30.2.1《简单的随机抽样》学案
人教版数学必修三2.1.1《简单随机抽样》教案
2.1.1简单随机抽样(教案)教学目标:二、教学目标:【知识与技能】(1)理解什么是简单随机抽样;会用简单随机抽样从总体中抽取样本。
(2)通过学习本小节知识,提高学生对统计的认识,提高学生应用教材知识解决实际问题的能力。
【过程与方法】(1)通过探索、研究、归纳、总结形成本章较为科学的知识网,并掌握知识之间的联系。
(2)进行辨证唯物主义思想教育,数学应用意识教育和数学审美教育、提高学习数学的积极性。
【情感、态度与价值观】(1)结合教学内容培养学生学习数学的兴趣以及“用数学”的意识,激励学生勇于创新。
(2)强化学生的注意力及新旧知识的联系,树立学生求真的勇气和自信心。
(3)通过安排学生游戏试验、分组讨论、,提升学生合作交流、互助提高的团队意识。
课型:新课。
教具与学具:多媒体、学生课前做好的签。
教学设计:一、新课导入课堂从辽沈战役中林彪通过收集数据生擒廖耀湘说起,历史是如此,那么我们现在生活在一个数字化时代(马云说当今的时代已经从IT(信息科技)时代变革为DT(数据科技)时代,我们时刻都在和数据打交道,引出统计学相关概念。
通过预习案展示验收学生预习效果1、统计学是干什么的?统计是研究如何合理收集、整理、分析数据的学科,它可以为人们制定决策提供依据。
2、统计的两个核心内容是什么?(1)、收集数据(普查、抽样调查)(2)、用样本估计总体3、统计的基本思想方法是什么?用样本估计总体。
4、什么是总体、个体、样本、样本容量?总体:在进行统计分析时,研究对象的全部;个体:组成总体的每个研究对象;样本:从总体中按一定的规则抽出的个体的全部;样本容量:样本中所含个体的个数,用 n 表示。
例如:为了了解全国高中生的视力情况,从中抽取15000名学生进行调查。
其中,全国高中生的视力是总体;每一个学生的视力是个体;抽取的15000名学生的视力是样本;15000 是样本容量。
通过几个实例让学生对普查与抽查进行区分与优缺点总结。
30.2.1 简单的随机抽样(2)
简单的随机抽样一、素质教育目标(一)知识储备点1.知道随机抽样的方法.2.会判断某些抽样的方法是否合适.3.能根据具体情境设计适当的抽样调查方法.4.明确随机抽样是重要的数学方法.(二)能力培养点培养学生收集、描述、分析数据,能作出判断的能力,体会在解决问题的过程中与他人合作交流的重要性.(三)情感体验点通过对身边事例的研究,体会到抽样调查在现实生活中的重要运用,培养学生抽样思考问题的意识,养成良好的个性品质.二、教学设想1.重点:会判断某些抽样方法是否合适,•会选择适合的抽样方法进行抽样调查.2.难点:选择恰当的抽样方法.3.疑点:抽样是否合理.4.课型与基本教学思路:新授课.在明确什么是普查、抽样调查的基础上,•通过生活实例让学生知道在不适宜普查的情况下,如何进行抽样调查才比较科学,进而介绍简单的随机抽样.再通过实际问题引导学生抽样调查时应注意的事项(个体数量、随机性、真实性、代表性)等.教学中应充分让学生自己分析、判断,自主学习,合作交流.三、媒体平台1.教具、学具准备:投影,装有1~200数字卡片的纸箱2.多媒体课件构思:随机抽样时动态显示所取数字号码.四、课时安排1课时五、教学步骤(一)教学流程1.情境导入问题:若要调查我校学生对音乐的兴趣,你认为要普查还是抽样调查?以下的调查方案是否合适?(1)抽查正在参加学校文艺演出的学生.(2)抽查运动场上正在做运动的学生.(3)抽查英语特长班的学生.如果以上调查方案都不合适,你能想出较合适的调查方案?1通过以上问题,让学生知道抽样调查时,样本最好有代表性,没有偏向这样才可以较好地反映总体情况.2.合作探究(1)整体感知通过问题情境向学生介绍简单的随机抽样,并通过一个活动让学生明确简单的随机抽样的步骤,再利用几个例题,结合学生的实际,先让学生判断这次调查所取样本是否有代表性,从而明白抽样调查时关键是所取样本是否有随机性、代表性.(2)四边互动互动1师:在前面的问题中几种调查都不合适,现在介绍一种较科学的方法──简单的随机抽样.(师具体说明简单的随机抽样)师:同学们日常生活中是否见到这种随机抽样的方法.生:一些彩票的中奖号码.师:对,是否还有呢?生:电视中电脑抽取中奖的身份证号或手机号.师:对.明确随机抽样与我们生活紧密联系,从这一点也说明它的合理性、科学性.互动2师:下面我们来看一个随机抽样的具体操作,大屏幕上是初二年级200•名同学的数学考试成绩,并且是按照编号1~200排列,现在请三位同学随机抽取3个样本,每个样本含有5个个体.(大屏幕出示200个学生成绩,并强调抽取时的注意事项)生1.生2(上台)从纸箱中抽取5张卡片.生3:从电脑预设1~200中抽取5个数字.师、生:共同把所抽数字对应的成绩分别填入3个样本的表格中.师:这三位同学在抽取数字之前是否能够预测所取数字.生:不能.师:对!像这样不能够事先预测结果的特性,叫做随机性.明确从以上过程进一步体会了什么是随机抽样.互动3师:看屏幕上问题1(教材中例1),你认为这样抽样调查合适吗?生:不合适,如果小胖周围都是男生,平均身高要比全班平均身高要高,如果小胖周围都是女生,平均身高要比全班平均身高要低.师:对!很好.生:一般情况下,后面同学身高普遍高,平均身高肯定比班的平均身高要2高,所以这种调查不合适,因为抽取样本没有代表性、普遍性.师:很好,那如何抽样比较合适呢?生:在每组前排、中间、后排分别选一名男生、女生,计算出平均身高.师:非常好(这种抽样有代表性)!再看问题2(教材例3).生:不合适,因为这个地区中还有非本校学生.生:不合适,因为这个地区中还有没有中学生的家庭.师:对!明确抽样调查一般样本不得太少,要随机抽取,并具有代表性.3.达标反馈活动:请每位同学调查全班每位同学完成数学作业的平均时间(可下位). 4.学习小结让学生回顾本节课所学的内容,并体会如何使抽样调查时所抽取样本的合理性.(二)拓展延伸1.链接生活开展一次调查,了解我校同学将来最想从事的职业.2.实践探索(1)实践活动调查本市老年人(60岁以上)的健康状况(每年生病次数).方案:①公园里调查50名老年人;②在街上调查50名老年人;③在医院调查50名老年人;④收集数据,互相交流;⑤得出结论.(2)巩固练习①判断下面这几个抽样调查选取样本的方法是否合适,并说明理由:A.一食品厂为了解其产品质量情况,在其生产流水线上每隔100包选取一包检查其质量;B.一手表厂欲了解6~11岁少年儿童戴手表的比例,周末来到一家业余艺术学校调查200名在那里学习的学生;C.为调查全校学生对购买正版书籍、唱片和软件的支持率,•用简单随机抽样法在全校所有的班级中抽取8个班级,调查这8个班级所有学生对购买正版书籍、唱片和软件的支持率;D.为调查一个省的环境污染情况,调查该省会城市的环境污染情况.②P117习题25.1,1~5.A.检查一个人的血型需要抽取血样,这时的总体和样本分别是什么?B.某环保网站正在对“支持商品使用环保购物袋的程度”进行在线调查,•你认为调查结果有普遍代表性吗?为什么?3C.一般来说,要了解一个城市的空气污染情况,•观察一个月得到的结论可靠还是春夏科冬各观察一个月得到的结论可靠?为什么?D.电视节日中经常有根据热心观众身份证号码、•手机号码抽取幸运观众的活动,你认为这种滚动号码的现场开奖方式对每个热心观众获奖的机会都是均等的吗?为什么?E.某班45名学生的体重记录如下(单位:千克)48,48,42,50,61,44,43,51,46,46,51,46,50,45,52,54,51,57,55,48,•49,•48,53,48,56,55,57,42,54,49,47,60,51,51,44,41,49,53,52,49,61,58,52,54,50请用简单的随机抽样方法,分别选取含有6名学生体重的两个样本和含有15•名学生体重的两个样本.③假如你想通过抽样调查了解有多少初中生能够说出父母亲的生日,你认为如何抽样好?(三)板书设计4。
《简单随机抽样》示范课教学设计【高中数学教案】
《简单随机抽样》教学设计1.以探究具体问题为导向,引入简单随机抽样的概念,引导学生从现实生活或其他学科中提出具有一定价值的统计问题;在解决统计问题的过程中,学会用简单随机抽样的方法从总体中抽取样本。
2.正确理解简单随机抽样的概念,掌握抽签法及随机数法的步骤,并能灵活应用相关知识从总体中抽取样本。
3.通过对现实生活中实际问题进行简单随机抽样,感知应用数学知识解决实际问题的方法。
1.正确理解随机抽样的概念,掌握抽签法、随机数表法的一般步骤。
2.能够从现实生活或其他学科中提出具有一定价值的统计问题;3.在解决统计问题的过程中,学会用简单随机抽样的方法从总体中抽取样本。
4.通过对现实生活和其他学科中统计问题的提出,体会数学知识与现实世界及各学科知识之间的联系,认识数学的重要性。
【教学重点】简单随机抽样的概念,抽签法及随机数法的操作步骤。
【教学难点】对样本随机性的理解。
抽签纸,图表等。
(一)知识回顾统计学:研究客观事物的数量特征和数量关系,它是关于数据的搜集、整理、归纳和分析方法的科学。
统计的基本思想:用样本估计总体,即通常不直接去研究总体,而是通过从总体中抽取一个样本,根据样本的情况去估计总体的相应情况。
数理统计所要解决的问题是如何根据样本来推断总体?总体、个体、样本、样本容量的概念:总体:所要考察对象的全体。
个体:总体中的每一个考察对象。
样本:从总体中抽取的一部分个体叫做这个总体的一个样本。
样本容量:样本中个体的数目。
(二)新课导入在1936年美国总统选举前,一份颇有名气的杂志的工作人员做了一次民意测验,调查兰顿和罗斯福中谁将当选下一届总统。
为了了解公众意向,调查者通过电话簿和车辆登记簿上的名单给一大批人发了调查表(在1936年电话和汽车只有少数富人拥有),通过分析收回的调查表,显示兰顿非常受欢迎。
于是此杂志预测兰顿将在选举中获胜。
实际选举结果正好相反,最后罗斯福在选举中获胜。
其数据如下:①预测结果出错的原因是什么?抽取的样本不具有代表性,调查结果只能代表富人的意见。
2.1《随机抽样》教案(新人教必修3)
2.1.1简单随机抽样教学目标:1.结合实际问题情景,理解随机抽样的必要性和重要性2.学会用简单随机抽样的方法从总体中抽取样本教学重点:学会用简单随机抽样的方法从总体中抽取样本教学过程:1.总体和样本在统计学中 , 把研究对象的全体叫做总体.把每个研究对象叫做个体.把总体中个体的总数叫做总体容量.为了研究总体的有关性质,一般从总体中随机抽取一部分:,,,研究,我们称它为样本.其中个体的个数称为样本容量.2.简单随机抽样,也叫纯随机抽样。
就是从总体中不加任何分组、划类、排队等,完全随机地抽取调查单位。
特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。
简单随机抽样是其它各种抽样形式的基础。
通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。
3.简单随机抽样常用的方法:(1)抽签法;⑵随机数表法;⑶计算机模拟法;⑷使用统计软件直接抽取。
在简单随机抽样的样本容量设计中,主要考虑:①总体变异情况;②允许误差范围;③概率保证程度。
4.抽签法:(1)给调查对象群体中的每一个对象编号;(2)准备抽签的工具,实施抽签(3)对样本中的每一个个体进行测量或调查例:请调查你所在的学校的学生做喜欢的体育活动情况。
5.随机数表法:例:利用随机数表在所在的班级中抽取10位同学参加某项活动。
课堂练习:第52页,练习A,练习B小结:本节重点介绍简单随机抽样常用的方法:⑴抽签法;⑵随机数表法;学会用简单随机抽样的方法从总体中抽取样本课后作业:第58页,习题2-1A第1、2、3题,2.1.2系统抽样教学目标:1.结合实际问题情景,理解系统抽样的必要性和重要性2.学会用系统抽样的方法从总体中抽取样本教学重点:学会用系统抽样的方法从总体中抽取样本教学过程:1.系统抽样(等距抽样或机械抽样):把总体的单位进行排序,再计算出抽样距离,然后按照这一固定的抽样距离抽取样本。
第一个样本采用简单随机抽样的办法抽取。
《简单随机抽样》教案 (公开课获奖)教案 2022青岛版
4.2 简单随机抽样学习目标:1、了解简单随机抽样的概念2、知道简单随机抽样的方法3、知道简单随机抽样经常使用的地方。
4、学习重点:理解和把握简单随机抽样的概念5、学习难点:理解简单随机抽样的方法,并能尝试性的进行简单的操作。
学习过程一创设情境,引入新课交流与发现为了了解本校学生暑期参加体育活动的情况,学校准备抽取一部分学生进行问卷调查,现有四个发放调查问卷的方案,你认为按下面的调查方法取得的结果能放映全校学生的一般情况吗?如果不能,应当如何改进调查方法?方案一:发给学校田径队的30名同学方案二:调查每个班的男同学方案三:从每个班随机抽取1名同学方案四:从每个班抽取一半学生进行调查二合作交流,探索新知1.简单随机抽样的含义为了获取能够客观反映问题的结果,通常按照总体内的每个个体被抽到的机会都相等的原则抽取样本, 则这种抽样方法叫做简单随机抽样.注:随机抽样并不是随意或随便抽取,因为随意或随便抽取都会带有主观或客观的影响因素.2.讨论P/88实验与探究,思考:根据你的理解,简单随机抽样有哪些主要特点?(1)总体的个体数有限;(2)样本的抽取是逐个进行的,每次只抽取一个个体;(3)抽取的样本不放回,样本中无重复个体;(4)每个个体被抽到的机会都相等,抽样具有公平性.三.例题讲解例1:李大伯为了估计一袋大豆种子中大豆的粒数,先从袋中取出50粒,做上记号,然后放回袋中,将豆粒搅匀,再从袋中取出100粒,,从这100粒中,找出带记号的大豆,如果带记号的大豆有两粒,便可以估计出袋中所有大豆的粒数,你知道他是怎样估计的吗?四实际应用1、某校的黑板报上刊登了一篇题为《大部分学生不吃早餐》的报道,文章说。
“通过对课间学校商品部买小食品的20名同学的调查发现16人是因为没有吃早餐而去买零食,由此判断,我校80%的同学在家不吃早餐”2、在某次篮球赛中,解说员介绍了参加美国职业篮球队的3名中国籍队员的身高,有位观众把这3个人的平均身高与美国人的平均身高进行比较,得出一个结论:“中国人的平均身高比美国人高”。
《简单随机抽样》教案
《简单随机抽样》教案教学目标一、知识与技能1•通过生活中的实例,体会不同的抽样方法会得到不同的调查结果;2•了解简单随机抽样的意义;二、过程与方法1•通过实验与探究的方法,让学生进一步感受在随机抽样中,结果的随机性和只有样本容量足够便可推断总体;2•通过探究进一步了解、掌握简单随机抽样的特点;三、情感态度和价值观1•使学生认识到数学和日常生活息息相关,从而增进学习数学的乐趣,在活动中培养学生的合作竞争意识和解决问题的能力;2•通过分组讨论学习,体会合作学习的兴趣;教学重点简单随机抽样的意义;教学难点获取数据时,会判断调查方式是否合适;教学方法引导发现法、启发猜想、讲练结合法课前准备教师准备课件、多媒体;学生准备三角板,练习本;课时安排1课时教学过程一、导入新课为了了解本校学生暑假期间参加体育活动的情况,学校准备抽取一部分学生进行调查,你认为按下面的调查方法取得的结果能反映全校学生的一般情况吗?如果不能反映,应当如何改进调查方法?二、新课学习方法1:调查学校田径队的30名同学选取的样本是田径队的同学,他们暑假中体育活动多方法2:调查每个班的男同学只调查男同学,没调查女同学方法3:从每班抽取1名学生进行调查选取的样本容量太小,不能客观的反映全校学生方法4:选取每个班级中的一半学生进行调查选取的容量太大,需要花费较多的时间和人力对于上面所提出的问题,我们只要得到一部分样本数据就可以对于总体情况进行估计。
如果得到的样本能够客观地反映问题,那么对总体的估计就会准确一些,否则估计就会差一些,为此,我们总是希望寻找一个抽取样本的好方法。
简单随机抽样的含义:为了获取能够客观反映问题的结果,通常按照总体中每个个体都有相同的被抽取机会的原则抽取样本,这种抽取样本的方法叫做简单随机抽样。
注:随机抽样并不是随意或随便抽取,因为随意或随便抽取都会带有主观或客观的影响因素。
在学校门口随机询问,或者利用学号,抽取一定数量的学生进行调查。
2.1.简单随机抽样-苏教版必修3教案
2.1.简单随机抽样-苏教版必修3教案
一、教学目标
1.了解简单随机抽样的概念和特点;
2.掌握简单随机抽样的方法和步骤;
3.认识简单随机抽样的应用场景和意义;
4.培养学生独立思考和合作探究的能力。
二、教学重点
1.简单随机抽样的概念和特点;
2.简单随机抽样的方法和步骤。
三、教学难点
1.简单随机抽样的应用场景和意义;
2.学生独立思考和合作探究的能力。
四、教学过程
1. 导入(5分钟)
介绍调查调研的概念和意义,引出简单随机抽样的概念。
2. 讲解(15分钟)
•简单随机抽样的概念和特点;
•简单随机抽样的方法和步骤。
3. 分组探究(20分钟)
将学生分成小组,让他们根据教师提供的数据,在一定的条件下进行简单随机抽样,并填写实验记录表。
4. 总结(10分钟)
让学生口头汇报实验结果和心得体会。
教师对学生的表现给予评价和指导。
5. 作业布置(5分钟)
布置相关的课后习题作业和实践探究作业。
五、教学方式
采用小组探究和讲解相结合的教学方式。
六、教学工具
黑板、粉笔、多媒体课件。
七、教学反思
本课以小组探究为主要教学方式,让学生在实践中探索简单随机抽样的方法和步骤。
通过互相交流和协作,学生逐渐理解简单随机抽样的意义和重要性。
本课也注重启发学生的思维,引导学生去思考简单随机抽样在实际中的应用和拓展。
在今后的教学实践中,应当继续加强学生的实践操作和思维启发,让学生更好地掌握简单随机抽样的方法和意义。
2.1 简单随机抽样 学案(含答案)
2.1 简单随机抽样学案(含答案)2抽样方法2.1简单随机抽样学习目标1.了解随机抽样的必要性和重要性.2.理解随机抽样的目的和基本要求.3.掌握简单随机抽样中的抽签法.随机数法的一般步骤.知识点一简单随机抽样1.简单随机抽样的定义一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本nN,如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫作简单随机抽样.2.简单随机抽样必须具备的特点1样本容量n小于等于总体容量N;2简单随机抽样是一种逐个不放回的抽样;3简单随机抽样的每个个体被抽到的可能性均为.3.最常用的简单随机抽样方法有两种抽签法和随机数法.知识点二抽签法1.抽签法的定义先把总体中的N个个体编号_________,并把编号_________写在形状.大小相同的号签上,然后将这些号签放在同一个箱子里均匀搅拌,每次随机地从中抽取一个,然后将号签均匀搅拌,再进行下一次抽取,如此下去,连续抽取n次,就得到一个容量为n的样本,这种方法称为抽签法.2.抽签法的一般步骤1给调查对象群体中的每个对象编号_________;2准备“抽签”的工具,实施“抽签”;3对样品中每一个个体进行测量或调查.3.优缺点优点简单易行,适合总体个数不多的情况.缺点当总体容量非常大时,对个体编号_________工作量大,搅拌均匀较难,影响样本的代表性.思考采用抽签法抽取样本时,为什么将编号_________写在形状.大小相同的号签上,并且将号签放在同一个箱子里搅拌均匀答案为了使每个号签被抽取的可能性相等,保证抽样的公平性.知识点三随机数法1.随机数法的定义利用随机数表.随机数骰子或计算机产生的随机数进行抽样叫随机数法,这里仅介绍随机数表法.2.随机数表法的一般步骤1编号_________将总体中的个体以数字编号_________;2选定开始的数字,为了保证所选定数字的随机性,应在面对随机数表之前就指出开始数字的纵横位置;3获取样本号码,抽取样本.3.优缺点优点简单易行,它很好地解决了当总体中个体数较多时抽签法制签难的问题.缺点当总体中的个体数很多,需要的样本容量也较大时,用随机数法抽取样本仍不方便.1.简单随机抽样也可以是有放回的抽样.2.简单随机抽样中每个个体被抽到的机会相等.3.采用随机数表法抽取样本时,个体编号_________的位数必须相同.4.在简单随机抽样中,被抽取样本的总体个数可以是无限多个.题型一简单随机抽样的判断例1下列4个抽样中,简单随机抽样的个数是从无数个个体中抽取50个个体作为样本;仓库中有1万支奥运火炬,从中一次性抽取100支火炬进行质量检查;一彩民选号,从装有36个大小.形状都相同的号签的盒子中不放回地逐个抽出6个号签;箱子里共有100个零件,从中选出10个零件进行质量检验,在抽样操作中,从中任意取出1个零件进行质量检验后,再把它放回箱子里.A.0B.1C.2D.3考点简单随机抽样的概念题点简单随机抽样的概念及特征答案B解析根据简单随机抽样的特点逐个判断.不是简单随机抽样.因为简单随机抽样要求被抽取的样本总体的个数是有限的.不是简单随机抽样.虽然“一次性抽取”和“逐个抽取”不影响个体被抽到的可能性,但简单随机抽样要求的是“逐个抽取”.是简单随机抽样.因为总体中的个体数是有限的,并且是从总体中逐个进行抽取的,是不放回.等可能的抽样.不是简单随机抽样,因为它是有放回抽样.综上,只有是简单随机抽样.反思感悟简单随机抽样必须具备下列特点1被抽取样本的总体中的个体数N是有限的;2抽取的样本是从总体中逐个抽取的;3简单随机抽样是一种不放回抽样;4简单随机抽样是一种等可能的抽样.如果四个特征有一个不满足,就不是简单随机抽样.跟踪训练1在简单随机抽样中,某一个体被抽到的可能性A.与第几次抽样有关,第一次抽到的可能性大一些B.与第几次抽样无关,每次抽到的可能性都相等C.与第几次抽样有关,最后一次抽到的可能性要大些D.与第几次抽样无关,每次都是等可能的抽取,但各次抽取的可能性不一定考点简单随机抽样的概念题点每个个体入选可能性的计算答案B解析在简单随机抽样中,每一个个体被抽到的可能性都相等,与第几次抽样无关,故A,C,D不正确,B正确.题型二简单随机抽样等可能性应用例2一个布袋中有10个同样质地的小球,从中不放回地依次抽取3个小球,则某一特定小球被抽到的可能性是________,第三次抽取时,剩余每个小球被抽到的可能性是________.答案解析因为简单随机抽样过程中每个个体被抽到的可能性均为,所以第一个空填.因为本题中的抽样是不放回抽样,所以第一次抽取时,每个小球被抽到的可能性为,第二次抽取时,剩余9个小球,每个小球被抽到的可能性为,第三次抽取时,剩余8个小球,每个小球被抽到的可能性为.反思感悟简单随机抽样,每次抽取时,剩余总体中各个个体被抽到的概率相同,在整个抽样过程中各个个体被抽到的机会也都相等.跟踪训练2从总体容量为N的一批零件中,抽取一个容量为30的样本,若每个零件被抽到的可能性为0.25,则N的值为A.120B.200C.150D.100答案A解析因为从含有N个个体的总体中抽取一个容量为30的样本时,每个个体被抽到的可能性为,所以0.25,从而有N120.故选A.题型三抽签法与随机数法命题角度1抽签法例3某卫生单位为了支援抗震救灾,要在18名志愿者中选取6人组成医疗小组去参加救治工作,请用抽签法设计抽样方案.解方案如下第一步,将18名志愿者编号_________,号码为01,02,03,,18.第二步,将号码分别写在相同的纸条上,揉成团,制成号签.第三步,将得到的号签放到一个不透明的盒子中,充分搅匀.第四步,从盒子中依次取出6个号签,并记录上面的编号_________.第五步,与所得号码对应的志愿者就是医疗小组成员.反思感悟一个抽样试验能否用抽签法,关键看两点一是制签是否方便;二是个体之间差异不明显.一般地,当样本容量和总体容量较小时,可用抽签法.跟踪训练3从20架钢琴中抽取5架进行质量检查,请用抽签法确定这5架钢琴.解第一步,将20架钢琴编号_________,号码是01,02,,20.第二步,将号码分别写在相同的纸条上,揉成团,制成号签.第三步,将得到的号签放入一个不透明的袋子中,并充分搅匀.第四步,从袋子中逐个不放回地抽取5个号签,并记录上面的编号_________.第五步,与所得号码对应的5架钢琴就是要进行质量检查的对象.命题角度2随机数法例4为了检验某种药品的副作用,从编号_________为1,2,3,,120的服药者中用随机数法抽取10人作为样本,写出抽样过程.解第一步,将120名服药者重新进行编号_________,分别为001,002,003,,120;第二步,在随机数表见教材P9表12中任选一数作为初始数,如选第9行第6列的数1;第三步,从选定的数1开始向右读,每次读取三位,凡不在001120中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到111,024,042,019,058,005,002,054,115,062;第四步,以上这10个号码所对应的服药者即是要抽取的对象.反思感悟1当总体容量较大,样本容量不大时,可用随机数法抽取样本.2用随机数法抽取样本,为了方便,在编号_________时需统一编号_________的位数.3将总体中的个体进行编号_________时,可以从0开始,也可以从1开始.跟踪训练4某车间工人加工一种轴100件,为了了解这种轴的直径,要从中抽取10件轴在同一条件下测量,如何采用简单随机抽样的方法抽取样本解方法一抽签法将100件轴编号_________为1,2,,100,并做好大小.形状相同的号签,分别写上这100个数,将这些号签放在一起,搅拌均匀,接着连续不放回地抽取10个号签,然后测量这10个号签对应的轴的直径.方法二随机数法将100件轴编号_________为00,01,,99,在随机数表见教材P10表12续表中选定一个起始位置,如取第21行第1个数开始,向右选取10个为93,12,47,79,57,37,89,18,45,50,这10件即为所要抽取的样本.抽样方法的选择及实施典例某学校有2005名学生,从中选取20人参加学生代表大会,采用简单随机抽样方法进行抽样,是用抽签法还是随机数表法如何具体实施解由于学生人数较大,制作号签比较麻烦,所以决定用随机数表法,采用随机数表法其实施步骤1对2005名同学进行编号_________,00002004.2在随机数表中随机地确定一个数作为开始,如21行5列的数字9开始的4位9145;依次从左向右读数,2368,4792,,凡不在00002004范围内的,则跳过,遇到自己读过的数也跳过.最后得到号码为036803380508157408811312111000xxxx69044605271547011815940 4251162139716860711.这些编号_________对应的学生组成容量为20的样本.素养评析1当总体容量较大,样本容量不大时,可以用随机数法抽取样本.2选择抽样方法,抽样获取数据,这些都是数据分析必须经历的过程,是培养学生数学核心素养的重要内容.1.下列抽样方法是简单随机抽样的是A.从平面直角坐标系中抽取5个点作为样本B.可口可乐公司从仓库中的1000箱可乐中一次性抽取20箱进行质量检查C.某连队从200名战士中,挑选出50名最优秀的战士去参加抢险救灾活动D.从10个手机中逐个不放回地随机抽取2个进行质量检验假设10个手机已编好号,对编号_________随机抽取答案D解析选项A中,平面直角坐标系中有无数个点,这与要求总体中的个体数有限不相符,故错误;B中,一次性抽取不符合简单随机抽样逐个抽取的特点,故错误;C中,50名战士是最优秀的,不符合简单随机抽样的等可能性,故错误.2.某工厂的质检人员对生产的100件产品,采用随机数法抽取10件检查,对100件产品采用下面的编号_________方法1,2,3,,100;001,002,,100;00,01,02,,99;01,02,03,,100.其中正确的序号是A.B.C.D.答案C解析编号_________位数不统一,根据随机数法的步骤可知,正确.3.为抽查汽车排放尾气的合格率,某环保局在一路口随机抽查,这种抽查是A.简单随机抽样B.抽签法C.随机数法D.以上都不对考点简单随机抽样的概念题点简单随机抽样的概念及特征答案D解析由于不知道总体的情况包括总体个数,因此不属于简单随机抽样.4.使用简单随机抽样从1000件产品中抽出50件进行某项检查,合适的抽样方法是A.抽签法B.随机数法C.随机抽样法D.以上都不对考点随机数法题点随机数法的概念答案B解析由于总体相对较大,样本容量较小,故采用随机数法较为合适.5.一个总体中含有100个个体,以简单随机抽样方式从该总体中抽取一个容量为5的样本,则指定的某个个体被抽到的可能性为________.答案解析因为是简单随机抽样,故每个个体被抽到的机会相等,所以指定的某个个体被抽到的可能性为.1.简单随机抽样是一种简单.基本.不放回的抽样方法,常用的简单随机抽样方法有抽签法和随机数法.2.抽签法的优点是简单易行,缺点是当总体的容量大时,费时.费力,并且标号的签不易搅拌均匀,这样会导致抽样不公平;随机数法的优点也是简单易行,缺点是当总体容量大时,编号_________不方便.两种方法只适合总体容量较少的抽样类型.3.简单随机抽样每个个体入样的可能性都相等,均为,但要将每个个体入样的可能性与第n次抽取时每个个体入样的可能性区分开,避免在解题中出现错误.。
简单随机抽样教案教学设计精致详细
简单随机抽样一、课题名称简单随机抽样(人教版普通高中数学必修三节随机抽样第一课时)二、教材分析本节的主要内容包括:统计问题的特征、统计中的抽样思想、科学抽样的三个必备条件以及简单随机抽样的概念及其三种抽样方法,分别是(1)直接抽选法,(2)抽签法,(3)随机数法,这三种方法的操作步骤和注意事项。
本节的地位与作用:三、教学目标(一)知识与技能正确理解随机抽样的概念,掌握抽签法、随机数表法的一般步骤;(二)过程与方法(1)能够从现实生活或其他学科中提出具有一定价值的统计问题;(2)在解决统计问题的过程中,学会用简单随机抽样的方法从总体中抽取样本。
(三)情感态度与价值感通过对现实生活和其他学科中统计问题的提出,体会数学知识与现实世界及各学科知识之间的联系,认识数学的重要性。
四、教学重点、难点正确理解简单随机抽样的概念,掌握抽签法及随机数法的步骤,并能灵活应用相关知识从总体中抽取样本。
五、教学方法与手段方法:讲授法和引导探究法;手段:PPT;六、教学流程(一)回顾引入数学与生活密不可分,数学来源于生活也应用于生活,而数学与生活联系很紧密的一个问题就是统计问题,在我们生活中有形形色色的数据,比如说产品的合格率、农作物的产量、商品的销售量、某电视台的收视率``````等等。
在我们初中的时候,我们学习了,如何处理数据,比如说制作成图表,求平均值方差等,然而并没有告诉我们如何统计收集这些数据,那么接下来就来学习一下如何收集数据。
设计意图:初步感受生活中的数据无处不在,回顾初中阶段对数据的处理,引出如何收集数据。
(二)初步感受1. 生活中有很多需要收集数据的问题(1)全国的人口总数(2)某地区中小学生的视力状况(3)一批零件的次品率(4)全国沙漠化的总面积(5)2019年广东高考理科数学平均分2. 像这这种类型的问题,我们称之为统计问题,那么这些统计问题的研究对象分别是什么呢分别要收集什么数据研究对象称之为研究总体,需要收集的数据称之为研究变量;3. 再举个例子:某批袋装牛奶的细菌含量超标情况;这个问题是不是统计问题那么研究总体是什么呢研究变量是什么研究总体:这批牛奶;研究变量:细菌含量;设计意图:感受生活当中的统计问题,并了解统计问题的特征,明确研究对象和需要收集的数据。
《简单随机抽样》教学设计案例
《简单随机抽样》教学设计案例《《简单随机抽样》教学设计案例》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!一、教学内容及其解析1.教材所处的地位和前后联系:本节内容是新课标实验教材人教A版必修三第二章统计的第一课时,在学生掌握了算法的基本思想之后,在小学与初中已接触过初步的统计知识的基础上安排的一章内容,旨在使学生对统计知识的理解与掌握呈螺旋性上升一个台阶。
教材通过实例引出抽样的必要性,引导学生思考抽样时所应考虑到问题,思考样本的代表性和所推断的结论之间的关系。
然后介绍最常用、最基础的抽样方法——简单随机抽样并具体介绍抽签法与随机数表法。
简单随机抽样作为一种简单的抽样方法,所体现出的统计思想对学习后面的较复杂的抽样方法奠定了基础,同时它加深并强化对概率性质的理解和运用,因此在知识结构上起到了承上启下的作用,在教材中占有重要地位。
2.教学重点:(1)简单随机抽样的概念。
(2)用抽签法和随机数表法抽取样本。
3.教学难点:正确理解简单随机抽样的随机性原则以及抽样调查的合理性、可靠性。
二、教学目标及其解析1.知识与技能:(1)理解并掌握简单随机抽样的概念、特点。
(2)掌握简单随机抽样的两种方法:抽签法和随机数表法。
2.能力与方法:(1)会用抽签法和随机数表法从有限总体中抽取样本,并能运用这两种方法和思想解决有关实际问题。
(2)灵活运用简单随机抽样的方法解释日常生活中的常见数学问题,加强学生观察问题、分析问题和解决问题的能力。
3.情感、态度和价值观:(1)培养学生收集信息、处理信息、加工信息的能力,提高分析问题、解决问题的能力。
(2)使学生感悟到生活中处处有数学,培养学习数学的兴趣,提高动手操作能力。
三、学生学情分析:本节课是学生在义教阶段学习总体、个体、样本等统计概念的基础上在高中阶段进一步学习的统计知识。
高中学生的思维能力相对来说已经有了很大的提高,因此对概念的理解并不困难,应该引导学生思考以下问题:(1)为什么要进行抽样调查?(2)简单随机抽样应满足什么样的条件?(3)如何实施简单随机抽样?(4)通过样本了解总体合理吗?有哪些需要注意的地方?在教学中学生可能会对简单随机抽样的“随机性”以及抽样调查的合理性产生疑问,对此教师可以加以引导。
《简单随机抽样》的重点学习学习教案.doc
《简单随机抽样》教案教学目标一、知识与技能1.通过生活中的实例,体会不同的抽样方法会得到不同的调查结果;2.了解简单随机抽样的意义;二、过程与方法1.通过实验与探究的方法,让学生进一步感受在随机抽样中,结果的随机性和只有样本容量足够便可推断总体;2.通过探究进一步了解、掌握简单随机抽样的特点;三、情感态度和价值观1.使学生认识到数学和日常生活息息相关,从而增进学习数学的乐趣,在活动中培养学生的合作竞争意识和解决问题的能力;2.通过分组讨论学习,体会合作学习的兴趣;教学重点简单随机抽样的意义;教学难点获取数据时,会判断调查方式是否合适;教学方法引导发现法、启发猜想、讲练结合法课前准备教师准备课件、多媒体;学生准备三角板,练习本;课时安排1课时教学过程一、导入新课为了了解本校学生暑假期间参加体育活动的情况,学校准备抽取一部分学生进行调查,你认为按下面的调查方法取得的结果能反映全校学生的一般情况吗?如果不能反映,应当如何改进调查方法 ?二、新课学习方法 1:调查学校田径队的30 名同学选取的样本是田径队的同学,他们暑假中体育活动多方法 2:调查每个班的男同学只调查男同学,没调查女同学方法 3:从每班抽取 1 名学生进行调查选取的样本容量太小,不能客观的反映全校学生方法 4:选取每个班级中的一半学生进行调查选取的容量太大,需要花费较多的时间和人力对于上面所提出的问题,我们只要得到一部分样本数据就可以对于总体情况进行估计。
到的样本能够客观地反映问题,那么对总体的估计就会准确一些,否则估计就会差一些,为此,我们总是希望寻找一个抽取样本的好方法。
简单随机抽样的含义:如果得为了获取能够客观反映问题的结果,通常按照总体中每个个体都有相同的被抽取机会的原则抽取样本,这种抽取样本的方法叫做简单随机抽样。
注:随机抽样并不是随意或随便抽取,因为随意或随便抽取都会带有主观或客观的影响因素。
在学校门口随机询问,或者利用学号,抽取一定数量的学生进行调查。
人教版高中必修32.1随机抽样教学设计
人教版高中必修32.1随机抽样教学设计概述本教学设计以人教版高中必修32.1随机抽样作为教学内容,通过设置适当的学情分析、教学目标和教学手段,以提高学生学习效果和学业成绩。
学情分析本节课内容包含概率与统计中的随机抽样,对于学生而言,需要具备初步的数学功底和统计基础,否则接受这部分知识会存在困难。
同时,学生应当具备一定的计算机基础,因为教学中需要应用一定的计算机软件。
因此,学生在学习前应当完成以下准备:•熟悉概率与统计的相关概念和知识;•掌握基本的统计方法和计算机应用技能;•具备良好的数学思维和逻辑推理能力。
教学目标1.了解随机抽样的定义和特征;2.掌握简单随机抽样、分层随机抽样、系统抽样等方法;3.学会应用计算机软件进行随机抽样和数据处理;4.能够将随机抽样应用到实际问题中。
教学手段1.PPT课件演示;2.常见抽样方法的实际案例教学;3.计算机实践操作,例如使用R语言、Python等统计软件进行数据分析。
教学过程第一节课:随机抽样的定义和基本概念1.随机抽样的定义及其优劣性;2.样本空间、简单随机样本、分层随机样本、系统样本的概念及其特点;3.实际案例采用随机抽样的案例分析。
第二节课:随机抽样的进阶应用1.实际案例模型的分析;2.概率抽样、科学抽样、比率抽样的概念及其特点;3.统计软件简介及其应用。
第三节课:数据处理与分析1.数据清洗、变换和转换方法;2.常用统计分布及其描述统计量的计算;3.数据可视化。
教学评价1.在教学过程中,通过提问、讨论等方式,检测学生掌握情况;2.给予学生作业,引导学生通过实践方式检验掌握情况;3.开展小组讨论、课堂展示等方式,提高学生综合运用概率与统计知识的能力。
教学反思教学设计应该注意调整教学内容难易度,以满足学生的学习需要,同时还要注意教学手段的多样性,不断提高教学效果。
在具体教学实践中,还需要注重实际案例分析,引导学生积极思考,发现和解决问题。
在教学过程中发现学生存在困难和疑惑,应及时提供帮助和解决方案,以便使教学过程更加顺畅。
《简单随机抽样》示范课教案【高中数学】
《简单随机抽样》教学设计◆教学目标1.通过实例,了解简单随机抽样的含义及其解决问题的过程,掌握两种简单随机抽样方法:抽签法和随机数表法;2.掌握用抽签法、随机数表法进行抽样的步骤,了解随机数表的制作方法和思想;3.在简单的实际情境中,能够根据实际问题的特点,设计恰当的抽样方法解决问题.◆教学重难点◆教学重点:理解随机抽样的必要性和重要性,用抽签法和随机数法抽取样本.教学难点:理解等可能性的含义、抽签法和随机数法的实施步骤.◆教学过程一、新课导入情境:某校要了解高一(2)班学生的视力情况,决定从班级里45名学生中抽取10名学生进行检查.以下几种抽取方法,你认为可行吗?(1)从戴眼镜的学生中抽取10名进行严查;(2)从没有佩戴眼镜的学生中抽取10名进行检查;(3)从女生中抽取10名进行检查.显然,以上3中抽样方法都具有一定的片面性.那么,怎样抽取样本才是合理的呢?这节课我们就一起来探究!设计意图:通过学生身边的简单具体实例,从直观感受的基础上体会抽样的必要性,为下面的学习做铺垫.二、新知探究问题1:怎样抽取样本,才能使样本更好地代表总体?答案:尽量使样本的分布能近似于总体的分布,例如,在调查学校学生的身高时,若身高在160 cm~170 cm的学生占总体的40%,那么样本中160 cm~170 cm的学生占样本容量的40%,这样得出的结论更准确.因为抽查是由部分来推断总体,所以其结果具有不确定性,在处理这个矛盾的过程中,人们经过长期的实践总结,得出了抽查的基本方法——随机抽样.定义:在抽样调查中,每个个体被抽到的可能性均相同的抽样方法,称为随机抽样.一般地,从N(N为正整数)个不同个体构成的总体中,逐个不放回地抽取n(1≤n<N)个个体组成样本,并且每次抽取时总体内的每个个体被抽到的可能性相等,这样的抽样方法通常叫作简单随机抽样.简单随机抽样是一种最基本的抽样方法,对于不知道某些特别信息的总体,往往采用简单随机抽样.【概念巩固】下面抽取样本的方式是简单随机抽样吗?为什么?1.从无限多个个体中抽取50个个体作为样本.2.箱子里共有100个零件,今从中选取10个零件进行检验,在抽样操作时,从中任意地拿出一个零件进行质量检验后再把它放回箱子里.3.从50个个体中一次性抽取5个个体作为样本.思路点拨:要判断所给的抽样方式是否是简单随机抽样,关键是看它们是否符合简单随机抽样的特点.答案:1.不是简单随机抽样.因为被抽取样本的总体的个体数是无限的而不是有限的;2.不是简单随机抽样.简单随机抽样是不放回抽样,而它是放回抽样;3.不是简单随机抽样.因为它是一次性抽取,而不是“逐个”抽取.总结:简单随机抽样具备以下四个特点:①总体的个体数较少,②逐个抽取,③不放回抽样,④等可能抽样.判断抽样方法是否是简单随机抽样,只需看是否符合上述四个特点,若有一条不符合就不是简单随机抽样.设计意图:通过学生身边的简单具体实例,从直观感受的基础上体会简单随机抽样的特点,提高学生的抽象概括能力和语言表达能力.问题2:在解决实际问题时,怎样才能保证等可能抽取呢?探究:某校要了解高一(2)班学生的视力情况,决定从班级里45名学生中抽取10名学生进行检查.答案:将这45名学生进行编号;再做45个编号分别为1~45的“签”(也称“阄”),放入密封的容器或袋中(从外面看不见内部),并充分搅拌;最后从容器或袋中随机抽取10个签,记下10个签的编号,与签的编号相同的学生的视力即组成需要的样本,这种抽样方法称为抽签法.一般地,用抽签法从个体个数为N的总体中抽取一个容量为k的样本的步骤是:(1)给总体中的N个个体编号;(2)将这N个号码写在形状、大小相同的号签上;(3)将号签放在同一箱中,并搅拌均匀;(4)从箱中每次抽取1个号签,连续抽取k次;(5)将总体中与抽到的号签的编号一致的k个个体取出.追问1:哪些步骤保证每个个体被抽到的可能性是一样的?答案:形状、大小相同的号签;不透明的箱子;搅拌均匀.追问2:抽签法有哪些优点和缺点?答案:优点:简单易行;缺点:总体容量非常大时,费时费力,不容易搅拌均匀,会导致抽样不公平.问题3:当总体中所含个体数较多时,抽签法虽然能够保证样本的代表性,但是制签的过程也比较麻烦,如何简化制签的过程呢?答案:制作一个表,这个表由0,1,2,3,4,5,6,7,8,9这10个数字组成,表中任一位置出现任一数字的概率相同,且不同位置的数字之间是独立的.这样的表称为随机数表,其中的每个数都称为“随机数”,于是,我们只要按一定的规则从随机数表中选取号码就可以了,这种抽样方法叫作随机数表法.抽签法和随机数表法都是简单随机抽样.思考:如何用随机数表法求解本节开头的问题?(1)对45名学生按01,02,03,…,45编号;(2)在随机数表中随机地确定一个数字,如第8行第29列的数字7作为开始,为便于说明,我们将附录中的6~10行摘录如下:(3)从数字7开始向右读下去,每次读两位,凡不在01~45中的数跳过去不读,遇到已经读过的数也跳过去,便可依次得到12,07,44,39,38,33,21,34,29,42这10个号码,编号为这10个号码的学生的视力即组成一个容量为10的样本.当随机地选定开始的数后,读数的方向可以向右,也可以向左、向上、向下等.追问:你能总结出用随机数表法抽取样本的步骤吗?答案:(1)对总体中的个体编号(每个号码位数一致);(2)在随机数表中任选一个数;(3)从选定的数开始按一定的方向读下去,若得到的号码在编号中,则取出;若得到的号码不在编号中或前面已经取出,则跳过,如此继续下去,直到取满为止;(4)根据选定的号码抽取样本.总结:在用随机数法抽取样本时,应注意以下几点:(1)编号位数一致,一是为了便于查找,二是要保证每个个体被抽取的概率相等;(2)抽样时所需的随机数表可临时产生,也可以沿用已有的随机数表;(3)读数的起点、读取方向都是随机的,且事先定好.设计意图:帮助学生了解随机数表,熟悉随机数法抽取样本的过程,进一步积累基本活动经验.三、应用举例例1:(多选)下列关于简单随机抽样的叙述正确的是( )A .一定要逐个抽取B .它是一种最简单、最基本的抽样方法C .总体中的个数必须是有限的D .先被抽取的个体被抽到的可能性要大解析:由简单随机抽样的特点可以得出判断.A 、B 、C 都正确,并且在抽样过程中,每个个体被抽到的可能性都相等,不分先后.答案:ABC .例2:用随机数表法从1000 名学生男生抽取25 人参加某项运动,则某男学生被抽到的概率是_______;将1000名学生分别编号000、001、002……999,从随机数表的第5行(下表为随机数表的第5-8行)第11列开始,向右读取,则抽取的第5个样本的号码是____.5556 8526 6166 8231 2438 8455 4618 44452635 7900 3370 9160 1620 3882 7757 49503211 4919 7306 4916 7677 8733 9974 67322748 6198 7164 4148 7086 2888 8519 1620解析:根据简单随机抽样的特点,每个个体被抽到的概率相同.所以某男生被抽到的概率为25÷1000×100%=2.5%;抽取出的号码分别为668、231、243、884、554,所以第五名被抽取出的学生编号为554.例3:用简单随机抽样方法从含有10个个体的总体中,抽取一个容量为3的样本,其中某一个体a “第一次被抽到”的可能性,“第二次被抽到”的可能性分别是( )A .110,110B .310,15C .15,310D .310,310 解析:根据简单随机抽样的定义知个体a 两次被抽到的可能性相同,均为310.答案:D . 四、课堂练习1.下面的抽样方法是简单随机抽样的个数是( )①某班45名同学,学校指定个子最高的5名同学参加学校的一项活动;②从2021生产线连续生产的产品中一次性抽取3个进行质检;③一儿童从玩具箱中的2022个玩具中随意拿出一件玩,玩完放回再拿一件,连续玩了5次.A .1B .2C .3D .02.总体由编号为 01,02,…,19,20个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( )7816 6572 0802 6314 0702 4369 9728 01983202 9234 4935 8200 3623 4869 6938 7481A . 08B . 07C .02D .013.某总体容量为M,其中带有标记的有N个,现用简单随机抽样从中抽出一个容量为m的样本,则抽取的m个个体中带有标记的个数估计为_______.4.下列抽样试验中,适合用抽签法的是()A.从某厂生产的3000件产品中抽取600件进行质量检验B.从某厂生产的两箱(每箱15件)产品中抽取6件进行质量检验C.从甲、乙两厂生产的两箱(每箱15件)产品中抽取6件进行质量检验D.从某厂生产的3000件产品中抽取10件进行质量检验参考答案:1.解析:①不是,因为它不是等可能;②不是,因为它是“一次性”抽取;③不是,因为它是有放回的.答案:D.2、解析:由随机数表法的随机抽样的过程可知选出的5个个体是08,02,14,07,01,所以第5个个体的编号是01.答案:D.3、解析:总体中带有标记的比例是NM ,则抽取的m个个体中带有标记的个数估计为NmM.答案:NmM.4、解析:A中总体容量较大,样本量也较大,不适宜用抽签法;B中总体容量较小,样本量也较小,可用抽签法;C中甲、乙两厂生产的两箱产品有明显区别,不能用抽签法;D中虽然样本量较小,但总体容量较大,不适宜用抽签法.故选B.答案:B.五、课堂小结设计意图:引导学生对本节课所学知识方法有一个全面的认识,培养学生的归纳总结能力,帮助学生深化对知识的理解与掌握,体会研究解决实际问题的思路、途径、方法,为进一步学习打下坚实基础.六、布置作业教材第216页练习第1,2题.。
简单随机抽样 学案 导学案 课件
简单随机抽样(一)知识要点1.统计的有关概念:统计的基本思想:用样本去估计总体;总体:所要考察对象的全体;个体:总体中的每一个考察对象;样本:从总体中抽取的一部分个体叫总体的一个样本;样本容量:样本中个体的数目;抽样:从总体中抽取一部分个体作为样本的过程叫抽样.2.抽样的常见方法:(1)简单随机抽样的概念一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样。
说明:简单随机抽样必须具备下列特点,①简单随机抽样要求被抽取的样本的总体个数N是有限的。
②简单随机样本数n小于等于样本总体的个数N。
③简单随机样本是从总体中逐个抽取的。
④简单随机抽样是一种不放回的抽样。
⑤简单随机抽样的每个个体入样的可能性均为n/N。
(2)简单随机抽样实施的方法:①抽签法:一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本。
一般步骤:(1)将总体中的N个个体编号;(2)将这N个号码写在形状、大小相同的号签上;(3)将号签放在同一箱中,并搅拌均匀;(4)从箱中每次抽取1个号签,连续抽取k次;(5)将总体中与抽到的号签的编号一致的k个个体取出。
②随机数表法:按照一定的规则到随机数表中选取号码的抽样方法。
一般步骤:①将个体编号;②在随机数表中任选一个数作为开始;③从选定的数开始,按照一定抽样规则在随机数表中选取数字,取足满足要求的数字就得到样本的号码.随机数表的制作:(1)抽签法(2)抛掷骰子法(3)计算机生成法(二)典例分析例1.在“世界读书日”前夕,为了了解某地5 000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析。
在这个问题中,5 000名居民的阅读时间的全体是() A.总体 B.个体C.样本的容量D.从总体中抽取的一个样本解析由题目条件知,5 000名居民的阅读时间的全体是总体;其中1名居民的阅读时间是个体;从5 000名居民某天的阅读时间中抽取的200名居民的阅读时间是从总体中抽取的一个样本,样本容量是200.答案 A例2. (1)下列抽取样本的方式不属于简单随机抽样的有________(填序号).①从无限多个个体中抽取100个个体作为样本.②盒子里共有80个零件,从中选出5个零件进行质量检验.在抽样操作时,从中任意拿出一个零件进行质量检验后再把它放回盒子里.③从20件玩具中一次性抽取3件进行质量检验.④某班有56名同学,指定个子最高的5名同学参加学校组织的篮球赛.(2)总体由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为()A.08B.07C.02D.01(3)下列抽样试验中,适合用抽签法的有()A.从某厂生产的5 000件产品中抽取600件进行质量检验B.从某厂生产的两箱(每箱18件)产品中抽取6件进行质量检验C.从甲、乙两厂生产的两箱(每箱18件)产品中抽取6件进行质量检验D.从某厂生产的5 000件产品中抽取10件进行质量检验解析(1)①不是简单随机抽样.因为被抽取样本的总体的个数是无限的,而不是有限的.②不是简单随机抽样.因为它是有放回抽样.③不是简单随机抽样.因为这是“一次性”抽取,而不是“逐个”抽取.④不是简单随机抽样.因为不是等可能抽样.(2)从第1行第5列和第6列组成的数65开始由左到右依次选出的数为08,02,14,07,01,所以第5个个体编号为01.(3)解析A,D中的总体中个体数较多,不适宜抽签法,C中甲、乙两厂的产品质量有区别,也不适宜抽签法,故选B.答案(1)①②③④(2)D (3)B规律方法(1)简单随机抽样需满足:①被抽取样本的总体的个体数有限;②逐个抽取;③是不放回抽取;④是等可能抽取.(2)在使用随机数表时,如遇到三位数或四位数时,可从选择的随机数表中的某行某列的数字计起,每三个或四个作为一个单位,自左向右选取,选取时,超过总体号码或出现重复号码的数字舍去.。
初中简单随机抽样教案
教案:初中简单随机抽样教学目标:1. 让学生理解随机抽样的概念,知道随机抽样的意义和作用。
2. 学会使用简单随机抽样的方法进行数据收集和分析。
3. 培养学生的观察能力、思考能力和动手能力。
教学重点:1. 随机抽样的概念和意义。
2. 简单随机抽样的方法。
教学难点:1. 随机抽样的实际操作。
教学准备:1. PPT课件。
2. 学生分组,每组准备一些小物品,如糖果、小球等。
教学过程:一、导入(5分钟)1. 利用PPT课件,展示一些生活中的随机抽样现象,如彩票抽奖、糖果包装上的随机颜色等。
2. 引导学生思考:这些现象有什么共同特点?它们的意义和作用是什么?二、自主学习(10分钟)1. 让学生阅读教材,了解随机抽样的概念和意义。
2. 学生分享学习心得,教师点评并总结。
三、课堂讲解(15分钟)1. 讲解简单随机抽样的方法,如抽签法、随机数表法等。
2. 举例说明如何使用这些方法进行数据收集和分析。
四、实践操作(15分钟)1. 学生分组,每组选择一种物品进行随机抽样。
2. 教师巡回指导,解答学生在操作过程中遇到的问题。
3. 各组汇报抽样结果,教师点评并总结。
五、课堂小结(5分钟)1. 让学生回顾本节课所学内容,总结随机抽样的概念、意义和作用。
2. 强调随机抽样在实际生活中的应用价值。
六、课后作业(课后自主完成)1. 结合教材,思考生活中还有哪些随机抽样的现象?它们是如何实现的?2. 尝试使用简单随机抽样的方法,对身边的物品进行数据收集和分析。
教学反思:本节课通过引导学生观察生活中的随机抽样现象,让学生了解随机抽样的概念和意义。
通过课堂讲解和实践操作,让学生学会使用简单随机抽样的方法进行数据收集和分析。
在教学过程中,要注意关注学生的学习情况,及时解答学生的问题,确保学生能够掌握所学知识。
同时,要注重培养学生的观察能力、思考能力和动手能力,提高学生的学习兴趣和积极性。
《简单随机抽样》教学设计
《简单随机抽样》的教学设计课时:1课时,教材版本:人教B版《高中数学》必修三教材内容分析简单随机抽样是人教B版《高中数学》必修三的第二章“统计”的第一节“随机抽样”的第一课时,其主要内容是介绍简单随机抽样的概念以及如何实施简单随机抽样.从知识类型角度分析,“简单随机抽样”属于程序性知识,是一个结构清晰的动手操作程序.对它的学习要求,学生尽可能回忆有关的程序性知识.通过本节内容的学习能促进学生对“用样本估计总体”的统计思想的认识,本节知识既是初中统计知识的延伸,也是学习系统抽样、分层抽样两种抽样方法的知识与思维基础,更是落实数据分析核心素养的重要载体,因此确定本节的教学重点是:对统计思想的认识.抽样方法的提炼与归纳.“课标”的要求是能从现实生活或其他学科中提出具有一定价值的统计问题;结合具体的实际问题情境,理解随机抽样的必要性和重要性;在参与解决统计问题的过程中,学会用简单随机抽样方法从总体中抽取样本.体现了本节内容的学习要与现实生活.实际问题相联系,在问题解决的过程中获取知识.“课改”则要求教师既要以学生为主体,更要面向全体学生,以学生已有的认知经验为基础,让学生主动地参与新知的探究活动,要求通过学生的自主与合作探究,切实经历知识的发生.发展过程,体会其所蕴含的思维方法,初步形成运用统计的思想和方法来思考问题和解决问题的习惯.从教材编写角度看,本节课是在学生初中已学习了统计初步知识的基础上,系统学习统计的基本方法,体验统计思想的第一课时,本节课的内容确定为随机抽样单元引入.2.1.1简单随机抽样的教学.通过随机抽样单元引入的教学,让学生认识随机抽样的必要性和重要性,明确随机抽样的意义;通过简单随机抽样的教学,让学生理解简单随机抽样的含义与特点,归纳并掌握抽签法.随机数表法的抽样方法,能根据具体问题的特点合理选择具体的抽样方法,以提升学生的数学能力.教学目标:知识与技能:能独立(或合作)归纳抽样方法,能说明简单随机抽样的意义与特点,知道学习随机抽样的必要性和重要性,能合理选择抽样方法对简单问题进行抽样.过程与方法:通过对实际问题情境的分析体会随机抽样的必要性和重要性,通过抽签法.随机数表法的学习,培养学生的归纳概括能力,通过抽样方法的合理选择培养学生的数学优化意识.情感.态度与价值观:进一步感受统计知识在生产.生活中的广泛应用,体会统计学用样本估计总体的思维策略,强化合作意识.教学重点与难点:教学的重点:理解随机抽样的必要性和重要性,用抽签法和随机数法抽取样本.教学难点:抽签法和随机数法的实施步骤.学情分析:由于在初中已学过样本.容量.样本容量等概念,因此学生对统计的学习已具有一定的知识基础和思维基础.但是初中没有系统研究具体的抽样方法,且本节是章的起始课,特别是单元的引入内容文字量较大,要给予学生足够的信心去阅读.分析教材,随机抽样的“每一个个体被抽到的机会是均等的”等可能性是很难理解的,应引导学生充分体会.抽签法.随机数表法在教材中并没有较为明确的陈述,是通过对具体问题的解决方式呈现的,即具体的方法蕴含在问题解决的过程中,这需要教师引导学生通过小组合作的方式,逐步的归纳.概括,特别是两种方法的常用选择策略,对学生的能力要求较高,需要教师给予必要的讲解.综上分析确定本节的难点是:对“随机抽样的必要性.重要性及等可能性”的理解,抽签法.随机数表法的归纳.概括与选择.突破策略为:教师引导学生分析多个具体实例;给足时间让学生在独立思考的基础上再充分合作交流;让学生代表展示其思维过程,强化全体学生对思维过程的感悟;教师在学生展示思维过程的基础上再进行提升与点拨.教学策略分析教学中遵循“学生为主体,教师为主导,问题解决为主线”的指导思想,给学生创设自主探究.合作交流的时间与空间,引导学生经历数学知识再发现的过程,让学生在参与中获取知识,发展思维,感悟数学.在知识内容的处理方面,增加了三个实际问题情境,通过分析问题的解决策略,让学生重点体会用样本估计总体及随机抽样的必要性和重要性,促进学生的理性思维;对随机抽样的“每一个个体被抽到的机会是均等的”等可能性这一难点,教师给予必要的讲解;通过补充例题.习题,让学生充分理解抽签法.随机数表法的具体操作程序及根据问题特点合理选择具体方法.课堂教学过程中,根据学生的思维水平,首先引导同学们回顾初中所学相关知识,再自主阅读教材内容,引导学生发现学习;其次是在一定的自主探究基础上,让学生们进行充分的合作学习,归纳概括新知识,体验成功的快乐;最后是教师对学生的思维活动进行概括.提升,并对重点与难点进行适当的精讲.点拨,以提高课堂教学效率.教学模式为:情境感悟,引入新课——温故知新,获得新知——例题讲解,内化新知——成果展示,应用新知——归纳总结,完善认知.针对学生中存在的客观差异,我以发挥各数学课堂学习小组中思维水平较好的学生作用为主,尽可能给他们在课堂充分展示的机会;教师在学生自主及合作学习过程中,有针对性的进行指导,努力使全体学生在本节的学习过程中,知识与能力都能得到不同程度的提升.教学过程教学反思与评价:简单随机抽样是生活中最为常用的一种方法,最重要的特点是等可能性,应从每次抽取的个体及整个抽样过程来理解,只有通过实践才可能深入理解.大数据是当今社会出现频率最高的词汇,善于收集数据、整理数据,分析数据是当下社会一位社会人都应具备的素质,因此学好简单抽样是我们获得准确的先决条件。
简单随机抽样 学案 导学案 课件
简单随机抽样、系统抽样问题引航什么是简单随机抽样?简单随机抽样有哪两种?它们各自的特点是什么?(2)什么是系统抽样?它的优点和缺点是什么?自主探究N个个体,从中地抽取n个个体作为(n≤N),如果每次抽取时总体内的各个个体,就把这种抽样方法叫做。
(1)抽签法:一般地,抽签法就是把总体中的N个个体,把号码写在上,将号签放在一个容器中,,每次从中抽取一个号签, n次就得到一个容量为n的样本。
(2)随机数法:利用或计算机产生的随机数进行抽样,叫随机数表法.二、系统抽样:一般地,要从容量为N的总体中抽取容量为n的样本,可将总体,然后按照,从每一部分抽取,得到所需要的样本,这种抽样的方法叫做。
总结简单随机抽样和系统抽样的优缺点:提出疑惑特点:(1)简单随机抽样要求被抽取的样本的总体个数N是(2)简单随机样本是从总体中逐个抽取的(3)简单随机抽样的每个个体入样的可能性均为步骤:抽签法的一般步骤:随机数法的一般步骤:1. 1.2. 2.3.二.系统抽样的特点?步骤?特点:(1)当时,采用系统抽样。
(2)将总体分成均衡的若干部分指的是将总体分段,分段的间隔要求相等,因此,系统抽样又称等距抽样,这时间隔一般为k=.(3)预先制定的规则指的是:在第1段内采用确定一个,在此编号基础上加上分段间隔的整倍数即为抽样编号.系统抽样的一般步骤:1.2.3.4.互动探究例1.下列抽取样本的方式是否属于简单随机抽样?说明理由.(1)从无限多个个体中抽取100个个体作为样本;(2)盒子中共有80个零件,从中选出5个零件进行质量检验,在进行操作时,从中任意抽出一个零件进行质量检验后把它放回盒子里;(3)某班45名同学,指定个子最高的5人参加某活动;(4)从20个零件中一次性抽出3个进行质量检测.例2、某校高中三年级的295名学生已经编号为1,2,……,295,为了了解学生的学习情况,要按1:5的比例抽取一个样本,用系统抽样的方法进行抽取,并写出过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
30.2.1《简单的随机抽样》学案
教学目标:
1使学生了解简单的随机抽样的操作过程,
2理解简单的随机抽样的含义,能用随机抽样的方法从总体中抽取样本。
重点:用简单的随机抽样的方法从总体中抽取样本。
难点:用简单的随机抽样的方法从总体中抽取样本。
研讨过程:
一、用例子说明有些调查不适宜做普查,只适宜做抽样调查
例1:妈妈为了知道饼熟了没有,从刚出锅的饼上切下一小块尝尝,如果这一小块熟了,那么可以估计整张饼熟了。
例2:环境检测中心为了了解一个城市的空气质量情况,会在这个城市中分散地选择几个点,从各地采集数据。
例3:农科站要了解农田中某种病虫害的灾情,会随意地选定几块地,仔细地检查虫卵数,然后估计一公顷农田大约平均有多少虫卵,会不会发生病虫害。
例4:某部队要想知道一批炮弹的杀伤半径,会随意地从中选取一些炮弹进行发射实验,以考察这一批炮弹的杀伤半径。
以上的例子都不适宜做普查,而适宜做抽样调查。
二、如何从总体中选取样本
1、什么是简单的随机抽样
上面的例子不适宜做普查,而需要做抽样调查,那么应该如何选取样本,使它具有代表性,而能较好地反映总体的情况呢?
要想使样本具有代表性,不偏向总体中的某些个性,有一个对每个个体都公平的方法,决定哪些个体进入样本,这种思想的抽样方法我们把它称为简单的随机抽样。
2、用简单的随机抽样方法来选取一些样本。
假设总体是某年级300名学生的数学考试成绩,我们已经按照学号顺序排列如下:
97 92 89 86 93 73 74 72 60 98 70 90 89 90 91 80 69 92 70 64 92 83 89 93 72 77 79 75 80 93 93 72 87 76 86 82 85 82 87 86 81 88 74 87 92 88 75 92 89 82 88 86 85 76 79 92 89 84 93 75 93 84 87 90 88 90 80 89 72 78 73 79 85 78 77 91 92 82 77 86 90 78 86 90 83 73 75 67 76 55 70 76 77 91 70 84 87 62 91 67 88 78 82 77 87 75 84 70 80 66 80 87 60 78 76 89 81 88 73 75 95 68 80 70 78 71 80 65 82 83 62 72 80 70 83 68 74 67 67 80 90 70 82 85 96 70 73 86 87 81 70 69 76 68 70 68 71 79 71 87 60 64 62 81 69 63 66 63 64 53 61 41 58 60 84 62 63 76 82 76 61 72 66 80
90 93 87 60 82 85 77 84 78 65 62 75 64 70 68 66 99 81 65 98 87 100 64 68 82 73 66 72 96 78 74 52 92 83 85 60 67 94 88 86 89 93 99 100 79 85 68 60 74 70 78 65 68 68 79 77 90 55 80 77 67 65 87 81 67 75 57 75 90 86 66 83 68 84 68 85 74 98 89 67 79 77 69 89 68 55 58 63 77 78 69 67 80 82 83 98 94 96 80 79 68 70 57 74 96 70 78 80 87 85 93 80 88 67 70 93。
用简单抽样的方法选取三个样本,每个样本含有5个个体,老师示范完成了第一个样本的选取,请同学们继续完成第二和第三个样本的选取。
第一个样本:
随机数(学号)111 254 167 94 276 成绩80 86 66 91 67
第二个样本:
随机数(学号)
成绩
第三个样本:
随机数(学号)
成绩
课堂活动:用简单的随机抽样方法从300名学生的数学成绩的总体中选取两个样本,每个样本含有20个个体。
第一个样本:
随机数(学号)
成绩
第二个样本:
随机数(学号)
成绩
同学们从刚才的活动中可以体会到,抽样之前,同学们不能预测到哪些个体会被抽中,像这样不能够预先预测结果的特性叫做随机性。
所以统计学家把这种抽样的方法叫做随机抽样。
三、小结
本节课我们学习了什么是随机抽样,如何从总体中随机选取一些样本,通过对这些样本的研究,可以反映总体中的特性。
课后作业:
教学反思:。