第73讲 不等式证明选讲
中职数学:不等式题型选讲典型例题(含答案)
不等式题型选讲1、 有关不等式的解法:解不等式是通过变形转化为简单不等式从而得到解集,如分式不等式转化为整式不等式但要注意是同解变形,每一步变形既充分又必要,例如解分式不等式不要随便去分母,而是先移项,等价转化为f (x )>0或f (x )<0的形式,再分析讨论。
一些含绝对值符号的不等式,含有参数的不等式必须进行讨论。
例1、(1)设集合A ={x ∣x 2-1>0},B ={x ∣log 2x >0},则A ∩B 等于( )A 、{x ∣x >1}B 、{x ∣x >0}C 、{x ∣x <-1}D 、{x ∣x <-1或x>1}(2)不等式(1+x )(1-∣x ∣)>0的解集为( )A 、{x ∣0≤x <1}B 、{x ∣x <0且x ≠-1}C 、{x ∣-1<x <1}D 、{x ∣x <1或x ≠-1}(3)设f (x )是奇函数且在(-∞,0)内是减函数,f (-2)=0,则x f (x )<0的解集为( )A 、(-1,0)∪(2,+∞)B 、(-∞,-2)∪(0,2)C 、(-∞,-2)∪(2,+∞)D 、(-2,0)∪(0,2)(4)(2003新教材高考试题)设函数⎪⎩⎪⎨⎧>≤-=-0,0,12)(21x x x x f x ,若f (x )>1,则x 0的取值范围是( )A 、(-1,1)B 、(-1,+∞)C 、(-∞,-2)∪(0,+∞)D 、(-∞,-1)∪(1,+∞)选择题具有自身独特的特点,从而决定了它的解法具有灵活机动的优势。
解题者选择不同的解法,从一个侧面反映出他们数学水平的不同“层次”。
例2、(1)不等式1)20(lg cos 2>x (x ∈(0,π)的解集为(2)不等式x x x <-24的解集是-----------------。
高三数学不等式的证明省名师优质课赛课获奖课件市赛课一等奖课件
综正当:利用某些已经证明过旳不等式作为 基础,再利用不等式旳性质推导出所要求证 旳不等式旳措施。证明时要注意字母是否为 正和等号成立旳条件。
(1)若 a 0, b 0, 则 a2 b2 a b ab 2
2
2
11
当且仅当a=b时取等号。
ab
(2) a, b R, a2 b2 2ab 当且仅当a b时取等号
换元法:换元法是指构造较为复杂、量与量 之间关系不很明了旳命题,经过恰当引入新 变量,代换原题中旳部分式子,简化原有构 造,使其转化为便于研究旳形式。 用换元法证明不等式时一定要注意新元旳约 束条件及整体置换策略
放缩法:欲证A>B,可经过合适放大或缩小, 借助一种或多种中间量,使得B<B1, B1≤B2,…Bi≤A,再利用传递性,到达欲证 旳目旳,这种措施叫做放缩法。
构造法:构造二次方程用“Δ”,构造函数用 函数单调性,构造图形用数形结合措施。
(一).复习:不等式证明三种主要措施, 例1 (P89) 设实数x.y 满足y+x2=0,0<a<1.
证明
loga
(ax
ay
)
loga
2
1 8
例2.已知a.b.c R,且a+b+c=1,求证
(1+a)(1+b)(1+c) 8(1-a)(1-b)(1-c)
2023届高考数学复习 强化双基系列课件
39《不等式旳证明》
不等式旳证明(一)
比较法证明不等式是最基本旳措施也是最常 用旳措施。比较法旳两种形式:
②①比比商差法法::要要证证a>ab>且b,b>只0,须只证须a-b证>0a。 1。 b
阐明:①作差比较法证明不等式时, 一般是 进行因式分解,利用各因式旳符号进行判断, 或进行配方,利用非负数旳性质进行判断; ②一般地利用比商法时要考虑正负,尤其是 作为除式式子旳值必须拟定符号;③证幂指 数或乘积不等式时常用比商法,证对数不等 式时常用比差法。
不等式证明方法选讲
不等式证明方法选讲作者:舒中杰来源:《试题与研究·教学论坛》2016年第34期摘要:不等式是中学数学教学中的重点与难点,本文系统介绍了九种不等式的证明方法,并通过一些特殊例题的讲解使证明方法更易于学生接受。
关键词:比较法;分析法;综合法;反证法;放缩法;数学归纳法;换元法;基本不等式;导数法不等式是中学数学教学中的重点与难点,因此在历年高考复习中颇令师生们为之头疼。
由于不等式的形式各异,证明没有固定的模式模仿,并且技巧多样,方法灵活多变,因此熟练掌握不等式的证明是中学数学教学的重难点之一。
这里精选了九种不同方法对不等式证明进行了详细讲解和研究。
一、比较法二、分析法分析法的思路是逆向思维,用分析法证明必须从结论出发,倒着分析,寻找结论成立的充要条件。
应用分析法证明问题时要严格按照分析法的语言表达,下一步是上一步的充要条件。
需要注意的是:运用分析法时,当已知条件与结论之间的联系不够明显、直接,或证明过程中所需的知识不太明确、具体时,往往采用分析法,特别是含有根号、绝对值的不等式,常考虑用分析法。
三、综合法从已知或证明过的不等式出发,根据不等式的性质及公理推导出欲证的不等式,这种证明方法叫做综合法。
四、反证法从命题否定的结论出发,经过推理论证,得出矛盾,证实结论的否定是错误的,从而肯定原结论是正确的,这种证明方法叫做反正法。
用反证法证明不等式时,必须将命题结论的反面的各种情形一一推出矛盾。
反证法证明一个命题的思路及步骤:(1)假定命题的结论不成立。
(2)从假设出发进行推理,在推理中出现下列情况之一:与已知条件矛盾;与公理或定理矛盾。
(3)由于上述矛盾的出现,可以肯定原来的假设“结论不成立”是错误的。
(4)肯定原来命题的结论是正确的。
如果待证命题是否定性命题或唯一性命题或以“至多”“至少”等方式给出,一般要考虑用反证法。
五、放缩法放缩法就是在证明过程中,利用不等式的传递性,作适当的放大或缩小,证明比原不等式更好的不等式来代替原不等式的证明。
《不等式的证明》课件
练习与拓展
练习题
通过练习题巩固对不等式的理解 和运用,提升解题能力。
应用案例
通过实际应用案例,将不等式与 实际问题相结合,展示不等式在 实际中的应用价值。
拓展阅读
推荐一些经典的数学书籍,深入 了解不等式的更多内容和应用。
总结与展望
不等式作为数学中的重要概念,具有广泛的应用价值。今后的学习方向可以 包括更复杂的不等式证明和更广泛的不等式应用,为自己的数学发展铺就坚 实的基础。
常见不等式与证明
平均值不等式
通过平均值不等式,可以证明两个数的平均值 大于等于它们的几何平均数。
阿姆-高斯不等式
阿姆-高斯不等式是一种描述算术平均数和几何 平均数之间关系的不等式。
柯西-施瓦茨不等式
柯西-施瓦茨不等式是一种描述向量内积的不等 式,可以用于证明其他数学不等式。
杨辉不等式
杨辉不等式是由杨辉三角形引出的一类不等式, 可以用于证明数列的性质。
《不等式的证明》PPT课 件
这是一门关于不等式证明的课件,通过简洁明了的排版和生动的图像来讲解 不等式的定义、性质、证明方法以及常见的不等式及其证明。
什么是不等式?
不等式是数学中用于表达两个数或两个数集之间关系的一种表示方法。不等式与等式有所不同,不等式可以描 述丰富的数值关系,而等式只表示相等关系。
不等式的证明方法
1
数学归纳法
通过归纳递推法证明不等式的成立,逐步展示每个步骤的正确性。
2
反证法
通过假设不等式不成立,推导出矛盾结论,从而证明不等式的正确性。
3
差值法
通过构造适当的差值,将不等式转化为易于证明的形式。
4
替换法
通过替换不等式中的数值或变量,将不等式转化为已知的等式或不等式。
证明不等式的基本方法知识归纳课件人教A选修
1
考情分析
从近两年的高考试题来看,不等式的证明主要考查 比较法与综合法,而比较法多用作差比较,综合法主要 涉及基本不等式与不等式的性质,题目难度不大,属中 档题.
教学ppt
2
在证明不等式时,要依据命题提供的信息选择合适 的方法与技巧进行证明.如果已知条件与待证结论之间 的联系不明显,可考虑用分析法;如果待证的命题以“至 少”“至多”“恒成立”等方式给出,可考虑用反证法.在必 要的情况下,可能还需要使用换元法、放缩法、构造法 等技巧简化对问题的表述和证明.
以 h′(x)<0.
因此 h(x)在(1,3)内是递减函数,又由 h(1)=0,得 h(x)<0.
于是当 1<x<3 时,f(x)<9xx+-51. 教学ppt
7
法二:记 h(x)=(x+5)f(x)-9(x-1),
则当 1<x<3 时,
由(1)得 h′(x)=f(x)+(x+5)f′(x)-9
<32(x-1)+(x+5)(1x+21 x)-9
不等式出发,逐步推出其必要条件(由因导果),最后推导出
所要证明的不等式成立.
综合法证明不等式的依据是:已知的不等式以及逻辑
推证的基本理论.证明时要注意的是:作为依据和出发点
的几个重要不等式(已知或已证)成立的条件往往不同,应用
时要先考虑是否具备应有的条件,避免错误,如一些带等
号的不等式,应用时要清楚取等号的条件,即对重要不等
式中“当且仅当……时,取等号”的理由要理解掌握.
教学ppt
13
[例2] 已知a,b,c为△ABC的三条边,求证: a2+b2+c2<2(ab+bc+ca)
[证明] 设 a,b 两边的夹角为 θ,则由余弦定理: cos θ=a2+2ba2b-c2 ∵因为 0<θ<π, ∴cos θ<1. ∴a2+2ba2b-c2<1.
不等式选讲(用基本不等式证明不等式)
不等式选讲(用基本不等式证明不等式)一、用基本不等式证明不等式1.(2014年1卷)若0,0a b >>,且11a b +=.证明: (1) 求33a b +的最小值;(2)是否存在,a b ,使得236a b +=?并说明理由.【解析】(I11a b =+≥,得2ab ≥,且当a b == 故33a b+≥≥,且当a b ==时取等号.所以33a b +的最小值为(II )由(I)知,23a b +≥≥6>,从而不存在,a b , 使得236a b +=.2.(2013年2卷)设均为正数,且,证明:(1) (2) 【解析】(Ⅰ)2222222,2,2a b ab b c bc c a ca +≥+≥+≥得 222a b c ab bc ca ++≥++由题设得()21a b c ++=,即2222221a b c ab bc ca +++++=. 所以()31ab bc ca ++≤,即13ab bc ca ++≤ (Ⅱ)∵2222,2,2a b c b a c b a c b c a+≥+≥+≥ ,,a b c 1a b c ++=13ab bc ca ++≤2221a b c b c a++≥∴222()2()a b c a b c a b c b c a+++++≥++ 即222a b c a b c b c a++≥++ ∴2221a b c b c a++≥3.(2019年1卷)已知a ,b ,c正数,且满足abc=1.证明: (1)222111a b c a b c++≤++; (2)333()()()24a b b c c a +++≥++.【解析】(1)1abc = 111111abc bc ac ab a b c a b c ⎛⎫∴++=++⋅=++ ⎪⎝⎭ ()()()()2222222222222a b c a b b c c a ab bc ac ++=+++++≥++当且仅当a b c ==时取等号, ()22211122a b c a b c ⎛⎫∴++≥++ ⎪⎝⎭,即:222111a b c a b c ++++≥ (1) ()()()()()()3333a b b c c a a b b c c a +++++≥+++,当且仅当a b c ==时取等号又a b +≥b c +≥a c +≥(当且仅当a b c ==时等号同时成立)()()()3333a b b c c a ∴+++++≥⨯=又1abc()()()33324a b b c c a ∴+++++≥4.已知正数x 、y 、z ,且1xyz =.(1)证明:222x y z y z x y++≥+; (2)证明:()()()22212x y y z z x +++++≥.【详解】(1)因为x 、y 、z 为正数,且1xyz =,所以222x y y z +≥==, 当且仅当32y zx =时等号成立,即4y x =时,等号成立;同理22y z z x +≥,22x z y x +≥22222x y z y z x z y ⎛⎛⎫++≥++ ⎪ ⎝⎭⎝⎭,即222x y z y z x z y++≥+,当且仅当1x y z ===时等号成立;(2)因为()()()222x y y z z x +++++≥由二元均值不等式得x y +≥y z +≥,z x +≥,当且仅当x y z ==时,等号同时成立,所以()24x y xy +≥,()24y z yz +≥,()24z x xz +≥, ()()()()22226464x y y z z x xyz ∴+++≥=,因此,()()()22212x y y z z x +++≥=++,当且仅当1x y z ===时,等号同时成立.【点睛】本题考查利用三元和二元均值不等式证明不等式,考查推理能力,属于中等题.5.(2020年3卷)设a ,b ,c ∈R ,a+b+c=0,abc=1.(1)证明:ab+bc+ca<0;(2)用max{a ,b ,c}表示a ,b ,c 中的最大值,证明:max{a ,b ,c}.【详解】(1)2222()2220a b c a b c ab ac bc ++=+++++=,()22212ab bc ca a b c ∴++=-++. 1,,,abc a b c =∴均不为0,则2220a b c ++>,()222120ab bc ca a b c ∴++=-++<; (2)不妨设max{,,}a b c a =,由0,1a b c abc ++==可知,0,0,0a b c ><<,1,a b c a bc =--=,()222322224b c b c bc bc bc a a a bc bc bc++++∴=⋅==≥=. 当且仅当b c =时,取等号,a ∴≥,即3max{,,}4a b c .。
【不等式的证明方法】不等式的证明ppt
【不等式的证明方法】不等式的证明ppt 不等式的证明ppt不等式的证明1.比较法作差作商后的式子变形,判断正负或与1比较大小作差比较法-----要证明a>b,只要证明a-b>0。
作商比较法---已知a,b都是正数,要证明a>b,只要证明a/b>1例1 求证:x2+3>3x证明:∵x2+3-3x=x2-3x+ 2- 2+3= + ≥ >0∴ x2+3>3x例2 已知a,bR+,并且a≠b,求证a5+b5>a3b2+a2b3证明:a5+b5-a3b2+a2b3=a5-a3b2-a2b3-b5=a3a2-b2-b3a2-b2=a2-b2a3-b3=a+ba-b2a2+ab+b2∵ a,bR+∴ a+b>0, a2+ab+b2>0又因为a≠b,所以a-b2>0∴ a+ba-b2a2+ab+b2>0即 a5+b5-a3b2+a2b3>0∴ a5+b5>a3b2+a2b3例3 已知a,bR+,求证:aabb≥abba证明:= ∵a,bR+,当a>b时, >1,a-b>0, >1;当a≤b时, ≤1,a-b≤0, ≥1.∴ ≥1, 即aabb≥abba综合法了解算术平均数和几何平均数的概念,能用平均不等式证明其它一些不等式定理1 如果a,bR,那么a2+b2≥2ab(当且仅当a=b时劝=”号)证明:a2+b2-2ab=a-b2≥0当且仅当a=b时取等号。
所以a2+b2≥2ab当且仅当a=b时取等号。
定理2 如果a,b,cR+,那么a3+b3+c3≥3abc(当且仅当a=b=c时劝=”号)证明:∵a3+b3+c3-3abc=a+b3+c3-3a2b-3ab2-3abc=a+b+ca2+b2+c2-ab-bc-ac=a+b+c[a-b2+b-c2+a-c2]≥0∴ a3+b3+c3≥3abc,很明显,当且仅当a=b=c时取等号。
高考数学一轮复习 人教版 选修4 第十一单元 听课手册 第73讲不等式的证明
听课手册第73讲不等式的证明1.证明不等式的常用方法(1)比较法①求差比较法:a>b⇔a-b>0,a<b⇔a-b<0,因此要证明a>b,只要证明即可,这种方法称为求差比较法.②求商比较法:a>b>0⇔>1且a>0,b>0,因此当a>0,b>0时,要证明a>b,只要证明>1即可,这种方法称为求商比较法.(2)分析法从所要证明的出发,逐步寻求使它成立的充分条件,直至所需条件为已知条件或一个明显成立的事实,从而得出要证的命题成立,这种证明方法称为分析法,即“执果索因”的证明方法.(3)综合法从已知条件出发,利用定义、公理、定理、性质等,经过一系列的推理、论证而得出命题成立,这种证明方法称为综合法,即“由因寻果”的方法.(4)放缩法证明不等式时,通过把不等式中的某些部分的值放大或缩小,简化不等式,从而达到证明的目的,这种方法称为放缩法.(5)反证法的步骤①作出否定的假设;②进行推理,导出;③否定,肯定.2.柯西不等式(1)二维形式的柯西不等式①柯西不等式的代数形式:设a1,a2,b1,b2均为实数,则(+)(+)≥(当且仅当a1b2=a2b1时,等号成立).②柯西不等式的向量形式:设α,β为平面上的两个向量,则|α|·|β|≥|α·β|,当且仅当β是零向量或存在实数k,使α=kβ时,等号成立.③二维形式的三角不等式:设x1,y1,x2,y2∈R,那么+≥--,当且仅当x1y2=x2y1时,等号成立.(2)一般形式的柯西不等式设a1,a2,a3,…,a n,b1,b2,b3,…,b n是实数,则(++…+)(++…+)≥(a1b1+a2b2+…+a n b n)2,当且仅当b i=0(i=1,2,…,n)或存在一个实数k,使得a i=kb i(i=1,2,…,n)时,等号成立.探究点一利用比较法证明不等式例1[2018·武汉调研]设函数f(x)=-+2x-3,记f(x)≤-1的解集为M.(1)求M;(2)当x∈M时,证明:x[f(x)]2≤x2f(x).[总结反思]要证明或比较两个表达式的大小,通常可采用作差比较法.知道a>b⇔a-b>0,因此要证明a>b,只要证明a-b>0即可.变式题[2018·石家庄二模]已知函数f(x)=|3x+1|+|3x-1|,M为不等式f(x)<6的解集.(1)求集合M;(2)若a,b∈M,求证:|ab+1|>|a+b|.探究点二利用综合法、分析法证明不等式例2[2018·湖南长郡中学月考]设函数f(x)=|2x-1|.(1)设f(x)+f(x+1)<5的解集为A,求集合A;(2)已知m为(1)中集合A中的最大整数,且a+b+c=m(其中a,b,c为正实数),求证:-·-·-≥8.[总结反思](1)利用综合法证明不等式时,常用的不等式有:①a2≥0;②|a|≥0;③a2+b2≥2ab,它的变形形式又有(a+b)2≥4ab,≥等;④≥(a≥0,b≥0),它的变形形式又有a+≥2(a>0),+≥2(ab>0),+≤-2(ab<0)等.(2)用分析法证明不等式时,不要把“逆求”错误地作为“逆推”,分析的过程是寻求结论成立的充分条件,而不一定是充要条件,同时要正确使用“要证”“只需证”这样的关键词.变式题[2018·呼和浩特二模]已知函数f(x)=-.(1)解不等式f(2x)+f(x+4)≥6;(2)若a,b∈R,<1,<1,证明:f(ab)>f(a-b+1).探究点三柯西不等式的应用例3(1)设a,b∈R+,a+b=1,求证:+≥4.(2)已知x+2y+3z=1,求x2+y2+z2的最小值.[总结反思]利用柯西不等式证明不等式或求解某些含有约束条件的多变量的最值问题,解决的关键是构造两组数,并向柯西不等式的形式进行转化.变式题[2018·商洛模拟]已知正数x,y,z满足x2+y2+z2=6.(1)求x+2y+z的最大值;(2)若不等式|a+1|-2a≥x+2y+z对满足条件的x,y,z恒成立,求实数a的取值范围.。
不等式选讲
不等式选讲一、基础知识:(一)不等式的形式与常见不等式:1、不等式的基本性质:(1)a b b a>⇔<(2),a b b c a c >>⇒>(不等式的传递性)注:,a b b c a c ≥≥⇒≥,a c ≥等号成立当且仅当前两个等号同时成立(3)a b a c b c>⇒+>+(4),0;,0a b c ac bc a b c ac bc >>⇒>><⇒<(5)()02,nna b a b n n N >>⇒>≥∈(6))02,a b n n N >>⇒>≥∈2、绝对值不等式:a b a b a b -≤+≤+(1)a b a b +≤+等号成立条件当且仅当0ab ≥(2)a b a b -≤+等号成立条件当且仅当0ab ≤(3)a b b c a c -+-≥-:此性质可用于求含绝对值函数的最小值,其中等号成立当且仅当()()0a b b c --≥3、均值不等式(1)涉及的几个平均数:①调和平均数:12111n nnH a a a =+++ ②几何平均数:n G =③代数平均数:12nn a a a A n+++= ④平方平均数:n Q =(2)均值不等式:n n n n H G A Q ≤≤≤,等号成立的条件均为:12na a a ===(3)三项均值不等式:①a b c ++≥2223a b c abc++≥②33a b c abc ++⎛⎫≤ ⎪⎝⎭③a b c ++≤4、柯西不等式:()()()222222212121122n n n na a a bb b a b a b a b ++++++≥+++ 等号成立条件当且仅当1212n na a ab b b === 或120n b b b ==== (1)二元柯西不等式:()()()22222a bcd ac bd ++≥+,等号成立当且仅当ad bc=(2)柯西不等式的几个常用变形①柯西不等式的三角公式:②()222212121212n nn na a a a a ab b b b b b ++++++≥+++ ()()222212121212n n n n a a a b b b a a a b b b ⎛⎫⇔++++++≥+++ ⎪⎝⎭ ②式体现的是当各项22212,,,n a a a 系数不同时,其“平方和”与“项的和”之间的不等关系,刚好是均值不等式的一个补充。
不等式证明课件
大化或风险最小化。
供需关系分析
在经济学中,不等式可以用来分析 市场供需关系,预测商品价格变化 趋势,以及制定相应的市场策略。
成本效益分析
在制定商业决策时,不等式可以用 于比较不同方案的成本和效益,以 选择最优方案。
切比雪夫不等式
总结词
切比雪夫不等式是一个概率论中的基本不等 式,它表明对于任何概率分布,其数学期望 值总不小于其方差值的一半。
详细描述
切比雪夫不等式是概率论中的一个基本不等 式,它表明对于任何概率分布,其数学期望 值总是大于或等于其方差值的一半。这个不 等式在解决一些概率论问题时非常有用,例 如在统计学、决策理论和可靠性理论等领域 。
不等式证明ppt课件
目录
• 不等式的性质 • 不等式的证明方法 • 常见不等式的证明 • 不等式在数学中的应用 • 不等式的实际应用
01
不等式的性质
定义
总结词
不等式的基本定义
详细描述
不等式是数学中表示两个数或表达式大小关系的式子,用“<”、“>”、 “≤”或“≥”连接。
性质
总结词
不等式的性质
不等式在数论中有着广泛的应用,如 最大公约数、最小公倍数、数的分解 等。
在函数最值问题中的应用
函数的最值问题是数学中的一个重要问题,不等式证明技巧在解决这类问题中具 有关键作用。
利用不等式可以推导函数的单调性、极值和最值,进而解决实际问题中的优化问 题。
05
不等式的实际应用
在经济学中的应用
投资组合优化
03
常见不等式的证明
算术-几何平均不等式
总结词
不等式选讲(用柯西不等式证明不等式)
不等式选讲(用柯西不等式证明不等式)1.(2017年2卷)已知330,0,2a b a b >>+=,证明:(1)55()()4a b a b ++≥;(2)2a b +≤.【解】(1)由柯西不等式得()()()2255334a b a b a b ++=+=≥,1a b ==时取等号.(2)因为()()()()()33232233333232244a b a b a a b ab b ab a b a b a b ++=+++=+++++=+≤)()()()()33232233333232244a b a b a a b ab b ab a b a b a b ++=+++=+++++=+, 所以()38a b +≤,即2a b +≤,当且仅当1a b ==时等号成立2.设,,x y z 均为正数,且1x y z ++=,证明:(1)13xy yz zx ++≤; (2)22212x y z y z x z x y ++≥+++. 【解】证明:(Ⅰ):因为()()()2222222222x y y z x z x y z xy yz xz +++++++=≥++ 所以22221()2223()x y z x y z xy yz xz xy yz zx =++=+++++≥++故13xy yz zx ++≤,当且仅当x y z ==时“=”成立. (Ⅰ),,x y z 均为正数,由柯西不等式得:2222[()()()]()1x y z x y y z x z x y z y z x z x y ⎛⎫+++++++≥++= ⎪+++⎝⎭即22221x y z y z x z x y ⎛⎫++≥ ⎪+++⎝⎭,故22212x y z y z x z x y ++≥+++,当且仅当x y z ==时“=”成立.3.已知,x y R ∈,且1x y +=.(1)求证:22334x y +≥; (2)当0xy >时,不等式11|2||1|a a x y+≥-++恒成立,求a 的取值范围. 【解】(1)由柯西不等式得22222)11x x ⎡⎤⎛⎡⎤+≥⋅+ ⎢⎥⎣⎦⎣⎦⎝+. Ⅰ()22243()3x y x y +⨯≥+,当且仅当3x y =时取等号.Ⅰ22334x y +≥; (2)1111()224y x x y x y x y x y ⎛⎫+=++=++≥+= ⎪⎝⎭, 要使得不等式11|2||1|a a x y+≥-++恒成立,即可转化为|2||1|4a a -++≤, 当2a ≥时,421a -≤,可得522a ≤≤,当1a 2-<<时,34≤,可得1a 2-<<, 当1a ≤-时,214a -+≤,可得312a -≤≤-,Ⅰa 的取值范围为:35[,]22-.4.(2019年3卷)设,,x y z R ∈,且1x y z ++=.(1)求222(1)(1)(1)x y z -++++的最小值;(2)若2221(2)(1)()3x y z a -+-+-≥成立,证明:3a -≤或1a ≥-. 【解析】(1) 因为 22222222[(1)(1)(1)](111)[(1)(1)(1)](1)4x y z x y z x y z -++++++≥-++++=+++=即2224(1)(1)(1)3x y z -++++≥,当且仅当111x y z -=+=+时等号成立, 而又因1x y z ++=,所以,当531313x y z ⎧=⎪⎪⎪=-⎨⎪⎪=-⎪⎩时等号成立, 所以222(1)(1)(1)x y z -++++的最小值为43. (2) 因为2221(2)(1)()3x y z a -+-+-≥, 所以222222[(2)(1)()](111)1x y z a -+-+-++≥.当且仅当21x y z a -=-=-,即22321323a x a y a z a +⎧=-⎪⎪+⎪=-⎨⎪+⎪=-⎪⎩时,有22222222[(2)(1)()](111)(21)(2)x y z a x y z a a -+-+-++=-+-+-=+成立. 所以2(2)1a +≥成立,所以有3a -≤或1a ≥-.5.已知a ,b 均为正实数,且1a b +=.(1)求2的最大值; (2)求1ab a+的最大值. 解析:(1)(2211= ()()22114141a b ≤+⋅+++()()242241212a b ⎡⎤=++=⨯+=⎣⎦,=12a b ==时,取等号,故原式的最大值为12. (2)原式112122ab b a b a ab a b ===+++, 因为()1212a b a b a b ⎛⎫+=++ ⎪⎝⎭22123b a b a a b a b ⎛⎫=+++=++ ⎪⎝⎭33≥+=+ 当且仅当2b a a b =,即12a b ⎧=⎪⎨=⎪⎩3≤=-故原式的最大值为3-。
不等式选讲证明不等式的基本方法课件理ppt
THANKS
谢谢您的观看
3
乘法可换性
如果`a>b`且`c>d`,那么`ac>bd`。
特殊不等式的性质
基本不等式
对于正数`a`和`b`,有`sqrt(ab)<=((a+b)/2)`,当且仅当 `a=b`时等号成立。
对数不等式
对于正数`a`和`b`,如果`log(a)<log(b)`,那么`a<b`。
不等式的变换规则
移项规则
在方程求解问题中的应用
线性方程
对于线性方程组,可以利用不等式理论中的线性规划方法求 解,通过不等式表示可行域,进而求解最优解。
非线性方程
对于非线性方程组,可以转化为单变量函数求极值的问题, 利用不等式可以找到极值点附近的局部最优解。
在数列和极限问题中的应用
数列极值
不等式可以用于求解数列的极值点,通过不等式可以找到数列中最大值和最 小值的所在点。
极限证明
不等式可以用于证明数列或函数的极限存在与否,以及求出极限的大小。如 利用Cauchy准则证明数列收敛的极限不等式。
05
总结与回顾
学习心得与体会
1
学生对不等式基本性质和证明方法的掌握程度 有所提高。
2
学生对不等式证明的思路和方法有更深入的理 解。
3
学生对用分析法证明不等式的技巧更加熟练。
课堂互动与表现
不等式选讲证明不等式的 基本方法课件
xx年xx月xx日
目录
• 不等式的性质 • 证明不等式的基本方法 • 常见不等式的证明 • 不等式在实际问题中的应用 • 总结与回顾
01
不等式的性质
不等式的基本性质
1 2
传递性
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十三讲 不等式证明选讲本节主要内容为证明不等式的基本方法——比较法;综合法于分析法;放缩法;放缩法;反证法;数学归纳法;数形结合以及运用函数的性质. A 类例题例1 设1,121≥≥r r ,证明2121121111r r r r +≥+++ 分析:可以把不等式两边相减,通过恒等变形(例如配方,因式分解等),转化为一个能够明确确定正负的代数式.证明:=+++++-+++=+-+++)1).(1)(1()1)(1(2)1)(1(12111121212121212121r r r r r r r r r r r r r r =+++---=++++---+)1).(1)(1()()()1).(1)(1(222121221221212121212121212211r r r r r r r r r r r r r r r r r r r r r r r r r r0)1).(1)(1()1.()(212121221≥+++--r r r r r r r r ,∴2121121111r r r r +≥+++当且仅当121==r r 时等号成立. 说明:要证b a >,最基本的方法就是证明0>-b a ,即把不等式两边相减,转化为比较差与0的大小,此法用的频率极高.链接:本题可推广为n r r r ,...,21都不小于1,证明:n nn r r r nr r r ...111...11112121+≥++++++(注:要用数学归纳法) 例2 设10<<x ,1,0≠>a a ,比较|)1(log |x a -与|)1(log |x a +的大小. (1982年全国高考题)分析:显然,要比较的两个数都是正数,把它们相除考察商式与1的大小关系,同样可得出两数的大小关系,即b a ,为正数b a ba>⇔>1解:由于10<<x ,⇒≠-11x ⇒≠-0)1(log x a 0|)1(log |>-x a ,同理0|)1(l o g |>+x a ,=--=-=+-=+-++)1(log |)1(log ||)1(log )1(log ||)1(log ||)1(log |11x x x x x x x x a a a a1)1(log 11log 11=+>-++x xx x,因此>-|)1(log |x a |)1(log |x a + 例3 1)92,31,31=>>ab b a ,证明1<+b a2)n 为任意正整数,证明1)1(1--<+n n n n1)分析:观察欲证不等式的特点,已知中有ab ,结论中有b a +,这种结构特点启发我们采用如下方法.证明:因为31>a ,所以031>-a ,同理031>-b ,因此0)31)(31(>--b a ,91)(31091)(31+<+⇒>++-ab b a b a ab ,又92=ab ,故1<+b a说明:一般地,从已知条件出发,利用定义、公理、定理、性质等,经过一系列的推理、论证而得出命题成立,这种证明方法叫做综合法,综合法又叫顺推证法或由因导果法. 2)分析:从不等式的结构不易发现需要用哪些不等式的性质或事实解决这个问题,因此用分析法.证明:要证1)1(1--<+n n n n ,只需证11)1(1-+<+n n n n ,也就是要证1)1(-+>+n n n n ,两边平方)1(212-+-+>+n n n n n n ,只需证01)1(2)1(>+---n n n n ,只需证0)1)1((2>--n n ,该式对一切正整数n 都成立,所以1)1(1--<+n n n n 成立.说明:证明命题时,我们还常常从要证的结论出发,逐步寻求使它成立的充分条件,直至所需条件为已知条件或一个明显成立的事实,从而得出要的命题成立,这种证明的方法叫做分析法.这是一种执果索因的思考和证明方法,在寻求证明思路时尤为有效. 当问题比较复杂时,时常把分析法和综合法结合起来使用.以分析法寻找证明的思路,用综合法叙述、表达整个证明过程. 在实际的证题思考过程中,执果索因和由因导果总是不断交替地出现在思维过程中.链接:用此已经获证的不等式很容易证出一个新的不等式:n k k nk <+∑=1)1(1例4 1)设c b a ,,是一个三角形的三条边长,2=++c b a ,证明234222<++≤c b a 2)设2+=n a n ,)12(3+-+=n n n b n ,比较n a 与n b 的大小(1992年上海高考题改编) 1) 证明:用分析法证不等式的前半部分. 要证22234c b a ++≤,只需证4)(3222≥++c b a ,即证2222)()(3c b a c b a ++≥++,只需证ca bc ab c b a ++≥++222,因为该不等式是我们熟知的已经成立的不等式,所以22234c b a ++≤成立.又1022<<⇒>-⇒⎩⎨⎧>+=++c c c c b a c b a ,同理1,0<<b a ,这样便有c b a c b a c c b b a a ++<++⇒⎪⎩⎪⎨⎧<<<222222,也即2222<++c b a .综上得234222<++≤c b a2)分析:用特殊值代入)5,4,3,2,1(=n 获得的印象是3,2,1=n 时n n b a >,从4=n 开始n n b a <,因此我们从作差入手,用放缩法完成全部结论.解:>+++-++++=+-+-+=-123)1)(2(2)12(32n n nn n n n n n n b a n n0123123)1(2≥+++-=+++-+++n n n n n n n n (当31≤≤n 时),所以n n b a >)3,2,1(=n又012412322123)1)(2(2≤+++-=+++-+++<+++-++++=-n n n n n n n n n n nn n n b a n n (当4>n 时),所以n n b a <...)6,5,4(=n .综上可知31≤≤n 时,n n b a >;4≥n 时,n n b a <说明:证明不等式时,通过把不等式中的某些部分的值放大或缩小,简化不等式,从而达到证明的目的,我们把这种证法称为放缩法.比如说直接证明不等式B A ≤比较困难,可以试着去找一个中间量C ,如果有C A ≤及B C ≤同时成立,自然就有B A ≤.所谓“放缩”即将A 放大到C ,再把C 放大到B ,或者反过来把B 缩小到C 再缩小到A ,不等式证明的技巧常体现在对放缩尺度的把握上. 情景再现1. 设a b ≤<0,证明bb a ab b a a b a 8)(28)(22-≤-+≤- 2. 1)设+∈R b a ,,证明ab bb a a a b b b a a +++≥≥+++33133 2)z y x ,,为任意实数,满足1=++zx yz xy ,求证31)(≤++z y x xyz 3. 设1001≤≤≤≤≤t z y x ,则tzy x +的最小值=__________ B 类例题例5 设n x x x ,...,,21,+∈R y y y n ,...,,21满足1)n n y x y x y x <<<< (02211)2)k k y y y x x x +++≥+++......2121,},...,3,2,1{n k ∈,证明:nn y y y x x x 1...111...112121+++≤+++ 分析:从要证明的结论看,去分母是不可能的,因为去分母计算量太大,去分母后也无法利用已知条件.另外,应该注意已知条件2)实际上包含着n 个不等式⎪⎪⎩⎪⎪⎨⎧+++≥++++≥+≥nn y y y x x x y y x x y x .........2121212111,考虑到以上特点,因此用比较法,先作差.证明:=+++-+++)1...11()1...11(2121nn x x x y y y )11(...)11()11(...)11()11(33222211112211n n n n x y x y y x y x y x y x x y x y x y -++-+-+-=-++-+-=-++-+-+-≥)11(...)11(3322222211nn x y x y y x y x y x y x ≥-++-++-+)11(...)()(3333222121n n x y y x y x y x y y x x=-++-++-+)11(...)()(3333332121nn x y y x y x y x y y x x)11(...)()(33321321nn x y y x y y y x x x -++++-++(依次类推)…0)...()...(2121≥+++-+++≥nn n n y x y y y x x x ,因此nn y y y x x x 1...111...112121+++≤+++ 说明:证题过程看似好长,实际上关键步骤只有一两个.从数学欣赏的角度看,本题已知,求证和证法合在一起,显得十分和谐优美.例6 1)证明:任何三个实数都不可能同时满足下列三个不等式:||||z y x -<,||||x z y -<,||||y x z -<2)设c b a ,,是实数且满足1=abc ,证明b a 12-、c b 12-、ac 12-中最多有两个数大于1 (第44届塞尔维亚和里山数学奥林匹克)分析:要证的结论与条件之间的联系不明显,直接由条件推出结论的线索不够清晰,于是考虑反证法.1)证明:假设存在某三个实数z y x ,,同时满足题设的三个不等式,将它们的两端都同时平方,然后分别移项、分解因式得:0))((<-++-z y x z y x (1) 0))((<-++-x z y x z y (2) 0))((<+--+y x z y x z (3)三式相乘得0)()()(222<-+-++-x z y z y x z y x ,这显然是不可能的,因此原命题成立. 说明:本题所得到的三个不等式(1)(2)(3),单独看哪一个看不出有什么毛病,而一旦把它们求积,矛盾便显现在眼前.2)证明:假设三个数b a 12-、c b 12-、ac 12-都大于1,由于c b a ,,中至少有一个是正的,不妨设0>a ,于是01122>⇒>->c ac c .同理可推得0>b ,因此c b a ,,都是正数.由c c b c b 12.21)11(21112≥+>⇒>-,即c b 1>,同理b a 1>,a c 1>,三式相乘得11)(123>⇒>⇒>abc abc abcabc ,此与已知1=abc 矛盾,因此题目结论成立. 说明:反证法的根据是排中律,是用证明逆否命题成立来替代原命题成立.其难点在于提出与结论相反的假设后,如何合理地展开思路以便尽快凸现矛盾.例7 设数列}{n x 满足211=x ,221nx x x n n n +=+,证明10012001<x(2001年中国西部数学奥林匹克)分析:这是一个有关正整数的命题,很自然地考虑用数学归纳法,注意到1001接近2001的一半,因此可以试着证明2nx n ≤ (1)证明:1=n 时,211=x ,命题2nx n ≤成立.设k n =时,(1)成立,即2k x k ≤,当1+=k n 时,有22221)2(12k k k k x x x k k k +≤+=+21412+<+=k k ,故对一切*N n ∈,(1)都成立,从而1001220012001<≤x 例8 1)y x ,为非负实数,122=+y x ,证明:2111544+≤+++≤y x2)设+∈R y x ,,证明6333332222≥+-++-++-y xy x y y x x分析:从1),2)的结构看,似乎分别与勾股定理、余弦定理有些联系,因此可以把题中的式子赋于几何意义,从而把复杂的代数不等式化为相应的较为简单的几何不等式. 1)证明:如图1)ABCD 、CDEF 都是正方形,其边长等于1,P 为线段CD 上任一点,令2x PC =,2y PD =,则122=+y x ,4221y DP DA PA +=+=,4221x CP CF PF +=+=,51144≥+++⇒≥+y x AF PF PA(⎪⎪⎩⎪⎪⎨⎧==2222y x 时等号成立).又在ADF ∆形内任一点(含周界),DF AD DF PA +≤+,即211144+≤+++y x (⎩⎨⎧==10y x 或⎩⎨⎧==01y x 时等号成立).2)证明:构造图形如图2),A B C ∆为等腰直角三角形,3==BC AC ,x CM =,30=∠ACM ,y CN =, 30=∠BCN ,据余弦定理332+-=x x AM ,332+-=y y BN ,223y xy x MN +-=,由平面几何知AB NB MN AM ≥++,即6333332222≥+-++-++-y xy x y y x x ,当且仅当33-==y x 时等号成立.链接:本题独到的证法不仅明快、利索,而且揭示了问题的真正内含.我们不难从中体会到这道题是如何编拟、设计出来的.例9 设非负实数54321,,,,x x x x x 满足11151=+∑=i ix ,求证:14512≤+∑=i i i x x (2003年西部数学奥林匹克)分析:证明分式不等式,尽可能地不通分、不去分母(不得已而为之).本题通过代换,转换为一个新命题,再用函数有关性质推断出要证结果.证明:令i i x y +=11,5,...,3,2,1=i ,则i i i y y x -=1,且151=∑=i i y ,(10≤<i y ),D1)BACMN 2)12513.515112555.51125)1(4)1(42222222+-++-=+-+-=+-+-=-+-=+i i i i i i i i i i i ii i i ii y y y y y y y y y y y y y y y x x )13.(415154)51(513.51512++-≤+-++-=i i i y y y ,因此145431451512=++-≤+∑∑==i i i ii y x x ,当且仅当51=i y ,即4=i x ,(5,...,3,2,1=i )时等号成立.情景再现4. R c b a ∈,,,若02<++ac ab a ,证明ac b 42> 5. 若1,...,,021≤<n x x x ,1≥n .证明:1)1(1...)1(1)1(12211≤-+++-++-+nn x n x x n x x n x (2004年新加坡数学奥林匹克)6. 已知数列}{n a 中所有项i a 都是正数,又设对于,...3,2,1=n 都有12+-≤n n n a a a ,证明对于,...3,2,1=n 都有na n 1<. (1964年北京数学竞赛题) 7. 设z y x ,,取正实数,且1=++z y x ,求三元函数222222131313),,(z zz y y y x x x z y x f +-++-++-=的最小值,并给出证明. (2003年湖南省高中数学竞赛题)C 类例题例10 1)数列}{n a 中对于任意正整数n 都有21n n a a =+ 1) 试用1a 和n 表示n a2) 当2101≤<a 时,证明321)(211<-++=∑k k n k k a a a3) 当101<<a 时,证明31)(211<-++=∑k k nk k a a a (2003年全国高考江苏卷改编) 分析:首先通过叠代求出数列}{n a 的通项公式,再据通项公式发掘数列的性质.此时我们发现211)(++=∑-k k nk ka a a不大好求.因此应将21)(++-k k k a a a 适当放大,使放大后的数列既便于求和且和式的值又能命中(或接近)要证之结果.1) 解:由已知121323222322222221...)()()()(------=======n n n n n n n a a a a a a a2) 证明:121121211--+=÷=n n n nn a a a a a ,由于2101≤<a ,所以1021121<<-a a n ,故得n n a a <+1.数列}{n a 为单调递减01>-+n n a a , 211≤a ,22)21(≤a 161,)41(,4322232≤≤=⇒≤⇒a a a a ,于是1≥k 时16132≤≤+a a k ,这样便有321161)(161161)()()(11111311211≤<-=-≤-≤-++=+=++=∑∑∑a a a a a a a a a a a n k nk k k n k k k k n k k 所以321)(211<-++=∑k k nk ka a a3)证明:因为}{n a 单调递减,所以k k k k a a a a .1212+++<=,212++=k k a a ,2212k k k a a a <=++,三式相加得<-⇒++<⇒++<++++++++212112222112)().(31.3k k k k k k k k k k k k k a a a a a a a a a a a a a)(31)(31).(31321121++++-=++-k k k k k k k k a a a a a a a a ,因此3131)(31)(31)(313131313211<<-=-<-++++=∑a a a a a a a a n k k k k nk k说明:n a 的表达式也可以先归纳然后用数学归纳法证明.2)和3)的证明都是通过放大构造成差分式,异曲同工.3)的技巧性更高一点.该题有其几何背景,有兴趣的读者可以查阅原题.如果用微积分方法证问题3),显得特别简单. 例11 设00123>>>>x x x x ,证明202213202312202123)()()(x x x x x x x x x x x x --<--+--(1993年全国联赛题改编)分析:两边平方这条路不容易走通,根据已知条件00123>>>>x x x x ,以及三个根式中减式均为20x ,考察代换,将原命题转换为易证的新命题.由2021x x -联想到三角公式θθtan 1sec 2=-()2,0(πθ∈)证明:令011.sec x x θ=,022.sec x x θ=,033.sec x x θ=,其中20321πθθθ<<<<,代入后原不等式化为要证<-+-3122012320tan )sec (sec tan )sec (sec θθθθθθx x21320tan )sec (sec θθθ-x ,约去20x ,并将上式全化为正余弦,即证231321132sin )cos (cos sin )cos (cos sin )cos (cos θθθθθθθθθ-<-+-,整理该式,即只需证)sin()sin()sin(131223θθθθθθ->-+- (*),我们来证明不等式(*).因为20321πθθθ<<<<,所以)2,0(,,231312πθθθθθθ∈---,+--=-+-=-)cos()sin()]()sin[()sin(1223122313θθθθθθθθθθ )cos()sin(2312θθθθ--(1)cos(),cos(02312<--<θθθθ) )sin()sin(1223θθθθ-+-<,至此原不等式获证.链接:与本题相关的另外两个命题是0123>>>x x x ,则有221323122123)()()(x x x x x x x x x -=-+-,222132231222123)()()(p x x x p x x x p x x x +->+-++-(0≠p )情景再现8. 设+∈R c b a ,,,且1=abc ,求证1111111≤++++++++ac c b b a9. 证明:对任意正数z y x ,,都有3234xyz z y x ≥++10. 求所有的实数k ,使得不等式)(13333d c b a k d c b a +++≥++++对任意),1[,,,+∞-∈d c b a 都成立. (2004年西部数学奥林匹克)习题十三A 类1. 1)不查表证明312lg 3.0<<2)+∈R b a ,,2=+b a ,*N n ∈,证明11111≥+++nn ba 2. n a a a ,...,,21成等差数列,n i a i ,...,3,12,0=>,证明n n n a a a a a ...211≤ 3. 设87321...a a a a a ≤≤≤≤≤是8个给定的实数,且8...821a a a x +++=,8...282221a a a y +++=,试证2184x y a a -≤-B 类4. 1)在ABC ∆中,求证0≤-+-+-+-+-+-cb a cb b ac b a a c b a c2)当n n n x x x x +==+211,31时,代数式 1111...11111120022001321++++++++++x x x x x 的值在哪两个整数之间? (2002-2003芬兰高中数学奥林匹克)5. 若100个实数10021,...,,a a a 满足⎪⎪⎩⎪⎪⎨⎧≥+-≥+-≥+-023 (0230)2321100432321a a a a a a a a a ,证明10021...a a a ===6. 设1,1,1321>>>a a a ,S a a a =++321,已知对3,2,1=i 都有S a ai i >-12,证明:1111133221>+++++a a a a a a (第31届俄罗斯数学奥林匹克)7. 证明:不等式43))(())(())((222≥++++++++b c a c c a b c b b c a b a a 对所有正实数cb a ,,成立. (克罗里亚2004年数学奥林匹克) 8. 设数列}{n a 满足21=a ,nn n a a a 11+=+ (,...2,1=n )1)证明12+>n a n 对一切正整数n 成立;2)令na b n n =(,...2,1=n ),判定n b 与1+n b 的大小并说明理由.(2004年高考重庆卷)C 类9. 已知n m i ,,是正整数,且n m i <≤<11)证明in i i m i p m p n < 2)mnn m )1()1(+>+ (2001年全国高考题)10. 已知c b a ,,为正实数,证明:34222≤++⇒=+++c b a abc c b a(第20届伊朗数学奥林匹克)11. 设c b a ,,是正实数,求证:8)(2)2()(2)2()(2)2(222222222≤++++++++++++++b a c b a c a c b a c b c b a c b a (2003年美国数学奥林匹克)12. 已知z y x ,,是不全为零的非负实数,求zy x zxx z yz z y xy y x u ++++++++++=222222的最小值.本节情景再现解答1. 作差,=+---=---+a b a b a b a a b a ab b a 8)()(2)(8)(222220)3.(8)()23(8)(32≥+-=---b a ab a b ab a b a ,另一半同法可证.2. 1)分析法.要证133≥+++ab bb a a ,只需证)3)(3()3()3(a b b a b a b a b a ++≥+++,平方后即证0)(34)3)(3(2≥-⇔≥++b a ab a b b a ab 此式成立.同理可证另一不等式.2)只要证2)()(3zx yz xy z y x xyz ++≤++,展开后即证≥++222222x z z y y xxy z zx y yz x 222++,据已知不等式ca bc ab c b a ++≥++222该式成立.3.511001210011001=≥+≥+≥+y y z y t z y x ,因此所求最小值为51,当100,10,1====t z y x 时取得此最小值.4. 反证法:假设ac b 42≤,又据已知)(442ab a ac +-<,因此⇒+-<)(422ab a b0)2(2<+b a 这是不可能的,因此ac b 42>5.n x n x x x n x 1)1()1(111111=-+≤-+,同理nx n x k k 1)1(1≤-+(n k ,...,2=),n 个同向不等式相加便得.6. 用数学归纳法:我们有)1(01n n n a a a -≤<+,故101<<a ,即我们的结果当1=n 时成立.今设其当k n ≤时成立,则221)21(41k k k k a a a a --=-≤+,若1=k ,则从此容易看出212<a .若2≥k ,则由上式得111)11(1)121(41221+<-=-=--≤+k kk k k k a k ,即得所证.7. 构造函数,并用函数性质.考察函数21)(ttt g +=,易知)(t g 为奇函数,并且当0>t 时在]1,0(上单调递增.因此对于)1,0(,21∈t t ,且21t t <有0))()()((2121>--t g t g t t .所以,对任意]1,0(∈x ,有222130)1031)(31(0))31()()(31(x xx x x x g x g x +-⇒≥-+-⇒≥--)13(103-≥x .同理可得)13(1031322-≥+-y y y y ,)13(1031322-≥+-z z z z ,三式相加得0),,(≥z y x f ,所求最小值为08. 代换,令+∈===R z y x z c y b x a ,,,,,333,由题设得1=x y z ,利用2233yx y x y x +≥+,有222233111111xyy x xyz xyzxy y x y x b a ++=++≤++=++ zy x z ++=,同理有z y x x c b ++≤++11,z y x ya c ++≤++11,三式相加得原不等式成立.9. 反证法.若存在正实数000,,z y x 使3200034000z y x z y x ≥++,那么就有⎪⎩⎪⎨⎧<<<⇒⎪⎩⎪⎨⎧<<<120001603000160000160320002403200060320000)()(z y x z z y x y z y x x z y x z z y x y z y x x ,三式相乘得16000160160160)(z y x z y x <矛盾!故原不等式成立.10. 取特殊值,当1-====d c b a 时有43)4(3≥⇒-≥-k k ;当21====d c b a 时有43)214(1814≤⇒⨯≥+⨯k k ,两者都能成立,得43=k .下面证明)(4313333d c b a d c b a +++≥++++ (1),对任意),1[,,,+∞-∈d c b a 都成立.首先证明),1[+∞-∈x 时x x 3143≥+,事实上0)12)(1(3)14(23≥-+=-+x x x x ,所以a a 3143≥+,b b 3143≥+,c c 3143≥+,d d 3143≥+四个不等式相加便得(1),故欲求的实数43=k 本节习题解答1. 1)要证312lg <,只要证31102<,即证1023<,此为显然.同法可证2lg 3.0<2)112≤⇒≤⇒≥+nn b a ab ab b a ,0)1)(1(111111≥++-=-+++n n n n n n b a b a b a ,因此11111≥+++nn b a2. 令等差数列公差为d ,4)()(21211a a a a a a n n n --+=,4)()(21211k k n k n k kn k a a a a a a --+=-+-+-+(n k ,...,2,1=),注意到k n k n a a a a -++=+11,所以0)1)((4)()(.2212111≥--=---=--+-+d k k n a a a a a a a a k k n n n kn k ,因此n k n k a a a a 11.≥-+,这样便有n n a a a a 11=,n n a a a a 112≥-,n n a a a a 123≥-,…,n n a a a a 11=,将这n 个不等式相乘得n n n n n n a a a a a a a a a a ...)()...(2111221≤⇒≥3. +-=+++-+++=-21828212822212)[(641])...()...(8[641a a a a a a a a x y +-+-++-+-+-++-232217************)()(...)()()(...)(a a a a a a a a a a a a])(...)(276242a a a a -++-,而21228212228][21)()(a a a a a a a a -+-≥-+-218)(21a a -=,因此 2182762422322182)(161])(...)()()(4[641a a a a a a a a a a x y -≥-++-+-+-≥-,因此2184x y a a -≤-,当且仅当2...81732a a a a a +====时等号成立. 4. 1)设z c b a y b a c x a c b 2,2,2=-+=-+=-+,则+∈R z y x ,,,且z y a +=,z x b +=,y x c +=,故原不等式等价于0222≤-+-+-z y z y x y x z x ,即0≥++zyy x x z ,由平均不等式知,此式显然成立.2)11111111111)1(+++-=+⇒=+-⇒+=n n n n n n n n n x x x x x x x x x ,这样 20032003120021131111x x x x n n -=-=+∑=,1,815243>=x x ,容易证明}{n x 中0>n x ,n n x x >+1所以31113200214<+<-∑=n n x x ,即311220021<+<∑=n n x5. 证法一:注意到系数规律,将这100个不等式相加得00≥,因此原式应为100个等式这样便有)(23221a a a a -=-,)(24332a a a a -=-…)(2211100a a a a -=-,将这100个等式分别平方后再相加得0)(3...)(3)(321100232221=-++-+-a a a a a a ,因此10021...a a a ===证法二:100个不等式应为等式,这样)(2)(24323221a a a a a a -=-=-)(2)(2...)(22199110098543a a a a a a -=-==-=,于是有0))(12(2199=--a a 21a a =⇒,依次代入得32a a =,,...43a a =10099a a =,所以10021...a a a ===6. 易知)()1)((1321321132121121a a a a a a a a a a a s a a +>++⇔-++>⇔>-,得3211321a a a a a a ++>+,同理3212131a a a a a a ++>+,3213211a a a a a a ++>+,三个不等式相加便得1111133221>+++++a a a a a a7. 给定不等式等价于⇔≥++++++++43))()(()()()(222a c c b b a b a c a c b c b a⇔≥+++++++++++432222222222222b c a c c b a b c a b a abc b c a c c b a b c a b a +-+⇔≥-+++++)2(0622222222abc a c c b abc b c a c c b a b c a b a0)()()(0)2()2(2222222≥-+-+-⇔≥-++-+b a c c a b c b a abc c b c a abc b c b a 此式显然成立,原不等式得证. 8. 1)证法一:当1=n 时,11221+⨯>=a 不等式成立.假设k n =时,12+>k a k ,当1+=k n 时,由于0>k a ,故011>+=+k k k a a a ,222112kk k a a a ++=+ 1)1(21)1(2121212++>⇒++>+++>+k a k a k k k.这就是说1+=k n 时,不等式也成立.故对任意正整数n ,12+>n a n 成立.证法二:先证0>n a ,由于0121>+>+n n n a a a ,这样便有,...,0,03221>>a a a a01>-n n a a ,将这)1(-n 个不等式相乘得0)2(0 (12)2123221>⇒=>-n n n n a a a a a a a a ,又2121222222321212212,...,12,12--++=++=++=n n n a a a a a a a a a ,将这)1(-n 个不等式相加得1222)1(221...11)1(22212221212+>+=-+>++++-+=-n n n a a a n a a n n)2(≥n ,又120+>⇒>n a a n n ,又1=n 时,不等式显然成立,故,...)3,2,1(12=+>n n a n2)=+++=+++<++=+=++1)12()1(21)1211(1)11(1211n n nn n n n n n a n a n a b b n n n n n 12)1(12)1(2++<++n n n n n n (对分子用平均不等式)1=,故n n b b <+1 9. 1)要证ini imi p m p n <,只要证i nim i p pn m >)(,即证)1)...(2)(1()1)...(2)(1()(+---+--->i n n n n i m m m m n m i ,借助熟知的不等式,m b a ,,都是正数,并且b a <,则有b a m b m a >++,因此011...2211>+-+->>-->-->i n i m n m n m n m ,于是有 11...22.11.)(+-+----->i n i m n m n m n m n m i 2)证法一:用平均不等式n m <≤2,<++++=+-个个m m n mn n n n )1)...(1()1(1....1.1)1( n nm nn m m n )1(])1(1).([+=++-,即m n n m )1()1(+>+证法二:原不等式等价于)1lg()1lg(.n m m n +>+,即nn m m )1l g ()1l g (+>+,设))1lg(,()),1lg(,(n n B m m A ++为函数)1l g (x y +=图象上两点,则n n K m m K OB OA )1lg(,)1lg(+=+=,由图象知O B O A K K >,∴nn m m )1lg()1lg(+>+,原不等式成立.10. 显然c b a ,,不可能都大于1,或者都小于1,因此c b a ,,中一定有两个或者都不大于1,或者都不小于1,不妨设b a ,,则10)1)(1(-+≥⇒≥--b a ab b a (1),又ab b a 222≥+,)2(42422222c ab c abc c ab abc c b a +≥-⇒++≥+++=,约去c +2得ab c ≥-2 (2),(1)+(2)得3≤++c b a .另:本题也可用反证法证明.11. 不等式左端分子、分母均为二次,因此对c b a ,,乘一个合适的因子可把原问题化为1=++c b a 的情形,因原不等式只要证⎪⎩⎪⎨⎧≤-+++-+++-++>=++8)1(2)1()1(2)1()1(2)1()0,,(1222222222c c c b b b a a a c b a c b a ,注意到 ]932381[31]9)3(32381[3133123112312)1(2)1(22222222++≤+-++=+-++=+-++=-++a a a a a a a a a a a a a a )412(31+=a .据此同理可得另两道式子,三式相加,原不等式之左8]12)(12[31=+++≤c b a ,当c b a ==时取等号. 12. 解法一:由),()(3)(4222222+∈+≥++⇒≥+R y x y x y xy x xy y x ,因此有)(2322y x xy y x +≥++,同理)(2322z y yz z y +≥++, )(2322x z zx x z +≥++,三式相加得 ⇒++≥++++++++)(3222222z y x zx x z yz z y xy y x3222222≥++++++++++zy x zxx z yz z y xy y x ,因此所求最小值为3,当z y x ==时取得此最小值.(注:z y x ,,中如有零,不等式显然成立.)解法二:构造三角形ABC ,其中z CM y BM x AM ===,,,M 是ABC ∆的斐尔玛点.图示圆为BCM ∆的外接圆,连接AM 交图中圆于P ,PBC ∆为正∆.由平面几何知yz z y CP BC z y MC BM MP ++==+=+=22,, 60=∠CMP ,在P CM ∆中,用余弦定理23sin 60sin ≥⇒≥∠=MP PC MP MCP MP PC,即2322≥+++z y yz z y ,以下同解法一.((注:受到解法二的启示得到解法一)CP。