高考数学解题思路12种(最新)

合集下载

高中数学解题的12种方法与思路

高中数学解题的12种方法与思路

高中数学解题的12种方法与思路于数学这门功课,如果能够掌握正确有效的解题方法和技巧,不仅可以帮助我们培养良好的数学素养,而且也能提升学生数学解题效率,下面将给大家分享高中数学高分做题解题的12种方法和思路,希望对大家学好数学有所帮助!考前要摒弃杂念,排除干扰思绪,使大脑处于“空白”状态,创设数学情境,进而酝酿数学思维,提前进入“角色”,通过清点用具、暗示重要知识和方法、提醒常见解题误区和自己易出现的错误等,进行针对性的自我安慰,从而减轻压力,轻装上阵,稳定情绪、增强信心,使思维单一化、数学化、以平稳自信、积极主动的心态准备应考。

良好的开端是成功的一半,从考试的心理角度来说,这确实是很有道理的,拿到试题后,不要急于求成、立即下手解题,而应通览一遍整套试题,摸透题情,然后稳操一两个易题熟题,让自己产生“旗开得胜”的快意,从而有一个良好的开端,以振奋精神,鼓舞信心,很快进入最佳思维状态,即发挥心理学所谓的“门坎效应”,之后做一题得一题,不断产生正激励,稳拿中低,见机攀高。

集中注意力是考试成功的保证,一定的神经亢奋和紧张,能加速神经联系,有益于积极思维,要使注意力高度集中,思维异常积极,这叫内紧,但紧张程度过重,则会走向反面,形成怯场,产生焦虑,抑制思维,所以又要清醒愉快,放得开,这叫外松。

有些考生只知道考场上一味地要快,结果题意未清,条件未全,便急于解答,岂不知欲速则不达,结果是思维受阻或进入死胡同,导致失败。

应该说,审题要慢,解答要快。

审题是整个解题过程的“基础工程”,题目本身是“怎样解题”的信息源,必须充分搞清题意,综合所有条件,提炼全部线索,形成整体认识,为形成解题思路提供全面可靠的依据。

而思路一旦形成,则可尽量快速完成。

在通览全卷,将简单题顺手完成的情况下,情绪趋于稳定,情境趋于单一,大脑趋于亢奋,思维趋于积极,之后便是发挥临场解题能力的黄金季节了,这时,考生可依自己的解题习惯和基本功,结合整套试题结构,选择执行“六先六后”的战术原则。

高考数学解题思路及方法优选篇

高考数学解题思路及方法优选篇

高考数学解题思路及方法优选篇高考数学解题思路及方法 11.知:条件奠基细端详——条件是形成思路的基础条件信息须细审,认准对象及特征。

三方入手找关系,本义变意咋合成。

任何数学题都是由条件和结论两部分组成,并且条件是结论成立的基础。

条件确定后,才能有与它相应的结论,没有这个条件就没有这个结论。

条件改变了,则结论一般也随之改变。

所以要想求出或导出结论,就必须慎重地研究条件。

不研究条件就不可能形成解题思路,也就是说,研究条件是形成思路的基础。

如何研究条件呢?一般要从三方面入手,其一是理解每个条件的本身含义,其二是研究每个条件的变意,其三是掌握所有条件的联合作用。

要想理解条件的本身含义,应从条件结构出发,认准条件,搞清含义。

题目中的每个条件,都是由这个条件的对象和对象的特征两部分组成,没有无对象的条件,也没有只有对象而没有对象特征的条件。

我们既要认准条件的对象,又要把握对象的特征,才能真正的理解条件,掌握条件的`本意。

但是只掌握条件的本意往往还是不够的,因为解题思路的本质在于沟通条件与结论间的关系。

当条件的本意难以与结论沟通时,还需要挖掘它的各种变意,也就是把条件转化成与之等价的各种条件,以备更有效地与结论进行沟通。

对于多个条件的问题,不但要注意这些条件的主次,还要注意这些条件的关系,充分发挥每个条件的关系及作用,使之联合起来,把问题解决。

2.求:结论导向何处想——结论是形成思路的主攻方向解题须知主攻向,把握特征认对象。

理解本意挖变意,围绕目标善联想。

在认真研究了条件之后,还要研究结论,结论的构成与条件一样,它既有结论的对象又有结论对象的特征。

不过值得注意的是,条件中的对象和对象的特征这两方面是完备的。

而结论中的对象和对象特征这两方面有时并不完备,可以有对象,待研究对象的特征,也可以知其对象的特征,待确定对象。

如果一道题目的结论中的对象和对象特征都是明确的,这就是证明题了。

无论结论是上述哪种情况,通过研究结论必须搞清要解决的问题是什么,这是解题的主攻方向,也是形成解题思路的主要目标。

高考数学解题思路12种

高考数学解题思路12种

高考数学解题思路12种1500字
高考数学解题思路主要包括了以下12种:
1. 定义法:通过明确题目中一些术语或概念的定义,来理解和解答问题。

2. 推理法:根据已知条件和问题要求,运用逻辑推理的方法,得出结论。

3. 构造法:通过构造出特殊的情况或对象,来找出规律或解题思路。

4. 分类讨论法:将题目中涉及的情况进行分类,分别进行讨论和分析。

5. 反证法:先假设问题的反面,然后通过推理推出矛盾的结论,从而证明原命题是正确的。

6. 代入法:将已知的数值代入方程或不等式中,来求解问题。

7. 求极值法:通过求导或其他方法,找出函数的极值点,从而解答问题。

8. 空间变换法:通过对问题中的几何图形进行平移、旋转、缩放等变换,来获得更好的解题角度。

9. 递推法:通过找出数列或几何图形中的规律,推导出后面的项或图形的特征。

10. 数学建模法:将问题抽象化为数学模型,运用数学知识来解决实际问题。

11. 统计法:通过统计已知数据的特征和规律,预测未知数据的情况。

12. 概率法:通过概率的知识和计算,来解决涉及概率的问题。

在解题过程中,根据不同的题目类型和题材,选择合适的解题思路是非常重要的。

以上所列的解题思路可以作为参考,但具体的解题方法还需要根据具体的问题进行调整和应用。

因此,多做题、多思考、多总结是提高数学解题能力的关键。

高考数学答题模板12个(最新)

高考数学答题模板12个(最新)

高考数学答题模板12个选择填空题1.易错点归纳九大模块易混淆难记忆考点分析,如概率和频率概念混淆、数列求和公式记忆错误等,强化基础知识点记忆,避开因为知识点失误造成的客观性解题错误。

针对审题、解题思路不严谨如集合题型未考虑空集情况、函数问题未考虑定义域等主观性因素造成的失误进行专项训练。

2.答题方法:选择题十大速解方法:排除法、增加条件法、以小见大法、极限法、关键点法、对称法、小结论法、归纳法、感觉法、分析选项法;填空题四大速解方法:直接法、特殊化法、数形结合法、等价转化法。

解答题专题一、三角变换与三角函数的性质问题1、解题路线图①不同角化同角②降幂扩角③化f(x)=Asin(ωx+φ)+h④结合性质求解。

2、构建答题模板①化简:三角函数式的化简,一般化成y=Asin(ωx+φ)+h的形式,即化为“一角、一次、一函数”的形式。

②整体代换:将ωx+φ看作一个整体,利用y=sin x,y=cos x的性质确定条件。

③求解:利用ωx+φ的范围求条件解得函数y=A sin(ωx+φ)+h的性质,写出结果。

④反思:反思回顾,查看关键点,易错点,对结果进行估算,检查规范性。

专题二、解三角形问题1、解题路线图(1) ①化简变形;②用余弦定理转化为边的关系;③变形证明。

(2) ①用余弦定理表示角;②用基本不等式求范围;③确定角的取值范围。

2、构建答题模板①定条件:即确定三角形中的已知和所求,在图形中标注出来,然后确定转化的方向。

②定工具:即根据条件和所求,合理选择转化的工具,实施边角之间的互化。

③求结果。

④再反思:在实施边角互化的时候应注意转化的方向,一般有两种思路:一是全部转化为边之间的关系;二是全部转化为角之间的关系,然后进行恒等变形。

专题三、数列的通项、求和问题1、解题路线图①先求某一项,或者找到数列的关系式。

②求通项公式。

③求数列和通式。

2、构建答题模板①找递推:根据已知条件确定数列相邻两项之间的关系,即找数列的递推公式。

高中数学解题的12种方法与思路

高中数学解题的12种方法与思路

高中数学解题的12种方法与思路于数学这门功课,如果能够掌握正确有效的解题方法和技巧,不仅可以帮助我们培养良好的数学素养,而且也能提升学生数学解题效率,下面将给大家分享高中数学高分做题解题的12种方法和思路,希望对大家学好数学有所帮助!考前要摒弃杂念,排除干扰思绪,使大脑处于“空白”状态,创设数学情境,进而酝酿数学思维,提前进入“角色”,通过清点用具、暗示重要知识和方法、提醒常见解题误区和自己易出现的错误等,进行针对性的自我安慰,从而减轻压力,轻装上阵,稳定情绪、增强信心,使思维单一化、数学化、以平稳自信、积极主动的心态准备应考。

良好的开端是成功的一半,从考试的心理角度来说,这确实是很有道理的,拿到试题后,不要急于求成、立即下手解题,而应通览一遍整套试题,摸透题情,然后稳操一两个易题熟题,让自己产生“旗开得胜”的快意,从而有一个良好的开端,以振奋精神,鼓舞信心,很快进入最佳思维状态,即发挥心理学所谓的“门坎效应”,之后做一题得一题,不断产生正激励,稳拿中低,见机攀高。

集中注意力是考试成功的保证,一定的神经亢奋和紧张,能加速神经联系,有益于积极思维,要使注意力高度集中,思维异常积极,这叫内紧,但紧张程度过重,则会走向反面,形成怯场,产生焦虑,抑制思维,所以又要清醒愉快,放得开,这叫外松。

有些考生只知道考场上一味地要快,结果题意未清,条件未全,便急于解答,岂不知欲速则不达,结果是思维受阻或进入死胡同,导致失败。

应该说,审题要慢,解答要快。

审题是整个解题过程的“基础工程”,题目本身是“怎样解题”的信息源,必须充分搞清题意,综合所有条件,提炼全部线索,形成整体认识,为形成解题思路提供全面可靠的依据。

而思路一旦形成,则可尽量快速完成。

在通览全卷,将简单题顺手完成的情况下,情绪趋于稳定,情境趋于单一,大脑趋于亢奋,思维趋于积极,之后便是发挥临场解题能力的黄金季节了,这时,考生可依自己的解题习惯和基本功,结合整套试题结构,选择执行“六先六后”的战术原则。

2024年高考数学第一轮复习解题思路总结

2024年高考数学第一轮复习解题思路总结

2024年高考数学第一轮复习解题思路总结可以总结如下:
1.掌握基本概念和公式:在复习过程中,要重点掌握数学的基本概念和公式,比如函数的性质、三角函数的基本关系、几何图形的性质等。

理解清楚这些基本概念和公式,才能够灵活应用到解题中。

2.抓住题型特点:不同的题型有不同的解题方法,因此复习中要抓住题型的特点,理解各种题型的解题思路。

比如代数题多涉及方程和不等式的解法,几何题多涉及图形的性质和推理等。

3.注重练习题目:做大量的习题是提高数学解题能力的关键。

在复习中要注重练习各种类型的题目,尤其是历年真题和模拟题。

通过不断练习,可以熟悉题目的出题风格,增强解题的灵活性。

4.总结解题方法:在复习过程中,要不断总结解题方法和技巧。

比如一些常用的解方程的方法,如因式分解、配方法、置换法等。

通过总结解题方法,可以提高解题效率,更快地解决问题。

5.注意归纳和总结:在复习过程中,要及时归纳总结自己遇到的难题和易错题的解题思路和方法。

通过总结,可以加深对知识的理解和记忆,并且在考试中遇到类似的题目时能够有思路。

综上所述,2024年高考数学第一轮复习解题思路总结包括掌握基本概念和公式、抓住题型特点、注重练习题目、总结解题方法和注意归纳和总结。

通过有针对性的复习和练习,可以提高数学解题的能力和应对考试的水平。

第 1 页共 1 页。

高考答题技巧:解答高考数学题的12种方法

高考答题技巧:解答高考数学题的12种方法

2019年高考答题技巧:解答高考数学题的12种方法下面是编辑老师整理的2019高考答题技巧,希望对您提高学习效率有所帮助.方法一、调理大脑思绪,提前进入数学情境考前要摒弃杂念,排除干扰思绪,使大脑处于空白状态,创设数学情境,进而酝酿数学思维,提前进入角色,通过清点用具、暗示重要知识和方法、提醒常见解题误区和自己易出现的错误等,进行针对性的自我安慰,从而减轻压力,轻装上阵,稳定情绪、增强信心,使思维单一化、数学化、以平稳自信、积极主动的心态准备应考。

方法二、内紧外松,集中注意,消除焦虑怯场集中注意力是考试成功的保证,一定的神经亢奋和紧张,能加速神经联系,有益于积极思维,要使注意力高度集中,思维异常积极,这叫内紧,但紧张程度过重,则会走向反面,形成怯场,产生焦虑,抑制思维,所以又要清醒愉快,放得开,这叫外松。

方法三、沉着应战,确保旗开得胜,以利振奋精神良好的开端是成功的一半,从考试的心理角度来说,这确实是很有道理的,拿到试题后,不要急于求成、立即下手解题,而应通览一遍整套试题,摸透题情,然后稳操一两个易题熟题,让自己产生旗开得胜的快意,从而有一个良好的开端,以振奋精神,鼓舞信心,很快进入最佳思维状态,即发挥心理学所谓的门坎效应,之后做一题得一题,不断产生正激励,稳拿中低,见机攀高。

方法四、六先六后,因人因卷制宜在通览全卷,将简单题顺手完成的情况下,情绪趋于稳定,情境趋于单一,大脑趋于亢奋,思维趋于积极,之后便是发挥临场解题能力的黄金季节了,这时,考生可依自己的解题习惯和基本功,结合整套试题结构,选择执行六先六后的战术原则。

1.先易后难。

就是先做简单题,再做综合题,应根据自己的实际,果断跳过啃不动的题目,从易到难,也要注意认真对待每一道题,力求有效,不能走马观花,有难就退,伤害解题情绪。

2.先熟后生。

通览全卷,可以得到许多有利的积极因素,也会看到一些不利之处,对后者,不要惊慌失措,应想到试题偏难对所有考生也难,通过这种暗示,确保情绪稳定,对全卷整体把握之后,就可实施先熟后生的方法,即先做那些内容掌握比较到家、题型结构比较熟悉、解题思路比较清晰的题目。

高考数学备考:做好高考数学题的12种方法

高考数学备考:做好高考数学题的12种方法

高考数学备考:做好高考数学题的12种方法在日常与学生接触过程中,常有学生如此埋怨:“不明白什么缘故,有时候看起来专门简单的数学题目,我往往不能拿到满分。

”什么缘故看起来专门简单的题目,我们总是不能拿到满分呢?事实上,这确实是因为我们在做数学题目的过程中,走进了如此几个误区:其一,重结果,轻过程。

其二,对做错的题目,没有提起足够的重视。

1.先说第一点,重结果,轻过程。

相信,专门多同学都曾犯过如此的错误:拿到一道题目之后,看题目专门简单,就会急于下笔。

结果,思维活跃,笔走龙蛇,尽管专门快就得出了答案,却因为匆忙之中丢掉了许多步骤,不能顺利拿到满分。

针对这种情形,我们该如何办呢?一位数学成绩优秀的同学如此分享体会:“专门多同学数学思维专门好,然而一下笔就丢分,这就要求我们平常练习时一定要把每个解题步骤都写全。

”数学备考自然要做题,然而,有些同学只关注结果,答案对了就行了,不重视步骤,这明显就的专门不明智的。

要明白,在解答数学题目的过程中,每一个步骤都关系着最终的结果,一步错,则差之毫厘谬以千里。

因此,在做数学题目的过程中领会各种解题思路和方法才应该是我们做题的最终目的。

2.再说说第二点,对做错的题目,不能提起足够的重视。

也许你也曾有过如此的经历:在做题时,碰到了一道似曾相识的题目,往往拿不定主意怎么说该用哪种方法去解,有时候尽管做出来了,结果依旧不免以错误收场。

这其中的缘故何在呢?确实是因为我们对错题没有引起足够的重视。

没有将那些做错的题目及时消化吸取。

那些数学成绩优秀的学生从来可不能如此做,一位顺利考入清华大学的学子就如此说:“在学习数学上,我并没有下专门大的功夫,只是适应每天将做错的题目整理一遍。

数学题量大,老师每天都会发一张试卷,头天做了翌日就讲评。

老师每次讲评之后就,我就会把那些做错的题目整理到错题本上,A 4大小的本子,我记了许多页,每页至少两三道题,多则七八道,到每次考试时,光是看这些错题就能花费我一天的时刻。

高考数学解题的12种方法.doc

高考数学解题的12种方法.doc

高考数学解题的12种方法为你整理了高考数学解题的12种方法,供你参考,更多相关资讯本网站将持续更新,敬。

高考数学解题的12种方法方法一、调理大脑思绪,提前进入数学情境考前要摒弃杂念,排除干扰思绪,使大脑处于“空白”状态,创设数学情境,进而酝酿数学思维,提前进入“角色”,通过清点用具、暗示重要知识和方法、提醒常见解题误区和自己易出现的错误等,进行针对性的自我安慰,从而减轻压力,轻装上阵,稳定情绪、增强信心,使思维单一化、数学化、以平稳自信、积极主动的心态准备应考。

方法二、“内紧外松”,集中注意,消除焦虑怯场集中注意力是考试成功的保证,一定的神经亢奋和紧张,能加速神经联系,有益于积极思维,要使注意力高度集中,思维异常积极,这叫内紧,但紧张程度过重,则会走向反面,形成怯场,产生焦虑,抑制思维,所以又要清醒愉快,放得开,这叫外松。

方法三、沉着应战,确保旗开得胜,以利振奋精神良好的开端是成功的一半,从考试的心理角度来说,这确实是很有道理的,拿到试题后,不要急于求成、立即下手解题,而应通览一遍整套试题,摸透题情,然后稳操一两个易题熟题,让自己产生“旗开得胜”的快意,从而有一个良好的开端,以振奋精神,鼓舞信心,很快进入最佳思维状态,即发挥心理学所谓的“门坎效应”,之后做一题得一题,不断产生正激励,稳拿中低,见机攀高。

方法四、“六先六后”,因人因卷制宜在通览全卷,将简单题顺手完成的情况下,情绪趋于稳定,情境趋于单一,大脑趋于亢奋,思维趋于积极,之后便是发挥临场解题能力的黄金季节了,这时,考生可依自己的解题习惯和基本功,结合整套试题结构,选择执行“六先六后”的战术原则。

1、先易后难。

就是先做简单题,再做综合题,应根据自己的实际,果断跳过啃不动的题目,从易到难,也要注意认真对待每一道题,力求有效,不能走马观花,有难就退,伤害解题情绪。

2、先熟后生。

通览全卷,可以得到许多有利的积极因素,也会看到一些不利之处,对后者,不要惊慌失措,应想到试题偏难对所有考生也难,通过这种暗示,确保情绪稳定,对全卷整体把握之后,就可实施先熟后生的方法,即先做那些内容掌握比较到家、题型结构比较熟悉、解题思路比较清晰的题目。

高考数学解题的12种方法

高考数学解题的12种方法

高考数学解题的12种方法
1. 找准问题的关键点,归纳问题的要点和条件,分析问题的结构和性质,选择合适的解题方法。

2. 利用同种题目的解题思路、解题技巧,加速解题过程。

3. 运用代数方法,通过建立方程或不等式来解决问题。

4. 运用几何方法,通过画图、利用几何性质等方式解决问题。

5. 运用数列和级数的性质,通过数学归纳法或递推公式来解决问题。

6. 运用函数的性质,通过函数的图像、函数的变换等方式解决问题。

7. 运用概率和统计的方法,通过计算概率、分析统计数据等方式解决问题。

8. 运用数论的方法,通过分解因式、最大公约数、最小公倍数等方式解决问题。

9. 运用组合数学的方法,通过排列组合、选择判断等方式解决问题。

10. 运用解析几何的方法,通过坐标轴、向量等几何工具解决问题。

11. 运用微积分的方法,通过求导、求积分等方式解决问题。

12. 运用图论的方法,通过图的模型、路径分析等方式解决问题。

高考12种非常实用的数学解题方法

高考12种非常实用的数学解题方法

2019高考12种非常实用的数学解题方法掌握正确有效的解题方法和解题技巧,不仅可以帮助同学们培养好的数学素养,也是提升学生数学解题效率的关键。

那么高中的数学有哪些解题方法呢,下面为大家分享高种数学高分做题解题的12种方法和思路,希望对大家学习数学有所帮助!解题方法1:调理大脑思绪,提前进入数学情境考前要摒弃杂念,排除干扰思绪,使大脑处于“空白”状态,创设数学情境,进而酝酿数学思维,提前进入“角色”,通过清点用具、暗示重要知识和方法、提醒常见解题误区和自己易出现的错误等,进行针对性的自我安慰,从而减轻压力,轻装上阵,稳定情绪、增强信心,使思维单一化、数学化、以平稳自信、积极主动的心态准备应考。

解题方法2:沉着应战,确保旗开得胜,以利振奋精神良好的开端是成功的一半,从考试的心理角度来说,这确实是很有道理的,拿到试题后,不要急于求成、立即下手解题,而应通览一遍整套试题,摸透题情,然后稳操一两个易题熟题,让自己产生“旗开得胜”的快意,从而有一个良好的开端,以振奋精神,鼓舞信心,很快进入最佳思维状态,即发挥心理学所谓的“门坎效应”,之后做一题得一题,不断产生正激励,稳拿中低,见机攀高。

解题方法3:“内紧外松”,集中注意,消除焦虑怯场集中注意力是考试成功的保证,一定的神经亢奋和紧张,能加速神经联系,有益于积极思维,要使注意力高度集中,思维异常积极,这叫内紧,但紧张程度过重,则会走向反面,形成怯场,产生焦虑,抑制思维,所以又要清醒愉快,放得开,这叫外松。

解题方法4:一“慢”一“快”,相得益彰有些考生只知道考场上一味地要快,结果题意未清,条件未全,便急于解答,岂不知欲速则不达,结果是思维受阻或进入死胡同,导致失败。

应该说,审题要慢,解答要快。

审题是整个解题过程的“基础工程”,题目本身是“怎样解题”的信息源,必须充分搞清题意,综合所有条件,提炼全部线索,形成整体认识,为形成解题思路提供全面可靠的依据。

而思路一旦形成,则可尽量快速完成。

高考数学解题思路集合与命题逻辑

高考数学解题思路集合与命题逻辑

高考数学解题思路集合与命题逻辑高考数学是一门重要的学科,对于考生来说,掌握解题思路和命题逻辑至关重要。

本文将介绍一些常见的数学解题思路,并讨论命题逻辑在高考数学中的应用。

一、解题思路集合1. 理清思路:在解答数学题目时,首先需要理清思路。

对于复杂的问题,可以分步骤进行分析,找到关键信息和解题思路。

2. 推理演绎:数学解题常常需要推理演绎的过程。

通过观察、分析和推理,可以得出结论或解题方法。

3. 利用图形:在解答数学几何题时,图形通常是一个非常重要的工具。

对于几何问题,可以先画图,然后利用几何定理进行推理和计算。

4. 列方程解方程:代数是高考数学中一个重要的内容,解题常常需要列方程,然后解方程。

掌握方程的求解方法,可以帮助解决各种代数题目。

5. 归纳总结法:在解答数学题时,可以尝试归纳总结已知条件和结论之间的关系。

通过找到规律,可以简化解题的过程。

二、命题逻辑在高考数学中的应用命题逻辑是数学中的一个分支,主要研究命题之间的关系和推理规则。

在高考数学中,命题逻辑也有着广泛的应用。

1. 命题题型:高考中的选择题常常涉及到命题的逻辑关系。

考生需要根据已知条件进行推理,判断哪个选项符合逻辑关系。

2. 命题证明:高考中的证明题也常常需要运用命题逻辑的知识。

在证明过程中,考生需要根据已知条件和定义、定理等逻辑关系进行推理,最终得出结论。

3. 命题推理:命题逻辑中的推理规则也可以应用于高考数学中的题目。

考生可以根据已知条件和推理规则进行逻辑推理,得出正确答案。

三、小结高考数学的解题思路集合和命题逻辑是考生顺利解答数学题目的重要工具。

通过理清思路、推理演绎、利用图形、列方程解方程和归纳总结等方法,考生可以更好地解决各类数学问题。

同时,掌握命题逻辑的知识和推理规则,可以帮助考生在选择题、证明题和推理题中做出正确的判断和推理。

总之,在备战高考数学中,学生应该注重培养解题思路和运用命题逻辑的能力。

只有在理解题目要求和题目之间的逻辑关系的基础上,才能准确把握问题的本质,提高解题能力和应试水平。

高考数学解题思路有哪些

高考数学解题思路有哪些

高考数学解题思路有哪些高考数学答题方法1、极限思想解题步骤极限思想解决问题的一般步骤为:一、对于所求的未知量,先设法构思一个与它有关的变量;二、确认这变量通过无限过程的结果就是所求的未知量;三、构造函数(数列)并利用极限计算法则得出结果或利用图形的极限位置直接计算结果。

2、分类讨论思想同学们在解题时常常会遇到这样一种情况,解到某一步之后,不能再以统一的方法、统一的式子继续进行下去,这是因为被研究的对象包含了多种情况,这就需要对各种情况加以分类,并逐类求解,然后综合归纳得解,这就是分类讨论。

引起分类讨论的原因很多,数学概念本身具有多种情形,数学运算法则、某些定理、公式的限制,图形位置的不确定性,变化等均可能引起分类讨论。

建议同学们在分类讨论解题时,要做到标准统一,不重不漏。

3、先易后难数学中最怕的是偏执,这种情形无非分为两种:一种是看到不会、立马往下做;另一种就是明知山有虎,偏向虎山行。

做题时,一定先下手研究,如果五分钟后依旧没有明确思路,那么考生就要搁置这个题目了,切勿在一道题上浪费过多的时间。

高考要求的不是你会做多少,而是你能得多少分。

数学不同题型的答题方法一、概率问题1、搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数;2、搞清是什么概率模型,套用哪个公式;3、记准均值、方差、标准差公式;4、求概率时,正难则反(根据p1+p2+...+pn=1);5、注意计数时利用列举、树图等基本方法;6、注意放回抽样,不放回抽样;7、注意“零散的”的知识点(茎叶图,频率分布直方图、分层抽样等)在大题中的渗透;8、注意条件概率公式;9、注意平均分组、不完全平均分组问题。

二、圆锥曲线问题1、注意求轨迹方程时,从三种曲线(椭圆、双曲线、抛物线)着想,椭圆考得最多,方法上有直接法、定义法、交轨法、参数法、待定系数法;2、注意直线的设法(法1分有斜率,没斜率;法2设x=my+b(斜率不为零时),知道弦中点时,往往用点差法);注意判别式;注意韦达定理;注意弦长公式;注意自变量的取值范围等等;3、战术上整体思路要保7分,争9分,想12分。

12个高考数学考场解题方法

12个高考数学考场解题方法

2021年12个高考数学考场解题方法2021年高考进入第一轮复习阶段,为了使同学们更好的复习数学,查字典数学网整理了高考数学考场解题方法,供同学们参考。

方法一、调理大脑思绪,提早进入数学情境考前要摒弃杂念,排除干扰思绪,使大脑处于“空白〞状态,创设数学情境,进而酝酿数学思维,提早进入“角色〞,通过清点用具、暗示重要知识和方法、提醒常见解题误区和自己易出现的错误等,进展针对性的自我抚慰,从而减轻压力,轻装上阵,稳定情绪、增强信心,使思维单一化、数学化、以平稳自信、积极主动的心态准备应考。

方法二、“内紧外松〞,集中注意,消除焦虑怯场集中注意力是考试成功的保证,一定的神经亢奋和紧张,能加速神经联络,有益于积极思维,要使注意力高度集中,思维异常积极,这叫内紧,但紧张程度过重,那么会走向反面,形成怯场,产生焦虑,抑制思维,所以又要清醒愉快,放得开,这叫外松。

方法三、沉着应战,确保旗开得胜,以利振奋精神良好的开端是成功的一半,从考试的心理角度来说,这确实是很有道理的,拿到试题后,不要急于求成、立即下手解题,而应通览一遍整套试题,摸透题情,然后稳操一两个易题熟题,让自己产生“旗开得胜〞的快意,从而有一个良好的开端,以振奋精神,鼓舞信心,很快进入最正确思维状态,即发挥心理学所谓的“门坎效应〞,之后做一题得一题,不断产生正鼓励,稳拿中低,见机攀高。

方法四、“六先六后〞,因人因卷制宜在通览全卷,将简单题顺手完成的情况下,情绪趋于稳定,情境趋于单一,大脑趋于亢奋,思维趋于积极,之后便是发挥临场解题才能的黄金季节了,这时,考生可依自己的解题习惯和根本功,结合整套试题构造,选择执行“六先六后〞的战术原那么。

1.先易后难。

就是先做简单题,再做综合题,应根据自己的实际,果断跳过啃不动的题目,从易到难,也要注意认真对待每一道题,力求有效,不能走马观花,有难就退,伤害解题情绪。

2.先熟后生。

通览全卷,可以得到许多有利的积极因素,也会看到一些不利之处,对后者,不要惊慌失措,应想到试题偏难对所有考生也难,通过这种暗示,确保情绪稳定,对全卷整体把握之后,就可施行先熟后生的方法,即先做那些内容掌握比拟到家、题型构造比拟熟悉、解题思路比拟明晰的题目。

做好高中数学题的12种方法

做好高中数学题的12种方法

做好高中数学题的12 种方法方法一、调理大脑思绪,提前进入数学情境考前要摒弃杂念,排除干扰思绪,使大脑处于“空白”状态,创设数学情境,进而酝酿数学思维,提前进入“角色” ,通过清点用具、暗示重要知识和方法、提醒常见解题误区和自己易出现的错误等,进行针对性的自我安慰,从而减轻压力,轻装上阵,稳定情绪,增强信心,使思维单一化、数学化,以平稳自信、积极主动的心态准备应考。

方法二、“内紧外松”,集中注意,消除焦虑怯场集中注意力是考试成功的保证,一定的神经亢奋和紧张,能加速神经联系,有益于积极思维,要使注意力高度集中,思维异常积极,这叫内紧,但紧张程度过重,则会走向反面,形成怯场,产生焦虑,抑制思维,所以又要清醒愉快,放得开,这叫外松。

方法三、沉着应战,确保旗开得胜,以利振奋精神良好的开端是成功的一半,从考试的心理角度来说,这确实是很有道理的。

拿到试题后,不要急于求成、立即下手解题,而应通览一遍整套试题,摸透题情,然后稳操一两个易题熟题,让自己产生“旗开得胜”的快意,从而有一个良好的开端,以振奋精神,鼓舞信心,很快进入最佳思维状态,即发挥心理学所谓的“门坎效应”,之后做一题得一题,不断产生正激励,稳拿中低,见机攀高。

方法四、“六先六后”,因人因卷制宜在通览全卷,将简单题顺手完成的情况下,情绪趋于稳定,情境趋于单一,大脑趋于亢奋,思维趋于积极,之后便是发挥临场解题能力的黄金季节了。

这时,考生可依自己的解题习惯和基本功,结合整套试题结构,选择执行“六先六后”的战术原则。

1. 先易后难。

就是先做简单题,再做综合题,应根据自己的实际,果断跳过啃不动的题目。

从易到难,也要注意认真对待每一道题,力求有效,不能走马观花,有难就退,伤害解题情绪。

2. 先熟后生。

通览全卷,可以得到许多有利的积极因素,也会看到一些不利之处,对后者,不要惊慌失措,应想到试题偏难,对所有考生来说都难,通过这种暗示,确保情绪稳定。

对全卷整体把握之后,就可实施先熟后生的方法,即先做那些内容掌握比较到家、题型结构比较熟悉、解题思路比较清晰的题目。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学解题思路12种
一、调节情绪,提前进入数学情境考前要摒弃杂念,排除干扰思绪,使大脑处于“空白”状态,创设数学情境,进而酝酿数学思维,提前进入“角色”,通过清点用具、暗示重要知识和方法、提醒常见解题误区和自己易出现的错误等,进行针对性的自我安慰,从而减轻压力,轻装上阵,稳定情绪、增强信心,使思维单一化、数学化、以平稳自信、积极主动的心态准备应考。

二、沉着应战,确保旗开得胜以振奋精神良好的开端是成功的一半,从考试的心理角度来说,这确实是很有道理的,拿到试题后,不要急于求成、立即下手解题,而应通览一遍整套试题,摸透题情,然后稳操一两个易题熟题,让自己产生“旗开得胜”的快意,从而有一个良好的开端,以振奋精神,鼓舞信心,很快进入最佳思维状态,即发挥心理学所谓的“门坎效应”,之后做一题得一题,不断产生正激励,稳拿中低,见机攀高。

三、“内紧外松”,集中注意,消除焦虑怯场集中注意力是考试成功的保证,一定的神经亢奋和紧张,能加速神经联系,有益于积极思维,要使注意力高度集中,思维异常积极,这叫内紧,但紧张程度过重,则会走向反面,形成怯场,产生焦虑,抑制思维,所以又要清醒愉快,放得开,这叫外松。

四、一慢一快,相得益彰有些考生只知道考场上一味地要快,结果题意未清,条件未全,便急于解答,岂不知欲速则不达,结果是思维受阻或进入死胡同,导致失败。

应该说,审题要慢,解答要快。

审题是整个解题过程的“基础工程”,题目本身是“怎样解题”的信息源,必须充分搞清题意,综合所有条件,提炼全部线索,形成整体认识,为形成解题思路提供全面可靠的依据。

而思路一旦形成,则可尽量快速完成。

五、六先六后,因人因卷制宜在通览全卷,将简单题顺手完成的情况下,情绪趋于稳定,情境趋于单一,大脑趋于亢奋,思维趋于积极,之后便是发挥临场解题能力的黄金季节了,这时,考生可依自己的解题习惯和基本功,结合整套试题结构,选择执行“六先六后”的战术原则。

1.先易后难就是先做简单题,再做综合题,应根据自己的实际,果断跳过啃不动的题目,从易到难,也要注意认真对待每一道题,力求有效,不能走马观花,有难就退,伤害解题情绪。

2.先熟后生通览全卷,可以得到许多有利的积极因素,也会看到一些不利之处,对后者,不要惊慌失措,应想到试题偏难对所有考生也难,通过这种暗示,确保情绪稳定,对全卷整体把握之后,就可实施先熟后生的方法,即先做那些内容掌握比较到家、题型结构比较熟悉、解题思路比较清晰的题目。

这样,在拿下熟题的同时,可以使思维流畅、超常发挥,达到拿下中高档题目的目的。

3.先同后异先做同科同类型的题目,思考比较集中,知识和方法的沟通比较容易,有利于提高单位时间的效益。

高考题一般要求较快地进行“兴奋灶”的转
移,而“先同后异”,可以避免“兴奋灶”过急、过频的跳跃,从而减轻大脑负担,保持有效精力。

4.先小后大小题一般是信息量少、运算量小,易于把握,不要轻易放过,应争取在大题之前尽快解决,从而为解决大题赢得时间,创造一个宽松的心理基矗。

5.先点后面近年的高考数学解答题多呈现为多问渐难式的“梯度题”,解答时不必一气审到底,应走一步解决一步,而前面问题的解决又为后面问题准备了思维基础和解题条件,所以要步步为营,由点到面。

6.先高后低即在考试的后半段时间,要注重时间效益,如估计两题都会做,则先做高分题;估计两题都不易,则先就高分题实施“分段得分”,以增加在时间不足前提下的得分。

六、确保运算准确,立足一次成功数学高考题的容量在120分钟时间内完成大小26个题,时间很紧张,不允许做大量细致的解后检验,所以要尽量准确运算(关键步骤,力求准确,宁慢勿快),立足一次成功。

解题速度是建立在解题准确度基础上,更何况数学题的中间数据常常不但从“数量”上,而且从“性质”上影响着后继各步的解答。

所以,在以快为上的前提下,要稳扎稳打,层层有据,步步准确,不能为追求速度而丢掉准确度,甚至丢掉重要的得分步骤,假如速度与准确不可兼得的说,就只好舍快求对了,因为解答不对,再快也无意义。

七、讲求规范书写,力争既对又全考试的又一个特点是以卷面为唯一依据。

这就要求不但会而且要对、对且全,全而规范。

会而不对,令人惋惜;对而不全,得分不高;表述不规范、字迹不工整又是造成高考数学试卷非智力因素失分的一大方面。

因为字迹潦草,会使阅卷老师的第一印象不良,进而使阅卷老师认为考生学习不认真、基本功不过硬、“感情分”也就相应低了,此所谓心理学上的“光环效应”。

“书写要工整,卷面能得分”讲的也正是这个道理。

八、面对难题,讲究方法,争取得分会做的题目当然要力求做对、做全、得满分,而更多的问题是对不能全面完成的题目如何分段得分。

下面有两种常用方法。

1.缺步解答对一个疑难问题,确实啃不动时,一个明智的解题方法是:将它划分为一个个子问题或一系列的步骤,先解决问题的一部分,即能解决到什么程度就解决到什么程度,能演算几步就写几步,每进行一步就可得到这一步的分数。

如从最初的把文字语言译成符号语言,把条件和目标译成数学表达式,设应用题的未知数,设轨迹题的动点坐标,依题意正确画出图形等,都能得分。

还有象完成数学归纳法的第一步,分类讨论,反证法的简单情形等,都能得分。

而且可望在上述处理中,从感性到理性,从特殊到一般,从局部到整体,产生顿悟,形成思路,获得解题成功。

2.跳步解答解题过程卡在一中间环节上时,可以承认中间结论,往下推,看能否得到正确结论,如得不出,说明此途径不对,立即否得到正确结论,如得不
出,说明此途径不对,立即改变方向,寻找它途;如能得到预期结论,就再回头集中力量攻克这一过渡环节。

若因时间限制,中间结论来不及得到证实,就只好跳过这一步,写出后继各步,一直做到底;另外,若题目有两问,第一问做不上,可以第一问为“已知”,完成第二问,这都叫跳步解答。

也许后来由于解题的正迁移对中间步骤想起来了,或在时间允许的情况下,经努力而攻下了中间难点,可在相应题尾补上。

九、以退为进,立足特殊发散一般对于一个较一般的问题,若一时不能取得一般思路,可以采取化一般为特殊(如用特殊法解选择题),化抽象为具体,化整体为局部,化参量为常量,化较弱条件为较强条件,等等。

总之,退到一个你能够解决的程度上,通过对“特殊”的思考与解决,启发思维,达到对“一般”的解决。

十、应用性问题思路:面一点一线解决应用性问题,首先要全面调查题意,迅速接受概念,此为“面”;透过冗长叙述,抓住重点词句,提出重点数据,此为“点”;综合联系,提炼关系,依靠数学方法,建立数学模型,此为“线”,如此将应用性问题转化为纯数学问题。

当然,求解过程和结果都不能离开实际背景。

十一、执果索因,逆向思考,正难则反对一个问题正面思考发生思维受阻时,用逆向思维的方法去探求新的解题途径,往往能得到突破性的进展,如果顺向推有困难就逆推,直接证有困难就反证,如用分析法,从肯定结论或中间步骤入手,找充分条件;用反证法,从否定结论入手找必要条件。

十二、回避结论的肯定与否定,解决探索性问题对探索性问题,不必追求结论的“是”与“否”、“有”与“无”,可以一开始,就综合所有条件,进行严格的推理与讨论,则步骤所至,结论自明。

高考数学考前必读的20个体系图:空间几何体
高考数学考前必读的20个体系图:直线和圆
高考数学考前必读的20个体系图:导数及其应用
高考数学考前必读的20个体系图:基本初等函数
高考数学考前必读的20个体系图:集合
高考数学体系图:点、直线、平面之间的位置关系。

相关文档
最新文档