《分式的基本性质》练习题
《分式的基本性质》典型例题

《分式的基本性质》典型例题例1下列分式的变形是否正确,为什么?(1)2a ab a b =(2)acbc a b =例2写出下列等式中的未知分子或未知分母。
(1)322) (b a ab b a =-(2)) (111232+=+++a a a a例3不改变分式的值,将下列各分式中的分子和分母中的各项系数都化为整数.(1)y x y x 02.05.03.02.0-+(2)y x y y x 3412.0--例4不改变分式的值,使下列各分式中的分子、分母的最高次项系数为正数.(1)32211a a a a -+--(2)2332-+-+x x x例5已知不论x 取什么数时,分式53++bx ax (05≠+bx )都是一个定值,求a 、b 应满足的关系式,并求出这个定值.例6已知一个圆台的下底面是上底面的4倍,将圆台放在桌面上,桌面承受压强为P 牛顿/2米,若将圆台倒放,则桌面受到的压强为多少?例7不改变分式的值,使下列分式的分子、分母前都不含“-”号:例8不改变分式的值,使分式yx y x 4.05.03121-+的分子、分母中的多项式的系数都是整数.例9判定下列分式的变形是不是约分变形,变形的结果是否正确,并说明理由:(1)b b a a +=+11;(2)ba b a b a +=++122; (3)x x x x x x 2222323-=--+-;(4)b a a b b a +-=--122.例10化简下列各式:(1)323453b a b a -;(2)bb a a 821624+-; (3)()()()()62332222-+-+-+x x x x x x x x参考答案例 1 分析分式恒等变形的根据是分式的基本性质,应该严格地用基本性质去衡量,0≠M 是基本性质的生果组成部分,应特别注意.解(1)∵已知分式a b /中已隐含了0≠a ,∴用a 分别乘以分式的分子、分母,分式的值不变,故(1)是正确的.(2)因为已知分式b a /中,没限制c ,c 可以取任意数,当然也包括了0=c ,当分式的分子、分母都乘以0=c 时,分式没意义,故(2)是错误的.例2分析(1)式中等号两边的分母都是已知的,所以从观察分母入手,显然,32b a 是由2ab 乘以ab 得到的,由分式的基本性质,b a -也要乘以ab ,所以括号内应填ab b a )(-(2)式中等号两边分子都已知,所以先观察分子,22)1(12+=++a a a 除以1+a 得到右边分子1+a ,按照分式的基本性质,1)1()1(23+-=+÷+a a a a ,故括号内应填.12+-a a解:(1)322)(ba ab b a ab b a ⋅-=-(2))1(1112232+-+=+++a a a a a a 例3分析要把分式的分子、分母中各项系数都化为整数,可根据分式的基本性质,将分子、分母都乘以一个恰当的不为零的数,怎样确定这个数呢?(1)中分子、分母中的各项系数是小数,这个数应是各项系数的最小公倍数.(2)中分子、分母中各项系数(512.0=)是分数,这个数应该是各项系数的分母的最小公倍数,即5,2,4,3的最小公倍数60.解:(1)法1:原式50)02.05.0(50)3.02.0(⨯-⨯+=y x y x y x y x -+=251510 法2:原式100)02.05.0(100)3.02.0(⨯-⨯+=y x y x yx y x y x y x -+=-+=2515102503020 (2)原式y x y x y x y x 4015301260)3241(60)2151(--=⨯-⨯-= 说明在将分式的分子、分母都乘以(或除以)同一个不为零的数时,要遍乘分子分母的每一项,防止漏乘.例4分析(1)式中分子要变号,分母也要变号,所以应该同时改变分子、分母的符号.(2)式中分母需要变号,分子不需要变号,所以需要同时改变分母和分式本身的符号.解:(1)32211a a a a -+--)1()1(322a a a a -+----=11232---+=a a a a (2)2332-+-+x x x )23(32-+--+=x x x 2332+-+=x x x例5分析在研究某些有关特值的数学问题时,我们可以不考虑一般值,而是直接利用取符合条件特殊值代入研究解决,这就是所谓的特殊值法.解:当0=x 时,5353=++bx ax 1=x 时,5353++=++b a bx ax ∵不论x 取什么实数,53++bx ax 是一个定值 ∴5353=++b a ,∴153155+==a a ∵b a 35=∴b a 53= 把b a 53=代入原式,得 535)5(53535353=++=++=++bx bx bx bx bx ax ∴a 、b 的关系为b a 35=;定值为53 例6解:设圆台的压力为G 牛顿,下底面积为1S 2米,上底面积为2S 2米. 则1S G P =,214S S = ∴214PS PS G ==∴当圆台倒放时,桌面受到的压强为:P S P S S G 44222==(牛顿/2米) 答:桌面受到的压强为P 4牛/2米.说明运用分式知识,有助于解决物理中问题(1)n m 25-;(2)a b -4;(3)yx x ---63;(4)b a b a 32+-+. 例7分析根据“分式的变号法则:分子、分母、分式的符号中,同时改变其中任意两个,分式的值不变”.解:(1)同时改变分子和分式的符号,得nm n m 2525-=-;(2)同时改变分母和分式的符号,得ab a b 44-=-; (3)先确定是分母的符号,再变号,得()yx x y x x y x x +=+--=---636363; (4)先确定是分子的符号,然后变号,得()ba b a b a b a b a b a +--=+--=++-323232. 说明 1.分式中的分数线实际上起到了括号的作用.如果分式的分子或分母是多项式,要把它看成是一个整体,考虑这个整体的符号,如(3),(4)题,千万不可误解成yx x y x x -=---6363或b a b a b a b a +--=++-3232; 2.对于(4)题,也可处理成ba ab b a b a +-=++-2332的形式. 例8分析此分式分子中各系数的最小公倍数是6,分母中各系数的最小公倍数是10,而10和6的小公倍数是30.于是可利用分式的基本性质:分子、分母同时乘以30.解:y x y x y x y x y x y x 121510153052213031214.05.03121-+=⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛+=-+. 说明 1.利用分式基本性质将分式的分子、分母化成整系数形式,体现了数学化繁为简的策略,并为分式作进一步处理,提供了便利条件.2.操作过程中,用数30的确定是问题的关键所在.因此不仅要考虑到分子、分母,还要考虑分式,使化成整系数一次到位.例9分析约分变形的前提是分子、分母有公因式.解:(1)、(2)、(3)题的变形都不是约分,结果都是错误的.(1)分式的分子和分母分别是一个整式,利用分式的基本性质,“除以一个整式a ”是对分子、分母的整体进行的.而只对分子和分母中的某一项进行,就违背了分式基本性质的使用前提,所以是错误的.(2)分式的分母是个平方和的形式,不能分解.因此分子、分母没有公因式,它是最简分式.故此题的变形是毫无根据的.(3)当分子、分母都是乘积的形式,才有约分的可能,而这里232x x -与2-x 是和的形式,因此不能进行约分.正确的结果解法是:()()222222223--+-=--+-x x x x x x x x ()()121222+=-++-=x x x x (4)此题是约分变形.因此分母化成()()b a b a -+-的形式,与分子约去公因式b a -可得.说明 1.对于代数式的恒等变形形式多样,但每一种变形却是运用定义、定理,并根据法则规范操作,而绝不能随心所欲;2.对(1)、(2)、(3)题的变形错误,实际上也可以举反例说明.如(1)题:当2=a ,3=b 时,311322+≠+.(2)、(3)题同理. 例10分析化简就是把分式的分子、分母中的公因式约去使其成为最简公式.因此对分子、分母是单项式时候,先分别化成与公因式的乘积形式;对于多项式仍然要先分解因式.解:(1)2222323151533453b a b b a a b a b a b a -=⋅⋅-=-; (2)()()()b a a b a a b b a a 2442448216222224-=+-+=+-; (3)()()()()()()()()()()132121362332222-=+----+=-+-+-+x x x x x x x x x x x x x x x x . 说明 1.当分式中分子或分母的系数为负时,处理负号是首先要进行的.2.约分是实现化简分式的一种手段.通过约分将分式化成最简才是目的.而最简分式为分式间的进一步运算提供了便利条件.3.把分式的分子、分母因式分解是约分的需要,但也要根据分式的具体情况,而不可盲目进行分解.例如(2)题,分式ba 242-已经是最简分式了,因此就没有必要将分子再继续分解了.。
分式的基本性质习题

分式的基本性质习题一、填空题:(每小题2分,共20分)1.不改变分式的值,使分式的首项分子与分式本身都不含“-”号:=________;=___________.2.当a=_______时,分式 的值为零. 2a b a b ---(2)2a b a b ----2232a a a -++3.当分式=-1时,则x__________. 4. 若分式的值为零,则x 的值为 44x x --11x x -+ 5.当x________时,有意义.1x x x -- 6.不改变分式的值,把分式 中分子、分母各项系数化成整数为________. 0.420.51x x +-7.小明参加打靶比赛,有a 次打了m 环,b 次打了n 环, 则此次打靶的平均成绩是________环.8. 当x=___时,分式的值为0. 9. 当x______时,分式有意义. 22943x x x --+11x x +-10. 已知,,,……若(a 、b 都是正整数),则a+b 的最小值212212+=⨯323323+=⨯434434+=⨯10ba 10b a +=⨯是__。
二、选择题(每小题3分,共30分)11. 使分式有意义的的取值范围是( ) A. B. C. D. 24x x -x 2x =2x ≠2x =-2x ≠-12. 已知两个分式:,,其中,则A 与B 的关系是( ) 244A x =-1122B x x =++-2x ≠±A 、相等 B 、互为倒数 C 、互为相反数 D 、A 大于B13. 下列各式从左到右变形正确的是( )A.;B.; C .; D.13(1)223x y x y ++=++0.20.03230.40.0545a b a d c d c d --=++a b b a b c c b --=--22a b a b c d c d--=++14. 下列各式,正确的是( )A.;B.;C.; D .0x y x y +=+22y y x x =1x y x y -+=--11x y x y=--+-15. 下列等式中,不成立的是( )A.;B.;C.;D.22x y x y x y -=--222x xy y x y x y -+=--2xy y x xy x y=--22y x y x xy x y -=-16.下列各式中,是分式的有( )A.1个 B.2个 C.3个 D.4个32222211,,,,,2455x a b m a x y x x a +-+17.当x=-3时,在下列各分式中,有意义的有( )(1).33(2)(3)(2)(3),(2),(3),(4)33(2)(3)(2)(3)x x x x x x x x x x x x +-+++--+---+A. 只有(1);B. 只有(4);C.只有(1)、(3);D.只有(2)、(4)18.下列分式中最简分式是( )A.; B.; C.; D.a b b a --22a b a b ++222m m a a ++2121a a a --+-19.对于分式 的变形永远成立的是( )11x +A.; B.; C.; D.1212x x =++21111x x x -=+-2111(1)x x x +=++1111x x -=+-20.将 中的a 、b 都扩大到3倍,则分式的值( )A.不变 B.扩大3倍; C.扩大9倍 D.扩大6倍3a a b-三、解答题(每小题6分,共36分)21.要使分式的值为零,x 和y 的取值范围是什么?221y x x -+22.x 取什么值时,分式:(1)无意义?(2)有意义?(3)值为零?)3)(2(5+--x x x 23.约分:(1); (2).3232105a bca b c -2432369x xx x x --+24.若分式 的值为正数,求n 的取值范围.2223n n ++。
分式的基本性质__习题精选

分式的基本性质 习题精选基础巩固题1.用式子表示分式的基本性质:________________________________________________。
2.对于分式122x x -+ (1)当________时,分式的值为0(2)当________时,分式的值为1(3)当________时,分式无意义(4)当________时,分式有意义3.填充分子,使等式成立()222(2)a a a -=++ 4.填充分母,使等式成立:()2223434254x x x x -+-=--- 5.化简:233812a b c a bc=_______。
6.(1)()2a b ab a b += (2)()21a a a c ++=(a ≠0) (3)()22233x x x -=-+- (4)()2232565a a a a a ++=+++7.(1))333()3ax by ax by ax by ax by---=-=---,对吗?为什么?(2)22112x y x y x y x y++==---对吗?为什么? 8.把分式x x y+(x ≠0,y ≠0)中的分子、分母的x ,y 同时扩大2倍,那么分式的值 ( ) A .扩大2倍 B .缩小2倍 C .改变 D .不改变9.下列等式正确的是 ( )A .22b b a a =B .1a b a b -+=--C .0a b a b +=+D .0.10.330.22a b a b a b a b--=++ 10.不改变分式的值,把下列各式的分子和分母中各项系数都化为整数。
(1)0.010.50.30.04x y x y -+; (2)322283a b a b --11.不改变分式的值,使下列各分式的分子、分母中最高次项的系数都是整数。
(1)2211x x x y+++- (2)343223324x x x x -+---12.将下列各式约分(1)6425633224a b c a b c = (2)224488a b a b -=-强化提高题13.与分式a b a b-+--相等的是 ( ) A .a b a b +- B .a b a b -+ C .a b a b +-- D a b a b--+ 14.下列等式从左到右的变形正确的是 ( )A .b a =11b a ++B b bm a am =C .2ab b a a= D .22b b a a =15.不改变分式的值,使21233x x x --+-的分子、分母中的最高次项的系数都是正数,则分式可化为 ( ) A . 22133x x x -+- B .22133x x x +++ C .22133x x x ++- D .22133x x x --+ 16.将分式253x yx y -+的分子和分母中的各项系数都化为整数,应为 ( ) A .235x y x y -+ B . 151535x y x y -+ C .1530610x y x y -+ D .253x y x y-+ 17.将分式22x x x +化简得1x x +,则x 必须满足______。
分式基本性质练习题

分式基本性质练习题分式是数学中重要的概念之一,它在实际生活中有着广泛的应用。
本文将为大家提供一些分式基本性质的练习题,帮助读者巩固和深入理解分式的概念和运算规则。
练习题一:分式的乘法和除法1. 计算:$\frac{2}{3} \times \frac{4}{5}$2. 简化:$\frac{16}{24}$3. 计算:$\frac{5}{6} \div \frac{2}{3}$4. 简化:$\frac{12}{36}$练习题二:分式的加法和减法1. 计算:$\frac{1}{4} + \frac{3}{8}$2. 计算:$\frac{5}{6} - \frac{2}{3}$3. 计算:$\frac{2}{5} + \frac{3}{10}$4. 计算:$\frac{3}{4} - \frac{1}{6}$练习题三:分式的化简和换算1. 化简:$\frac{4x^2}{8x}$2. 化简:$\frac{10ab^2}{5a^2b}$3. 将小数$\frac{0.6}{1.2}$化成分数的形式。
4. 将百分数$75\%$化成分数的形式。
练习题四:分式的比较和大小关系1. 比较大小:$\frac{3}{4}$和$\frac{5}{8}$2. 比较大小:$\frac{2}{3}$和$\frac{4}{5}$3. 将分数$\frac{2}{9}$改写成百分数。
4. 将百分数$25\%$改写成分数。
练习题五:分式的应用1. 假设小明每小时工作5小时,小红每小时工作4小时,他们一起工作的效率是多少?2. 某项工程由甲、乙两人合作完成,甲单独完成需要10天,乙单独完成需要15天,他们一起工作多少天可以完成该项目?3. 假设一块土地上有甲、乙两家农场,甲家的土地面积是乙家的2倍,甲家每年产量为1000千克,乙家每年产量为800千克,问两家农场每年的平均产量是多少千克?以上是分式基本性质的练习题,希望读者朋友们通过这些练习能够提高对分式的理解和运用能力。
初二分式的基本性质练习题

初二分式的基本性质练习题一、单项选择题1. 若分式 $\frac{2}{3}x-1$ 的值为 4,求 x 的值为:A) 7 B) 10 C) 15 D) 162. 分式 $\frac{x-3}{5}$ 在 x=8 时,其值为:A) -1 B) 0 C) 1 D) 23. 已知分数 $\frac{2x-1}{x+3}$ 的值为 2,求 x 的值为:A) 1 B) 2 C) 3 D) 44. 将 $\frac{3a-1}{2+a}$ 化简后得到的结果是:A) $\frac{3a}{2}$ B) $\frac{1}{2}$ C) $3a-1$ D) $a+1$5. 若分式 $\frac{2}{3}x+1$ 的值为 5,求 x 的值为:A) 8 B) 9 C) 10 D) 11二、填空题1. 化简分式 $\frac{2x-6}{4-x}$,得到的简化形式为__________.2. 分式 $\frac{3x}{x+2}$ 在 x=4 时,其值为__________.3. 已知分数 $\frac{2x-1}{x+4}$ 的值为 3,求 x 的值为__________.4. 将 $\frac{4a+2}{a-3}$ 化简后得到的结果是__________.5. 若分式 $\frac{3}{2}x+5$ 的值为 10,求 x 的值为__________.三、解答题1. 判断以下分式是否为真分数,并说明理由:a) $\frac{3x-4}{2-x}$b) $\frac{x}{x+1}$c) $\frac{4}{6-x}$d) $\frac{2x-1}{x-2}$2. 在求解方程 $\frac{x}{2} + 3 = 5$ 时,若计算过程中得到分式$\frac{6}{2}$,你会如何判断这个分式的解是否合法?3. 求解方程$\frac{x-3}{2} + \frac{1}{3} = \frac{x+1}{5}$,并验算。
15.1.2分式基本性质考点与练习

15.1.1 分式的基本性质 考点闯关 考点1:分式的基本性质 分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变. 用式子表示为:,(0),A AC A A C C B BC B B C÷==≠÷其中,,A B C 是整式。
1.下列各式从左至右的变形不正确的是( )A .2233y y -=-B .66y y x x -=-C .22xy y x y x =D .a a c b b c+=+ 2.若把分式5y x y+中的x 、y 都扩大5倍,那么分式的值( ) A .扩大5倍 B .不变 C .缩小5倍 D .缩小52倍 3.不改变分式的值,把1312x y x y -+的分子与分母中各项的系数都化为整数,结果为______. 4.已知113x y-=,求5352x xy y x xy y +---的值 考点2:分式的约分(1)约分:把一个分式的分子和分母的公因式(不为1的数)约去,这种变形称为约分;找公因式的方法:①当分子、分母都是单项式时,先找分子、分母系数的最大公约数,再找相同字母的最低次幂,它们的积就是公因式;②当分子、分母都是多项式时,将能因式分解的先因式分解。
(2)最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式,约分时,一般将一个分式化为最简分式.5.下列分式中,是最简分式的是( ).A .2xy xB .222x y -C .22x y x y +-D .22x x + 6.约分:322369a b c a b = ;24424x x x ++=+ . 7.将下列各式约分;22318(1)24a b a b c; 25(3)(2)2(3)a a ----; 2222(3)21a a a --+.8.先化简,再求值:222(1),4x y x y +- 其中35,;2x y ==2223(2),96x xy x xy y --+ 其中32,.43x y ==-题型3:最简公分母与分式的通分通分:异分母的分式可以化成同分母的分式,这一过程叫做通分.最简公分母:各分母的所有因式的最高次幂的积叫做最简公分母通分的关键是准确找出各分式的最简公分母最简公分母的确定方法⑴当各分母的系数都是整数时,取它们的系数的最小公倍数作为最简公分母的系数;⑵所有分式的分母中凡出现的以字母(或含有字母的式子)为底的幂的因式都要取;⑶相同字母(或式子)的幂的因式取指数最高的;⑷当分母是多项式时,一般应将能分解因式的多项式分解因式。
八年级数学分式的基本性质练习3

16. 1. 2分式基本性质(1)-浴知识领航:分式的基本性质是:分式的分子与分母同乘以(或除以)一个不等于0的整式,分式A AC A A-:- C的值不变.用式子表示疋:(C ■ 0)BBC B B-C约分:把一个分式的分子与分母的公因式约去,叫做约分•约分的依据是分式的基本性质.e线聚焦【例】约分:3 2 , 、2⑵, (3)X -(".4y(y-x)(x y) -z分析:第(1)小题分子、分母的最高公因式是7a2b‘,分子或分母的系数是负数时,一般应把负号提到分式的前面;第(2)小题分子分母的最高公因式是2(x-y)2,要会把互为相= (x-y)2, ( y - x)2n = (x - y)2n ,n 为整数2•下列各分式正确的是”b b2a2b2 A. 2 B.a a ab C.2 -2a 1 3x - 4y 12D.8xy -6x2 2x(1) ~35a b c21a b d反数因式进行变形,如(y-x)2n 1(y —x) --(x-y)2n」,n为整数;第(3)小题分子、分母是多项式时,应先分解因式,再约分•4 3 -35a b c21a2b4d -7a2b3 5a2c2 37a b 3bd5a2c3bd(2)32x(x _y)4y(y-x)22x(x -y)4y(x-y)222(x-y) x(x-y) x(x-y)22(x-y) 2y 2y(3)2 2x -(y-z) (x y z)(x y z)2 2(x y) -z (x y z)(x y -z)x「y zx y z♦仔细读题, 1•对于分式-定要选择最佳答案哟! 1x-1,永远成立的是(A.x「1 x 1 B.1x -1 -1C.x—12x -1 (x-1)D.1 1x — 1 x -32 23•若4x =5y(y =0),则x;y的值等于y4.化简分式-丘二1的结果是1-x5.将分式的分子与分母中各项系数化为整数综合运用♦认真解答,一定要细心哟!6.把下列各式约分:m 2 -2m 1 1 -m 2则m,n 的关系是什么?&有四块小场地:一块边长为 宽为b 米的长方形.另有一块大长方形场地, 为2 (a+b )米,试用最简单的式子表示出大长方形场地的周长.八拓广创新♦试一试,你一定能成功哟!z ,求x y y z zx 的值.4 x 2 y 2 z 23a 一b7.已知:分式7的值是1 - xym ,如果分式中 x,y 用它们的相反数代入,那么所得的值为 n9.已知—5,求分式的值.y2x 7xy -2y2^3(a-b)2 (b-a)4 .一块边长为 b 米的正方形,两块长 a 为米, 它的面积等于上面四块场地面积的和,它的长a 米的正方形, x10.已知-2。
分式的基本性质练习及答案

分式的基本性质练习及答案分式的基本性质练及答案一、判断正误并改正:① y6a2-b2(-a-b)2/3 = y(6a2-b2)/(a-b)② (x+ax)/(x+2)(x-3)(x+y)+(x-y)/y+ay = -1/(2+x) = (x-y)/(x+y)(x-y)2二、认真选一选1.下列约分正确的是: C。
a/(b-a) = 2/(2b-a)2.下列变形不正确的是: D。
(6x+3)/(2x+1) ≠ -a-2/(a+2x+2) ≠ (2x+1)/(a(b+1))3.等式成立的条件是: A。
a ≠ 1 且b ≠ 14.如果把分式中的x和y都扩大10倍,那么分式的值不变。
5.不改变分式的值,使1-2x的分子、分母中最高次项的系数都是正数,则此分式可化为: B。
(-2x+1)/(x2-3x+3)6.下面化简正确的是: B。
(2a+1)/(x2+y2-2x+2y(a-1)) = -17.下列约分正确的有: A。
(2+xy)/(x12+1)(a+m) =1/2xy+2+ab+mb/(3x3)三、解答题:1.约分:① (m2-4x)/(4-1-36yz2) = (m-2x)/(2m+1-x6yz)② (a-4)/(a+48-2m) = (2x-y)/(10-15y)③ (2m-m)/(2a-4m-16) = -1/2④ (2x-y)/(10-15y) = (2x-y)/(5-3y)(5+y)⑤ (a-1)/(x-y)(x-y)2 = a-1/[(x-y)2(x+y)]⑥ -(x-y)/(x-y)(x+y)2 = (y-x)/(x-y)(x+y)22.先化简,再求值:① a2-8a+16/a2+ab = (a-4)/(a+b) = (5-4)/(5+2) = 1/7② a2-16a+2ab+b2/2 = [(a-8)2-60]/2 = (52-60)/2 = -43.已知 $a+2b=2$,求 $2a+ab+b^2$ 的值。
八年级数学人教版上册同步练习分式的基本性质(解析版)

15.1.2分式的基本性质一、单选题1.下列约分计算结果正确的是 ( )A .22a b a b a b+=++ B .a m m a n n +=+ C .1a b a b -+=-- D .632a a a= 【答案】C 【分析】利用因式分解,确定分子,分母的公因式,后约分化简,计算即可.【详解】∵22a b +与a +b 没有公因式, ∴22a b a b++无法计算, ∴22a b a b a b+=++的计算是错误的, ∴选项A 不符合题意;∵a +m 与a +n 没有公因式, ∴++a m a n 无法计算, ∴a m m a n n+=+的计算是错误的; ∴选项B 不符合题意;∵-a +b = -(a +b )与a +b 的公因式是a +b , ∴()1a b a b a b a b-+--==---, ∴选项C 符合题意; ∵642a a a=, ∴632a a a=的计算是错误的; ∴选项D 不符合题意;故选C .【点评】本题考查了分式的化简,同底数幂的除法,熟练掌握化简计算的要领是解题的关键.2.下列分式中,属于最简分式的个数是( )①42x ,②221x x +,③211x x --,④11x x --,⑤22y x x y -+,⑥2222x y x y xy++. A .1个B .2个C .3个D .4个【答案】B【分析】根据最简分式的定义判断即可. 【详解】①422x x =,③21111x x x -=-+,④111x x -=--,⑤22y x y x x y-=-+,可约分,不是最简分式; ②221x x +,⑥2222x y x y xy++分子分母没有公因式,是最简分式,一共有二个; 故选:B .【点评】本题考查了最简分式,解题关键是明确最简分式的定义,准确判断分子分母是否含有公因式. 3.下列命题中的真命题是( )A .多项式x 2-6x +9是完全平方式B .若∠A ∶∠B ∶∠C =3∶4∶5,则△ABC 是直角三角形C .分式211x x +-是最简分式 D .命题“对顶角相等”的逆命题是真命题【答案】A【分析】根据完全平方公式、直角三角形性质、分式化简、和对顶角相等的逆命题进行判断即可.【详解】∵x 2-6x +9=(x -3)2,故A 选项是真命题;∵∠A ∶∠B ∶∠C =3∶4∶5,∴∠A =45°,∠B =60°,∠C =75°,故B 选项是假命题; ∵21111x x x +=--,故C 选项是假命题; “对顶角相等”的逆命题是相等的角是对顶角,是假命题,故D 选项是假命题;故选:A【点评】本题考查了分式的性质、完全平方公式、直角三角形性质、逆命题,解题关键是熟练掌握相关知识,准确进行判断.4.化简211x x --的结果是( ) A .11x -+ B .11x - C .11x + D .11x-【答案】A【分析】分母因式分解,再约分即可. 【详解】2111(1)(1)11x x x x x x --==-+-+-, 故选:A .【点评】本题考查了分式的约分,解题关键是把多项式因式分解,然后熟练运用分式基本性质进行约分. 5.若把x ,y 的值同时扩大为原来的2倍,则下列分式的值保持不变的是( )A .()22x y x + B .xy x y + C .22x y ++ D .22x y -- 【答案】A 【分析】根据分式的基本性质即可求出答案.【详解】A 、()22224x y x +=()22x y x +,故A 的值保持不变. B 、42=22xy xy x y x y++,故B 的值不能保持不变. C 、221=221x x y y ++++,故C 的值不能保持不变. D 、221=221x x y y ----,故D 的值不能保持不变. 故选:A .【点评】本题考查了分式,解题的关键是正确理解分式的基本性质,本题属于基础题型.6.下列关于分式2x x+的各种说法中,错误的是( ). A .当0x =时,分式无意义 B .当2x >-时,分式的值为负数C .当2x <-时,分式的值为正数D .当2x =-时,分式的值为0 【答案】B【分析】根据分式的定义和性质,对各个选项逐个分析,即可得到答案.【详解】当0x =时,分式无意义,选项A 正确;当2x >-时,分式的值可能为负数,可能为正数,故选项B 错误;当2x <-时,20x +<,分式的值为正数,选项C 正确;当2x =-时,20x +=,分式的值为0,选项D 正确;故选:B .【点评】本题考查了分式的知识;解题的关键是熟练掌握分式的性质,从而完成求解.7.下列命题中,属于真命题的是( )A .如果0ab =,那么0a =B .253x x x -是最简分式C .直角三角形的两个锐角互余D .不是对顶角的两个角不相等【答案】C【分析】根据有理数的乘法、最简分式的化简、直角三角形的性质、对顶角的概念判断即可.【详解】A. 如果 ab=0,那么a=0或b=0或a 、b 同时为0,本选项说法是假命题,不符合题意; B. ()2555==333x x x x x x x ---,故253x x x-不是最简分式,本选项说法是假命题,不符合题意; C. 直角三角形的两个锐角互余,本选项说法是真命题,符合题意;D. 不是对顶角的两个角可能相等,本选项说法是假命题,不符合题意;故选:C .【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉教材中的性质定理.8.若a b ,则下列分式化简中,正确的是( ) A .22a a b b+=+ B .22a a b b -=- C .33a a b b = D .22a a b b = 【答案】C【分析】根据ab ,可以判断各个选项中的式子是否正确,从而可以解答本题; 【详解】∵ab A 、22a a b b+≠+ ,故该选项错误; B 、22a a b b-≠- ,故该选项错误; C 、33a a b b= ,故该选项正确; D 、22a a b b≠ ,故该选项错误; 故选:C .【点评】本题考查了分式的混合运算,解题时需要熟练掌握分式的性质,分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,熟练掌握分式的基本性质是解题的关键;二、填空题目9.已知a 、b 、c 、d 、e 、f 都为正数,12 bcdef a =,14 acdef b =,18 abdef c =,2 abcef d=,4 abcdf e=,8 abcde f =,则222222a b c d e f +++++=________. 【答案】1198【分析】根据等式性质及分式性质进行计算即可求得结果. 【详解】由12 bcdef a =,14 acdef b =,18 abdef c =,2 abcef d =,4 abcdf e=,8 abcde f =,可将每个等式的左右两边相乘得: ()51abcdef abcdef =,∴1abcdef =,2112bcdef a a a a ⋅==⋅, ∴22a =,同理可得:24b =,28c =,212d =,214e =,218f =, ∴2222221198a b c d e f +++++=; 故答案为1198. 【点评】本题主要考查等式性质及分式性质,熟练掌握等式性质及分式性质是解题的关键. 10.已知114y x -=,则分式2322x xy y x xy y+---的值为______. 【答案】112 【分析】先根据题意得出x-y=4xy ,然后代入所求的式子,进行约分就可求出结果. 【详解】∵114y x-=,∴x-y=4xy ,∴原式=2()383112422x y xy xy xy x y xy xy xy -++==---, 故答案为:112 . 【点评】此题考查分式的基本性质,正确对已知式子进行化简,约分,正确进行变形是关键.11.已知2310x x --=,求4231x x x x ++=-__________. 【答案】4 【分析】将分式整理成()()2222131x x x x -+-,根据2310x x --=可得213x x -=,代入分式并约分即可求解.【详解】∵2310x x --=,∴213x x -=∴4231x x x x++- ()()2222131x x x x -+=- ()223343x x x x+==⋅, 故答案为:4. 【点评】本题考查分式的性质,将分式整理成()()2222131x x x x -+-的形式是解题的关键. 12.将分式132132a b a b +-的分子、分母各项系数化为整数,其结果为_______________. 【答案】6243a b a b+- 【分析】根据分式的基本性质,分子分母都乘以最小公倍数6,分式的值不变,并且其分子、分母各项系数化为整数.【详解】1623214332a b a b a ba b ++=--. 故答案为:6243a b a b+-. 【点评】本题考查了分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.三、解答题13.我们知道:分式和分数有着很多的相似点,如类比分数的基本性质,我们得到了分式的基本性质,等等.小学里,把分子比分母小的数叫做真分数.类似的,我们把分子的次数小于分母的次数的分式称为真分式,反之,称为假分式.对于任何一个假分式都可以化成整式与真分式的和的形式.如:11211x x x x +-+=--=1211x x x -+-- =1+21x -. (1)请写出分式的基本性质 ;(2)下列分式中,属于真分式的是 ;A .21x x -B .11x x -+C .﹣321x -D .2211x x +- (3)将假分式231m m ++,化成整式和真分式的形式. 【答案】(1)分式的分子和分母乘(或除以)同一个不等于0的整式,分式的分式值不变;(2)C ;(3)231m m ++=m ﹣1+41m + 【分析】(1)根据分式的基本性质回答即可;(2)根据分子的次数小于分母的次数的分式称为真分式进行判断即可;(3)先把23m +转化为214m -+得到22314111m m m m m +-=++++,其中前面一个分式约分后化为整式,后面一个是真分式.【详解】(1)分式的分子和分母乘(或除以)同一个不等于0的整式,分式的分式值不变.(2)根据题意得:选项C 的分子次数是0,分母次数是1,分子的次数小于分母的次数是真分式.而其他选项是分子的次数均不小于分母的次数的分式,故AB D 选项是假分式,故选:C .(3)∵22231441411111m m m m m m m m +-+-=+=++++++=m ﹣1+41m +, ∴故答案为:m ﹣1+41m +. 【点评】本题考察了分式的基本性质以及未知数的次数问题,解答本题的关键是熟悉掌握未知数次数的判断以及分式的分子和分母乘(或除以)同一个不等于0的整式,分式的分式值不变.14.约分(1)1232632418a x y a x; (2)ma mb mc a b c+-+-; (3)2222444a ab b a b-+-. 【答案】(1)6243a y ;(2)m ;(3)22a b a b-+ 【分析】(1)约去分子分母的公因式636a x 即可得到结果;(2)将分子进行因式分解,约去公因式(a b c +-)即可得到结果;(3)首先把分子分母分解因式,然后再约掉分子分母的公因式即可.【详解】(1)1232632418a x y a x=6362636463a x a y a x ⨯ =6243a y ; (2)ma mb mc a b c+-+- =()m a b c a b c +-+- =m ;(3)2222444a ab b a b-+-=2(2)(2)(2)a b a b a b -+- =22a b a b-+. 【点评】此题主要考查了分式的约分,关键是正确确定分子分母的公因式.15.先约分,再求值:32322444a ab a a b ab--+ 其中12,2a b ==-. 【答案】2123a b a b +-, 【分析】先把分式的分子分母分解因式,约分后把a 、b 的值代入即可求出答案.【详解】原式=2222444a a b a a ab b ()()--+ =2(2)(2)(2)a a b a b a a b +-- =22a b a b +- 当122a b ==-,时 原式=2121-+=13. 【点评】本题考查了分式的约分,解题的关键是熟练进行分式的约分,本题属于基础题型.16.已知32(1)(1)11x A B x x x x -=++--+,求A 、B 的值. 【答案】A=12, B=52 【分析】先对等式右边通分,再利用分式相等的条件列出关于A 、B 的方程组,解之即可求出A 、B 的值. 【详解】∵()()()()(1)(1)()111111A B A x B x A B x A B x x x x x x ++-++-+==-++-+- , 又∵()()321111A B x x x x x -+=-++-, ∴()()()()()321111A B x A B x x x x x ++--=+-+-,∴32A B A B +=⎧⎨-=-⎩ , 解得1252A B ⎧=⎪⎪⎨⎪=⎪⎩. ∴A =12, B =52. 【点评】本题考查了分式的基本性质.利用分式的基本性质进行通分,再利用系数对应法列出方程组是解题的关键.17.若分式,A B 的和化简后是整式,则称,A B 是一对整合分式.(1)判断22244x x x ---与22x x -是否是一对整合分式,并说明理由; (2)已知分式M ,N 是一对整合分式,2a b M a b-=+,直接写出两个符合题意的分式N . 【答案】(1)是一对整合分式,理由见解析;(2)答案不唯一,如1224,b a a b N N a b a b -+==++. 【分析】(1)根据整合分式的定义即可求出答案.(2)根据整合分式的定义以及分式的运算法则即可求出答案.【详解】(1)是一对整合分式,理由如下: ∵2222222424(2)424x x x x x x x x x x x ----+++==---, 满足一对整合分式的定义,22244x x x --∴-与22x x -是一对整合分式. (2)答案不唯一,如1224,b a a b N N a b a b-+==++. 【点评】本题考查了分式的加减法,解题的关键是熟练运用分式的运算法则,本题属于基础题型.18.已知430,4520,x y z x y z +-=⎧⎨-+=⎩0xyz ≠. (1)用含z 的代数式表示x ,y ;(2)求222232x xy z x y+++的值. 【答案】(1)13x z =,23y z =;(2)165. 【分析】(1)根据加减消元法解关于x 、y 的方程组即可(2)将(1)中的结果代入分式中进行运算即可【详解】(1)430,4520,x y z x y z +-=⎧⎨-+=⎩①② ①4⨯-②得21140y z -=,解得23y z =. 把23y z =代入①,得24303x z z +⨯-=, 解得13x z =. (2)2222222211232321633351233z z z z x xy z x y z z ⎛⎫⨯+⨯⨯+ ⎪++⎝⎭==+⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭. 【点评】本题考查了用加减法解方程组的特殊解法,把x 、y 看作未知数解方程组是解题的关键19.一个矩形的面积为223()x y -,如果它的一边为()x y +,求这个矩形的周长.【答案】这个矩形的周长为:84x y -【分析】根据整式的除法运算法则与合并同类项法则,即可求解.【详解】∵矩形的一边长为()x y +,面积为223()x y -, ∴矩形的另一边长为:223()3()()x y x y x y -=-+ ∴该矩形的周长为:2[()3()]x y x y ++-2(42)x y =-84x y =-.答:这个矩形的周长为:84x y -.【点评】本题主要考查整式的除法法则与加法法则,掌握因式分解与合并同类项法则,是解题的关键. 20.阅读理解:对于二次三项式a 2+2ab+b 2,能直接用完全平方公式进行因式分解,得到结果为(a+b )2.而对于二次三项式a 2+4ab ﹣5b 2,就不能直接用完全平方公式了,但我们可采用下述方法:a2+4ab﹣5b2=a2+4ab+4b2﹣4b2﹣5b2=(a+2b)2﹣9b2,=(a+2b﹣3b)(a+2b+3b)=(a﹣b)(a+5b).像这样把二次三项式分解因式的方法叫做添(拆)项法.解决问趣:(1)请利用上述方法将二次三项式a2+6ab+8b2分解因式;(2)如图,边长为a的正方形纸片1张,边长为b的正方形纸片8张,长为a,宽为b的长方形纸片6张,这些纸片可以拼成一个不重叠,无空隙的长方形图案,请画出示意图;(3)已知x>0,且x≠2,试比较分式2244812x xx x++++与22428xx x-+-的大小.【答案】(1)(a+2b)(a+4b);(2)见解析;(3)222244428812 x x xx x x x-++>+-++【分析】(1)根据题目的引导,先分组,后运用公式法对原式进行因式分解;(2)根据第一问的因式分解结果,对图形进行排列即可;(3)对两个分式的分子和分母分别进行因式分解,然后对分式进行化简并比较大小.【详解】(1)原式=a2+6ab+9a2﹣b2=(a+3b)2﹣b2=(a+3b﹣b)(a+3b+b)=(a+2b)(a+4b);(2)如图:(3)224(2)(2)(2)28(4)(2)(4)x x x xx x x x x-+-+==+-+-+;22244(2)(2)812(2)(6)(6)x x x xx x x x x++++==+++++;∵x>0,∴x+4<x+6,∴222244428812 x x xx x x x-++>+-++.【点评】本题考查了因式分解的应用,通过因式分解化简分式,根据分母大,分数值反而小来比较大小是解题的关键.祝福语祝你考试成功!。
分式基本性质训练(含答案)

分式基本性质训练一、选择题(本大题共20小题,共60.0分)1.根据分式的基本性质,分式−aa−2b可变形为()A.a a+2bB.a−a−2bC.−aa+2bD.−aa−2b2.下列化简正确的是()A.−a+ba−b =-1 B.a2+b2a+b=a+b C.2a−b2a+b=a−ba+bD.a2−b2a+b=a+b3.若把分式:x+yxy中的x和y都扩大2倍,那么分式的值()A.不变B.扩大2倍C.缩小2倍D.扩大4倍4.下列各式从左到右的变形正确的是()A.b a =bcacB.ba=b+ca+cC.ba=b2a2D.ba=aba25.根据分式的基本性质,分式−aa−b可变形为()A.a −a−bB.aa+bC.a−a+bD.aa−b6.下列各式中,正确的是()A.1+b a+2b =1a+2B.a−2a2−4=1a−2C.a+2a−2=a2−4(a−2)2D.−1−ba=-1−ba7.运用分式的性质,下列计算正确的是()A.x6 x2=x3B.x+yx+y=0 C.a+xb+x=abD.−x+yx−y=−18.如果正数x、y同时扩大10倍,那么下列分式中值缩小10倍的是()A.x−1 y−1B.x+1y+1C.x2y3D.xx+y9.不改变分式2x−5 2 y2 3x+y的值,把分子、分母中各项系数化为整数,结果是()A.2x−15y4x+y B.4x−5y2x+3yC.6x−15y4x+2yD.12x−15y4x+6y10.下列各式从左到右的变形一定正确的是()A.0.2a+b a+0.2b =2a+ba+2bB.a2b=ac2bcC.−x+1x−y=x−1x−yD.x−12y12x+y=2x−yx+2y11.对于分式1a+1,总有()A.1 a−1=2a−2B.1a−1=a+1a2−1(a≠-1) C.1a−1=a−1a2−1D.1a−1=−1a+112.等式a2+2a+1a2−1=a+1()中的未知的分母是()A.a2+1B.a2+a+1C.a2+2a+1D.a-113.下列变形正确的是()A.−x y−1=xy+1B.−xy−1=−x+1yC.−xy−1=x1−yD.−xy−1=y−1−x14.下列运算正确的是( )A.y−x−y =−yx−y B.2x+y3x+y =23 C.x 2+y2x+y =x +y D.y−x x 2−y 2=−1x+y15.将分式12a−b a+0.5b 中分子与分母的各项系数都化成整数,正确的是( )A.a−2b2a+b B.a−b2a+b C.2a−2b2a+b D.a−ba+b 16.将a 2+5ab 3a−2b中的a 、b 都扩大为原来的4倍,则分式的值( )A.不变B.扩大原来的4倍C.扩大原来的8倍D.扩大原来的16倍17.下列式子:(1)x−yx 2−y 2=1x−y ;(2)b−ac−a =a−ba−c ;(3)|b−a|a−b =−1;(4)−x+y−x−y =x−yx+y ,其中正确的有( )A.1个B.2个C.3个D.4个 18.下列分式中,与分式3x 相等的是( ) A.9x 2 B.3xx 2 C.3x3x 2 D.3x3x19.下列计算正确的有几个( ) ①a+1a−1=−1;②(a−b)2(b−a)2=−1;③6−2x−x+3=2;④x 2+y 2x+y=x +y .A.0个B.1个C.2个D.3个 20.下列各式从左到右变形正确的是( ) A.x+12+y 3=3(x +1)+2y B.2a−0.03b 0.4c+0.05d =2a−3b 4c+5d C.a−b d−c =b−a c−d D.2a−2b c+d=a−bc+d二、填空题(本大题共2小题,共6.0分)21.不改变分式的值,使分式的分子和分母里次数最高的项的系数是正整数. (1)0.1−0.5x1+0.2x−0.3x 2= ______ ; (2)−12x 2+1312x 2−13x 3= ______ .22.若|x−1|x−1=-1,则x 的取值范围是 ______ .三、解答题(本大题共3小题,共24.0分) 23.①a+bab =( )a 2b;②0.5m+0.3n 0.7m−0.6n =5m+3n( ).24.利用分式的基本性质填空:(1)3a5xy =( )10axy,(a≠0);(2)a+2a2−4=1( ).25.不改变分式的值,使下列分式的分子、分母中最高次项的系数都是正数.(1)1−2x−x2+3x−3(2)-−3x−1x+x2+2.答案和解析【答案】1.D2.A3.C4.D5.C6.C7.D8.C9.D 10.D 11.B 12.D 13.C 14.D 15.A 16.B 17.B 18.B 19.B 20.C 21.5x−103x 2−2x−10;3x 2−22x 3−3x 222.x <123.解:故答案为:①a 2+ab ②7m -6n24.解:(1)3a5xy =6a 210axy (a ≠0); (2)a+2a 2−4=1a−2. 故答案为:6a 2,a -2. 25.解:(1)原式=2x−1x 2−3x+3; (2)原式=3x+1x 2+x+2.【解析】1. 解:−aa−2b =a2b−a =−aa−2b ,故选:D .根据分式的基本性质,即可解答.本题考查了分式的基本性质,解决本题的关键是熟记分式的基本性质. 2. 解:A 、分式的分子分母都除以(a -b ),故A 正确; B 、分式的分子分母除以不同的整式,故B 错误; C 、分子分母除以不同的数,故C 错误; D 、分子分母除以不同的整式,故D 错误. 故选:A .根据分式的分子分母都乘以(或除以)同一个不为零的数或整式,分式的值不变. 本题考查了分式的基本性质,分式的分子分母都乘以(或除以)同一个不为零的数或整式,分式的值不变.3. 解:分别用2x 和2y 去代换原分式中的x 和y , 得2x+2y(2x)(2y)=2x+2y 4xy =2(x+y)2(2xy)=x+y 2xy,可见新分式是原分式的12.故选C .依题意,分别用2x 和2y 去代换原分式中的x 和y ,利用分式的基本性质化简即可. 解题的关键是抓住分子、分母变化的倍数.规律总结:解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论.4. 解:A 、当c ≠0时,ba =bcac 才成立,所以选项A 不正确; B 、ba ≠b+ca+c ,所以选项B 不正确;C 、当a =b 时,ba=b 2a 2才成立,所以选项C 不正确;D 、∵a 是分母, ∴a ≠0, ∴ba =ab a 2,所以选项D 正确; 故选D .根据分式的基本性质依次进行判断即可,注意乘除一个数或代数式时要保证不为0. 本题考查了分式的基本性质,熟练掌握分式的基本性质是关键. 5. 解:A 、只改变了分子的符号,故A 错误; B 、只改变了分子的符号,故B 错误; C 、改变了分子分母的符号,故C 正确; D 、只改变了分子的符号,故D 错误; 故选:C .根据分式的分子、分母及本身的符号,任意改变其中的两个,分式的值不变,可得答案. 本题考查了分式的性质,分式的分子、分母及本身的符号,任意改变其中的两个,分式的值不变.6. 解:A 、1+ba+2b 为最简分式,所以A 选项错误; B 、原式=a−2(a+2)(a−2)=1a+2,所以B 选项错误; C 、原式=a 2−4(a−2)2,所以C 选项正确; D 、原式=-1+b a ,所以D 选项错误.故选C .根据分式的基本性质对各选项进行判断.本题考查了分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.7. 解:A 、分子分母都除以x 2,故A 错误; B 、分子分母都除以(x +y ),故B 错误;C 、分子分母都减x ,分式的值发生变化,故C 错误;D 、分子分母都除以(x -y ),故D 正确; 故选:D .根据分式的分子分母都乘以(或除以)同一个整式,分式的值不变,可得答案. 本题考查了分式的基本性质,分式的分子分母都乘以(或除以)同一个整式,分式的值不变.8. 解:A 、∵正数x 、y 同时扩大10倍, ∴10x−110y−1,无法化简,故此选项错误; B 、∵正数x 、y 同时扩大10倍, ∴10x+110y+1,无法化简,故此选项错误; C 、∵正数x 、y 同时扩大10倍, ∴(10x)2(10y)3=x 2100y 3,∴正数x 、y 同时扩大10倍,分式的值缩小10倍的是x 2y 3,故此选项正确; D 、10x10x+10y =xx+y ,故此选项错误.故选:C .直接利用分式的基本性质化简进而求出答案.此题主要考查了分式的基本性质,正确化简分式是解题关键. 9. 解:分式的分子和分母乘以6,原式=12x−15y 4x+6y.故选D .分式的分子、分母中含有分数系数,不改变分式的值,使分式分子、分母的各项系数化为整数要乘以2与3的最小公倍数6.易错选A 选项,因为在分子和分母都乘以6时,原本系数是整数的项容易漏乘,应特别注意.10. 解:A 、分子、分母乘以不同的数,故A 错误; B 、c =0时,无意义,故B 错误;C 、分子、分母、分式改变其中任何两项的符号,结果不变,故C 错误;D 、分子、分母都乘以2,故D 正确. 故选:D .根据分式的性质,可得答案.本题考查了分式的性质,分子分母都乘以(或除以)同一个不为零的数(或整式),结果不变.11. 解:(B )1a−1=(a+1)(a−1)(a+1)=a+1a 2−1,(a ≠-1) 故选(B )根据分式的基本性质即可求出答案.本题考查分式的基本性质,属于基础题型. 12. 解:原式=(a+1)2(a+1)(a−1)=a+1a−1故选(D )根据分式的基本性质即可求出答案.本题考查分式的基本性质,涉及因式分解.13. 解:A 、改变了分子分母一部分的符号,故A 错误; B 、分子加1,分母减1,分式的值变化,故B 错误; C 、分式的分子、分母及本身的符号,任意改变其中的两个,分式的值不变,故C 正确; D 、左右互为倒数,故D 错误; 故选:C .根据分式的分子、分母及本身的符号,任意改变其中的两个,分式的值不变,可得答案. 本题考查了分式的性质,分式的分子、分母及本身的符号,任意改变其中的两个,分式的值不变.14. 解:A 、y−x−y =−yx+y ,故A 错误;B 、C 分式中没有公因式,不能约分,故B 、C 错误;D 、y−x(x+y)(x−y)=−x−y(x+y)(x−y)=−1x+y ,故D 正确.故选D .根据分式的基本性质逐项进行判断,选择正确答案.对分式的化简,正确理解分式的基本性质是关键,约分时首先要把分子、分母中的式子分解因式.15. 解:分式12a−b a+0.5b中分子与分母的各项系数都化成整数,正确的是a−2b2a+b ,故选:A .根据分式的分子分母都乘或除以同一个不为零的整式,分式的值不变,可得答案. 本题考查了分式的基本性质,利用了分式的基本性质. 16. 解:a 2+5ab 3a−2b中的a 、b 都扩大为原来的4倍,则分式的值扩大为原来的4倍,故选:B .根据分式的分子分母都乘以(或除以)同一个不为零,分式的值不变,可得答案. 本题考查了分式的基本性质,分式的分子分母都乘以(或除以)同一个不为零,分式的值不变.17. 解:(1)x−yx 2−y 2=x−y(x+y)(x−y)=1x+y ,错误; (2)b−ac−a =a−b a−c ,正确;(3)∵b 与a 的大小关系不确定,∴|b−a|a−b 的值不确定,错误; (4)−x+y−x−y =x−yx+y ,正确.故选B .根据分式的基本性质作答.在分式中,无论进行何种运算,如果要不改变分式的值,则所做变化必须遵循分式基本性质的要求.18. 解:A 、分子乘以3,分母乘以x ,故A 错误; B 、分子分母都乘以x ,故B 正确;C 、分子乘以x ,分母乘以3x ,故C 错误;D 、分子乘以x ,分母乘以3,故D 错误; 故选:B .根据分式的分子分母都乘以(或除以)同一个不为零数(或整式),分式的值不变. 本题考查了分式基本性质,分式的分子分母都乘以(或除以)同一个不为零数(或整式),分式的值不变. 19. 解:∵a+1a−1≠−1, ∴结论①不正确; ∵(a−b)2(b−a)2=1, ∴结论②不正确; ∵6−2x −x+3=2, ∴结论③正确; ∵x 2+y 2x+y ≠x +y ,∴结论④不正确. 综上,可得计算正确的有1个:③. 故选:B .①根据a+1a−1≠−1,可得结论①不正确,据此判断即可.②根据(a−b)2(b−a)2=1,可得结论②不正确,据此判断即可.③根据分式的基本性质,可得6−2x−x+3=2,所以结论③正确,据此判断即可. ④根据x 2+y 2x+y≠x +y ,可得结论④不正确,据此判断即可.此题主要考查了分式的基本性质的应用,要熟练掌握,解答此题的关键是要明确:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变. 20. 解:A 、该式子不是方程,不能去分母,故A 错误;B 、分式中的分子、分母的各项没有同时扩大相同的倍数,故B 错误;C 、a−b d−c =b−ac−d ,故C 正确;D 、分式中的分子、分母的各项没有同时除以2,故D 错误. 故选C .依据分式的基本性质进行变化,分子分母上同时乘以或除以同一个非0的数或式子,分式的值不变.在分式中,无论进行何种运算,如果要不改变分式的值,则所做变化必须遵循分式基本性质的要求.21. 解:(1)0.1−0.5x 1+0.2x−0.3x 2=5x−103x 2−2x−10; (2)−12x 2+1312x 2−13x 3=3x 2−22x 3−3x 2,故答案为:5x−103x 2−2x−10,3x 2−22x 3−3x 2.根据分式的分子分母都乘以(或除以)同一个不为零数,分式的值不变,可得答案. 本题考查了分式的基本性质.在分式中,无论进行何种运算,如果要不改变分式的值,则所做变化必须遵循分式基本性质的要求. 22. 解:由题意得x -1≤0且x -1≠0即x ≤1,且x ≠1所以x <1. 故答案为x <1.由绝对值的定义和分式有意义的条件入手求解.解决本题的关键是注意分式的分母不能为0.即x -1≠0的条件. 23.根据分式的基本性质即可求出答案.本题考查分式的基本性质,属于基础题型. 24.根据分式的分子分母都乘或除以同一个不为零的整式,分式的值不变,可得答案. 本题考查了分式的性质,分式的分子分母都乘或除以同一个不为零的整式,分式的值不变. 25.(1)根据分式的分子分母都乘以-1,分式的值不变,可得答案;(2)根据分式的分子、分母、分式改变任意两项的符号,分式的值不变,可得答案. 本题考查了分式的基本性质,利用了分式的基本性质.。
八年级数学上册分式的基本性质课时练习(含解析)

分式的基本性质一、选择题1、下列说法正确的是( )A.2y x 与23x y x+的最简公分母是5x 2B. 313a b 与316ab 的最简公分母是3ab C. 313a b 与316ab的最简公分母是3a 3b 3 D. 2y x 与23x y x +的最简公分母是6x 2【答案】D【解析】试题分析:根据最简公分母的定义求出结果.解:A 选项:2y x 与23x y x+的最简公分母是6x 2,故A 选项错误;B 选项:313a b 与316ab的最简公分母是6a 3b 3,故B 选项错误;C 选项:313a b 与316ab的最简公分母是6a 3b 3,故C 选项错误;D 选项:2y x 与23x y x +的最简公分母是6x 2,故D 选项正确.故应选D.考点:最简公分母2、下列分式是最简分式的( )A.223a a b B.23a a a - C.22a b a b ++ D. 222a ab a b --【答案】C【解析】试题分析:根据最简分式的定义进行判断.解:A 选项:223a a b 的分子、分母中有公因式a ,故A 选项不符合题意;B 选项:23a a a-的分子、分母中有公因式a ,故B 选项不符合题意;C 选项:22a b a b++的分子、分母没有公因式,所以是最简分式,故C 选项符合题意;D 选项:222a ab a b--的分子、分母中有公因式a-b ,故D 选项不符合题意.故应选C.考点:最简分式3、分式221x y -与1x y+的最简公分母为( )A. x-yB. x+yC. x 2-y 2D. (x 2-y 2)(x+y)【答案】C【解析】试题分析:先对可以分解因式的分母分解因式,再根据求最简公分母的方法求解即可.解:∵()()22x y x y x y -=+-∴分式221x y -与1x y+的最简公分母为x 2-y 2故应选C.考点:最简公分母4、如果把分式3x y x y+中的x 和y 都扩大为2倍,则分式的值( )A. 扩大为4倍 B. 扩大为8倍 C. 不变 D. 缩小为2倍【答案】B【解析】试题分析:根据分式的基本性质对分式进行变形,根据变形结果进行判断.解:如果x 和y 都扩大为2倍,则有()()()()333322821682222x y x y x y x y x y x y x y x y ⋅⋅===++++,所以分式的值扩大为原来的8倍.故应选B.考点:分式的基本性质5、已知2334b a b =-,则a b=( )A. 6 B. 119 C. 215 D. 27-【答案】B【解析】试题分析:根据比例的性质,可得8b=9a﹣3b,根据等式的性质,可得答案.解:由比例的性质,得8b=9a﹣3b.由等式的性质,得11b=9a ,119a b =故应选:B .考点:分式的基本性质.6、不改变分式的值,将分式20.020.23x x a b-+中各项系数均化为整数,结果为 ( )A. 2223x x a b -+ B.25010150x x a b -+ C. 2502103x x a b -+ D. 2210150x x a b-+【答案】B【解析】试题分析:利用分式的基本性质把分式的分子、分母都乘以100即可得到结果.解:()()2220.021000.02500.230.2310010150x x x x x x a b a b a b-⨯--==++⨯+,故应应选B.考点:分式的基本性质7、不改变分式的值,将下列各分式中的分子、分母的系数化为整数,其结果不正确的为( )A. 113223113223a b a b a ba b ++=-- B. 1.30.813820.7207x y x y x y x y --=-- C. 134624172748x y x y x yx y --=++ D. 135320.55x y x y x x --=【答案】D【解析】试题分析:根据分式的基本性质进行变形得到结果,根据得到的结果判断正误.解:A 选项,分子、分母同乘以6,正确;B 选项,分子、分母同乘以10,正确;C 选项,分子、分母同乘以8,正确;D 选项,分子、分母同乘以2,即得13620.5x y x y x x--=,错误.故应选D.考点:分式的基本性质8、根据分式的基本性质,分式a a b--可变形为( )A. a a b -- B. a a b + C. a a b -- D. a a b -+ 【答案】C【解析】试题分析:分式的符号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变.依次分析各选项即可作出判断.解:.故应选C.考点:分式的基本性质二、填空题9、分式312x ;()216x x y -的最简公分母是_ .【答案】6x 3(x-y)【解析】试题分析:根据确定最简公分母的方法求出结果.解:分式312x ;()216x x y -的最简公分母是6x 3(x-y)考点:最简公分母10、不改变分式的值,使分式的分子与分母都不含负号.(1)5x y-=-_____________;(2)2a b--=-_____________.【答案】(1) 5x y ;(2) 2a b-【解析】试题分析:分式的符号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变.依次分析各选项即可作出判断.解:(1)55x x y y-=-;(2) 22a a b b--=--.故答案是(1) 5x y ;(2) 2a b-.考点:分式的基本性质11、把分式32223a b a b -+的分子、分母中的各项系数都化为整数,且保持分式的值不变,则结果为_________________.【答案】12946a ba b-+【解析】试题分析:根据分式的基本性质把分子、分母同时乘以6,可得结果.解:33262129222246633a b a b a b a b a b a b ⎛⎫-⨯- ⎪-⎝⎭==+⎛⎫++⨯ ⎪⎝⎭.故答案是12946a b a b-+.考点:分式的基本性质. 12、若23b a =,则a b a b -=+ .【答案】15【解析】试题分析:根据23b a =,可设a=3k ,b=2k ,然后再利用代入法求出分式的值.解:因为23b a =,设a=3k ,b=2k ,3213255a b k k k a b k k k --===++.故答案是15.考点:分式的基本性质三、解答题13、化简:2223712a a a a ---+.【答案】14a a +-【解析】试题分析:首先把分式的分子、分母分别分解因式,然后再约去公因式.解:2223712a a a a ---+()()()()3134a a a a -+=--14a a +=-.考点:约分14、约分:22211m m m-+-.【答案】11mm -+【解析】试题分析:首先把分式的分子、分母分别分解因式,然后再约去公因式.解:22211m m m -+-()()()2111m m m -=-+11m m -=+.考点:约分15、先化简,再求值.(1)22969m m m -++,其中m=5.【答案】14【解析】试题分析:首先根据分式的基本性质把分式化简,然后再把字母的值代入化简后的分式中求值.解:22969m m m -++()()()2333m m m +-=+33m m -=+,当m=5时,原式33m m -=+5353-=+14=考点:分式的化简求值.。
(完整word版)分式的基本性质练习题

分式的基本性质练习题一 选择题1.据分式的基本性质,分式a a b--可变形为( )A .a a b-- B .b a a - C .b a a -- D .a a b+ 2.下列各式中,正确的是( ) A x y x y-+--=x y x y-+ B x y x y -+-=x y x y--- C x y x y -+--=x y x y +- D x y x y -+-=x y x y-+ 3.下面式子:c b a cba --=+-,c b a c b a --=--,cb ac b a +-=+-,正确的是( )个 A 0 B 1 C 2 D 34.对于分式1/(x —1),永远成立的是( ) A .1211+=-x x B 。
11112-+=-x x x C 。
2)1(111--=-x x x D.3111--=-x x 5.下列各分式正确的是( )A 。
22ab a b = B 。
b a ba b a +=++22 C 。
a a a a -=-+-11122 D 。
x xxy y x 2168432=--6.下列各式中,正确的是( )A .a mab mb+=+ B .a b a b++=0 C .1111ab b ac c --=-- D .221x y x y x y-=-+7.下列等式成立的是( )A 22m n m n = B)0(≠++=a a m a n m n C )0(≠--=a a m a n m n D )0(≠=a manam n 8.下列等式成立的是( ) A cb ba cb ba -+=--+- Bb a ba b a +=++22 Cxy xyy x xy 22-=-- Dcb ac b a --=--9.式子1/(x —3)=(x+2)/(x-3)(x+2)成立,则( )A x+2>0 B x+2=0 C x+2<0 D x+2≠010.已知3x /(x 2—3x)=3/(x —3)成立,则( )A x >0 B x <0 C x ≠3 D x ≠0且x ≠3 11.化简(x -1∕y )∕(y -1∕x )=( )A 1 B y ∕x C x ∕y D x ∕y -y ∕x12.分式434y x a+,2411x x --,22x xy y x y-++,2222a ab ab b +-中是最简分式的有( )A 1个 B 2个 C 3个 D 4个13.下列各题所求的最简公分母,错误的是( )A .1/3x 与a /6x 2最简公分母是6x 2B. 3231b a 与cb a 3231最简公分母是3a 2b 3c C.nm +1与nm -1的最简公分母是m 2—n 2D 。
八年级数学上册分式基本性质习题新版新人教版

解:原式=x+24y,当 x+4y=-12时,原式=-4
(2)a2-3a4ba-b+6b42b2,其中 a=-2,b=1.
a-2b 解:原式= 3b ,当
a=-2,b=通分 8.分式ab2,ba2,aa22+ -bb22的最简公分母是( C ) A.a2-b2 B.ab(a+b)(a-b) C.a2b2(a+b)-2)1(x+3),(x+2 3)2通分,错误的一步是(C )
享
19.先阅读,然后回答问题:
若ab=-2,求aa22--26aabb--37bb22的值.
解:因为ba=-2,所以 a=-2b,(第一步) 所以aa22--26aabb--37bb22=((--22bb))22--26((--22bb))bb--37bb22=59bb22=59.(第二步)
(1)回答问题:
18.对分式aa2- +bb2的变形:
甲同学的解法是:aa2- +bb2=(a+b)a+(ba-b)=a-b;
乙
同
学
的
解
法
是
:
a2-b2 a+b
=
(a2-b2)(a-b) (a+b)(a-b)
=
(a2-ba22)-(b2a-b)=a-b.
请判断甲、乙两同学的解法是否正确,并说明理由.
解:甲同学的解法正确,乙同学的解法不正确.理由:乙同 学在进行分式的变形时,分子、分母同乘(a-b),而a-b可 能为0,所以乙同学w(k≠0),则 x=3k,y=4k,z=6k,所 以xx+ -yy- +zz=33kk+-44kk式的基本性质进行分式变形时,要注意:①分式变形 前后的值相等;②分子和分母要同乘或同除,不能只对分子或分母 进行变形;③所乘(或除以)的整式不能为 0. 2.分式约分时需注意分式的分子、分母都是乘积形式时才能进 行约分;分子、分母是多项式时,通常先将分子、分母分解因式, 再约分,约分的结果是整式或最简分式. 3.分式通分的方法是先求各分式的最简公分母,然后用这个最 简公分母除以分式的分母,用所得的商去乘原分式的分子、分母.
分式培优练习题(基本性质) 姓名

分式的基本性质培优 姓名一.选择题1.在代数式22221323252,,,,,,33423x x xy x x x x π+-+中,分式共有( ). A.2个B.3个C.4个D.5个 2.使分式5+x x 值为0的x 值是( ) A .0 B .5C .-5D .x ≠-5 3. 下列判断错误..的是( ) A .当23x ≠时,分式231-+x x 有意义 B .当a b ≠时,分式22ab a b -有意义 C .当21-=x 时,分式214x x+值为0 D .当x y ≠时,分式22x y y x --有意义 4.x 为任何实数时,下列分式中一定有意义的是( )A .21x x+ B .211x x -- C .11x x -+ D .211x x -+ 5.如果把分式yx y x ++2中的x 和y 都扩到原来的10倍,那么分式的值( ) A .扩大10倍B .缩小10倍C .是原来的32 D .不变 6.下列各式中,正确的是( )A .a m a b m b +=+B .0a b a b+=+ C .1111ab b ac c +-=-- D .221x y x y x y -=-+ 二.填空题7.当x =______时,分式632-x x 无意义. 8.若分式67x--的值为正数,则x 满足______. 9.(1)112()x x x --=- (2).y x xy x 22353)(= 10.(1)22)(1y x y x -=+ (2)⋅-=--24)(21y y x 11.分式2214a b 与36x ab c的最简公分母是_________. 12. 化简分式:(1)3()x y y x -=-_____;(2)22996x x x -=-+_____.三.解答题13.当x 为何值时,下列分式有意义?(1)12x x +-;(2)1041x x -+;(3)211x x -+;(4)2211x x ---.14.已知分式,y a y b-+当y =-3时无意义,当y =2时分式的值为0,求当y =-7时分式的值.15.不改变分式的值,使分子、分母中次数最高的项的系数都化为正数.(1)22x x y --= (2)2ba a --=(3)2211x x x x ---+= (4)2231m m m ---=16、已知x yz 3460==≠,求x y zx y z +--+的值。
八年级数学分式的基本性质及运算基础练习(含答案)

八年级数学分式的基本性质及运算基础练习试卷简介:本试卷共五道题,考察同学们对分式的基本性质,及加减乘除混合运算的掌握,分式是八年级下册的重要知识,也是中考的常考题型,需要好好掌握学习建议:先预习一下分式的定义,性质及加减乘除运算法则一、单选题(共5道,每道20分)1.当x满足下列选项中的哪个时,分式有意义()A.B.C.D.答案:D解题思路:分式有意义,只需要分母不为0即可,因此|x|-5≠0,即易错点:不清晰分式有意义的要求试题难度:三颗星知识点:分式有意义的条件2.已知当x=-2时,分式无意义,x=4时,此分式的值为0,则a+b的值为()A.6B.2C.-2D.-6答案:B解题思路:当x=-2时,分式无意义,说明当x=-2时,x-a=0,即a=-2;x=4时,此分式的值为0,说明x=4时,x-b=0,即b=4,所以a+b=-2+4=2易错点:混淆分式有意义与分式值为0,对分式中分子分母的要求。
试题难度:三颗星知识点:分式的值为零的条件3.A、B两地相距s千米,小明从A地到B地每小时走a千米,从B地到A地每小时走b千米,则他往返的平均速度是()A.B.C.D.答案:C解题思路:从A地到B地所用时间为,从B地到A地所用时间为,往返平均速度为易错点:平均速度=总路程÷总时间试题难度:四颗星知识点:列代数式(分式)4.计算:=()A.B.0C.D.答案:A解题思路:易错点:异分母分式相加减,先通分,化为同分母分式,然后再按照同分母分式加减的法则进行.试题难度:三颗星知识点:分式的加减法5.下列各式计算正确的是( )A.B.C.D.答案:D解题思路:,,易错点:不清晰分式加减的运算法则试题难度:三颗星知识点:分式的加减法。
分式的基本性质专项练习30题(有答案)ok

分数的基本性质专项练习30题(有答案)1.如果把分式中的x、y都扩大到原来的10倍,则分式的值()A.扩大100倍B.扩大10倍C.不变D.缩小到原来的2.如果把分式中的x和y都扩大3倍,那么分式的值()A.扩大3倍B.缩小3倍C.缩小6倍D.不变3.不改变分式的值,把分子、分母中各项系数化为整数,结果是()A.B.C.D.4.下列各式,正确的是()D. A.=0 B.C.=15.下列分式的变形中,正确的是()A.B.C.D.(a≠0)6.下列各式中,与分式的值相等的是()A.B.C.D.7.下列分式中,与分式的值相等的是()A.B.C.﹣D.﹣8.化简的结果是()A.B.1C.D.x﹣y9.化简﹣的结果是()A.a+1 B.a﹣1 C.1﹣a D.﹣1﹣a10.若0<x<2,化简,结果等于()A.0B.﹣2 C.2D.111.下列各式从左边到右边的变形正确的是()A.B.C.D.12.不改变分式的值,把它的分子,分母的系数化为整数,其结果正确的是()A.B.C.D.13.下列各式:①(a3b2)2=a5b4;②(a﹣b)2•(b﹣a)5=(a﹣b)7;③;④,其中正确的个数为()A.1个B.2个C.3个D.4个14.以下变形①;②;③;④;⑤;⑥中一定正确的个数是()A.2B.3C.4D.515.不改变分式的值,使它的分子,分母的最高次项的系数是正数,则=_________.16.=,()中应填入为_________.17.不改变分式的值,将分式的分子与分母的各项系数化为整数为_________.18.若=﹣1,则x的取值范围是_________.19.,,()中应填入为_________,_________.20.利用分式的基本性质填空:(1),(a≠0);(2);()中为(1)_________,(2)_________.21.设,则=_________.22.,括号中应填上:_________.23.,,依次从上往下该填入:_________,_________,_________,_________.24.若x:y:z=1:2:1,则=_________.25.若,则=_________.26.不改变分式的值,使分子、分母都不含负号:(1)=_________;(2)=_________;(3)=_________.27.已知:=6,那么的值为_________.28.若,则的值为_________.29.若等式成立,则A=_________.30.已知a+=5,求的值.参考答案:1.分别用10x,10y代替式子中的x、y得==,可见新分式与原分式相等.故选C.2.将x,y用3x,3y代入中可得=,∴分式的值不变.故选D3.分式的分子和分母乘以6,原式=.故选D.4.A、只有当分子为0,分式才为0,题中没有这个条件,故A错误;B、当分子分母异号时,两边都平方等式不成立,故B错误;C、不能约分,故C错误;D、,故D正确.故选D5.A中的x不是分子、分母的因式,故A错误;B、分子、分母乘的数不同,故B错误;C、(a≠0),故C正确;D、分式的分子、分母同时减去同一个非0的a,分式的值改变,故D错误.故选C6..故选A7.A、化简,得到,故A错误,B、与原式不等,故B错误,C、=,故C正确,D、化简﹣得到,故D错误.故选C8.=.故选A9.﹣=,故选A.10.∵0<x<2,∴|x﹣2|=2﹣x,|2﹣x|=2﹣x,∴==﹣1﹣1=﹣2.故选B11.A、原式的变形不符合分式的基本性质,故A错误;B、分式的分子、分母同时乘以10,得,故B错误;C、同时改变分式整体和分子的符号,得,故C错误;正确的只有D,故选D12.=.故选B.13.①根据积的乘方,我们可以得出(a3b2)2=a3×2b2×2=a6b4,因此①是错误的;②原式=(a﹣b)2•(b﹣a)5=﹣(a﹣b)2(a﹣b)5=﹣(a﹣b)2+5=﹣(ab)7,②是错误的;③中很明显,左右两边的分子不相等,因此③是错误的;④将左边的分子和分母同时×10后与右边相等,④是正确的.故选A14.①,当x=﹣1时,不成立,故本小题错误;②,分子分母都乘以x+1≠0,故本小题正确;③,分子分母都乘以x2+1≠0,故本小题正确;④,当x=0时,不成立,故本小题错误;⑤,当y=0时,不成立,故本小题错误;⑥,分子分母都乘以100,成立,故本小题正确.∴正确的有②③⑥共3个.故选B.15.===16.由题意可得,分子分母需同时除以mn,(m2n+mn2)÷mn=m+n.故填m+n.17.将分子分母同时乘以10,则分式变为:.18.由题意得x﹣1≤0且x﹣1≠0即x≤1,且x≠1所以x<1.故答案为x<119.根据分式的性质可得:()中应填入为a2+ab,x.故答案为a2+ab、x20.()中为(1)6a2,(2)a﹣2.21.设=k,则x=3k,y=4k,z=2k.则=.故答案为﹣.22.原式=.故答案为2a23.根据分式的基本性质,依次从上往下、从左往右填入:2ab,2ab,3ab,3ab.故答案为2ab、2ab、3ab、3ab24.∵x:y:z=1:2:1,可设x=k,则y=2k,z=k则==故=1.故答案为1 25.设=k,则a=2k,b=3k,c=4k.∴===.故答案为26.(1)=;(2)=;(3)=27. 由=6,得a+b=6ab,∴==.故答案为.28.∵,∴y=2x,∴=.故答案为﹣29.分子变化成第二个分式的分子,变化的方法是除以x﹣1,∴分母为(x2﹣1)÷(x﹣1)=x+1,∴A=x+1.故答案为x+130. ∵a+=5,∴(a+)2=25,即a2+2+=25,∴a2+=23,=a2+1+=23+1=24.故答案为:24。
【最新精选】分式的基本性质__习题精选

分式的基本性质 习题精选基础巩固题1.用式子表示分式的基本性质:________________________________________________。
2.对于分式122x x -+ (1)当________时,分式的值为0(2)当________时,分式的值为1(3)当________时,分式无意义(4)当________时,分式有意义3.填充分子,使等式成立()222(2)a a a -=++ 4.填充分母,使等式成立:()2223434254x x x x -+-=--- 5.化简:233812a b c a bc=_______。
6.(1)()2a b ab a b += (2)()21a a a c ++=(a ≠0) (3)()22233x x x -=-+- (4)()2232565a a a a a ++=+++ 7.(1))333()3ax by ax by ax by ax by---=-=---,对吗?为什么?(2)22112x y x y x yx y ++==---对吗?为什么?8.把分式xx y+(x≠0,y≠0)中的分子、分母的x,y同时扩大2倍,那么分式的值()A.扩大2倍B.缩小2倍C.改变D.不改变9.下列等式正确的是()A.22b ba a=B.1a ba b-+=--C.0a ba b+=+D.0.10.330.22a b a ba b a b--=++10.不改变分式的值,把下列各式的分子和分母中各项系数都化为整数。
(1)0.010.50.30.04x yx y-+;(2)322283a ba b--11.不改变分式的值,使下列各分式的分子、分母中最高次项的系数都是整数。
(1)2211x xx y+++-(2)343223324x xx x-+---12.将下列各式约分(1)6425633224a b ca b c=(2)224488a ba b-=-强化提高题13.与分式a ba b-+--相等的是()A.a ba b+-B.a ba b-+C.a ba b+--Da ba b--+14.下列等式从左到右的变形正确的是()A.ba=11ba++Bb bma am=C.2ab baa=D.22b ba a=15.不改变分式的值,使21233x x x --+-的分子、分母中的最高次项的系数都是正数,则分式可化为 ( )A . 22133x x x -+-B .22133x x x +++C .22133x x x ++-D .22133x x x --+ 16.将分式253x y x y -+的分子和分母中的各项系数都化为整数,应为 ( ) A .235x y x y -+ B . 151535x y x y -+ C .1530610x y x y -+ D .253x y x y-+ 17.将分式22x x x +化简得1x x +,则x 必须满足______。
分式的基本性质专项练习30题(有答案)ok

分式的基本性质专项练习30题(有答案)ok1.如果将分式中的x、y都扩大到原来的10倍,分式的值会扩大10倍。
2.如果将分式中的x和y都扩大3倍,分式的值不变。
3.将分子、分母中各项系数化为整数不改变分式的值。
4.正确的是A。
5.正确的是B。
6.与分式的值相等的是B。
7.与分式的值相等的是D。
8.化简为9.化简为10.若x在(0,2)之间,化简后的结果为B。
11.正确的是C。
12.不改变分式13.正确的个数为B。
14.分子和分母的系数化为整数后,正确的变形有A、C、D。
15.不改变分式的值,使分子和分母的最高次项的系数为正数。
16.略17.不改变分式的值,将分式化简为18.若,则x的取值范围是19.分子与分母的各项系数化为整数为20.(1) 分式的乘法法则,(a≠)。
(2) 分式的除法法则,(1)除以一个数等于乘以它的倒数,(2)21.设22.略23.依次填入。
24.若x:y:z=1:2:1,则25.若 $a=b$,则 $a^2=ab$。
解析:对 $a^2=ab$ 两边同时减去 $b^2$,得到 $a^2-b^2=ab-b^2$,即 $(a-b)(a+b)=b(a-b)$,由于 $a=b$,所以 $a-b=0$,分母不能为 $0$,因此原等式不成立。
26.不改变分式的值,使分子、分母都不含负号:$\frac{-3x}{2y}$。
解析:将分子、分母同时乘以 $-1$,即可得到$\frac{3x}{-2y}$,化简后为 $\frac{-3x}{2y}$。
27.已知 $\frac{a}{b}=\frac{c}{d}$,则$\frac{a+b}{b}=\frac{c+d}{d}$。
解析:将 $\frac{a+b}{b}$ 和 $\frac{c+d}{d}$ 分别化简,可得到 $\frac{a}{b}+1=\frac{c}{d}+1$,即$\frac{a}{b}=\frac{c}{d}$,由已知条件可知其成立。