导数大于零时,函数图像凹向上,当导数小于零时,函数图像凹向下。

拐点是指函数图像由凹向上变为凹向下或由凹向下变为凹向上的点。

3. 斜率问题导数可以代表函数曲线在某一点处的斜率,因此可以用来分析曲线的特性和斜率问题。

导数的概念及运算知识点讲解(含解析)

导数的概念及运算知识点讲解(含解析)

导数的概念及运算一、知识梳理1.函数y =f(x)在x =x 0处的导数(1)定义:称函数y =f(x)在x =x 0处的瞬时变化率0lim x ∆→f (x 0+Δx )-f (x 0)Δx=lim x ∆→ΔyΔx为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=0limx ∆→ΔyΔx =0lim x ∆→f (x 0+Δx )-f (x 0)Δx. (2)几何意义:函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点(x 0,f (x 0))处的切线的斜率.相应地,切线方程为y -y 0=f ′(x 0)(x -x 0).2.函数y =f (x )的导函数如果函数y =f (x )在开区间(a ,b )内的每一点处都有导数,其导数值在(a ,b )内构成一个新函数,函数f ′(x )=lim Δx →0 f (x +Δx )-f (x )Δx称为函数y =f (x )在开区间内的导函数.3.导数公式表4.导数的运算法则 若f ′(x ),g ′(x )存在,则有: (1) [f (x )±g (x )]′=f ′(x )±g ′(x ); (2) [f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3) ⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0).5.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为 y x ′=y u ′·u x ′.知识点小结:1.f ′(x 0)代表函数f (x )在x =x 0处的导数值;(f (x 0))′是函数值f (x 0)的导数,且(f (x 0))′=0.2. ⎣⎢⎡⎦⎥⎤1f (x )′=-f ′(x )[f (x )]2. 3.曲线的切线与曲线的公共点的个数不一定只有一个,而直线与二次曲线相切只有一个公共点.4.函数y =f (x )的导数f ′(x )反映了函数f (x )的瞬时变化趋势,其正负号反映了变化的方向,其大小|f ′(x )|反映了变化的快慢,|f ′(x )|越大,曲线在这点处的切线越“陡”.二、例题精讲 + 随堂练习1.判断下列结论正误(在括号内打“√”或“×”) (1)f ′(x 0)是函数y =f (x )在x =x 0附近的平均变化率.( ) (2)函数f (x )=sin(-x )的导数f ′(x )=cos x .( ) (3)求f ′(x 0)时,可先求f (x 0),再求f ′(x 0).( ) (4)曲线的切线与曲线不一定只有一个公共点.( ) 解析 (1)f ′(x 0)表示y =f (x )在x =x 0处的瞬时变化率,(1)错. (2)f (x )=sin(-x )=-sin x ,则f ′(x )=-cos x ,(2)错.(3)求f ′(x 0)时,应先求f ′(x ),再代入求值,(3)错. 答案 (1)× (2)× (3)× (4)√2.曲线y =x 3+11在点P (1,12)处的切线与y 轴交点的纵坐标是( ) A.-9B.-3C.9D.15解析 因为y =x 3+11,所以y ′=3x 2,所以y ′|x =1=3,所以曲线y =x 3+11在点P (1,12)处的切线方程为y -12=3(x -1).令x =0,得y =9. 答案 C3.在高台跳水运动中,t s 时运动员相对于水面的高度(单位:m)是h (t )=-4.9t 2+6.5t +10,则运动员的速度v =________ m/s ,加速度a =______ m/s 2.解析 v =h ′(t )=-9.8t +6.5,a =v ′(t )=-9.8. 答案 -9.8t +6.5 -9.84.(2019·青岛质检)已知函数f (x )=x (2 018+ln x ),若f ′(x 0)=2 019,则x 0等于( ) A.e 2B.1C.ln 2D.e解析 f ′(x )=2 018+ln x +x ×1x =2 019+ln x .由f ′(x 0)=2 019,得2 019+ln x 0=2 019,则ln x 0=0,解得x 0=1. 答案 B5.(2018·天津卷)已知函数f (x )=e x ln x ,f ′(x )为f (x )的导函数,则f ′(1)的值为________.解析 由题意得f ′(x )=e xln x +e x·1x ,则f ′(1)=e.答案 e6.(2017·全国Ⅰ卷)曲线y =x 2+1x 在点(1,2)处的切线方程为________.解析 设y =f (x ),则f ′(x )=2x -1x 2, 所以f ′(1)=2-1=1,所以在(1,2)处的切线方程为y -2=1×(x -1), 即y =x +1. 答案 y =x +1考点一 导数的运算角度1 根据求导法则求函数的导数 【例1-1】 分别求下列函数的导数: (1)y =e x ln x ; (2)y =x ⎝⎛⎭⎪⎫x 2+1x +1x 3;(3)f (x )=ln 1+2x .解 (1)y ′=(e x )′ln x +e x (ln x )′=e x ln x +e xx =e x ⎝⎛⎭⎪⎫ln x +1x .(2)因为y =x 3+1+1x 2,所以y ′=3x 2-2x 3. (3)因为y =ln1+2x =12ln ()1+2x ,所以y ′=12·11+2x ·(1+2x )′=11+2x .角度2 抽象函数的导数计算【例1-2】 (2019·天津河西区调研)已知函数f (x )的导函数是f ′(x ),且满足f (x )=2xf ′(1)+ln 1x ,则f (1)=( ) A.-eB.2C.-2D.e解析 由已知得f ′(x )=2f ′(1)-1x ,令x =1得f ′(1)=2f ′(1)-1,解得f ′(1)=1,则f (1)=2f ′(1)=2. 答案 B【训练1】 (1)若y =x -cos x 2sin x2,则y ′=________. (2)已知f (x )=x 2+2xf ′(1),则f ′(0)=________. 解析 (1)因为y =x -12sin x ,所以y ′=⎝ ⎛⎭⎪⎫x -12sin x ′=x ′-⎝ ⎛⎭⎪⎫12sin x ′=1-12cos x .(2)∵f ′(x )=2x +2f ′(1),∴f ′(1)=2+2f ′(1),即f ′(1)=-2.∴f ′(x )=2x -4,∴f ′(0)=-4. 答案 (1)1-12cos x (2)-4考点二 导数的几何意义 角度1 求切线方程【例2-1】 (2018·全国Ⅰ卷)设函数f (x )=x 3+(a -1)x 2+ax .若f (x )为奇函数,则曲线y =f (x )在点(0,0)处的切线方程为( ) A.y =-2x B.y =-x C.y =2xD.y =x解析 因为函数f (x )=x 3+(a -1)x 2+ax 为奇函数,所以a -1=0,则a =1,所以f (x )=x 3+x ,所以f ′(x )=3x 2+1,所以f ′(0)=1,所以曲线y =f (x )在点(0,0)处的切线方程为y =x . 答案 D角度2 求切点坐标【例2-2】 (1)(2019·聊城月考)已知曲线y =x 24-3ln x 的一条切线的斜率为12,则切点的横坐标为( ) A.3B.2C.1D.12(2)设曲线y =e x在点(0,1)处的切线与曲线y =1x (x >0)上点P 处的切线垂直,则P 的坐标为________. 解析 (1)设切点的横坐标为x 0(x 0>0),∵曲线y =x 24-3ln x 的一条切线的斜率为12, ∴y ′=x 2-3x ,即x 02-3x 0=12,解得x 0=3或x 0=-2(舍去,不符合题意),即切点的横坐标为3. (2)∵函数y =e x 的导函数为y ′=e x ,∴曲线y =e x 在点(0,1)处的切线的斜率k 1=e 0=1.设P (x 0,y 0)(x 0>0),∵函数y =1x 的导函数为y ′=-1x 2,∴曲线y =1x (x >0)在点P 处的切线的斜率k 2=-1x 20,由题意知k 1k 2=-1,即1·⎝ ⎛⎭⎪⎫-1x 20=-1,解得x 20=1,又x 0>0,∴x 0=1.又∵点P 在曲线y =1x (x >0)上,∴y 0=1,故点P 的坐标为(1,1). 答案 (1)A (2)(1,1)角度3 求参数的值或取值范围【例2-3】 (1)函数f (x )=ln x +ax 的图象存在与直线2x -y =0平行的切线,则实数a 的取值范围是( ) A.(-∞,2] B.(-∞,2) C.(2,+∞)D.(0,+∞)(2)(2019·河南六市联考)已知曲线f (x )=x +ax +b (x ≠0)在点(1,f (1))处的切线方程为y =2x +5,则a -b =________.解析 (1)由题意知f ′(x )=2在(0,+∞)上有解. ∴f ′(x )=1x +a =2在(0,+∞)上有解,则a =2-1x . 因为x >0,所以2-1x <2,所以a 的取值范围是(-∞,2). (2)f ′(x )=1-ax 2,∴f ′(1)=1-a ,又f (1)=1+a +b ,∴曲线在(1,f (1))处的切线方程为y -(1+a +b )=(1-a )(x -1),即y =(1-a )x +2a +b ,根据题意有⎩⎪⎨⎪⎧1-a =2,2a +b =5,解得⎩⎪⎨⎪⎧a =-1,b =7,∴a -b =-1-7=-8. 答案 (1)B (2)-8规律方法 1.求切线方程时,注意区分曲线在某点处的切线和曲线过某点的切线,曲线y =f (x )在点P (x 0,f (x 0))处的切线方程是y -f (x 0)=f ′(x 0)(x -x 0);求过某点的切线方程,需先设出切点坐标,再依据已知点在切线上求解.2.处理与切线有关的参数问题,通常根据曲线、切线、切点的三个关系列出参数的方程并解出参数:①切点处的导数是切线的斜率;②切点在切线上;③切点在曲线上.【训练2】 (1)(2019·东莞二调)设函数f (x )=x 3+ax 2,若曲线y =f (x )在点P (x 0,f (x 0))处的切线方程为x +y =0,则点P 的坐标为( ) A.(0,0)B.(1,-1)C.(-1,1)D.(1,-1)或(-1,1)(2)(2018·全国Ⅱ卷)曲线y =2ln(x +1)在点(0,0)处的切线方程为________________.解析 (1)由f (x )=x 3+ax 2,得f ′(x )=3x 2+2ax . 根据题意可得f ′(x 0)=-1,f (x 0)=-x 0,可列方程组⎩⎪⎨⎪⎧x 30+ax 20=-x 0, ①3x 20+2ax 0=-1, ②解得⎩⎪⎨⎪⎧x 0=1,a =-2或⎩⎪⎨⎪⎧x 0=-1,a =2.当x 0=1时,f (x 0)=-1,当x 0=-1时,f (x 0)=1. ∴点P 的坐标为(1,-1)或(-1,1). (2)由题意得y ′=2x +1.在点(0,0)处切线斜率k =y ′|x =0=2.∴曲线y =2ln(x +1)在点(0,0)处的切线方程为y -0=2(x -0),即y =2x . 答案 (1)D (2)y =2x三、课后练习1.(2019·深圳二模)设函数f (x )=x +1x +b ,若曲线y =f (x )在点(a ,f (a ))处的切线经过坐标原点,则ab =( ) A.1B.0C.-1D.-2解析 由题意可得,f (a )=a +1a +b ,f ′(x )=1-1x 2,所以f ′(a )=1-1a 2,故切线方程是y -a -1a -b =⎝⎛⎭⎪⎫1-1a 2(x -a ),将(0,0)代入得-a -1a -b=⎝ ⎛⎭⎪⎫1-1a 2(-a ),故b =-2a ,故ab =-2. 答案 D2.已知函数f (x )=|x 3+ax +b |(a ,b ∈R ),若对任意的x 1,x 2∈[0,1],f (x 1)-f (x 2)≤2|x 1-x 2|恒成立,则实数a 的取值范围是________. 解析 当x 1=x 2时,f (x 1)-f (x 2)≤2|x 1-x 2|恒成立;当x 1≠x 2时, 由f (x 1)-f (x 2)≤2|x 1-x 2|得f (x 1)-f (x 2)|x 1-x 2|≤2,故函数f (x )在[0,1]上的导函数f ′(x )满足|f ′(x )|≤2,函数y =x 3+ax +b 的导函数为y ′=3x 2+a ,其中[0,1]上的值域为[a ,a +3],则有⎩⎪⎨⎪⎧|a |≤2,|a +3|≤2,解得-2≤a ≤-1.综上所述,实数a 的取值范围为[-2,-1]. 答案 [-2,-1]3.函数g (x )=ln x 图象上一点P 到直线y =x 的最短距离为________. 解析 设点(x 0,ln x 0)是曲线g (x )=ln x 的切线中与直线y =x 平行的直线的切点,因为g ′(x )=(ln x )′=1x ,则1=1x 0,∴x 0=1,则切点坐标为(1,0),∴最短距离为(1,0)到直线y =x 的距离, 即为|1-0|1+1=22. 答案 224.若函数f (x )=12x 2-ax +ln x 存在垂直于y 轴的切线,则实数a 的取值范围是________.解析 ∵f (x )=12x 2-ax +ln x ,定义域为(0,+∞),∴f ′(x )=x -a +1x .∵f (x )存在垂直于y 轴的切线,∴f ′(x )存在零点,即x +1x -a =0有解,∴a =x +1x ≥2(当且仅当x =1时取等号).答案 [2,+∞)。

导数及其应用-知识点整理(完整,清晰)

导数及其应用-知识点整理(完整,清晰)

导数及其应用基本知识点1,导数:当x ∆趋近于零时,x x f x x f ∆-∆+)()(00趋近于常数C 。

可用符号“→”记作:当0→∆x 时,x x f x x f ∆-∆+)()(00c →或记作c x x f x x f x =∆-∆+→∆)()(lim 000,符号“→”读作“趋近于”。

函数在0x 的瞬时变化率,通常称作)(x f 在0x x =处的导数,并记作)(0x f '。

即x x f x x f x f x ∆-∆+=→∆)()(l i m)(0000'2,导数的几何意义是曲线在某一点处的切线的斜率;导数的物理意义,通常是指物体运动在某一时刻的瞬时速度。

即若点),(00y x P 为曲线上一点,则过点),(00y x P 的切线的斜率x x f x x f x f k x ∆-∆+==→∆)()(l i m )(0000'切由于函数)(x f y =在0x x =处的导数,表示曲线在点))(,(00x f x P 处切线的斜率,因此,曲线)(x f y =在点))(,(00x f x P 处的切线方程可如下求得:(1)求出函数)(x f y =在点0x x =处的导数,即曲线)(x f y =在点))(,(00x f x P 处切线的斜率。

(2)在已知切点坐标和切线斜率的条件下,求得切线方程为:))((00'0x x x f y y -=-,如果曲线)(x f y =在点))(,(00x f x P 的切线平行于y 轴(此时导数不存在)时,由切线定义可知,切线方程为0x x =,故过点),(00y x P 的切线的方程为:))((00'0x x x f y y -=- 3,导数的四则运算法则:(1))()())()((x g x f x g x f '±'='± (2))()()()(])()([x g x f x g x f x g x f '+'='(3))()()()()()()(2x g x g x f x f x g x g x f '-'='⎥⎦⎤⎢⎣⎡4,几种常见函数的导数:(1))(0为常数C C =' (2))(1Q n nx x n n ∈='-)( (3)x x cos )(sin =' (4)x x sin )(cos -='(5)x x 1)(ln =' (6)e xx a a log 1)(log =' (7)x x e e =')( (8)a a a x x ln )(=' 5,函数的单调性:在某个区间),(b a 内,如果0)('>x f ,那么函数)(x f y =在这个区间内单调递增;如果0)('<x f ,那么函数)(x f y =在这个区间内单调递减。

导数的应用与求导法则知识点总结

导数的应用与求导法则知识点总结

导数的应用与求导法则知识点总结导数在数学和物理学中具有广泛的应用。

它是描述函数变化率的工具,可以用来解决许多实际问题。

在本文中,我们将讨论导数的应用以及一些常用的求导法则知识点。

一、导数的应用1. 切线与法线导数可以用来求解曲线上的切线和法线。

给定一个函数f(x),我们可以通过求解导数f'(x)来获得曲线上任意一点的切线斜率。

切线的斜率是导数的值。

与切线垂直的线被称为法线。

法线的斜率是切线斜率的负倒数。

2. 最值问题导数可以帮助我们找到函数的最值点。

在一个区间内,函数的最大值和最小值通常出现在导数为零或不存在的点。

因此,我们可以通过求解导数为零的方程来找到这些临界点,然后通过比较函数值来确定最值。

3. 凹凸性与拐点导数可以用来判断函数的凹凸性以及拐点的位置。

如果导数在某个区间内是递增的,那么函数在该区间内是凹的;如果导数是递减的,那么函数是凸的。

拐点发生在导数变化的方向改变的点。

4. 高阶导数导数的概念可以进一步推广到高阶导数。

高阶导数描述了函数变化的更高阶性质,比如曲率和弯曲程度。

通过求解导数的导数,我们可以计算出函数的高阶导数。

二、求导法则知识点1. 基本导数法则基本导数法则是求导的基础。

它包括了常数规则、幂函数规则、指数函数规则、对数函数规则和三角函数规则。

这些法则允许我们快速求解各种类型的函数导数。

2. 乘积法则乘积法则可以用来求解两个函数的乘积的导数。

假设有两个函数u(x)和v(x),它们的乘积为f(x) = u(x)v(x)。

那么,f'(x) = u'(x)v(x) +u(x)v'(x)。

3. 商积法则商积法则可以用来求解两个函数的商的导数。

假设有两个函数u(x)和v(x),它们的商为f(x) = u(x) / v(x)。

那么,f'(x) = [u'(x)v(x) - u(x)v'(x)] / v(x)^2。

4. 链式法则链式法则可以用来求解复合函数的导数。

导数的应用知识点总结

导数的应用知识点总结

导数的应用知识点总结导数是微积分的一个重要概念,它在实际生活中有着广泛的应用。

导数可以用来描述曲线的斜率、速度、加速度等物理量,因此在物理、工程、经济等领域都有着重要的作用。

在本文中,我们将总结导数的应用知识点,包括曲线的斜率、极值、曲率、速度、加速度等内容,以及它们在实际问题中的应用。

1. 曲线的斜率导数的最基本应用是描述曲线的斜率。

对于一条曲线上的某一点,它的导数就是该点处曲线的斜率。

这个概念在物理学和工程学中有着广泛的应用。

例如,在物理学中,我们可以用导数来描述自由落体运动中物体的速度和加速度。

在工程学中,导数可以用来描述曲线的变化率,比如在设计汽车行驶路线时,我们可以使用导数来分析路线的曲率和斜率,从而选择最合适的路径。

2. 极值导数还可以用来求解函数的极值。

在一条曲线上,函数的最大值和最小值通常就是极值点。

通过求取函数的导数,我们可以找到函数的极值点,并通过对导数的符号进行分析来确定这些点是极大值还是极小值。

这个概念在经济学、物理学和工程学中有着广泛的应用。

比如在经济学中,我们可以利用导数来分析生产函数的边际产出,并确定最优的生产方案;在物理学中,我们可以通过导数来分析物体的运动轨迹,并求解最大高度、最短时间等问题;在工程学中,我们可以利用导数来优化设计,比如在机械设计中,可以通过导数分析物体的应力分布,从而设计出更加稳定的结构。

3. 曲率曲率是描述曲线弯曲程度的物理量,它在导数的应用中也有着重要的作用。

通过求取曲线的导数和二阶导数,我们可以求解曲线的曲率,并用来描述曲线的几何特性。

这个概念在航空航天、地图绘制、自动驾驶等领域都有着广泛的应用。

比如在航空航天领域中,我们可以利用曲率来确定飞机的最佳飞行路径;在地图绘制中,我们可以利用曲率来确定地球表面的实际曲率,从而制作出更加真实的地图;在自动驾驶领域中,我们可以利用曲率来确定车辆的行驶路径,从而实现更加智能的驾驶。

4. 速度和加速度在物理学中,速度和加速度是描述物体运动状态的重要物理量。

导数的应用知识点总结

导数的应用知识点总结

导数的应用知识点总结一、导数的定义与几何意义。

1. 导数的定义。

- 函数y = f(x)在x = x_0处的导数f^′(x_0)定义为f^′(x_0)=limlimits_Δ x→0(Δ y)/(Δ x)=limlimits_Δ x→0frac{f(x_0+Δ x)-f(x_0)}{Δ x}。

- 如果函数y = f(x)在开区间(a,b)内的每一点都可导,就说f(x)在区间(a,b)内可导。

这时对于区间(a,b)内的每一个确定的x值,都对应着一个确定的导数f^′(x),这样就构成了一个新的函数f^′(x),称它为函数y = f(x)的导函数,简称导数,记作y^′或f^′(x)或(dy)/(dx)等。

2. 导数的几何意义。

- 函数y = f(x)在点x_0处的导数f^′(x_0)的几何意义是曲线y = f(x)在点(x_0,f(x_0))处的切线斜率。

- 曲线y = f(x)在点(x_0,f(x_0))处的切线方程为y - f(x_0)=f^′(x_0)(x - x_0)。

二、导数的基本公式与运算法则。

1. 基本公式。

- (C)^′ = 0(C为常数)- (x^n)^′ = nx^n - 1(n∈ Q)- (sin x)^′=cos x- (cos x)^′ =-sin x- (a^x)^′ = a^xln a(a>0,a≠1)- (e^x)^′ = e^x- (log_ax)^′=(1)/(xln a)(a>0,a≠1,x>0)- (ln x)^′=(1)/(x)2. 运算法则。

- (u± v)^′ = u^′± v^′- (uv)^′ = u^′ v + uv^′- ((u)/(v))^′=(u^′ v - uv^′)/(v^2)(v≠0)三、导数在函数单调性中的应用。

1. 函数单调性与导数的关系。

- 设函数y = f(x)在某个区间内可导,如果f^′(x)>0,那么函数y = f(x)在这个区间内单调递增;如果f^′(x)<0,那么函数y = f(x)在这个区间内单调递减。

大学导数应用知识点总结

大学导数应用知识点总结

大学导数应用知识点总结一、导数的定义导数是微积分中的一个重要概念,它表示一个函数在某一点上的变化率。

具体地说,如果函数f(x)在点x处可导,那么它的导数f’(x)就表示了在这一点上函数的变化率。

导数的定义可以通过极限的方式来表示,即在x趋向于某一点a时,函数f(x)的变化率趋向于一个特定的值。

二、导数的性质1. 导数存在的条件函数在某一点处可导的条件是函数在该点处存在的限存在(这个极限必须是有限的)。

如果函数在某一点处的导数存在,那么该点就称为函数的可导点。

通常情况下,可导点包括所有的内点和端点。

2. 导数的计算导数有许多种计算方法,但最常见的方法是使用极限的定义来计算。

具体而言,如果函数f(x)在某一点x处可导,那么它的导数f’(x)可以由以下公式计算得到:\[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} \]3. 导数的性质导数具有一系列的性质,包括加法性、乘法性、链式法则等。

这些性质为导数的计算提供了便利,使得我们可以通过已知函数的导数来得到其他函数的导数。

三、导数的应用导数在数学中有许多重要的应用,下面将简要介绍导数在微积分、物理学和经济学中的应用。

1. 微积分中的应用在微积分中,导数被用来描述函数的局部性质,包括极值、拐点、凹凸性等。

利用导数,我们可以求解函数的最大值和最小值,以及函数的凹凸区间和拐点,这些都是微积分中重要的概念。

2. 物理学中的应用在物理学中,导数被用来描述物体的运动规律。

例如,如果我们知道一个物体的位置函数,那么它的速度函数就是位置函数的导数,而加速度函数就是速度函数的导数。

因此,导数可以用来描述物体的速度和加速度,这对于物理学的研究非常重要。

3. 经济学中的应用在经济学中,导数被用来描述供求曲线、边际成本、边际收益等。

例如,一个企业的总成本函数的导数就是边际成本函数,而总收益函数的导数就是边际收益函数。

导数的知识点和典型例题

导数的知识点和典型例题

导数的知识点和典型例题导数的基本概念1. 导数的定义导数是微积分中的重要概念,表示函数在某一点上的变化率。

对于函数f(x),在点x处的导数可以通过以下公式定义:其中,h表示x点附近的一个小增量。

该定义可以简化为下面的形式:2. 导数的几何意义导数的几何意义是切线的斜率。

对于曲线y=f(x),在点(x, f(x))处的导数即为曲线在该点切线的斜率。

导数正值表示曲线逐渐上升,负值表示曲线逐渐下降。

3. 导数的物理意义导数在物理学中具有速度和加速度的物理意义。

对于位移函数s(t),其导数s’(t)表示在时刻t的瞬时速度。

二阶导数s’’(t)则表示在时刻t的瞬时加速度。

导数的计算方法1. 基本函数的导数以下是一些常见的函数的导数公式:•常数函数:常数函数的导数为0。

•幂函数:幂函数f(x)=x n的导数为f’(x)=nx(n-1)。

•指数函数:指数函数f(x)=a x的导数为f’(x)=a x * ln(a),其中ln(a)表示以e为底a的对数。

•对数函数:对数函数f(x)=log_a(x)的导数为f’(x)=1/(x * ln(a)),其中ln(a)表示以e为底a的对数。

•三角函数:三角函数的导数公式如下:–sin(x)的导数为cos(x)。

–cos(x)的导数为-sin(x)。

–tan(x)的导数为sec^2(x)。

•反三角函数:反三角函数的导数公式如下:–arcsin(x)的导数为1/sqrt(1-x^2)。

–arccos(x)的导数为-1/sqrt(1-x^2)。

–arctan(x)的导数为1/(1+x^2)。

2. 导数的基本运算法则导数具有一些基本的运算法则,便于计算更复杂函数的导数:•常数因子法则:对于函数y=c f(x),其中c为常数,f(x)为可导函数,其导数为y’=c f’(x)。

•和差法则:对于函数y=f(x)±g(x),其中f(x)和g(x)均为可导函数,其导数为y’=f’(x)±g’(x)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《导数及其应用》知识点总结
一、导数的概念和几何意义
1. 函数的平均变化率:函数()f x 在区间12[,]x x 上的平均变化率为:
2121
()()
f x f x x x --。

2. 导数的定义:设函数()y f x =在区间(,)a b 上有定义,0(,)x a b ∈,若x ∆无限趋近于0时,比值00()()f x x f x y x x
+∆-∆=∆∆无限趋近于一个常数A ,则称函数()f x 在0x x =处可导,并称该常数A 为函数()f x 在0x x =处的导数,记作0()f x '。

函数()f x 在0x x =处的导数的实质是在该点的瞬时变化率。

3. 求函数导数的基本步骤:(1)求函数的增量00()()y f x x f x ∆=+∆-;(2)求平均变化率:00()()f x x f x x +∆-∆;(3)取极限,当x ∆无限趋近与0时,00()()
f x x f x x
+∆-∆无限趋近与一个常数A ,则
0()f x A '=.
4. 导数的几何意义:
函数()f x 在0x x =处的导数就是曲线()y f x =在点00(,())x f x 处的切线的斜率。

由此,可以利用导数求曲线的切线方程,具体求法分两步:
(1)求出()y f x =在x 0处的导数,即为曲线()y f x =在点00(,())x f x 处的切线的斜率; (2)在已知切点坐标和切线斜率的条件下,求得切线方程为000()()y y f x x x '-=-。

当点00(,)P x y 不在()y f x =上时,求经过点P 的()y f x =的切线方程,可设切点坐标,由切点坐标得到切线方程,再将P 点的坐标代入确定切点。

特别地,如果曲线()y f x =在点00(,())x f x 处的切线平行与y 轴,这时导数不存在,根据切线定义,可得切线方程为0x x =。

5. 导数的物理意义:
质点做直线运动的位移S 是时间t 的函数()S t ,则()V S t '=表示瞬时速度,()a v t '=表示瞬时加速度。

二、导数的运算
1. 常见函数的导数:
(1)()kx b k '+=(k, b 为常数);ﻩﻩ(2)0C '=(C 为常数); (3)()1x '=; ﻩ
ﻩ(4)2()2x x '=;
(5)32()3x x '=; ﻩﻩ ﻩ(6)211()x x '=-;
(7)'=;ﻩ
(8)1()ααx αx -'=(α为常数);
(9)()ln (0,1)x x a a a a a '=>≠; (10)11(log )log (0,1)ln a a x e a a x x a '==>≠;
(11)()x x e e '=; ﻩ

(12)1(ln )x x
'=; (13)(sin )cos x x '=;ﻩ ﻩﻩ(14)(cos )sin x x '=-。

2. 函数的和、差、积、商的导数:
(1)[()()]()()f x g x f x g x '''±=±; (2)[()]()Cf x Cf x ''=(C 为常数);
(3)[()()]()()()()f x g x f x g x f x g x '''=+; (4)2()()()()()
[](()0)()()f x f x g x f x g x g x g x g x ''-'=≠。

3. 简单复合函数的导数:
若(),y f u u ax b ==+,则x
u x y y u '''=⋅,即x u y y a ''=⋅。

三、导数的应用
1. 求函数的单调性:
利用导数求函数单调性的基本方法:设函数()y f x =在区间(,)a b 内可导, (1)如果恒()0f x '>,则函数()y f x =在区间(,)a b 上为增函数; (2)如果恒()0f x '<,则函数()y f x =在区间(,)a b 上为减函数; (3)如果恒()0f x '=,则函数()y f x =在区间(,)a b 上为常数函数。

利用导数求函数单调性的基本步骤:①求函数()y f x =的定义域;②求导数()f x ';
③解不等式()0f x '>,解集在定义域内的不间断区间为增区间;④解不等式()0f x '<,解集在定义域内的不间断区间为减区间。

反过来, 也可以利用导数由函数的单调性解决相关问题(如确定参数的取值范围): 设函数()y f x =在区间(,)a b 内可导,
(1)如果函数()y f x =在区间(,)a b 上为增函数,则()0f x '≥(其中使()0f x '=的x 值不构成区间); (2) 如果函数()y f x =在区间(,)a b 上为减函数,则()0f x '≤(其中使()0f x '=的x 值不构成区间); (3) 如果函数()y f x =在区间(,)a b 上为常数函数,则()0f x '=恒成立。

2. 求函数的极值:
设函数()y f x =在0x 及其附近有定义,如果对0x 附近的所有的点都有0()()f x f x >(或0()()f x f x <),则称0()f x 是函数()f x 的极小值(或极大值)。

可导函数的极值,可通过研究函数的单调性求得,基本步骤是:
(1)确定函数()f x 的定义域;(2)求导数()f x ';(3)求方程()0f x '=的全部实根,12n x x x <<<,
顺次将定义域分成若干个小区间,并列表:x变化时,()f x '和()f x 值的变化情况:
3. 求函数的最大值与最小值:
如果函数()f x 在定义域I 内存在0x ,使得对任意的x I ∈,总有0()()f x f x ≤,则称0()f x 为函数在定义域上的最大值。

函数在定义域内的极值不一定唯一,但在定义域内的最值是唯一的。

求函数()f x 在区间[,]a b 上的最大值和最小值的步骤: (1)求()f x 在区间(,)a b 上的极值;
(2)将第一步中求得的极值与(),()f a f b 比较,得到()f x 在区间[,]a b 上的最大值与最小值。

4. 解决不等式的有关问题:
(1)不等式恒成立问题(绝对不等式问题)可考虑值域。

()()f x x A ∈的值域是[,]a b 时,不等式()0f x <恒成立的充要条件是max ()0f x <,即0b <;不等式
()0f x >恒成立的充要条件是min ()0f x >,即0a >。

()()f x x A ∈的值域是(,)a b 时,不等式()0f x <恒成立的充要条件是0b ≤;不等式()0f x >恒成立的
充要条件是0a ≥。

(2)证明不等式()0f x <可转化为证明max ()0f x <,或利用函数()f x 的单调性,转化为证明0()()0f x f x <≤。

5. 导数在实际生活中的应用:
实际生活求解最大(小)值问题,通常都可转化为函数的最值. 在利用导数来求函数最值时,一定要注意,极值点唯一的单峰函数,极值点就是最值点,在解题时要加以说明。

相关文档
最新文档