九年级数学上册第二十二章二次函数单元复习试题(含答案) (153)
人教版(2024)数学九年级上册第二十二章 二次函数 单元测试(含答案)
第二十二章二次函数一、选择题1. 关于二次函数y=x2与y=−x2的图象,下列说法错误的是( )A.对称轴都是y轴B.顶点都是坐标原点C.与x轴都有且只有一个交点D.它们的开口方向相同2. 如图,关于抛物线y=(x−1)2−2,下列说法错误的是( )A.顶点坐标为(1,−2)B.对称轴是直线x=1C.开口方向向上D.当x>1时,y随x的增大而减小3. 将抛物线y=3x2向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )A.y=3(x+2)2+3B.y=3(x−2)2+3C.y=3(x+2)2−3D.y=3(x−2)2−34. 如图是二次函数y=−x2+2x+4的图象,使y≤4成立的x的取值范围是( )A . 0≤x ≤2B . x ≤0C . x ≥2D . x ≤0 或 x ≥25. 一抛物线的形状、开口方向与 y =12x 2−2x +3 相同,顶点为 (−2,1),则此抛物线的解析式为 A . y =12(x−2)2+1 B . y =12(x +2)2−1 C . y =12(x +2)2+1D . y =12(x +2)2−16. 心理学家发现:学生对概念的接受能力 y 与提出概念的时间 x (min) 之间是二次函数关系,当提出概念 13 min 时,学生对概念的接受能力最大,为 59.9;当提出概念 30 min 时,学生对概念的接受能力就剩下 31,则 y 与 x 满足的二次函数表达式为 ( )A .y =−(x−13)2+59.9B .y =−0.1x 2+2.6x +31C .y =0.1x 2−2.6x +76.8D .y =−0.1x 2+2.6x +437. 已知点 (−1,y 1),(−312,y 2),(12,y 3) 在函数 y =3x 2+6x +12 的图象上,则 y 1,y 2,y 3 的大小关系为 ( ) A . y 1>y 2>y 3B . y 2>y 1>y 3C . y 2>y 3>y 1D . y 3>y 1>y 28. 在某建筑物上从 10 m 高的窗口 A 用水管向外喷水,喷出的水流呈抛物线状,如图所示,如果抛物线的最高点 M 离墙 1 m ,离地面403 m ,则水流落在点 B 与墙的距离 OB 是 ( )A . 2 mB . 3 mC . 4 mD . 5 m9. 二次函数 y =ax 2+bx +c (a ≠0) 的大致图象如图所示,顶点坐标为 (−2,−9a ),下列结论:① 4a +2b +c >0;② 5a−b +c =0;③若方程a(x+5)(x−1)=−1有两个根x1和x2,且x1<x2,则−5<x1<x2<1;④若方程∣ax2+bx+c∣=1有四个根,则这四个根的和为−4.其中正确的结论有( )A.1个B.2个C.3个D.4个二、填空题10. 如果y=(m2−1)x m2−m是二次函数,则m=.11. 若x=1是方程2ax2+bx=3的根,当x=2时,函数y=ax2+bx的函数值为.12. 若抛物线y=x2−2x+m(m为常数)与x轴没有公共点,则实数m的取值范围为.13. 如图,抛物线y=ax2+bx与直线y=mx+n相交于点A(−3,−6),点B(1,−2),则关于x的不等式ax2+bx<mx+n的解集为.14. 如图,二次函数y=ax2+bx+3的图象经过点A(−1,0),B(3,0),那么一元二次方程ax2+bx=0的根是.15. 已知抛物线:y=ax2+bx+c(a<0)经过A(2,4),B(−1,1)两点,顶点坐标为(ℎ,k),则下列正确结论的序号是.①b>1;②c>2;③ℎ>1;④k≤1.216. 物体自由下落的高度 ℎ(单位:m )与下落时间 t (单位:s )之间的关系是 ℎ=4.9t 2,有一个物体从 44.1m 高的建筑物上自由下落,到达地面需要s .17. 如图,在平面直角坐标系中,抛物线 y =13x 2 经过平移得到抛物线 y =13x 2−2x ,其对称轴与两段抛物线所围成的阴影部分的面积为.三、解答题18. 已知二次函数 y =a (x−1)2+4 的图象经过点 (−1,0).(1) 求这个二次函数的解析式;(2) 判断这个二次函数的开口方向,对称轴和顶点坐标.19. 已知二次函数 y =x 2+4x +3.(1) 用配方法将二次函数的表达式化为 y =a (x−ℎ)2+k 的形式;(2) 在平面直角坐标系 xOy 中,画出这个二次函数的图象;(3) 根据(2)中的图象,写出一条该二次函数的性质.20. 如图,在平面直角坐标系xOy中,抛物线顶点为C(1,2),且与直线y=x交于点B(32,32);点P为抛物线上O,B两点之间一个动点(不与O,B两点重合),过P作PQ∥y轴交线段OB于点Q.(1) 求抛物线的解析式;(2) 当PQ的长度为最大值时,求点Q的坐标;(3) 点M为抛物线上O,B两点之间一个动点(不与O,B两点重合),点N为线段OB上一个动点;当四边形PQNM为平行四边形,且PN⊥OB时,请直接写出Q点坐标.21. 在平面直角坐标系xOy中,抛物线y=ax2−4ax+3a−2(a≠0)与x轴交于A,B两点(点A在点B左侧).(1) 当抛物线过原点时,求实数a的值;(2) ①求抛物线的对称轴;②求抛物线的顶点的纵坐标(用含a的代数式表示);(3) 当AB≤4时,求实数a的取值范围.22. 如图,某广场设计的一建筑物造型的纵截面是抛物线的一部分,抛物线的顶点O落在水平面上,对称轴是水平线OC.点A,B在抛物线造型上,且点A到水平面的距离AC=4米,点B到水平面距离为2米,OC=8米.(1) 请建立适当的直角坐标系,求抛物线的函数解析式;(2) 为了安全美观,现需在水平线OC上找一点P,用质地、规格已确定的圆形钢管制作两根支柱PA,PB对抛物线造型进行支撑加固,那么怎样才能找到两根支柱用料最省(支柱与地面、造型对接方式的用料多少问题暂不考虑)时的点P?(无需证明)(3) 为了施工方便,现需计算出点O,P之间的距离,那么两根支柱用料最省时点O,P之间的距离是多少?(请写出求解过程)23. 某网店销售某款童装,每件售价60元,每星期可卖300件,为了促销,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件售价x元,每星期的销售量为y件.(1) 求y与x之间的函数表达式.(2) 当每件售价定为多少元时,每星期的销售利润最大,最大利润是多少元?(3) 若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装多少件?24. 如图所示抛物线y=ax2+bx+c过点A(−1,0),点C(0,3),且OB=OC.(1) 求抛物线的解析式及其对称轴.(2) 点D,E在直线x=1上的两个动点,且DE=1,点D在点E的上方,求四边形ACDE的周长最小值.(3) 点P为抛物线上一点,连接CP,直线CP把四边形CBPA的面积分为3:5两部分,求点P的坐标.答案一、选择题1. D2. D3. A4. D5. C6. D7. C8. B9. B二、填空题10. 211. 612. m>113. x<−3或x>114. x1=−1,x2=315. ①②③16. 317. 9三、解答题18.(1) 把(−1,0)代入二次函数解析式得:4a+4=0,即a=−1,则函数解析式为y=−(x−1)2+4.(2) ∵a=−1<0,∴抛物线开口向下,顶点坐标为(1,4),对称轴为直线x=1.19.(1) y=x2+4x+3=x2+4x+22−22+3 =(x+2)2−1.(2) 略(3) 当x<−2时,y随x的增大而减小,当x>−2时,y随x的增大而增大.(答案不唯一)20.(1) ∵抛物线顶点为C(1,2),∴设抛物线的解析式为y=a(x−1)2+2(a≠0).∵点B(32,32)在抛物线上,∴32=a(32−1)2+2,∴a=−2,∴抛物线的解析式为y=−2(x−1)2+2,即y=−2x2+4x.(2) 设点P的坐标为(x,−2x2+4x)(0<x<32),则点Q的坐标为(x,x),∴PQ=−2x2+4x−x=−2x2+3x=−2(x−34)2+98,∵−2<0,∴当x=34时,PQ的长度取最大值,∴当PQ的长度为最大值时,点Q的坐标为(34,34).(3) (12,12)21.(1) ∵点O(0,0)在抛物线上,∴3a−2=0,a=23.(2) ①对称轴为直线x=2;②顶点的纵坐标为−a−2.(3) (i)当a>0时,依题意,{−a−2<0,3a−2≥0.解得a≥23.(ii)当a<0时,依题意,{−a−2>0,3a−2≤0,解得a<−2.综上,a<−2或a≥23.22.(1) 以点O为原点、射线OC为y轴的正半轴建立直角坐标系,设抛物线的函数解析式为y=ax2,由题意知点A的坐标为(4,8).∵点A在抛物线上,∴8=a×42,解得a=12,∴所求抛物线的函数解析式为:y=12x2.(2) 找法:延长AC,交建筑物造型所在抛物线于点D,则点A,D关于OC对称.连接BD交OC于点P,则点P即为所求.(3) 由题意知点B的横坐标为2,∵点B在抛物线上,∴点B的坐标为(2,2),又∵点A的坐标为(4,8),∴点D的坐标为(−4,8),设直线BD的函数解析式为y=kx+b,∴{2k+b=2,−4k+b=8,解得:k=−1,b=4.∴直线BD的函数解析式为y=−x+4,把x=0代入y=−x+4,得点P的坐标为(0,4),两根支柱用料最省时,点O,P之间的距离是4米.23.(1) y=300+30(60−x)=−30x+2100.(2) 设每星期的销售利润为W元,则W=(x−40)(−30x+2100)=−30(x−55)2+6750.所以当x=55时,W取最大值,为6750.所以每件售价定为55元时,每星期的销售利润最大,最大利润是6750元.(3) 由题意得(x−40)(−30x+2100)≥6480,解得52≤x≤58.当x=52时,销售量为300+30×8=540(件);当x=58时,销售量为300+30×2=360(件).所以若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装360件.24.(1) ∵OB=OC,∴点B(3,0),则抛物线的表达式为:y=a(x+1)(x−3)=a(x2−2x−3)=ax2−2ax−3a,故−3a=3,解得a=−1,故抛物线的表达式为:y=−x2+2x+3 ⋯⋯①,对称轴为:直线x=1.(2) ACDE的周长=AC+DE+CD+AE,其中AC=10,DE=1是常数,故CD+AE最小时,周长最小,取点C关于函数对称点Cʹ(2,3),则CD=CʹD,取点Aʹ(−1,1),则AʹD=AE,故:CD+AE=AʹD+DCʹ,则当Aʹ,D,Cʹ三点共线时,CD+AE=AʹD+DCʹ最小,周长也最小,四边形ACDE的周长的最小值=AC+DE+CD+AE=10+1+AʹD+DCʹ=10+1+AʹCʹ=10+1+13.(3) 如图,设直线CP交x轴于点E,直线CP把四边形CBPA的面积分为3:5两部分,又∵S△PCB:S△PCA=12EB×(y C−y P):12AE×(y C−y P)=BE:AE,则BE:AE=3:5或5:3,则AE=52或32,即:点E的坐标为(32,0)或(12,0),将点E,C的坐标代入一次函数表达式:y=kx+3,解得:k=−6或−2,故直线CP的表达式为:y=−2x+3或y=−6x+3 ⋯⋯②,联立①②并解得:x=4或8(不合题意已舍去),故点P的坐标为(4,−5)或(8,−45).。
人教版九年级数学上册第22章《二次函数》单元测试题含答案
人教版九年级数学上册第22章《二次函数》单元测试题一、选择题:(每题3,共30分) 1.抛物线2(1)2y x =-+的顶点坐标是( ). A .(1,2)B .(1,-2)C .(-1, 2)D .(-1,-2)2. 把抛物线2=+1y x 向右平移3个单位,再向下平移2个单位,得到抛物线( ). A .()231y x =+- B .()233y x =++ C .()231y x =-- D .()233y x =-+3、抛物线y=(x+1)2+2的对称轴是( ) A .直线x=-1 B .直线x=1 C .直线y=-1 D .直线y=14、二次函数221y x x =-+与x 轴的交点个数是( )A .0B .1C .2D .35、若,,,,,123351A yB yC y 444⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭为二次函数2y x 4x 5=+-的图象上的三点,则123y y y 、、的大小关系是( )A.123y y y <<B.213y y y <<C.312y y y <<D.132y y y <<6、在同一直角坐标系中,一次函数y=ax+c 和二次函数y=ax 2+c 的图象大致为( )OxyOxyOxyOxy(A)(B)(C)(D)7.〈常州〉二次函数y =ax 2+bx +c (a 、b 、c 为常数且a ≠0)中的x 与y 的部分对x -3 -2 -1 0 1 2 3 4 5 y 12 5 0 -3 -4 -3 0 5 12 (1)二次函数y =ax 2+bx +c 有最小值,最小值为-3;(2)当-12<x <2时,y <0;(3)二次函数y =ax 2+bx +c 的图象与x 轴有两个交点,且它们分别在y 轴两侧.则其中正确结论的个数是( )A.3B.2C.1D.08.〈南宁〉已知二次函数y =ax 2+bx +c (a ≠0)的图象如图3所示,下列说法错误的是( )A.图象关于直线x =1对称B.函数y =ax 2+bx +c (a ≠0)的最小值是-4C.-1和3是方程ax 2+bx +c =0(a ≠0)的两个根D.当x <1时,y 随x 的增大而增大9、二次函数与882+-=x kx y 的图像与x 轴有交点,则k 的取值范围是( ) A.2<kB.02≠<k k 且C.2≤kD.02≠≤k k 且10. 如图,菱形ABCD 中,AB =2,∠B =60°,M 为AB 的中点.动点P 在菱形的边上从点B 出发,沿B →C →D 的方向运动,到达点D 时停止.连接MP ,设点P 运动的路程为x ,MP 2 =y ,则表示y 与x 的函数关系的图象大致为( ).二、填空题:(每题3,共30分)11.已知函数()x x m y m 3112+-=+,当m = 时,它是二次函数.12、抛物线3842-+-=x x y 的开口方向向 ,对称轴是 ,最高点的坐标是 ,函数值得最大值是 。
人教版数学九年级上册 第22章 《二次函数》章末复习题(含答案)
第22章《二次函数》章末复习题限时:120分钟满分:120分一.选择题(每题3分,共36分)1.抛物线y=x2﹣6x+5的顶点坐标为()A.(3,﹣4)B.(3,4)C.(﹣3,﹣4)D.(﹣3,4)2.若二次函数y=x2﹣6x+c的图象过A(﹣1,y1),B(2,y2),C(,y3),则y1,y 2,y3的大小关系是()A.y1>y2>y3B.y1>y3>y2C.y2>y1>y3D.y3>y1>y23.对抛物线:y=﹣x2+2x﹣3而言,下列结论正确的是()A.与x轴有两个交点B.开口向上C.与y轴的交点坐标是(0,3)D.顶点坐标是(1,﹣2)4.一小球被抛出后,距离地面的高度h(米)和飞行时间t(秒)满足下面函数关系式:h=﹣5(t﹣1)2+6,则小球距离地面的最大高度是()A.1米B.5米C.6米D.7米5.已知函数y=(k﹣3)x2+2x+1的图象与x轴有交点,则k的取值范围是()A.k<4 B.k≤4 C.k<4且k≠3 D.k≤4且k≠3 6.已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论中正确的是()A.a>0B.当x>1时,y随x的增大而增大C.c<0D.3是方程ax2+bx+c=0的一个根7.在平面直角坐标系中,将抛物线y=x2+2x+3绕着它与y轴的交点旋转180°,所得抛物线的解析式是()A.y=﹣(x+1)2+2 B.y=﹣(x﹣1)2+4 C.y=﹣(x﹣1)2+2 D.y=﹣(x+1)2+48.若x1,x2(x1<x2)是方程(x﹣a)(x﹣b)=1(a<b)的两个根,则实数x1,x2,a,b的大小关系为()A.x1<x2<a<b B.x1<a<x2<b C.x1<a<b<x2D.a<x1<b<x29.已知二次函数y=ax2的图象开口向上,则直线y=ax﹣1经过的象限是()A.第一、二、三象限B.第二、三、四象限C.第一、二、四象限D.第一、三、四象限10.下列图象中,能反映函数y随x增大而减小的是()A.B.C.D.11.已知拋物线y=﹣x2+2,当1≤x≤5时,y的最大值是()A.2 B.C.D.12.小明从如图所示的二次函数y=ax2+bx+c的图象中,观察得出了下面五条信息:①c<0,②abc>0,③a﹣b+c>0,④2a﹣3b=0,⑤4a+2b+c>0,你认为其中正确信息的个数有()A.2个B.3个C.4个D.5个二.填空题(每题4分,共,20分)13.已知关于x的一元二次方程x2+bx﹣c=0无实数解,则抛物线y=﹣x2﹣bx+c经过象限.14.若点(1,5),(5,5)是抛物线y=ax2+bx+c上的两个点,则此抛物线的对称轴是.15.请你写出一个二次函数,其图象满足条件:①开口向下;②与y轴的交点坐标为(0,3).此二次函数的解析式可以是.16.飞机着陆后滑行的距离y(单位:m)关于滑行时间t(单位:s)的函数解析式是y=60t﹣t2,在飞机着陆滑行中,最后2s滑行的距离是m.17.如图,抛物线y=ax2+bx+c(a≠0)过点(﹣1,0)和点(0,﹣3),且顶点在第四象限.设m=a+b+c,则m的取值范围是.三.解答题(共64分)18.在平面直角坐标系xOy中,抛物线y=ax2﹣4ax与x轴交于A,B两点(A在B的左侧).(1)求点A,B的坐标;(2)已知点C(2,1),P(1,﹣a),点Q在直线PC上,且Q点的横坐标为4.①求Q点的纵坐标(用含a的式子表示);②若抛物线与线段PQ恰有一个公共点,结合函数图象,求a的取值范围.19.为倡导节能环保,降低能源消耗,提倡环保型新能源开发,造福社会.某公司研发生产一种新型智能环保节能灯,成本为每件40元.市场调查发现,该智能环保节能灯每件售价y(元)与每天的销售量为x(件)的关系如图,为推广新产品,公司要求每天的销售量不少于1000件,每件利润不低于5元.(1)求每件销售单价y(元)与每天的销售量为x(件)的函数关系式并直接写出自变量x的取值范围;(2)设该公司日销售利润为P元,求每天的最大销售利润是多少元?(3)在试销售过程中,受国家政策扶持,毎销售一件该智能环保节能灯国家给予公司补贴m(m≤40)元.在获得国家每件m元补贴后,公司的日销售利润随日销售量的增大而增大,则m的取值范围是(直接写出结果).20.如图,在平面直角坐标系中,已知抛物线y=ax2+bx+2(a≠0)与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C.(1)求该抛物线的解析式;(2)如图①,若点D是抛物线上一个动点,设点D的横坐标为m(0<m<3),连接CD、BD、BC、AC,当△BCD的面积等于△AOC面积的2倍时,求m的值;(3)若点N为抛物线对称轴上一点,请在图②中探究抛物线上是否存在点M,使得以B,C,M,N为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点M的坐标;若不存在,请说明理由.21.如图,抛物线经过A(﹣1,0),B(5,0),C(0,﹣)三点(1)求抛物线的解析式;(2)在抛物线的对称轴上有一点P,使PA+PC的值最小,则点P的坐标为;(3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,直接写出点N的坐标;若不存在,请说明理由.22.若二次函数y=ax2+bx+c(a≠0)中,函数值y与自变量x的部分对应值如表:x…﹣2 ﹣1 0 1 2 …y…0 ﹣2 ﹣2 0 4 …(1)求该二次函数的表达式;(2)当y≥4时,求自变量x的取值范围.23.如图,直线y=与x轴,y轴分别交于点A,C,经过点A,C的抛物线y=ax2+bx ﹣3与x轴的另一个交点为点B(2,0),点D是抛物线上一点,过点D作DE⊥x轴于点E,连接AD,DC.设点D的横坐标为m.(1)求抛物线的解析式;(2)当点D在第三象限,设△DAC的面积为S,求S与m的函数关系式,并求出S的最大值及此时点D的坐标;(3)连接BC,若∠EAD=∠OBC,请直接写出此时点D的坐标.参考答案一.选择1.解:∵y=x2﹣6x+5,=x2﹣6x+9﹣9+5,=(x﹣3)2﹣4,∴抛物线y=x2﹣6x+5的顶点坐标为(3,﹣4).故选:A.2.解:根据题意,得y 1=1+6+c=7+c,即y1=7+c;y 2=4﹣12+c=﹣8+c,即y2=﹣8+c;y3=9+2+6﹣18﹣6+c=﹣7+c,即y3=﹣7+c;∵7>﹣7>﹣8,∴7+c>﹣7+c>﹣8+c,即y1>y3>y2.故选:B.3.解:A、∵△=22﹣4×(﹣1)×(﹣3)=﹣8<0,抛物线与x轴无交点,本选项错误;B、∵二次项系数﹣1<0,抛物线开口向下,本选项错误;C、当x=0时,y=﹣3,抛物线与y轴交点坐标为(0,﹣3),本选项错误;D、∵y=﹣x2+2x﹣3=﹣(x﹣1)2﹣2,∴抛物线顶点坐标为(1,﹣2),本选项正确.故选:D.4.解:∵高度h和飞行时间t满足函数关系式:h=﹣5(t﹣1)2+6,∴当t=1时,小球距离地面高度最大,∴h=﹣5×(1﹣1)2+6=6米,故选:C.5.解:①当k﹣3≠0时,(k﹣3)x2+2x+1=0,△=b2﹣4ac=22﹣4(k﹣3)×1=﹣4k+16≥0,k≤4;②当k﹣3=0时,y=2x+1,与x轴有交点.故选:B .6.解:∵抛物线开口向下,∴a <0,故A 选项错误; ∵抛物线与y 轴的正半轴相交,∴c >0,故C 选项错误;∵对称轴x =1,∴当x >1时,y 随x 的增大而减小;故B 选项错误; ∵对称轴x =1,∴另一个根为1+2=3,故D 选项正确. 故选:D .7.解:由原抛物线解析式可变为:y =(x +1)2+2,∴顶点坐标为(﹣1,2),与y 轴交点的坐标为(0,3), 又由抛物线绕着它与y 轴的交点旋转180°,∴新的抛物线的顶点坐标与原抛物线的顶点坐标关于点(0,3)中心对称, ∴新的抛物线的顶点坐标为(1,4), ∴新的抛物线解析式为:y =﹣(x ﹣1)2+4. 故选:B .8.解:用作图法比较简单,首先作出y =(x ﹣a )(x ﹣b )图象,任意画一个(开口向上的,与x 轴有两个交点),再向下平移一个单位,就是y =(x ﹣a )(x ﹣b )﹣1,这时与x 轴的交点就是x 1,x 2,画在同一坐标系下,很容易发现: 答案是:x 1<a <b <x 2. 故选:C .9.解:∵二次函数y=ax2的图象开口向上,∴a>0;又∵直线y=ax﹣1与y轴交于负半轴上的﹣1,∴y=ax﹣1经过的象限是第一、三、四象限.故选:D.10.解:A、根据图象可知,函数在实数范围内是增函数,即函数y随x增大而增大;故本选项错误;B、根据图象可知,函数在对称轴的左边是减函数,函数y随x增大而减小;函数在对称轴的右边是增函数,即函数y随x增大而增大;故本选项错误;C、根据图象可知,函数在两个象限内是减函数,但是如果不说明哪个象限内是不能满足题意的;故本选项错误;D、根据图象可知,函数在实数范围内是减函数,即函数y随x增大而减小;故本选项正确.故选:D.11.解:∵拋物线y=﹣x2+2的二次项系数a=﹣<0,∴该抛物线图象的开口向下;而对称轴就是y轴,∴当1≤x≤5时,拋物线y=﹣x2+2是减函数,=﹣+2=.∴当1≤x≤5时,y最大值故选:C.12.解:①由二次函数y=ax2+bx+c的图象开口向上可知a>0,图象与y轴交点在负半轴,c<0,正确;②由图象可知x=﹣1时,y=a﹣b+c>0,正确;③对称轴x=﹣>0,a>0,b<0,abc>0,正确;④对称轴x=﹣=,﹣3b=2a,2a﹣3b=﹣6b,错误;⑤由图象可知x=2时,y=4a+2b+c>0,正确.所以①②③⑤四项正确.故选:C.二.填空题(共5小题)13.解:∵关于x的一元二次方程x2+bx﹣c=0无实数解,∴△=b2+4c<0,∵抛物线y=﹣x2﹣bx+c中,二次项系数﹣1<0,∴抛物线的开口向下,∵判别式=(﹣b)2﹣4×(﹣1)×c=b2+4c<0,∴抛物线与x轴无交点,∴抛物线在x轴的下方,∴抛物线y=﹣x2﹣bx+c经过第三、四象限;故答案为:三、四.14.解:∵点(1,5),(5,5)是抛物线y=ax2+bx+c上的两个点,且纵坐标相等.∴根据抛物线的对称性知道抛物线对称轴是直线x==3.故答案为:x=3.15.解:设二次函数的解析式为y=ax2+bx+c.∵抛物线开口向下,∴a<0.∵抛物线与y轴的交点坐标为(0,3),∴c=3.取a=﹣1,b=0时,二次函数的解析式为y=﹣x2+3.故答案为:y=﹣x2+3(答案不唯一).16.解:当y取得最大值时,飞机停下来,则y=60t﹣1.5t2=﹣1.5(t﹣20)2+600,此时t=20,飞机着陆后滑行600米才能停下来.因此t的取值范围是0≤t≤20;即当t=18时,y=594,所以600﹣594=6(米)故答案是:6.17.解:∵二次函数y=ax2+bx+c(a>0)的图象与坐标轴分别交于点(0,﹣3)、(﹣1,0),∴c =﹣3,a ﹣b +c =0, 即b =a ﹣3, ∵顶点在第四象限, ∴﹣>0,<0,又∵a >0, ∴b <0,∴b =a ﹣3<0,即a <3,b 2﹣4ac =(a +c )2﹣4ac =(a ﹣c )2>0∵a ﹣b +c =0, ∴a +b +c =2b <0, ∴a +b +c =2b =2a ﹣6, ∵0<a <3,∴a +b +c =2b =2a ﹣6>﹣6, ∴﹣6<a +b +c <0. ∴﹣6<m <0. 故答案为:﹣6<m <0. 三.解答题(共6小题)18.解:(1)令y =0,即0=ax 2﹣4ax , 解得x 1=0,x 2=4, ∴A (0,0),B (4,0).答:点A 、B 的坐标为:(0,0),(4,0); (2)①设直线PC 解析式为y =kx +b , 将点C (2,1),P (1,﹣a )代入解得:k =1+a ,b =﹣3a ﹣1,∴直线PC 解析式为y =(1+a )x ﹣3a ﹣1, 当x =4时,y =3a +3, 所以点Q 的纵坐标为3a +3.②∵当点Q 在B 上方或与点B 重合时,抛物线与线段PQ 恰有一个公共点,3a+3≥0,∴a≥﹣1∴当a<0时,抛物线开口向下,抛物线只能与点Q相交,∴﹣1≤a<0当a>0时,抛物线开口向上,只能与点P相交,当x=1时,y=﹣a,y=﹣3a,所以抛物线与点P不相交.综上:a的取值范围是:﹣1≤a<019.解:(1)设每件销售单价y(元)与每天的销售量为x(件)的函数关系式为y=kx+b,把(1500,55)与(2000,50)代入y=kx+b得,,解得:,∴每件销售单价y(元)与每天的销售量为x(件)的函数关系式为y=﹣x+70,当y≥45时,﹣x+70≥45,解得:x≤2500,∴自变量x的取值范围1000≤x≤2500;(2)根据题意得,P=(y﹣40)x=(﹣x+70﹣40)x=﹣x2+30x=﹣(x ﹣1500)2+22500,∵﹣<0,P有最大值,当x<1500时,P随x的增大而增大,∴当x=1500时,P的最大值为22500元,答:每天的最大销售利润是22500元;(3)由题意得,P=(﹣x+70﹣40+m)x=﹣x2+(30+m)x,∵对称轴为x=50(30+m),∵1000≤x≤2500,∴x的取值范围在对称轴的左侧时P随x的增大而增大,50(30+m)≥2500,解得:m≥20,∴m的取值范围是:20≤m≤40.故答案为:20≤m≤40.20.解:(1)把A(﹣1,0),B(3,0)代入y=ax2+bx+2中,得:,解得:,∴抛物线解析式为;(2)过点D作y轴平行线交BC于点E,把x=0代入中,得:y=2,∴C点坐标是(0,2),又B(3,0)∴直线BC的解析式为,∵∴∴=,由S△BCD =2S△AOC得:∴,整理得:m2﹣3m+2=0解得:m1=1,m2=2∵0<m<3∴m的值为1或2;(3)存在,理由:设:点M的坐标为:(m,n),n=﹣x2+x+2,点N(1,s),点B(3,0)、C(0,2),①当BC是平行四边形的边时,当点C向右平移3个单位,向下平移2个单位得到B,同样点M(N)向右平移3个单位,向下平移2个单位N(M),故:m+3=1,n﹣2=s或m﹣3=1,n+2=s,解得:m=﹣2或4,故点M坐标为:(﹣2,﹣)或(4,﹣);②当BC为对角线时,由中点公式得:m+1=3,n+3=2,解得:m=2,故点M(2,2);综上,M的坐标为:(2,2)或(﹣2,)或(4,).21.解:(Ⅰ)设抛物线的解析式为y=ax2+bx+c(a≠0),∵A(﹣1,0),B(5,0),C(0,﹣)三点在抛物线上,∴,解得:∴抛物线解析式为:y=x2﹣2x﹣;(2)连接BC,如图1所示,∵抛物线的解析式为:y=x2﹣2x﹣,∴其对称轴为直线x=﹣=﹣=2,连接BC,如图1所示,设直线BC的解析式为y=kx+b(k≠0),且过B(5,0),C(0,﹣)∴,解得,∴直线BC的解析式为y=x﹣,当x=2时,y=1﹣=﹣,∴P(2,﹣),故答案为:(2,﹣);(3)存在点N ,使以A ,C ,M ,N 四点构成的四边形为平行四边形.如图2所示,①当点N 在x 轴下方时, ∵抛物线的对称轴为直线x =2,C (0,﹣),∴N 1(4,﹣);②当点N 在x 轴上方时,如图,过点N 2作N 2D ⊥x 轴于点D ,在△AN 2D 与△M 2CO 中,∴△AN 2D ≌△M 2CO (ASA ), ∴N 2D =OC =,即N 2点的纵坐标为.∴x 2﹣2x ﹣=,解得x =2+或x =2﹣, ∴N 2(2+,),N 3(2﹣,).综上所述,符合条件的点N 的坐标为(4,﹣)或(2+,)或(2﹣,). 22.解:(1)根据表中可知:点(﹣1,﹣2)和点(0,﹣2)关于对称轴对称, 即对称轴是直线x =﹣,设二次函数的表达式是y =a (x +)2+k ,把点(﹣2,0)和点(0,﹣2)代入得:,解得:a=1,k=﹣,y=(x+)2﹣=x2+x﹣2,所以该二次函数的表达式是y=x2+x﹣2;(2)当y=4时,y=x2+x﹣2=4,解得:x=﹣3或2,所以当y≥4时,自变量x的取值范围是x≤﹣3或x≥2.23.解:(1)在y=﹣x﹣3中,当y=0时,x=﹣6,即点A的坐标为:(﹣6,0),将A(﹣6,0),B(2,0)代入y=ax2+bx﹣3得:,解得:,∴抛物线的解析式为:y=x2+x﹣3;(2)设点D的坐标为:(m,m2+m﹣3),设DE交AC于F,则点F的坐标为:(m,﹣m﹣3),∴DF=﹣m﹣3﹣(m2+m﹣3)=﹣m2﹣m,∴S△ADC =S△ADF+S△DFC=DF•AE+•DF•OE=DF•OA=×(﹣m2﹣m)×6 =﹣m2﹣m=﹣(m+3)2+,∵a=﹣<0,∴抛物线开口向下,存在最大值,∴当m=﹣3时,S△ADC又∵当m=﹣3时,m2+m﹣3=﹣,∴存在点D(﹣3,﹣),使得△ADC的面积最大,最大值为;(3)①当点D与点C关于对称轴对称时,D(﹣4,﹣3),根据对称性此时∠EAD=∠ABC.②作点D(﹣4,﹣3)关于x轴的对称点D′(﹣4,3),直线AD′的解析式为y=x+9,由,解得或,此时直线AD′与抛物线交于D(8,21),满足条件,综上所述,满足条件的点D坐标为(﹣4,﹣3)或(8,21)。
人教版九年级数学上册第二十二章 二次函数练习(含答案)
第二十二章 二次函数一、单选题1.下列函数一定是关于x 的二次函数的是( )A .2(1)(1)y x x x -=+-B . y ax bx =+C .22y x x -=+D .22(1)y m x =- 2.二次函数y =2x 2的顶点坐标是( )A .(﹣2,0)B .(2,0)C .(0,2)D .(0,0) 3.抛物线2(1)2y x =-+的对称轴是 ( )A .直线x =-1B .直线x =1C .直线x =-2D .直线x =2 4.对于抛物线()231y x =+-有下列说法:①顶点坐标为()3,1-;②开口方向向上;③当3x >-时,y 随x 的增大减小;④与x 轴有两个不同交点,其中说法正确的有( )个. A .1 B .2 C .3 D .45.将二次函数23y x =-的图象沿x 轴向左平移2个单位长度后得函数为( ) A .()232y x =-- B .232y x =-- C .232y x =-+ D .()232y x =-+ 6.若点()13,A y ,()20,B y ,3(2,)C y -在抛物线24y x x k =-+上,则1y ,2y ,3y 的大小关系是( )A .231y y y >>B .213y y y >>C .321y y y >>D .123y y y >> 7.如图是二次函数y =ax 2+bx +c 的部分图象,y <0时自变量x 的取值范围是( )A .﹣1<x <5B .x >﹣1或 x <5C .x <﹣1且x >5D .x <﹣1或x >58.如图是二次函数y =ax 2+bx +c 图象的一部分,图象过点A (-3,0),对称轴为直线x =-1.给出四个结论:①b 2 > 4ac ;①2a +b=0;①a -b +c=0;① abc <0.其中正确结论有( )A .1个B .2个C .3个D .4个9.竖直上抛物体离地面的高度()h m 与运动时间()t s 之间的关系可以近似地用公式2005h t v t h =-++表示,其中()0h m 是物体抛出时离地面的高度,()0/v m s 是物体抛出时的速度.某人将一个小球从距地面1.5m 的高处以20/m s 的速度竖直向上抛出,小球达到的离地面的最大高度为( )A .23.5mB .22.5mC .21.5mD .20.5m 10.如图,正方形ABCD 边长是4cm ,点P 从点A 出发,沿A B C →→的路径运动,则C 点停止运动,点Q 从点C 出发,在BC 延长线上向右运动,点P 与点Q 同时出发,点P停止运动时,点Q 也停止运动,点P ,点Q 的运动速度都是1cm/s ,下列函数图象中能反映PDQ ∆的面积()2cm S 与运动时间()t s 的函数关系的是( )A .B .C .D .二、填空题11.关于x 的函数()||24m y m x =--是二次函数,则m=__________.12.已知二次函数2()2y x h =-+-,当x <-3时,y 随x 的增大而增大,当x >-3时,y 随x 的增大而减小,则h 的值是___________________13.如图,抛物线y =﹣2x 2+2与x 轴交于点A 、B ,其顶点为E .把这条抛物线在x 轴及其上方的部分记为C 1,将C 1向右平移得到C 2,C 2与x 轴交于点B 、D ,C 2的顶点为F ,连结EF .则图中阴影部分图形的面积为______.14.如图,在喷水池的中心A 处竖直安装一个水管AB ,水管的顶端B 处有一个喷水孔,喷出的抛物线形水柱在与池中心A 的水平距离为1m 处达到最高点C ,高度为3m ,水柱落地点D 离池中心A 处3m ,则水管AB 的长为_____m .三、解答题15.已知()2k k 4y k 1x +-=-是二次函数,(1)若其图像开口向下,求k 的值;(2)若当x 0<时,y 随x 的增大而减小,求函数关系式.16.如图,已知抛物线y=x2+2x-3,与x轴的两个交点分别是A,B(A在B的左侧).(1)求A,B的坐标;(2)利用函数图象,求当y<5时x的取值范围.17.如图,在平面直角坐标系xOy中,二次函数图象的顶点坐标为(2,﹣3),该图象与x 轴相交于点A,B,与y轴相交于点C,其中点A的横坐标为﹣1.(1)求该二次函数的表达式;(2)点P是直线BC下方,抛物线上的一个动点,当△PBC面积取得最大值时,求点P的坐标和△PBC面积的最大值.18.某名贵树木种植公司计划从甲,乙两个品种中选取一个种植并销售,市场预测每年产销x棵,已知两个品种的有关信息如表:其中a为常数,且7≤a≤10,销售甲,乙两个品种的年利润分别为y1万元,y2万元.(1)直接写出y1与x的函数关系式为.y2与x的函数关系式为.(2)分别求出销售这两个品种的最大年利润.(3)为了获得最大年利润,该公司应该选择哪个品种?19.如图,有长为24m的篱笆,一面利用墙(墙的最大可用长度a为10m),围成中间隔有一道篱笆的长方形花圃(由两个小矩形花圃组成).设花圃的一边AB为x m,面积为S m2.(1)求S与x之间的函数表达式(写出自变量的取值范围).(2)如果要围成面积为45m2的花圃,那么AB的长是多少米?(3)能围成面积比45m2更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由.答案1.A2.D3.B4.B5.D6.C7.D8.A9.C10.D11.2-12.313.414.9415.(1)k=-3;(2)2y x =.16.(1)()()3,0,1,0A B -;(2)42x -<<17.(1)2145333y x x =--;(2)535,212⎛⎫- ⎪⎝⎭P .最大面积12524 18.(1)y 1=(12﹣a )x ﹣20,(0<x ≤160);y 2=﹣0.05x 2+10x ﹣60.(0<x ≤80);(2)x =160时,y 1的值最大=(1900﹣160a )万元,x =80时,y 2最大值=420万元;(3)当a =9.25时,选择甲乙两个品种的利润相同;当7≤a <9.25时,选择甲品种利润比较高;当9.25<a ≤10时,选择乙品种利润比较高.19.(1)S =-3x 2+24x(143≤x<8);(2)AB 的长为5m ;(3)能围成面积比45m 2更大的花圃,最大面积为1403m 2,,此时AB =143m ,BC =10m。
2023-2024学年人教版九年级数学上册《第二十二章 二次函数》单元测试卷附有答案
2023-2024学年人教版九年级数学上册《第二十二章 二次函数》单元测试卷附有答案学校:___________班级:___________姓名:___________考号:___________一、单选题(共10小题,满分40分)1.关于抛物线22y x x =-+,下列说法错误的是( ) A .该抛物线经过原点B .该抛物线的对称轴是直线1x =C .该抛物线的最大值为1D .当0x >时,y 随x 增大而减小2.已知一次函数y =ax +b 的图象如图所示,那么二次函数y =ax 2+bx +1的图象大致为( )A .B .C .D .3.用20cm 长的绳子围成一个矩形,如果这个矩形的一边长为xcm ,面积是Scm 2,则S 与x 的函数关系式为( )A .S =x (20﹣x )B .S =x (20﹣2x )C .S =x (10﹣x )D .S =2x (10﹣x )4.将抛物线向左平移2个单位后,得到的抛物线的解析式是( ) A . B . C .D .5.若抛物线2y x bx c =++与x 轴两个交点之间的距离为2,抛物线的对称轴为直线1x =,将此抛物线向左平移3个单位,再向下平移2个单位,得到的新抛物线的顶点坐标为( ) A .(2,3)--B .(1,3)-C .(3,2)-D .(2,3)-6.如图所示,抛物线2y ax bx c =++(0a ≠)的对称轴为直线1x =,与y 轴的一个交点坐标为()0,3,其部分图象如图所示,下列结论:①<0abc ;①40a c +>;①方程20ax bx c ++=有一个实根大于2;①当0x <时,y 随x 增大而增大.其中结论正确的个数是( )A .4个B .3个C .2个D .1个7.下列抛物线平移后可得到抛物线y=-(x -2)2的是( ) A .y=-x 2B .y=x 2-2C .y=(x -2)2+1D .y=(2-x )28.已知二次函数y=ax 2+bx+c (a≠0)的图象如图所示,下列结论正确的是( ) ①abc <0;①a+c >0;①2a+b=0;①关于x 的一元二次方程ax 2+bx+c=0的解是x 1=﹣1,x 2=3①b 2<4acA .①①①B .①①①①C .①①①D .①①①9.设函数221y x kx k =-+-(k 为常数),下列说法正确的是( )A .对任意实数k ,函数与x 轴都没有交点B .存在实数n ,满足当x n ≥时,函数y 的值都随x 的增大而减小C .k 取不同的值时,二次函数y 的顶点始终在同一条直线上D .对任意实数k ,抛物线221y x kx k =-+-都必定经过唯一定点 10.在平面直角坐标系中,若点()11,M x y ,()()2212,N x y x x <是抛物线()220y mx x m m =-+>上的两点,且满足124x x +=时,都有12y y >,则m 的取值范围是( )A .102m <<B .104m <<C .12m >D .1142m <<二、填空题(共8小题,满分32分)11.二次函数y=﹣2(x ﹣1)2+3的图象与y 轴的交点坐标是 .12.若点A(2,m )在函数21y x =-的图象上,则点A 关于x 轴的对称点的坐标是 . 13.把抛物线2y x =-向右平移1个单位,再向上平移3个单位,得到抛物线()213y x =--+. ( )14.已知抛物线22y x mx m =-++,当21x -<<时,y 随x 的增大而增大,m 的取值范围是 . 15.已知抛物线y =ax 2(a ≠0)过点(﹣2,6),在下列5个点中,对于不在此抛物线上的一点P ,将点P 平移到点P ′,使点P ′在此抛物线上,写出点P 的坐标及平移方法:(1,32),(﹣1,32),(1,﹣32),(2,8),(2,3)答: .16.某电商销售一款夏季时装,进价40元/件,售价110元/件,每天销售20件,每销售一件需缴纳电商平台推广费用a 元(a >0).未来30天,这款时装将开展“每天降价1元”的夏令促销活动,即从第1天起每天的单价均比前一天降1元.通过市场调研发现,该时装单价每降1元,每天销量增加4件.在这30天内,要使每天缴纳电商平台推广费用后的利润随天数t (t 为正整数)的增大而增大,a 的取值范围应为 .17.若将图中的抛物线y =x 2-2x +c 向上平移,使它经过点(2,0),则此时的抛物线位于x 轴下方的图象对应x 的取值范围是 .18.如图所示,二次函数y=ax2+bx+c(a≠0)的图象,有下列4个结论:①abc>0;①b>a+c;①4a+2b+c>0;①b2﹣4ac>0;其中正确的是.三、解答题(共6小题,每题8分,满分48分)19.某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件.(1)若商场经营该商品一天要获利润2160元,并让顾客得到实惠,则每件商品的售价应为多少元?(2)如果要使商场一天获得最大利润,每件衬衫应降价多少元?20.已知二次函数2=++过点A(1,0),B(-3,0),C(0,-3)y ax bx c(1)求二次函数的解析式;(2)在抛物线的对称轴上求点F,使AF+CF最小,求点F的坐标.(3)在抛物线上存在一点P使△ABP的面积为6,求点P的坐标.21.如图,在平面直角坐标系中,抛物线y =ax 2+bx +1交y 轴于点A ,交x 轴正半轴于点B (4,0),交直线AD 于点D (3,52),过点D 作DC ①x 轴于点C .(1)直接写出:a = ,b = ;(2)点P 为x 轴正半轴上一动点,过点P 作PN ①x 轴交直线AD 于点M ,交抛物线于点N ;若点P 在线段OC 上(不与O 、C 重合),连接CM ,求①PCM 面积的最大值.22.函数y=ax 2(a≠0)的图象与直线y=2x ﹣3交于点(1,b ). (1)求a 和b 的值.(2)求抛物线y=ax 2的解析式,并求出顶点坐标和对称轴.(3)求抛物线与直线y=﹣2的两个交点及顶点所构成的三角形的面积.23.如图,已知抛物线()20y ax bx c a =++≠与x 轴交于点1,0A 和点()3,0B -,与y 轴交于点()0,3C .(1)求拋物线的解析式;(2)设抛物线的对称轴与x轴交于点M,问在对称轴上是否存在点P,使CMP为等腰三角形?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.24.在平面直角坐标系xOy中,抛物线23=-++与x轴交于点A和点B(点A在点By x mx左侧),(1)若抛物线的对称轴是直线x=1,求出点A和点B的坐标,并画出此时函数的图象;(2)当已知点P(m,2),Q(-m,2m-1).若抛物线与线段PQ恰有一个公共点,结合函数图象,求m的取值范围.参考答案:12.(2,-3)13.√14.m1≥15.(1,﹣32)向上平移3个单位,点(2,8)向下平移2个单位16.0<a<617.0<x<218.①①①.19.(1)92(2)520.(1)223y x x=+-;(2)F(1-,2-);(3)P(17-+,3)或(17--,3)或(0,3-)或P(2-,3-).21.(1)﹣34和114;(2)最大值为251622.(1)a=-1,b=-1;(2) 顶点坐标(0,0),对称轴x=0;(3)6 23.(1)223y x x=--+(2)存在,点P坐标为(1,6)-或(1,10)-或(1,10)--或5 (1,)3 -24.(1)点A坐标为(-1,0),点B坐标为(3,0);(2)m≤-2 或m≥1。
2022-2023学年人教版九年级数学上册第二十二章二次函数单元测试题含答案
第二十二章《二次函数》单元检测题题号 一 二 三总分 19 20 21 22 23 24分数1.下列y 关于x 的函数中,属于二次函数的是( ) A .y=x ﹣1B .y=-1xC .y=(x ﹣1)2﹣x 2D .y=﹣2x 2+12.把二次函数y =﹣14x 2﹣x +3用配方法化成y =a (x ﹣h )2+k 的形式时,应为( )A .y =﹣14(x ﹣2)2+2 B .y =﹣14(x ﹣2)2+4 C .y =﹣14(x +2)2+4 D .y =﹣(12x ﹣12)2+3 3.二次函数()2273y x =-+的图象的顶点坐标是( ) A .()7,3B .()7,3-C .()7,3-D .()7,3--4.二次函数与x 轴的交点个数是( ) A .0 B .1 C .2 D .35.将抛物线y =x 2﹣2x +3向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为( ) A .y =(x ﹣1)2+4 B .y =(x ﹣4)2+4 C .y =(x +2)2+6D .y =(x ﹣4)2+66.已知二次函数y=kx 2﹣6x ﹣9的图象与x 轴有两个不同的交点,则k 的取值范围为( ) A .k >﹣1B .k >﹣1且k ≠0C .k ≥﹣1D .k ≥﹣1且k ≠07.将抛物线y =﹣3x 2平移后得到抛物线y =﹣3x 2﹣2,对此平移叙述正确的是( )A .向上平移2个单位B .向下平移2个单位C .向左平移2个单位D .向右平移2个单位8.如下表是二次函数y =ax 2+bx +c 的自变量x 与函数y 的部分对应值,由此可221y x x =-+以判断该二次函数的图象与x轴()x…﹣1 0 1 2 …y… 4 ﹣0.5 ﹣2 ﹣0.5 …A.只有一个公共点B.有两个公共点,分别位于y轴的两侧C.有两个公共点,都位于y轴同侧D.没有公共点9.已知二次函数y=ax2+bx﹣3(a>0)的图象与x轴的交点A的坐标为(n,0),顶点D的坐标为(m,t),若m+n=0,则t的值为()A.﹣7 B.﹣6 C.﹣5 D.﹣410.如图,抛物线L1:y=ax2+bx+c(a≠0)与x轴只有一个公共点A(1,0),与y轴交于点B(0,2),虚线为其对称轴,若将抛物线向下平移两个单位长度得抛物线L2,则图中两个阴影部分的面积和为()A.1 B.2 C.3 D.4二、填空题(每题3分,共24分) 9抛物线y=3x2+6x+11的顶点坐标为.10已知二次函数y=x2﹣2x+2,当x时,y随x的增大而增大.11已知二次函数y=(x+1)(x﹣a)的对称轴为直线x=2,则a的值是.14.抛物线y=x2﹣k的顶点为P,与x轴交于A、B两点,如果△ABP是正三角形,那么k= .15.把y=2x2﹣6x+4配方成y=a(x﹣h)2+k的形式是.16.如图,这是二次函数y=x2﹣2x﹣3的图象,根据图象可知,函数值小于0时x的取值范围为.17.某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映,如果调整商品售价,每降价1元,每星期可多卖出20件.设每件商品降价x元后,每星期售出商品的总销售额为y元,则y与x的关系式为.18.已知抛物线y=ax2+bx+c的图像如图所示,下列结论①a﹣b+c<0;②b2﹣4ac>0;③b<1;④2a+b>0;⑤a+c+1>0.正确的是.三.解答题(共46分,19题6分,20 ---24题8分)19. 已知函数y=(m2﹣m)x2+(m﹣1)x+m+1.(1)若这个函数是一次函数,求m的值;(2)若这个函数是二次函数,则m的值应怎样?20. 已知抛物线的解析式是y=x2﹣(k+2)x+2k﹣2.(1)求证:此抛物线与x轴必有两个不同的交点;(2)若抛物线与直线y=x+k2﹣1的一个交点在y轴上,求该二次函数的顶点坐标.21.在平面直角坐标系中,有抛物线y=x2+1,已知点A(0,2),P(m,n)是抛物线上一动点,过O、P的直线交抛物线于点D,若AP=2AD,求直线OP的解析式.22. 如图是抛物线y=-x2+bx+c的部分图象,其中A(1,0),B(0,3).(1)求抛物线的解析式;(2)结合图象,写出当y<3时x的取值范围.23.为方便教师利用多媒体进行教学,某学校计划采购A,B两种类型的激光翻页笔.已知购买2支A型激光翻页笔和4支B型激光翻页笔共需180元;购买4支A型激光翻页笔和2支B型激光翻页笔共需210元.(1)求A,B两种类型激光翻页笔的单价.(2)学校准备采购A,B两种类型的激光翻页笔共60支,且A型激光翻页笔的数量不少于B型激光翻页笔数量的2倍,请设计出最省钱的购买方案,并说明理由.24.阅读材料,解答问题.例:用图象法解一元二次不等式:x2﹣2x﹣3>0解:设y=x2﹣2x﹣3,则y是x的二次函数.∵a=1>0,∴抛物线开口向上.又∵当y=0时,x2﹣2x﹣3=0,解得x1=﹣1,x2=3.∴由此得抛物线y=x2﹣2x﹣3的大致图象如图所示.观察函数图象可知:当x<﹣1或x>3时,y>0.∴x2﹣2x﹣3>0的解集是:x<﹣1或x>3.(1)观察图象,直接写出一元二次不等式:x2﹣2x﹣3>0的解集是;(2)仿照上例,用图象法解一元二次不等式:x2﹣1>0.答案解析一、选择题:题号 1 2 3 4 5 6 7 8 9 10 答案 D C A B B C B B D B11已知二次函数y=(x+1)(x﹣a)的对称轴为直线x=2,则a的值是.【考点】二次函数的性质.【专题】二次函数图象及其性质;应用意识.【答案】见试题解答内容【分析】先将题目中的函数解析式化为一般形式,然后根据对称轴x=,即可求得相应的a的值.【解答】解:∵二次函数y=(x+1)(x﹣a)=x2+(﹣a+1)x﹣a,它的对称轴为直线x=2,∴﹣=2,解得,a=5,故答案为:5.12二次函数y=ax2+bx+c的图象如图所示,则关于x的不等式ax2+bx+c>0的解集为.【考点】二次函数与不等式(组).【专题】用函数的观点看方程(组)或不等式;应用意识.【答案】x>1或x<﹣3.【分析】通过函数图象和二次函数与一元二次不等式的关系直接写出结论.【解答】解:由函数图象可得,∵抛物线开口向上,与x轴的交点为(﹣3,0)和(1,0),∴关于x的不等式ax2+bx+c>0的解集为:x>1或x<﹣3.故答案为:x>1或x<﹣3.13已知二次函数y=x2+2x+n,当自变量x的取值在﹣2≤x≤1的范围内时,函数的图象与x轴有且只有一个公共点,则n的取值范围是.【考点】二次函数的性质;抛物线与x轴的交点.【专题】二次函数图象及其性质;运算能力;推理能力.【答案】n=1或﹣3≤n<0.【分析】先确定抛物线的对称轴为直线x=﹣1,若函数的图象与x轴有且只有一个公共点,利用函数图象,当x=﹣1,y=0且x=1,y≥0时,在﹣2≤x≤1的范围内时,抛物线与x轴有且只有一个公共点,即1+2+n≥0且4﹣4+n <0,解不等式组即可.【解答】解:抛物线的对称轴为直线x=﹣=﹣1,若抛物线与x轴有一个交点,则当x=﹣1,y=0;当x=1,y≥0时,在﹣2≤x≤1的范围内时,抛物线与x轴有且只有一个公共点,即1+2+n≥0且4﹣4+n<0,解得﹣3≤n<0;所以,n的取值范围是n=1或﹣3≤n<0.故答案为n=1或﹣3≤n<0.14.【分析】根据抛物线y=x2﹣k的顶点为P,可直接求出P点的坐标,进而得出OP 的长度,又因为△ABP是正三角形,得出∠OPB=30°,利用锐角三角函数即可求出OB 的长度,得出B 点的坐标,代入二次函数解析式即可求出k 的值. 【解答】解:∵抛物线y=x 2﹣k 的顶点为P , ∴P 点的坐标为:(0,﹣k ),∴PO=K ,∵抛物线y=x 2﹣k 与x 轴交于A 、B 两点,且△ABP 是正三角形, ∴OA=OB ,∠OPB=30°, ∴tan30°=OP OB =kOB, ∴OB=33k , ∴点B 的坐标为:(33k ,0),点B 在抛物线y=x 2﹣k 上, ∴将B 点代入y=x 2﹣k ,得: 0=(33k )2﹣k , 整理得:32k ﹣k=0,解方程得:k 1=0(不合题意舍去),k 2=3. 故答案为:3.【点评】此题主要考查了二次函数顶点坐标的求法,以及正三角形的性质和锐角三角函数求值问题等知识,求出A 或B 点的坐标进而代入二次函数解析式是解决问题的关键.15.解:y =2x 2﹣6x +4=2(x 2﹣3x +)﹣2×+4=2(x ﹣)2﹣. 即y =2(x ﹣)2﹣. 故答案为y =2(x ﹣)2﹣.16.如图,这是二次函数y=x2﹣2x﹣3的图象,根据图象可知,函数值小于0时x的取值范围为﹣1<x<3 .【分析】根据函数图象和二次函数的性质可以直接写出函数值小于0时x的取值范围.【解答】解:由图象可知,抛物线与x轴的两个交点时(﹣1,0),(3,0),抛物线开口向上,∴函数值小于0时x的取值范围为﹣1<x<3,故答案为:﹣1<x<3.【点评】本题考查抛物线与x轴的交点、二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.17.某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映,如果调整商品售价,每降价1元,每星期可多卖出20件.设每件商品降价x元后,每星期售出商品的总销售额为y元,则y与x的关系式为y=(60﹣x)(300+20x).【分析】根据题意可以列出相应的函数关系式,本题得以解决.【解答】解:由题意可得,y=(60﹣x)(300+20x),故答案为:y=(60﹣x)(300+20x).【点评】本题考查由实际问题列二次函数关系式,解答本题的关键是明确题意,列出相应的函数关系式.18. ①②④⑤三.解答题19. 解:(1)依题意得∴∴m=0;(2)依题意得m 2﹣m ≠0, ∴m ≠0且m ≠1.20. (1)此抛物线与x 轴必有两个不同的交点;(2)(32,﹣94). 21.【答案】解:∵P (m ,n )是抛物线y =x 2+1上一动点,∴m 2+1=n ,∴m 2=4n -4,∵点A (0,2),∴AP ===n ,∴点P 到点A 的距离等于点P 的纵坐标,过点D 作DE ⊥x 轴于E ,过点P 作PF ⊥x 轴于F ,∵AP =2AD ,∴PF =2DE ,∴OF =2OE ,设OE =a ,则OF =2a ,∴×(2a )2+1=2(a 2+1),解得a =,∴a 2+1=×2+1=,∴点D 的坐标为(,),设OP 的解析式为y =kx ,则k =,解得k =,∴直线OP 的解析式为y =x .【解析】根据点P 在抛物线上用n 表示出m 2,再利用勾股定理列式求出AP ,从而得到点P 到点A 的距离等于点P 的纵坐标,过点D 作DE ⊥x 轴于E ,过点P 作PF ⊥x 轴于F ,根据AP =2AD 判断出PF =2DE ,得到OF =2OE ,设OE =a ,表示出OF =2a ,然后代入抛物线解析式并列出方程求出a 的值,再求出点D 的坐标,最后利用待定系数法求一次函数解析式解答.22. 解:(1)∵函数的图象过A (1,0),B (0,3), ∴⎩⎨⎧0=-1+b +c ,3=c , 解得⎩⎨⎧b =-2,c =3.故抛物线的解析式为y =-x 2-2x +3.(2)抛物线的对称轴为直线x =-1,且当x =0时,y =3,∴当x =-2时,y =3,故当y<3时,x的取值范围是x<-2或x>0.23.为方便教师利用多媒体进行教学,某学校计划采购A,B两种类型的激光翻页笔.已知购买2支A型激光翻页笔和4支B型激光翻页笔共需180元;购买4支A型激光翻页笔和2支B型激光翻页笔共需210元.(1)求A,B两种类型激光翻页笔的单价.(2)学校准备采购A,B两种类型的激光翻页笔共60支,且A型激光翻页笔的数量不少于B型激光翻页笔数量的2倍,请设计出最省钱的购买方案,并说明理由.【考点】二元一次方程组的应用;一元一次不等式的应用;一次函数的应用.【专题】一次方程(组)及应用;一元一次不等式(组)及应用;一次函数及其应用;应用意识.【答案】(1)购买一支A型激光翻页笔需要40元,购买一支B型激光翻页笔需要25元;(2)当购买A型激光翻页笔40支,则购买B型激光翻页笔20支时最省钱.【分析】(1)设购买一支A型激光翻页笔需要a元,购买一支B型激光翻页笔需要b元,根据“购买2支A型激光翻页笔和4支B型激光翻页笔共需180元;购买4支A型激光翻页笔和2支B型激光翻页笔共需210元”,即可得出关于a,b的二元一次方程组,解之即可得出结论;(2)设购买A型激光翻页笔x支,则购买B型激光翻页笔(60﹣x)支,根据“A型激光翻页笔的数量不少于B型激光翻页笔数量的2倍”列不等式求出x的取值范围;设购买两种类型的激光翻页笔的总费用为w元,根据题意得出w与x的关系式,再根据一次函数的性质解答即可.【解答】解:(1)设购买一支A型激光翻页笔需要a元,购买一支B型激光翻页笔需要b元,根据题意,得,解得,答:购买一支A型激光翻页笔需要40元,购买一支B型激光翻页笔需要25元;(2)设购买A型激光翻页笔x支,则购买B型激光翻页笔(60﹣x)支,设购买两种类型的激光翻页笔的总费用为w元,根据题意,得x≥2(60﹣x),解得x≥40,根据题意,可得w=40x+25(60﹣x)=15x+1500,∵15>0,且w是x的一次函数,∴w随x的增大而增大,∴当x=40时,w取最小值,此时60﹣x=20,答:当购买A型激光翻页笔40支,则购买B型激光翻页笔20支时最省钱.24.阅读材料,解答问题.例:用图象法解一元二次不等式:x2﹣2x﹣3>0解:设y=x2﹣2x﹣3,则y是x的二次函数.∵a=1>0,∴抛物线开口向上.又∵当y=0时,x2﹣2x﹣3=0,解得x1=﹣1,x2=3.∴由此得抛物线y=x2﹣2x﹣3的大致图象如图所示.观察函数图象可知:当x<﹣1或x>3时,y>0.∴x2﹣2x﹣3>0的解集是:x<﹣1或x>3.(1)观察图象,直接写出一元二次不等式:x2﹣2x﹣3>0的解集是;(2)仿照上例,用图象法解一元二次不等式:x2﹣1>0.【考点】图象法求一元二次方程的近似根.【专题】阅读型.【答案】见试题解答内容【分析】(1)由x2﹣2x﹣3=0得x1=﹣1,x2=3,抛物线y=x2﹣2x﹣3开口向上,y>0时,图象在x轴的上方,此时x<﹣1或x>3;(2)仿照(1)的方法,画出函数y=x2﹣1的图象,找出图象与x轴的交点坐标,根据图象的开口方向及函数值的符号,确定x的范围.【解答】解:(1)x<﹣1或x>3;(2)设y=x2﹣1,则y是x的二次函数,∵a=1>0,∴抛物线开口向上.又∵当y=0时,x2﹣1=0,解得x1=﹣1,x2=1.∴由此得抛物线y=x2﹣1的大致图象如图所示.观察函数图象可知:当x<﹣1或x>1时,y>0.∴x2﹣1>0的解集是:x<﹣1或x>1.。
人教版初中数学九年级上册第二十二章二次函数单元测试卷含答案
第二十二章《二次函数》单元测试卷一、选择题(每小题只有一个正确答案)1.下列函数中,属于二次函数的是( )A. y=x ﹣3B. y=x 2﹣(x +1)2C. y=x (x ﹣1)﹣1D.2.抛物线y=﹣x 2不具有的性质是( )A. 对称轴是y 轴B. 开口向下C. 当x <0时,y 随x 的增大而减小D. 顶点坐标是(0,0)3.已知抛物线()20y ax a =>过()12,A y -, ()21,B y 两点,则下列关系式一定正确的( )A. 120y y >>B. 210y y >>C. 120y y >>D. 210y y >>4.对于二次函数 的图像,给出下列结论:①开口向上;②对称轴是直线 ;③顶 点坐标是 ;④与 轴有两个交点.其中正确的结论是( )A. ①②B. ③④C. ②③D. ①④5.如图,二次函数 的图象开口向下,且经过第三象限的点 若点P 的横坐标为 ,则一次函数 的图象大致是A. B. C. D.6.抛物线y=ax 2+bx+c 的对称轴为直线x=﹣1,部分图象如图所示,下列判断中:①abc >0;②b 2﹣4ac >0;③9a ﹣3b+c=0;④若点(﹣0.5,y 1),(﹣2,y 2)均在抛物线上,则y 1>y 2;⑤5a ﹣2b+c <0.其中正确的个数有( )A. 2B. 3C. 4D. 57.抛物线y=x2+x-1与x轴的交点的个数是()A. 3个B. 2个C. 1个D. 0个8.若抛物线与轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点( )A. B. C. D.9.若二次函数的x与y的部分对应值如下表:则抛物线的顶点坐标是A. B. C. D.10.当a≤x≤a+1时,函数y=x2-2x+1的最小值为1,则a的值为()A. -1B. 2C. 0或2D. -1或211.如图所示的抛物线是二次函数y=ax2+bx+c(a≠0)的图象,则下列结论:①abc>0;②b+2a=0;③抛物线与x轴的另一个交点为(4,0);④a+c>b;⑤3a+c<0.其中正确的结论有()A. 5个B. 4个C. 3个D. 2个12.小张同学说出了二次函数的两个条件:(1)当x<1时,y随x的增大而增大;(2)函数图象经过点(-2,4).则符合条件的二次函数表达式可以是( )A. y=-(x-1)2-5B. y=2(x-1)2-14C. y=-(x+1)2+5D. y=-(x-2)2+20二、填空题13.飞机着陆后滑行的距离y(单位:m)关于滑行时间t(单位:s)的函数解析式是y=60t﹣.在飞机着陆滑行中,最后4s滑行的距离是_____m.14.抛物线y=2(x+2)2+4的顶点坐标为_____.15.二次函数y=x2-2x-3,当m-2≤x≤m时函数有最大值5,则m的值可能为___________ 16.若二次函数y=x2+3x-c(c为整数)的图象与x轴没有交点,则c的最大值是________. 17.如图,假设篱笆(虚线部分)的长度16m,则所围成矩形ABCD的最大面积是____________________三、解答题18.已知二次函数的图象以A(﹣1,4)为顶点,且过点B(2,﹣5)(1)求该函数的关系式;(2)求该函数图象与坐标轴的交点坐标;(3)将该函数图象向右平移,当图象经过原点时,A、B两点随图象移至A′、B′,求△O A′B′的面积.19.传统的端午节即将来临,某企业接到一批粽子生产任务,约定这批粽子的出厂价为每只4元,按要求在20天内完成.为了按时完成任务,该企业招收了新工人,设新工人李明第x天生产的粽子数量为y只,y与x满足如下关系:y=(1)李明第几天生产的粽子数量为280只?(2)如图,设第x天生产的每只粽子的成本是p元,p与x之间的关系可用图中的函数图象来刻画.若李明第x天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大?最大利润是多少元?(利润=出厂价-成本)20.如图,已知抛物线y1=x2-2x-3与x轴相交于点A,B(点A在B的左侧),与y轴相交于点C,直线y2=kx+b经过点B,C.(1)求直线BC的函数关系式;(2)当y1>y2时,请直接写出x的取值范围.21.已知抛物线:y=a(x-m)2-a(x-m)(a、m为常数,且a≠0).(1)求证:不论a与m为何值,该抛物线与x轴总有两个公共点;(2)设该抛物线与x轴相交于A、B两点,则线段AB的长度是否与a、m的大小有关系?若无关系,求出它的长度;若有关系,请说明理由;(3)在(2)的条件下,若抛物线的顶点为C,当△ABC的面积等于1时,求a的值.22.已知抛物线y=a(x﹣1)2过点(3,1),D为抛物线的顶点.(1)求抛物线的解析式;(2)若点B、C均在抛物线上,其中点B(0,),且∠BDC=90°,求点C的坐标;(3)如图,直线y=kx+4﹣k与抛物线交于P、Q两点.①求证:∠PDQ=90°;②求△PDQ面积的最小值.参考答案1.C2.C3.C4.D5.D6.B7.B8.B9.C10.D11.B12.D13.21614.(﹣2,4).15.0或416.-317.64m218.(1)y=﹣x2﹣2x+3;(2)抛物线与x轴的交点为:(﹣3,0),(1,0)(3)15.【解析】【分析】(1)已知了抛物线的顶点坐标,可用顶点式设该二次函数的解析式,然后将B点坐标代入,即可求出二次函数的解析式;(2)根据函数解析式,令x=0,可求得抛物线与y轴的交点坐标;令y=0,可求得抛物线与x轴交点坐标;(3)由(2)可知:抛物线与x轴的交点分别在原点两侧,由此可求出当抛物线与x轴负半轴的交点平移到原点时,抛物线平移的单位,由此可求出A′、B′的坐标.由于△OA′B′不规则,可用面积割补法求出△OA′B′的面积.【详解】(1)设抛物线顶点式y=a(x+1)2+4,将B(2,﹣5)代入得:a=﹣1,∴该函数的解析式为:y=﹣(x+1)2+4=﹣x2﹣2x+3;(2)令x=0,得y=3,因此抛物线与y轴的交点为:(0,3),令y=0,﹣x2﹣2x+3=0,解得:x1=﹣3,x2=1,即抛物线与x轴的交点为:(﹣3,0),(1,0);(3)设抛物线与x轴的交点为M、N(M在N的左侧),由(2)知:M(﹣3,0),N(1,0),当函数图象向右平移经过原点时,M与O重合,因此抛物线向右平移了3个单位,故A'(2,4),B'(5,﹣5),∴S△OA′B′=×(2+5)×9﹣×2×4﹣×5×5=15.【点睛】本题考查了用待定系数法求抛物线解析式、函数图象与坐标轴交点、图形面积的求法等知识.熟练掌握待定系数法、函数图象与坐标轴的交点的求解方法、不规则图形的面积的求解方法等是解题的关键.19.(1)李明第10天生产的粽子数量为280只.(2)第13天的利润最大,最大利润是578元. 【解析】分析:(1)把y=280代入y=20x+80,解方程即可求得;(2)根据图象求得成本p与x之间的关系,然后根据利润等于订购价减去成本价,然后整理即可得到W与x的关系式,再根据一次函数的增减性和二次函数的增减性解答.详解:(1)设李明第x天生产的粽子数量为280只,由题意可知:20x+80=280,解得x=10.答:第10天生产的粽子数量为420只.(2)由图象得,当0≤x<10时,p=2;当10≤x≤20时,设P=kx+b,把点(10,2),(20,3)代入得,==,解得==,∴p=0.1x+1,①0≤x≤6时,w=(4-2)×34x=68x,当x=6时,w最大=408(元);②6<x≤10时,w=(4-2)×(20x+80)=40x+160,∵x是整数,∴当x=10时,w最大=560(元);③10<x≤20时,w=(4-0.1x-1)×(20x+80)=-2x2+52x+240,∵a=-3<0,∴当x=-=13时,w最大=578(元);综上,当x=13时,w有最大值,最大值为578.点睛:本题考查的是二次函数在实际生活中的应用,主要是利用二次函数的增减性求最值问题,利用一次函数的增减性求最值,难点在于读懂题目信息,列出相关的函数关系式.20.(1)y=x-3;(2)当y1>y2时,x<0和x>3.【解析】分析:(1)根据抛物线的解析式求出A、B、C的解析式,把B、C的坐标代入直线的解析式,即可求出答案;(2)根据B、C点的坐标和图象得出即可.详解:(1)抛物线y1=x2-2x-3,当x=0时,y=-3,当y=0时,x=3或1,即A的坐标为(-1,0),B的坐标为(3,0),C的坐标为(0,-3),把B、C的坐标代入直线y2=kx+b得:=,=解得:k=1,b=-3,即直线BC的函数关系式是y=x-3;(2)∵B的坐标为(3,0),C的坐标为(0,-3),如图,∴当y1>y2时,x的取值范围是x<0或x>3.点睛:本题考查了一次函数和二次函数图象上点的坐标特征、用待定系数法求一次函数的解析式和二次函数与一次函数的图象等知识点,能求出B、C的坐标是解此题的关键.21.(1)证明见解析;(2)1;(3)±8【解析】分析:(1)通过提公因式法,对函数的解析式变形,然后构成方程求解出交点的坐标即可;(2)根据第一问的交点坐标得到AB的长,判断出AB的长与a、m无关;(3)通过配方法得到函数的顶点式,然后根据三角形的面积公式求解即可.详解:(1)由y=a(x-m)2-a(x-m)=a(x-m)( x-m-1),得抛物线与x轴的交点坐标为(m,0)和(m+1,0).因此不论a与m为何值,该抛物线与x轴总有两个公共点.(也可用判别式Δ做)(2)线段AB的长度与a、m的大小无关。
人教版九年级数学上册《第二十二章二次函数》单元测试卷-附含答案
人教版九年级数学上册《第二十二章二次函数》单元测试卷-附含答案学校:___________班级:___________姓名:___________考号:___________一、单选题 1.若二次函数图象的顶点坐标为2,1,且过点()0,3,则该二次函数的解析式为( ) A .()21122x y --= B .()221y x =+- C .()221y x =-- D .()221y x =---2.平面直角坐标系中,抛物线y =12(x +2)(x ﹣5)经变换后得抛物线y =12(x +5)(x ﹣2),则这个变换可以是( )A .向左平移7个单位B .向右平移7个单位C .向左平移3个单位D .向右平移3个单位 3.已知二次函数()2213y x =--,则下列说法正确的是( ) A .y 有最小值0,有最大值-3 B .y 有最小值-3,无最大值 C .y 有最小值-1,有最大值-3 D .y 有最小值-3,有最大值0 4.二次函数()2y x k h =++的图象与x 轴的交点的横坐标分别为-1和3,则()22y x k h =+++的图象与x 轴的交点的横坐标分别为( )A .-3和1B .1和5C .-3和5D .3和5 5.若二次函数2y a x bx c =++的图象经过不同的六点()1,A n -、()5,1B n -和()6,1C n +、()14,D y 和()22,E y 、()32,F y 则1y 、2y 和3y 的大小关系是( ) A .123y y y <<B .132y y y <<C .213y y y <<D .321y y y << 6.已知二次函数()24119y x =--上的两点()()1122,,,P x y Q x y 满足123x x =+,则下列结论中正确的是( ) A .若112x <-,则121y y >>- B .若1112x -<<,则210y y >> C .若112x <-,则120y y >> D .若1112x -<<,则210y y >> 7.已知抛物线()2<0y ax bx c a =++的对称轴为=1x -,与x 轴的一个交点为()2,0.若关于x 的一元二次方程()20ax bx c p p ++=>有整数根,则P 的值有多少个?( )A .1B .2C .3D .48.如图,直线y=x 与抛物线y=x 2﹣x ﹣3交于A 、B 两点,点P 是抛物线上的一个动点,过点P 作直线PQ⊥x轴,交直线y=x 于点Q ,设点P 的横坐标为m ,则线段PQ 的长度随m 的增大而减小时m 的取值范围是( )﹣1或1<m <3 9.小明周末外出游玩时看到某公园有一圆形喷水池,如图1,简单测量得到如下数据:圆形喷水池直径为20m ,水池中心O 处立着一个圆柱形实心石柱OM ,在圆形喷水池的四周安装了一圈喷头,喷射出的水柱呈拋物线型,水柱在距水池中心4m 处到达最大高度为6m ,从各方向喷出的水柱在石柱顶部的中心点M 处101110.如图,在ABC 中90,3cm,6cm B AB BC ∠=︒==,动点P 从点A 开始沿AB 向点B 以1cm/s 的速度移动,动点Q 从点B 开始沿BC 向点C 以2cm /s 的速度移动,若P ,Q 两点分别从A ,B 两点同时出发,P 点到达B 点运动停止,则PBQ 的面积S 随出发时间t 的函数图象大致是( )A .B . C. D .二、填空题11.抛物线22(1)3y x =---与y 轴交点的纵坐标为12.已知实数x 、y 满足x 2﹣2x +4y =5,则x +2y 的最大值为 .13.今年三月份王大伯决定销售一批风筝,经市场调研:蝙蝠型风筝等进价每个为10元,当售价每个为12元时,销售量为180个,若售价每提高1元,销售量就会减少10个,当销售单价是 元时,王大伯获得利润最大.14.已知抛物线224y mx mx c =-+ 与x 轴交于点()1,0A -、()2,0B x 两点,则B 点的横坐标2x = .15.已知抛物线的函数关系式:()22212y x a x a a =+-+-(其中x 是自变量).(1)若点()1,3P 在此抛物线上,则a 的值为 .(2)设此抛物线与x 轴交于点()1,0A x 和()2,0B x ,若122x x <<,且抛物线的顶点在直线34x =的右侧,则a 的取值范围为 .16.设二次函数2y ax bx c =++(,a b c ,是常数,0a ≠),如表列出了x ,y 的部分对应值. x … 5- 3- 1 2 3 …y … 2.79- m 2.79- 0n … 则不等式20ax bx c ++<的解集是 .17.二次函数2y ax bx c =++的部分图象如图所示,对称轴为1x =,图象过点A ,且930a b c ++=,以下结论:⊥420a b c -+<;⊥关于x 的不等式220ax ax c -+->的解集为:13x -<<;⊥3c a >-;⊥()21(1)0m a m b -+-≥(m 为任意实数);⊥若点()1,B m y ,()22,C m y -在此函数图象上,则12y y =.其中错误的结论是 .三、解答题设该超市在第x 天销售这种商品获得的利润为y 元.(1)求y 关于x 的函数关系式;(2)在这30天中,该超市销售这种商品第几天的利润最大?最大利润是多少?21.如图所示,二次函数2y ax bx c =++的图象经过()1,0-、()3,0和()03-,三点.(1)求二次函数的解析式;(2)方程2++=有两个实数根,m的取值范围为__________.ax bx c m(3)不等式23++>-的解集为__________;ax bx c x22.一次足球训练中,小明从球门正前方12m的A处射门,球射向球门的路线呈抛物线.当球飞行的水平距离为8m时,球达到最高点,此时球离地面4m.已知球门高OB为2.58m,现以O为原点建立如图所示直角坐标系.(1)求抛物线的函数表达式,并通过计算判断球能否射进球门(忽略其他因素);(2)对本次训练进行分析,若射门路线的形状、最大高度均保持不变,则当时他应该带球向正后方移动多少米射门,才能让足球经过点O正上方2.56m处?参考答案:1.C2.C3.B4.A5.D6.B。
九年级上册第二十二章《二次函数》单元测试卷(含答案解析)
第二十二章《二次函数》单元测试卷一、选择题(每小题只有一个正确答案) 1.下列函数中,是二次函数的为( )A . y =2x +1B . y =(x −2)2−x 2C . y =2x 2 D . y =2x(x +1) 2.二次函数y=2(x ﹣1)2+3的图象的对称轴是( ) A . x=1 B . x=﹣1 C . x=3 D . x=﹣33.将抛物线y=x 2向左平移2个单位,再向下平移5个单位,平移后所得新抛物线的表达式为( )A . y=(x +2)2﹣5B . y=(x +2)2+5C . y=(x ﹣2)2﹣5D . y=(x ﹣2)2+5 4.(已知二次函数y=ax 2+bx +c (a ≠0)的图象如图所示,下列结论:①abc >0;②2a +b >0;③b 2﹣4ac >0;④a ﹣b +c >0,其中正确的个数是( )A . 1B . 2C . 3D . 45.已知二次函数y =ax 2−bx −2(a≠0)的图象的顶点在第四象限,且过点(﹣1,0),当a ﹣b 为整数时,ab 的值为( )A . 34或1 B . 14或1 C . 34或12D . 14或346.下列具有二次函数关系的是( )A . 正方形的周长y 与边长xB . 速度一定时,路程s 与时间tC . 三角形的高一定时,面积y 与底边长xD . 正方形的面积y 与边长x7.给出下列四个函数:y=,2x,y=2x,1,y=3x ,x,0,,y=,x 2+3,x,0),其中y 随x 的增大而减小的函数有( )A . 3个B . 2个C . 1个D . 0个8.在直角坐标系xOy 中,二次函数C 1,C 2图象上部分点的横坐标、纵坐标间的对应值如下表:则关于它们图象的结论正确的是()A.图象C1,C2均开口向下B.图象C1的顶点坐标为(2.5,,8.75,C.当x,4时,y1,y2D.图象C1,C2必经过定点(0,,5,9.如图,二次函数y=ax 2+bx+c的图象过点A(3,0),对称轴为直线x=1,给出以下结论:①abc<0;②b2﹣4ac>0;③a+b+c≥ax2+bx+c;④若M(x2+1,y1)、N(x2+2,y2)为函数图象上的两点,则y1<y2,其中正确的是()A.①②③B.①②④C.①③④D.②③④10.已知二次函数y=ax2+bx的图象如图所示,则一次函数y=ax+b的图象是()A.B.C.D.11.如图,抛物线y=−23x2+103x+4分别交x轴于A,B两点,与y轴交于点C,动点P从D(0,2)出发,先到达x轴上的某点E,再到达抛物线对称轴上的某点F,最后运动到点C,求点P运动的最短路径长为()A.√61B.8C.7D.912.二维码已经给我们的生活带来了很大方便,它是由大小相同的黑白两色的小正方形(如图1中C)按某种规律组成的一个大正方形,现有25×25格式的正方形如图1,角上是三个7×7的A型大黑白相间正方形,中间右下一个5×5的B型黑白相间正方形,除这4个正方形外,若其他的小正方形白色块数y与黑色块数x正好满足如图2所示的函数图象,则该25×25格式的二维码共有多少块黑色的C型小正方形()A.153B.218C.100D.216二、填空题13.二次函数y,kx2,x,2经过点(1,5),则k,_________.14.若函数y,(m,3)x m2+2m-13是二次函数,则m,______.15.若抛物线y=x2−6x+m与x轴没有交点,则m的取值范围是______,16.已知抛物线y=ax2+bx+c,a,0)的顶点为(2,4),若点(﹣2,m,,,3,n)在抛物线上,则m_____n(填“,”,“=”或“,”,,17.用一段长为30m的篱笆围成一个一边靠墙的矩形菜园,墙长20m,当矩形的长、宽各取某个特定的值时,菜园的面积最大,这个最大面积是_____m2.三、解答题18.在平面直角坐标系xOy中,二次函数y=x2﹣2hx+h的图象的顶点为点D.(1)当h=﹣1时,求点D的坐标;(2)当﹣1≤x≤1时,求函数的最小值m.(用含h的代数式表示m)19.二次函数y=,m+1,x2,2,m+1,x,m+3,,1)求该二次函数的对称轴;,2)过动点C,0,n)作直线l,y轴,当直线l与抛物线只有一个公共点时,求n关于m的函数表达式;,3)若对于每一个给定的x值,它所对应的函数值都不大于6,求整数m,20.某商场销售一种商品,进价为每个20元,规定每个商品售价不低于进价,且不高于60元.经调查发现,每天的销售量y(个)与每个商品的售价x(元)满足一次函数关系,其部分数据如下表所示:,1,求y与x之间的函数关系式;,2,设商场每天获得的总利润为w(元),求w与x之间的函数关系式;,3,不考虑其他因素,当商品的售价为多少元时,商场每天获得的总利润最大,最大利润是多少?21.已知二次函数y=kx2+(k+1)x+1(k≠0).(1)求证:无论k取任何实数时,该函数图象与x轴总有交点;(2)如果该函数的图象与x轴交点的横坐标均为整数,且k为整数,求k值.22.如图,抛物线y=ax2+2ax+1与x轴仅有一个公共点A,经过点A的直线交该抛物线于点B,交y轴于点C,且点C是线段AB的中点.(1)求这条抛物线对应的函数解析式;(2)求直线AB对应的函数解析式.23.如图所示,二次函数y=﹣2x2+4x+m的图象与x轴的一个交点为A(3,0),另一个交点为B.且与y轴交于点C.(1)求m的值及点B的坐标;(2)求△ABC的面积;(3)该二次函数图象上有一点D(x,y),使S△ABD=S△ABC,请求出D点的坐标.参考答案1.D【解析】【分析】先把它们整理成一般形式,再根据二次函数的定义解答.【详解】A选项:一次函数,错误;B选项:原函数可化为:y=-4x+4,一次函数,错误;C选项:不是整式,错误;D选项:原函数可化为:y=2x2+2x,正确.故选:D.【点睛】考查二次函数的定义,一般地,把形如y=ax2+bx+c(a≠0)(a、b、c是常数)的函数叫做二次函数.2.A【解析】【分析】由抛物线解析式可求得其顶点坐标及对称轴.【详解】∵y,2,x−1,2,3,∴抛物线顶点坐标为(1,3),对称轴为x,1,故选:A,【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y,a,x−h,2,k 中,对称轴为x,h,顶点坐标为(h,k,,3.A【解析】【分析】直接根据“上加下减,左加右减”的原则进行解答即可.【详解】抛物线y=x2的顶点坐标为(0,0),先向左平移2个单位再向下平移5个单位后的抛物线的顶点坐标为(﹣2,﹣5),所以,平移后的抛物线的解析式为y=(x+2)2﹣5.故选:A.【点睛】本题考查了二次函数的图象与几何变换,熟知函数图象平移的法则是解答本题的关键.4.D【解析】【分析】由抛物线的对称轴的位置判断ab的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【详解】①∵抛物线对称轴是y轴的右侧,∴ab<0,∵与y轴交于负半轴,∴c<0,∴abc>0,故①正确;<1,②∵a>0,x=﹣b2a∴﹣b<2a,∴2a+b>0,故②正确;③∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故③正确;④当x=﹣1时,y>0,∴a﹣b+c>0,故④正确.故选:D.【点睛】本题主要考查了图象与二次函数系数之间的关系,二次函数y=ax 2+bx +c 系数符号由抛物线开口方向、对称轴和抛物线与y 轴的交点、抛物线与x 轴交点的个数确定. 5.A 【解析】 【分析】首先根据题意确定a,b 的符号,然后进一步确定a 的取值范围,根据a,b 为整数确定a,b 的值,从而确定答案. 【详解】依题意知a,0,b2a ,0,a+b,2=0, 故b,0,且b=2,a, a,b=a,,2,a,=2a,2, 于是0,a,2, ∴,2,2a,2,2, 又a,b 为整数, ∴2a,2=,1,0,1, 故a=12,1,32, b=32,1,12,∴ab=34或1,故选A,【点睛】根据开口和对称轴可以得到b 的范围。
人教版九年级上册数学 第22章 二次函数 单元复习练习题(含答案)
人教版九年级上册数学 第22章 二次函数 单元复习练习题一、选择题1.如图是抛物线y 1=ax 2+bx +c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x 轴的一个交点B(4,0),直线y 2=mx +n(m≠0)与抛物线交于A ,B 两点,下列结论:①2a +b =0;②abc>0;③方程ax 2+bx +c =3有两个相等的实数根;②抛物线与x 轴的另一个交点是(-1,0);②当1<x<4时,有y 2<y 1,其中正确的是( )A .①④⑤B .①③④⑤C .①③⑤D .①②③2.如图,抛物线21043y ax x =-+与直线43=+y x b 经过点()2,0A ,且相交于另一点B ,抛物线与y 轴交于点C ,与x 轴交于另一点E ,过点N 的直线交抛物线于点M ,且MN y 轴,连接,,,AM BM BC AC ,当点N 在线段AB 上移动时(不与A 、B 重合),下列结论正确的是( )A .MN BN AB +<B .BAC BAE ∠=∠ C .12ACB ANM ABC ∠-∠=∠D .四边形ACBM 的最大面积为133.如图,已知在矩形 ABCD 中,AB =4,AD =3,连接 AC ,动点 Q 以每秒 1 个单位的速度沿 A→B→C 向点 C 匀速运动,同时点 P 以每秒 2 个单位的速度沿 A→C→D 向点 D 匀速运动,连接 PQ ,当点 P 到达终点 D 时,停止运 动,设△APQ 的面积为 S ,运动时间为 t 秒,则 S 与 t 函数关系的图象大致为( )A .B .C .D .4.二次函数()20y ax bx c a =++≠图象的一部分如图所示,顶点坐标为()1,m -,与x 轴的一个交点的坐标为(-3,0),给出以下结论:①0abc >;②420a b c -+>;③若15,2B y ⎛⎫- ⎪⎝⎭、21,2C y ⎛⎫- ⎪⎝⎭为函数图象上的两点,则12y y <;④当30x -<<时方程2ax bx c t ++=有实数根,则t 的取值范围是0t m <≤.其中正确的结论的个数为( )A .1个B .2个C .3个D .4个5.如图所示,抛物线2(0)y ax bx c a =++≠的对称轴为直线1x =,与y 轴的一个交点坐标为()0,3,其部分图象如图所示,下列结论:①0abc <;②40a c +>;③方程23ax bx c ++=的两个根是120,2x x ==;④方程20ax bx c ++=有一个实根大于2; ⑤当0x <时,y 随x 增大而增大.其中结论正确的个数是( )A .4个B .3个C .2个D .1个6.抛物线y =ax 2+bx +c (a ≠0)与x 轴的一个交点坐标为(2,0),对称轴是直线x =1,其图象的一部分如图所示,对于下列说法:其中正确的是( )①抛物线过原点:②a ﹣b +c <0:③2a +b +c =0;④抛物线顶点为(1,2b ):⑤当x <1时,y 随x 的增大而增大。
人教版九年级数学 上册 第二十二章 二次函数 单元综合与测试(含答案)
第二十二章 二次函数 单元复习与检测题(含答案)一、选择题1、下列结论正确的是( )A.二次函数中两个变量的值是非零实数;B.二次函数中变量x 的值是所有实数;C.形如y=ax 2+bx+c 的函数叫二次函数;D.二次函数y=ax 2+bx+c 中a,b,c 的值均不能为零 2、抛物线的顶点在( )A .第一象限B .第二象限C .轴上D .轴上3、已知抛物线y=x 2﹣8x+c 的顶点在x 轴上,则c 等于( ) A .4B .8C .﹣4D .164、把抛物线2=+1y x 向右平移3个单位,再向下平移2个单位,得到抛物线( ).A . ()231y x =+-B .()233y x =++C .()231y x =--D .()233y x =-+ 5、关于抛物线y=x 2﹣2x+1,下列说法错误的是( ) A .开口向上 B .与x 轴有两个重合的交点C .对称轴是直线x=1D .当x >1时,y 随x 的增大而减小6、二次函数223y x x =--的图象如上图所示.当y <0时,自变量x 的取值范围是( ). A .-1<x <3B .x <-1C . x >3D .x <-1或x >37、将函数y=x 2+6x+7进行配方正确的结果应为( ) A 、y=(x+3)2+2 B 、y=(x-3)2+2C 、y=(x+3)2-2D 、y=(x-3)2-28、抛物线y=a (x-h )2+k 向左平移2个单位,再向下平移3个单位得到y=x 2+1,则h 、k 的值是( )A .h=-2,k=-2B .h=2,k=4C .h=1,k=4D .h=2,k=-2 9、进入夏季后,某电器商场为减少库存,对电热取暖器连续进行两次降价。
若设平均每次降价的百分率是x ,降价后的价格为y 元,原价为a 元,则y 与x 之间的函数关系式为( )A 、2(1)y a x =-B 、2(1)y a x =-C 、2(1)y a x =- D 、2(1)y a x =- 10、关于平行四边形的对称性的描述,错误的是( )A .平行四边形一定是中心对称图形;B .平行四边形一定是轴对称图形;C .平行四边形的对称中心是两条对角线的交点;D .平行四边形的对称中心只有一个二、填空题11、用一根长为8m 的木条,做一个长方形的窗框,若宽为xm,则该窗户的面积y(m2)与x(m)之间的函数关系式为________.12、若点P 和Q (1,)都在抛物线上,则线段PQ 的长为 。
人教版九年级数学上册第22章《二次函数》单元检测题(含答案)
人教版九年级数学上册第22章《二次函数》单元检测题(含答案)一.选择题(共10小题,满分30分,每小题3分)1.二次函数y=x2﹣2x+3的一次项系数是()A.1B.2C.﹣2D.32.抛物线y=﹣(x﹣1)2+3的顶点坐标是()A.(﹣1,3)B.(1,3)C.(﹣1,﹣3)D.(1,﹣3)3.抛物线y=x2+x+c与x轴只有一个公共点,则c的值为()A.B.C.﹣4D.44.下列对二次函数y=﹣(x+1)2﹣3的图象描述不正确的是()A.开口向下B.顶点坐标为(﹣1,﹣3)C.与y轴相交于点(0,﹣3)D.当x>−1时,函数值y随x的增大而减小5.抛物线y=2x2﹣4x+c经过三点(﹣3,y1),(﹣1,y2),(2,y3),则y1,y2,y3的大小关系是()A.y2>y3>y1B.y1>y2>y3C.y2>y1>y3D.y1>y3>y2 6.函数y=ax+1与y=ax2+ax+1(a≠0)的图象可能是()A.B.C.D.7.若将双曲线y=向下平移3个单位后,交抛物线y=x2于点P(a,b),则a的取值范围是()A.0<a<B.<a<1C.1<a<2D.2<a<38.小明在期末体育测试中掷出的实心球的运动路线呈抛物线形.若实心球运动的抛物线的解析式为,其中y是实心球飞行的高度,x是实心球飞行的水平距离.已知该同学出手点A的坐标为,则实心球飞行的水平距离OB的长度为()A.7m B.7.5m C.8m D.8.5m9.在平面直角坐标系中,O为坐标原点,二次函数y=x2+bx+c的图象与x轴只有一个交点,且经过点A(2﹣m,c),B(m+2,c),则△AOB的面积为()A.8B.12C.16D.410.已知经过点(﹣1,0)的二次函数y=ax2+bx+c的图象如图所示,有以下结论:①abc>0;②a﹣b+c<0;③4a+2b+c>0;④2a=b;⑤3a+c<0.其中正确结论的个数是()A.1个B.2个C.3个D.4个二.填空题(共8小题,满分32分,每小题4分)11.函数y=x2m﹣1+x﹣3是二次函数,则m=.12.已知抛物线的解析式为y=﹣3(x﹣2)2+1,则抛物线的对称轴是直线.13.在函数y=(x﹣1)2+1中,当x>1时,y随x的增大而.(填“增大”或“减小”)14.将抛物线y=x2+x﹣1向左平移2个单位,再向上平移3个单位,则此时抛物线的解析式是.15.抛物线y=x2+bx+c的图象上有两点A(1,m),B(5,m),则b的值为.16.已知二次函数y=ax2+bx+c,自变量x与函数y的部分对应值如下表:x…123456…y…0﹣3﹣4﹣305…则当x=0时,y的值为.17.如图,抛物线y=ax2+c与直线y=mx+n交于两点A(﹣2,p),B(5,q),则不等式ax2+mx+c≤n的解集是.18.若二次函数y=x2﹣2x﹣3的图象上有且只有三个点到x轴的距离等于m,则m的值为.三.解答题(共7小题,满分58分)19.(6分)已知y与x2成正比例,并且x=1时y=2.(1)求y与x之间的函数关系式.(2)当x=﹣1时y的值.20.(6分)已知抛物线L:y=(m﹣2)x2+x﹣2m(m是常数且m≠2).(1)若抛物线L有最高点,求m的取值范围;(2)若抛物线L与抛物线y=x2的形状相同、开口方向相反,求m的值.21.(8分)已知抛物线y=ax2﹣4ax+3(a≠0)的图象经过点A(﹣2,0),过点A作直线l 交抛物线于点B(4,m).(1)求抛物线的函数表达式和顶点坐标.(2)将抛物线向下平移n(n>0)个单位,使顶点落在直线l上,求m,n的值.22.(8分)已知二次函数y=x2+2x﹣3.(1)用配方法把这个二次函数化成y=a(x﹣h)2+k的形式;(2)在所给的平面直角坐标系中,画出这个二次函数的图象;(3)当﹣4≤x≤0时,结合图象直接写出y的取值范围.23.(8分)如图,学校要用一段长为32米的篱笆围成一个一边靠墙的矩形花圃,墙长为14米.(1)若矩形ABCD的面积为96平方米,求矩形的边AB的长.(2)要想使花圃的面积最大,AB边的长应为多少米?最大面积为多少平方米?24.(10分)已知关于x的二次函数y=x2﹣2ax+a2+2a.(1)当a=1时,求已知二次函数对应的抛物线的顶点和对称轴;(2)当a=2时,直线y=2x与该抛物线相交,求抛物线在这条直线上所截线段的长度;(3)若抛物线y=x2﹣2ax+a2+2a与直线x=4交于点A,求点A到x轴的最小值.25.(12分)如图,抛物线y=ax2+bx﹣3与x轴交于A(﹣1,0)、B(3,0)两点,直线l 与抛物线交于A、C两点,其中点C的横坐标是2.(1)求抛物线的函数表达式;(2)在抛物线的对称轴上找一点P,使得△PBC的周长最小,并求出点P的坐标;(3)在平面直角坐标系中,是否存在一点E,使得以E、A、B、C为顶点的四边形是平行四边形?若存在,求出点E的坐标;若不存在,请说明理由.参考答案一.选择题(共10小题,满分30分,每小题3分)1.【解答】解:二次函数y=x2﹣2x+3的一次项系数是﹣2,故选:C.2.【解答】解:∵y=﹣(x﹣1)2+3,∴抛物线顶点坐标为(1,3),故选:B.3.【解答】解:∵抛物线y=x2+x+c与x轴只有一个公共点,∴方程x2+x+c=0有两个相等的实数根,∴Δ=b2﹣4ac=12﹣4×1•c=0,∴c=.故选:B.4.【解答】解:A、∵a=﹣1<0,∴抛物线的开口向下,正确,不合题意;B、抛物线的顶点坐标是(﹣1,﹣3),故本小题正确,不合题意;C、令x=0,则y=﹣1﹣3=﹣4,所以抛物线与y轴的交点坐标是(0,﹣4),故不正确,符合题意;D、抛物线的开口向下,对称轴为直线x=﹣1,∴当x>−1时,函数值y随x的增大而减小,故本小题正确,不合题意;故选:C.5.【解答】解:∵y=2x2﹣4x+c,∴抛物线开口向上,对称轴为直线x=﹣=2,∴x≤2时,y随x增大而减小,∴y1>y2>y3.故选:B.6.【解答】解:由函数y=ax+1与抛物线y=ax2+ax+1可知两函数图象交y轴上同一点(0,1),抛物线的对称轴为直线x=﹣=﹣,在y轴的左侧,A、抛物线的对称轴在y轴的右侧,故选项不合题意;B、抛物线的对称轴在y轴的右侧,故选项不合题意;C、由一次函数的图象可知a>0,由二次函数的图象知道a>0,且交于y轴上同一点,故选项符合题意;D、由一次函数的图象可知a>0,由二次函数的图象知道a<0,故选项不合题意;故选:C.7.【解答】解:双曲线y=向下平移3个单位后的函数为y′=﹣3,∵y′=﹣3交抛物线y=x2于点P(a,b),∴﹣3=a2,整理得,a3+3a﹣2=0,令y=a3+3a﹣2,且y随a的增大而增大.当a=0时,y=﹣2<0,当a=时,y=+﹣2=﹣<0,当a=1时,y=1+3﹣2=2>0,∴若a3+3a﹣2=0,则a的取值范围为:<a<1.故选:B.8.【解答】解:把A代入得:=﹣×9+k,∴k=,∴y=﹣(x﹣3)2+,令y=0得﹣(x﹣3)2+=0,解得x=﹣2(舍去)或x=8,∴实心球飞行的水平距离OB的长度为8m,故选:C.9.【解答】解:∵二次函数y=x2+bx+c的图象经过点A(2﹣m,c),B(m+2,c),∴对称轴为直线x==2,∴﹣=2,∴b=﹣4,∵点A或点B在y轴上,∴AB=4,∵二次函数y=x2+bx+c的图象与x轴只有一个交点,∴b2﹣4c=0,即16﹣4c=0,∴c=4,∴△AOB的面积为:=8.故选:A.10.【解答】解:由图可知,抛物线对称轴是直线x=1,∴﹣=1,即b=﹣2a,∵抛物线开口向下,∴a<0,b=﹣2a>0,∵抛物线与y轴交于正半轴,∴c>0,∴abc<0,故①错误;由图可得,抛物线上的点(﹣1,a﹣b+c)在x轴下方,∴a﹣b+c<0,故②正确;∵抛物线对称轴是直线x=1,∴x=0和x=2时,函数值相等,而x=0时c>0,∴4a+2b+c>0,故③正确;∵b=﹣2a,∴④错误;∵a﹣b+c<0,b=﹣2a,∴a﹣(﹣2a)+c<0,即3a+c<0,故⑤正确;∴正确的有②③⑤,共3个,故选:C.二.填空题(共8小题,满分32分,每小题4分)11.【解答】解:∵函数y=x2m﹣1+x﹣3是关于x的二次函数,∴2m﹣1=2,∴m=.故答案为:.12.【解答】解:∵y=﹣3(x﹣2)2+1,∴抛物线对称轴为直线x=2.故答案为:x=2.13.【解答】解:∵函数y=(x﹣1)2+1,∴a=1>0,抛物线开口向上,对称轴为直线x=1,∴当x>1时,y随x的增大而增大.故答案为:增大.14.【解答】解:∵y=x2+x﹣1=(x+)2﹣,∴将抛物线y=x2+x﹣1向左平移2个单位,再向上平移3个单位,则此时抛物线的解析式是y=(x++2)2﹣+3,即y=x2+5x+8,故答案为:y=x2+5x+8.15.【解答】解:∵抛物线经过A(1,m),B(5,m),∴抛物线对称轴为直线x=3,∴﹣=3,解得b=﹣6,故答案为:﹣6.16.【解答】解:依据表格可知抛物线的对称轴为x=3,∴当x=0时与x=6时函数值相同,∴当x=0时,y=5.故答案为:5.17.【解答】解:∵抛物线y=ax2+c与直线y=mx+n交于A(﹣2,p),B(5,q)两点,∴﹣2m+n=p,5m+n=q,∴抛物线y=ax2+c与直线y=﹣mx+n交于P(2,p),Q(﹣5,q)两点,观察函数图象可知:当﹣5≤x≤2时,直线y=﹣mx+n在抛物线y=ax2+c的上方,∴不等式ax2+mx+c≤n的解集是﹣5≤x≤2.故答案为﹣5≤x≤2.18.【解答】解:∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线开口向上,抛物线对称轴为直线x=1,顶点为(1,﹣4),∴顶点到x轴的距离为4,∵函数图象有三个点到x轴的距离为m,∴m=4,故答案为:4.三.解答题(共7小题,满分58分)19.【解答】解:(1)∵y与x2成正比例,∴设y=kx2(k≠0),∵当x=1时,y=2,∴2=k•12,解得,k=2,∴y与x之间的函数关系式为y=2x2.(2)∵函数关系式为y=2x2,∴当x=﹣1时,y=2×1=2.20.【解答】解:(1)∵抛物线L有最高点,∴m﹣2<0,∴m<2;(2)∵抛物线L与抛物线y=x2的性状相同,开口方向相反,∴m﹣2=﹣1,∴m=1.21.【解答】解:(1)将A(﹣2,0)代入y=ax2﹣4ax+3得:0=4a+8a+3,解得,∴抛物线为,∵y=﹣x2+x+3=﹣(x﹣2)2+4,∴顶点坐标为(2,4);(2)把B(4,m)代入得,m=﹣4+4+3=3,将A(﹣2,0),B(4,3)代入y=kx+b得,解得,∴直线AB的解析式为,∵顶点的横坐标为2,把x=2代入得:y=2,∴n=4﹣2=2.22.【解答】解:(1)y=x2+2x﹣3=x2+2x+1﹣4=(x+1)2﹣4,即y=(x+1)2﹣4;(2)∵y=(x+1)2﹣4,∴顶点坐标为(﹣1,﹣4),当y=0时,x2+2x﹣3=0,解得:x1=1,x2=﹣3,∴抛物线与x轴的交点坐标为(﹣3,0),(1,0),当x=0时,y=﹣3,∴抛物线与y轴的交点坐标为(0,﹣3),二次函数的图象如图所示:(3)观察图象得,当x=﹣1时,y取最小值﹣4,当x=﹣4时,y取最大值,代入函数得,y=(﹣4)2+2×(﹣4)﹣3=16﹣8﹣3=5.∴当﹣4≤x≤0时,﹣4≤y≤5.23.【解答】解:(1)设AB为x米,则BC=(36﹣2x)米,由题意得:x(32﹣2x)=96,解得:x1=4,x2=12,∵墙长为14米,32米的篱笆,∴32﹣2x≤14,2x<32,∴9≤x<16,∴x=12,∴AB=12,答:矩形的边AB的长为12米;(2)设AB为x米,矩形的面积为y平方米,则BC=(32﹣2x)米,∴y=x(32﹣2x)=﹣2x2+32x=﹣2(x﹣8)2+128,∵9≤x<16,且﹣2<0,故抛物线开口向下,∴当x=9时,y有最大值是126,答:AB边的长应为9米时,有最大面积,且最大面积为126平方米.24.【解答】解:(1)∵a=1,∴y=x2﹣2ax+a2+2a=x2﹣2x+3=(x﹣1)2+2,∴抛物线顶点坐标为(1,2),对称轴为直线x=1.(2)把a=2代入y=x2﹣2ax+a2+2a得y=x2﹣4x+8,令x2﹣4x+8=2x,解得x1=2,x2=4,把x=2代入y=2x得y=4,把x=4代入y=2x得y=8,∴直线与抛物线交点坐标为(2,4),(4,8),∴线段长度为=2.(3)把x=4代入y=x2﹣2ax+a2+2a得y=16﹣8a+a2+2a=(a﹣3)2+7,∴点A纵坐标为(a﹣3)2+7,∵(a﹣3)2+7≥7,∴点A到x轴最小距离为7.25.【解答】解:(1)∵抛物线y=ax2+bx﹣3与x轴交于A(﹣1,0)、B(3,0)两点,解得:,∴抛物线的函数表达式为y=x2﹣2x﹣3;(2)∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的对称轴为x=1,∵A、B关于直线x=1对称,所以AC与对称轴的交点为点P,此时C△PBC=PB+PC+BC=AC+BC,此时△BPC的周长最短,∵点C的横坐标是2,y C=22﹣2×2﹣3=﹣3,∴C(2,﹣3),设直线AC的解析式为y=mx+n(m≠0),∴,解得:,∴直线AC的解析式为y=﹣x﹣1,当x=1时,y=﹣1﹣1=﹣2,∴P(1,﹣2);(3)存在一点E,使得以E、A、B、C为顶点的四边形是平行四边形.∵A(﹣1,0),B(3,0),C(2,﹣3),设E(x,y),①当AB为对角线时,则,解得:,∴E(0,3);②当AC为对角线时,解得:,∴E(﹣2,﹣3);③当BC为对角线时,则,解得:,∴E(6,﹣3).综上所述,E点坐标为(0,3)或(﹣2,﹣3)或(6,﹣3)。
九年级数学上册《第二十二章 二次函数》单元测试卷附答案(人教版)
九年级数学上册《第二十二章二次函数》单元测试卷附答案(人教版)一、单选题1.下列各式中表示二次函数的是()+1B.y=2−x2A.y=x2+1x−x2D.y=(x−1)2−x2C.y=1x22.将抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线是()A.y=5(x+2)2+3B.y=5(x+2)2−3C.y=5(x−2)2+3D.y=5(x−2)2−33.抛物线y=x2−2x−3与x轴的两个交点间的距离是()A.-1 B.-2 C.2 D.44.已知(2,5)、 (4,5)是抛物线y=ax2+bx+c上的两点,则这个抛物线的对称轴方程是()B.x=2 C.x=4 D.x=3A.x=−ab5.不论m取何实数,抛物线y=2(x+m)2+m的顶点一定在下列哪个函数图象上()A.y=2x2B.y=-x C.y=-2x D.y=x6.已知函数y=1x2-x-12,当函数y随x的增大而减小时,x的取值范围是()2A.x<1 B.x>1 C.x>-4 D.-4<x<67.下表中列出的是一个二次函数的自变量x与函数y的几组对应值:x …−20 1 3 …y … 6 −4−6−4…下列选项中,正确的是()A.这个函数的开口向下B.这个函数的图象与x轴无交点C.当x>2时,y的值随x的增大而减小D.这个函数的最小值小于68.二次函数y=ax2+bx+c的图象如图所示,则下列判断中错误的是 ( )A.图象的对称轴是直线x=1B.当x>1时,y随x的增大而减小C.一元二次方程ax2+bx+c=0的两个根是-1,3D.当-1<x<3时,y<09.一个球从地面竖直向上弹起时的速度为10米/秒,经过t(秒)时球距离地面的高度h(米)适用公式h=10t-5t2,那么球弹起后又回到地面所花的时间t(秒)是()A.5 B.10 C.1 D.210.如图,是一个横断面为抛物线形状的拱桥,当水面宽4m时,拱顶(拱桥洞的最高点)离水面2m,当水面上升1m时,水面的宽为()A.2 m B.2m C. m D.3m二、填空题11.不论m取任何实数,抛物线y=x2+2mx+m2+m−1的顶点都在一条直线上,则这条直线的解析式是.12.若二次函数y=2x2﹣5的图象上有两个点A(2,a)、B(3,b),则a b(填“<”或“=”或“>”).13.抛物线y=x2−6x+c与x轴只有一个交点,则c=.14.已知抛物线y=a(x﹣h)2+k与x轴交于(﹣2,0)、(4,0),则关于x的一元二次方程:a(x ﹣h+3)2+k=0的解为.15.某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x为整数)出售,可卖出(30﹣x)件.若使利润最大,每件的售价应为元.三、解答题16.已知二次函数的图象经过(-6,0),(2,0),(0,-6)三点.(1)求这个二次函数的表达式;(2)求这个二次函数的顶点坐标.17.在平面直角坐标系xOy中,抛物线y=ax2−4ax+1 .(1)若抛物线过点A(−1,6),求二次函数的表达式;(2)指出(1)中x为何值时y随x的增大而减小;(3)若直线y=m与(1)中抛物线有两个公共点,求m的取值范围.18.如图,抛物线y=a x2 +c与直线y=3相交于点A,B,与y相交于点C(0,-1),其中点A的横坐标为-4.(1)计算a,c的值;(2)求出抛物线y=ax 2 +c与x轴的交点坐标;19.如图一,抛物线y=ax2+bx+c过A(−1,0)B(3.0),C(0,√3)三点(1)求该抛物线的解析式;(2)P(x1,y1),Q(4,y2)两点均在该抛物线上,若y1≤y2,求P点横坐标x1的取值范围;(3)如图二,过点C作x轴的平行线交抛物线于点E,该抛物线的对称轴与x轴交于点D,连结CD,CB,点F为线段CB的中点,点M,N分别为直线CD和CE上的动点,求ΔFMN周长的最小值.20.某超市经销一种商品,每千克成本为50元,经试销发现,该种商品的每天销售量y(千克)与销售单价x(元/千克)满足一次函数关系,其每天销售单价,销售量的四组对应值如下表所示:销售单价x(元/千克)55 60 65 70销售量y(千克)70 60 50 40(1)求y(千克)与x(元/千克)之间的函数表达式;(2)为保证某天获得600元的销售利润,则该天的销售单价应定为多少?(3)当销售单价定为多少时,才能使当天的销售利润最大?最大利润是多少?21.如图,抛物线y=ax2+bx+c(a≠0)与直线y=x+1相交于A(−1,0),B(4,m)两点,且抛物线经过点C(5,0)(1)求抛物线的解析式;(2)点P是抛物线上的一个动点(不与点A.点B重合),过点P作直线PD⊥x轴于点D,交直线AB 于点E.当PE=2ED时,求P点坐标;(3)点P是直线上方的抛物线上的一个动点,求ΔABP的面积最大时的P点坐标.参考答案1.B2.B3.D4.D5.B6.A7.D8.D9.D10.A11.y=−x−112.<13.914.x1=−515.2516.(1)解:设抛物线y=ax2+bx+c把(-6,0),(2,0),(0,-6)三点代入解析式,得{36a+6b+c=0 4a+2b+c=0c=−6解得∴抛物线的解析式为:y=12x2+2x−6(2)解:y=12x2+2x−6=12(x+2)2−8∴抛物线的顶点坐标为:(-2,-8).17.(1)解:把点A(-1,6),代入y=ax2−4ax+1得:6=a×(−1)2−4a×(−1)+1解得a=1∴二次函数的表达式y=x2−4x+1(2)解:二次函数y=x2−4x+1对称轴x=2∵a=1>0∴二次函数在对称轴左边y随x的增大而减小∴当x≤2是y随x的增大而减小;(3)解:∵直线y=m与y=x2−4x+1有两个公共点∴一元二次方程m=x2−4x+1有两不等根即一元二次方程x2−4x+1−m=0有两不等根∴Δ>0∴42−4×1×(1−m)>0解得m>−318.(1)解:设y=a x2 -1把(-4,3)代入得:3=a(-4) 2 -1∴a= 14∴y= 14x 2 -1∴a= 14,c=-1(2)解:y= 14x 2 -1=0∴x=±2∴(-2,0),(2,0)19.(1)解:∵抛物线y=ax2+bx+c过A(−1,0)B(3,0) C(0,√3)三点∴{a−b+c=09a+3b+c=0c=√3解得:a=−√33,b=2√33,c=√3;∴抛物线的解析式为:y=−√33x2+2√33x+√3(2)解:抛物线的对称轴为x=1,抛物线上与Q(4,y2)相对称的点Q′(−2,y2) P(x1,y1)在该抛物线上y1≤y2,根据抛物线的增减性得:∴x1≤−2或x1≥4答:P点横坐标x1的取值范围:x1≤−2或x1≥4.(3)解:∵C(0,√3),B(3,0)∴OC=√3,OB=3∵F是BC的中点∴F(32,√3 2)当点 F 关于直线 CE 的对称点为 F ′ ,关于直线 CD 的对称点为 F ′′ ,直线 F ′F ′′ 与 CE 、 CD 交点为 M,N ,此时 ΔFMN 的周长最小,周长为 F ′F ′′ 的长,由对称可得到: F ′(32,3√32) , F ′′(0,0) 即点 O F ′F ′′=F ′O =(32)(3√32)=3即: ΔFMN 的周长最小值为320.(1)解:设y 与x 之间的函数表达式为 y =kx +b ( k ≠0 ),将表中数据(55,70)、(60,60)代入得:{55k +b =7060k +b =60解得: {k =−2b =180∴y 与x 之间的函数表达式为 y =−2x +180 ;(2)解:由题意得: (x −50)(−2x +180)=600整理得 :x 2−140x +4800=0解得 x 1=60,x 2=80答:为保证某天获得600元的销售利润,则该天的销售单价应定为60元/千克或80元/千克;(3)解:设当天的销售利润为w 元,则:w =(x −50)(−2x +180)=−2(x ﹣70)2+800∵﹣2<0∴当 x =70 时w 最大值=800.答:当销售单价定为70元/千克时,才能使当天的销售利润最大,最大利润是800元.21.(1)解:∵点B (4,m )在直线y =x +1上∴m =4+1=5∴B (4,5)把A 、B 、C 三点坐标代入抛物线解析式可得{a −b +c =016a +4b +c =025a +5b +c =0解得{a =−1b =4c =5∴抛物线解析式为y =−x 2+4x +5;(2)解:设P (x ,−x 2+4x +5),则E (x ,x +1),D (x ,0)则PE =|−x 2+4x +5−(x +1)|=|−x 2+3x +4|,DE =|x +1|∵PE =2ED∴|−x 2+3x +4|=2|x +1|当−x 2+3x +4=2(x +1)时,解得x =−1或x =2,但当x =−1时,P 与A 重合不合题意,舍去 ∴P (2,9);当−x 2+3x +4=−2(x +1)时,解得x =−1或x =6,但当x =−1时,P 与A 重合不合题意,舍去 ∴P (6,−7);综上可知P 点坐标为(2,9)或(6,−7);(3)解:∵点P 是直线上方的抛物线上的一个动点设(x ,−x 2+4x +5),则E (x ,x +1),D (x ,0)则PE =−x 2+4x +5−(x +1)=−x 2+3x +4∴ΔABP = S ΔAEP + S ΔEBP = 12×PE ×(x B −x A ) = 12×(−x 2+3x +4)×5= −52(x −32)2+1258 ∴当x= 32 , ΔABP 的面积最大把x= 32 代入y =−x 2+4x +5,解得y= 354故P ( 32 , 354 ).。
人教版九年级数学上册第22章 二次函数单元测试及答案
人教版九年级数学上册第22章二次函数单元测试及答案考试分值:120分;考试时间:100分钟;姓名:___________班级:___________考号:___________题号一二三总分得分评卷人得分一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列函数中属于二次函数的是()A.y=x(x+1)B.x2y=1 C.y=2x2﹣2(x2+1)D.y=2.(3分)若y=(a2+a)是二次函数,那么()A.a=﹣1或a=3 B.a≠﹣1且a≠0C.a=﹣1 D.a=33.(3分)二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+c在坐标系中的大致图象是()A.B.C.D.4.(3分)某同学在用描点法画二次函数y=ax2+bx+c的图象时,列出了下面的表格:x…﹣2 ﹣1 0 1 2 …y…﹣11 ﹣2 1 ﹣2 ﹣5 …由于粗心,他算错了其中一个y值,则这个错误的数值是()A.﹣11 B.﹣2 C.1 D.﹣55.(3分)二次函数y=ax2+bx+c的图象如图所示,则下列结论中错误的是()A.函数有最小值B.c<0C.当﹣1<x<2时,y>0 D.当x<时,y随x的增大而减小6.(3分)如图:二次函数y=ax2+bx+2的图象与x轴交于A、B两点,与y轴交于C点,若AC⊥BC,则a的值为()A.﹣B.﹣C.﹣1 D.﹣27.(3分)已知函数y=(k﹣3)x2+2x+1的图象与x轴有交点,则k的取值范围是()A.k≤4且k≠3B.k<4且k≠3C.k<4 D.k≤48.(3分)对于二次函数y=x2+mx+1,当0<x≤2时的函数值总是非负数,则实数m的取值范围为()A.m≥﹣2 B.﹣4≤m≤﹣2 C.m≥﹣4 D.m≤﹣4或m≥﹣29.(3分)正实数x,y满足xy=1,那么的最小值为()A.B.C.1 D.10.(3分)二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④当x>﹣1时,y的值随x值的增大而增大.其中正确的结论有()A.1个B.2个C.3个D.4个评卷人得分二.填空题(共6小题,满分18分,每小题3分)11.(3分)若y=(m+2)x+3x﹣2是二次函数,则m的值是.12.(3分)直线y=mx+n和抛物线y=ax2+bx+c在同一坐标系中的位置如图所示,那么不等式mx+n<ax2+bx+c<0的解集是.13.(3分)请写出一个二次函数的解析式,满足:图象的开口向下,对称轴是直线x=﹣1,且与y轴的交点在x 轴的下方,那么这个二次函数的解析式可以为.14.(3分)已知二次函数y=3(x﹣1)2+k的图象上三点A(2,y1),B(3,y2),C(﹣4,y3),则y1、y2、y3的大小关系是.15.(3分)点A(2,y1)、B(3,y2)是二次函数y=﹣(x﹣1)2+2的图象上两点,则y1y2.16.(3分)已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表:x…﹣1 0 1 4 …y…10 5 2 5 …则当x≥1时,y的最小值是.评卷人得分三.解答题(共8小题,满分72分)17.(8分)如图,抛物线y=ax2+bx+c的图象经过点A(﹣2,0),点B(4,0),点D(2,4),与y轴交于点C,作直线BC,连接AC、C D.(1)求抛物线的函数表达式;(2)E是抛物线上的点,求满足∠ECD=∠ACO的点E的坐标.18.(8分)如图,在平面直角坐标系xOy中,已知矩形OACB的边OA,OB分别在x轴上和y轴上,线段OA=24,OB=12;点P从点O开始沿OA边匀速移动,点M从点B开始沿BO边匀速移动.如果点P,点M同时出发,它们移动的速度相同都是1个单位/秒,设经过x秒时(0≤x≤12),△POM的面积为y.(1)求直线AB的解析式;(2)求y与x的函数关系式;(3)连接矩形的对角线AB,当x为何值时,以M、O、P为顶点的三角形等于△AOB面积的;(4)当△POM的面积最大时,将△POM沿PM所在直线翻折后得到△PDM,试判断D点是否在直线AB上,请说明理由.19.(8分)平面直角坐标系xOy中,抛物线y=mx2﹣2m2x+2交y轴于A点,交直线x=4于B点.(1)抛物线的对称轴为x=(用含m的代数式表示);(2)若AB∥x轴,求抛物线的表达式;(3)记抛物线在A,B之间的部分为图象G(包含A,B两点),若对于图象G上任意一点P(x p,y p),y p≤2,求m的取值范围.20.(8分)已知一条抛物线的对称轴是直线x=1;它与x轴相交于A,B两点(点A在点B的左边),且线段AB 的长是4;它还与过点C(1,﹣2)的直线有一个交点是D(2,﹣3).(1)求这条直线的函数解析式;(2)求这条抛物线的函数解析式;(3)若这条直线上有P点,使S△PAB=12,求点P的坐标.21.(8分)某商场购进一种单价为40元的商品,如果以单价60元售出,那么每天可卖出300个,根据销售经验,每降价1元,每天可多卖出20个,假设每个降价x(元),每天销售y(个),每天获得利润W(元).(1)写出y与x的函数关系式;(2)求出W与x的函数关系式(不必写出x的取值范围)22.(10分)某公园有一个抛物线形状的观景拱桥ABC,其横截面如图所示,在图中建立的直角坐标系中,抛物线的解析式为y=﹣+c且过顶点C(0,5)(长度单位:m)(1)直接写出c的值;(2)现因搞庆典活动,计划沿拱桥的台阶表面铺设一条宽度为1.5m的地毯,地毯的价格为20元/m2,求购买地毯需多少元?(3)在拱桥加固维修时,搭建的“脚手架”为矩形EFGH(H、G分别在抛物线的左右侧上),并铺设斜面EG.已知矩形EFGH的周长为27.5m,求斜面EG的倾斜角∠GEF的度数.(精确到0.1°)23.(10分)如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于点C,已知点A(﹣1,0),点C(0,2)(1)求抛物线的函数解析式;(2)若D是抛物线位于第一象限上的动点,求△BCD面积的最大值及此时点D的坐标.24.(12分)如图1,在平面直角坐标系xOy中,直线l:与x轴、y轴分别交于点A和点B(0,﹣1),抛物线经过点B,且与直线l的另一个交点为C(4,n).(1)求n的值和抛物线的解析式;(2)点D在抛物线上,且点D的横坐标为t(0<t<4).DE∥y轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2).若矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;(3)M是平面内一点,将△AOB绕点M沿逆时针方向旋转90°后,得到△A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若△A1O1B1的两个顶点恰好落在抛物线上,请直接写出点A1的横坐标.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列函数中属于二次函数的是()A.y=x(x+1)B.x2y=1 C.y=2x2﹣2(x2+1)D.y=【分析】整理成一般形式后,利用二次函数的定义即可解答.【解答】解:A、y=x2+x,是二次函数;B、y=,不是二次函数;C、y=﹣2,不是二次函数;D、不是整式,不是二次函数;故选:A.【点评】本题考查二次函数的定义.2.(3分)若y=(a2+a)是二次函数,那么()A.a=﹣1或a=3 B.a≠﹣1且a≠0C.a=﹣1 D.a=3【分析】根据二次函数定义,自变量的最高指数是二,且系数不为0,列出方程与不等式即可解答.【解答】解:根据题意,得:a2﹣2a﹣1=2解得a=3或﹣1又因为a2+a≠0即a≠0或a≠﹣1所以a=3.故选:D.【点评】解题关键是掌握二次函数的定义.3.(3分)二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+c在坐标系中的大致图象是()A.B.C.D.【分析】先根据二次函数的图象开口向下可知a<0,根据对称轴x=﹣<0,可得b<0,再由函数图象经过原点可知c=0,进而得到一次函数y=bx+c在坐标系中的大致图象.【解答】解:∵二次函数的图象开口向下,∴a<0,∵对称轴x=﹣<0,∴b<0,∵函数图象经过原点,∴c=0,∴一次函数y=bx+c在坐标系中的大致图象是经过原点且从左往右下降的直线,故选:D.【点评】本题主要考查了二次函数以及一次函数的图象,解题时注意:正比例函数的图象是经过原点的一条直线.4.(3分)某同学在用描点法画二次函数y=ax2+bx+c的图象时,列出了下面的表格:x…﹣2 ﹣1 0 1 2 …y…﹣11 ﹣2 1 ﹣2 ﹣5 …由于粗心,他算错了其中一个y值,则这个错误的数值是()A.﹣11 B.﹣2 C.1 D.﹣5【分析】根据关于对称轴对称的自变量对应的函数值相等,可得答案.【解答】解:由函数图象关于对称轴对称,得(﹣1,﹣2),(0,1),(1,﹣2)在函数图象上,把(﹣1,﹣2),(0,1),(1,﹣2)代入函数解析式,得,解得,函数解析式为y=﹣3x2+1x=2时y=﹣11,故选:D.【点评】本题考查了二次函数图象,利用函数图象关于对称轴对称是解题关键.5.(3分)二次函数y=ax2+bx+c的图象如图所示,则下列结论中错误的是()A.函数有最小值B.c<0C.当﹣1<x<2时,y>0D.当x<时,y随x的增大而减小【分析】观察可判断函数有最小值;由抛物线可知当﹣1<x<2时,可判断函数值的符号;由抛物线与y轴的交点,可判断c的符号;由抛物线对称轴和开口方向可知y随x的增大而减小,可判断结论.【解答】解:A、由图象可知函数有最小值,故正确;B、由抛物线与y轴的交点在y的负半轴,可判断c<0,故正确;C、由抛物线可知当﹣1<x<2时,y<0,故错误;D、由图象可知在对称轴的左侧y随x的增大而减小,故正确;故选:C.【点评】本题考查了二次函数图象的性质,解析式的系数的关系.关键是掌握各项系数与抛物线的性质之间的联系.6.(3分)如图:二次函数y=ax2+bx+2的图象与x轴交于A、B两点,与y轴交于C点,若AC⊥BC,则a的值为()A.﹣ B.﹣C.﹣1 D.﹣2【分析】设A(x1,0),B(x2,0),C(0,t),由题意可得t=2;在直角三角形ABC中,利用射影定理求得OC2=OA•OB,即4=|x1x2|=﹣x1x2;然后根据根与系数的关系即可求得a的值.【解答】解:设A(x1,0)(x1<0),B(x2,0)(x2>0),C(0,t),∵二次函数y=ax2+bx+2的图象过点C(0,t),∴t=2;∵AC⊥BC,∴OC2=OA•OB,即4=|x1x2|=﹣x1x2,根据韦达定理知x1x2=,∴a=﹣.故选:A.【点评】本题主要考查了抛物线与x轴的交点.注意二次函数y=ax2+bx+2与关于x的方程ax2+bx+2=0间的转换关系.7.(3分)已知函数y=(k﹣3)x2+2x+1的图象与x轴有交点,则k的取值范围是()A.k≤4且k≠3B.k<4且k≠3C.k<4 D.k≤4【分析】由于不知道函数是一次函数还是二次函数,需对k进行讨论.当k=3时,函数y=2x+1是一次函数,它的图象与x轴有一个交点;当k≠3,函数y=(k﹣3)x2+2x+1是二次函数,当△≥0时,二次函数与x轴都有交点,解△≥0,求出k的范围.【解答】解:当k=3时,函数y=2x+1是一次函数,它的图象与x轴有一个交点;当k≠3,函数y=(k﹣3)x2+2x+1是二次函数,当22﹣4(k﹣3)≥0,k≤4即k≤4时,函数的图象与x轴有交点.综上k的取值范围是k≤4.故选:D.【点评】本题考察了二次函数、一次函数的图象与x轴的交点、一次不等式的解法.解决本题的关键是对k的值分类讨论.8.(3分)对于二次函数y=x2+mx+1,当0<x≤2时的函数值总是非负数,则实数m的取值范围为()A.m≥﹣2 B.﹣4≤m≤﹣2 C.m≥﹣4 D.m≤﹣4或m≥﹣2【分析】分三种情况进行讨论:对称轴分别为x<0、0≤x<2、x≥2时,得出当0<x≤2时所对应的函数值,判断正误.【解答】解:对称轴为:x=﹣=﹣,y==1﹣,分三种情况:①当对称轴x<0时,即﹣<0,m>0,满足当0<x≤2时的函数值总是非负数;②当0≤x<2时,0≤﹣<2,﹣4<m≤0,当1﹣>0时,﹣2<m≤2,满足当0<x≤2时的函数值总是非负数;当1﹣<0时,不能满足当0<x≤2时的函数值总是非负数;∴当﹣2<m≤0时,当0<x≤2时的函数值总是非负数,③当对称轴﹣≥2时,即m≤﹣4,如果满足当0<x≤2时的函数值总是非负数,则有x=2时,y≥0,4+2m+1≥0,m≥﹣,此种情况m无解;故选:A.【点评】本题考查了二次函数的图象及性质,根据其自变量的取值确定字母系数的取值范围,解决此类问题:首先要计算出顶点坐标,再根据对称轴的位置并与图象相结合得出取值.9.(3分)正实数x,y满足xy=1,那么的最小值为()A.B.C.1 D.【分析】根据已知条件将所求式子消元,用配方法将式子配方,即可求出最小值.【解答】解:由已知,得x=,∴=+=(﹣)2+1,当=,即x=时,的值最小,最小值为1.故选:C.【点评】本题考查了二次函数求最大(小)值的运用,关键是将所求式子消元,配方.10.(3分)二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c>3b;③8a+7b+2c>0;④当x>﹣1时,y的值随x值的增大而增大.其中正确的结论有()A.1个B.2个C.3个D.4个【分析】根据抛物线的对称轴为直线x=﹣=2,则有4a+b=0;观察函数图象得到当x=﹣3时,函数值小于0,则9a﹣3b+c<0,即9a+c<3b;由于x=﹣1时,y=0,则a﹣b+c=0,易得c=﹣5a,所以8a+7b+2c=8a﹣28a﹣10a=﹣30a,再根据抛物线开口向下得a<0,于是有8a+7b+2c>0;由于对称轴为直线x=2,根据二次函数的性质得到当x>2时,y随x的增大而减小.【解答】解:∵抛物线的对称轴为直线x=﹣=2,∴b=﹣4a,即4a+b=0,(故①正确);∵当x=﹣3时,y<0,∴9a﹣3b+c<0,即9a+c<3b,(故②错误);∵抛物线与x轴的一个交点为(﹣1,0),∴a﹣b+c=0,而b=﹣4a,∴a+4a+c=0,即c=﹣5a,∴8a+7b+2c=8a﹣28a﹣10a=﹣30a,∵抛物线开口向下,∴a<0,∴8a+7b+2c>0,(故③正确);∵对称轴为直线x=2,∴当﹣1<x<2时,y的值随x值的增大而增大,当x>2时,y随x的增大而减小,(故④错误).故选:B.【点评】本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.二.填空题(共6小题,满分18分,每小题3分)11.(3分)若y=(m+2)x+3x﹣2是二次函数,则m的值是2.【分析】根据二次函数的定义求解即可.【解答】解:由题意,得m2﹣2=2,且m+2≠0,解得m=2,故答案为:2.【点评】本题考查了二次函数的定义,利用二次函数的定义是解题关键.12.(3分)直线y=mx+n和抛物线y=ax2+bx+c在同一坐标系中的位置如图所示,那么不等式mx+n<ax2+bx+c<0的解集是1<x<2.【分析】从图上可知,mx+n<ax2+bx+c,则有x>1或x<﹣;根据ax2+bx+c<0,可知﹣1<x<2;综上,不等式mx+n<ax2+bx+c<0的解集是1<x<2.【解答】解:因为mx+n<ax2+bx+c<0,由图可知,1<x<2.【点评】此题将图形与不等式相结合,考查了同学们对不等式组的解集的理解和读图能力,有一定的难度,读图时要仔细.13.(3分)请写出一个二次函数的解析式,满足:图象的开口向下,对称轴是直线x=﹣1,且与y轴的交点在x 轴的下方,那么这个二次函数的解析式可以为y=﹣x2﹣2x﹣1.【分析】由题意可知:写出的函数解析式满足a<0,﹣=﹣1,c<0,由此举例得出答案即可.【解答】解:设所求二次函数的解析式为y=ax2+bx+c(a≠0).∵图象的开口向下,∴a<0,可取a=﹣1;∵对称轴是直线x=﹣1,∴﹣=﹣1,得b=2a=﹣2;∵与y轴的交点在x轴的下方,∴c<0,可取c=﹣1;∴函数解析式可以为:y=﹣x2﹣2x﹣1.故答案为:y=﹣x2﹣2x﹣1.【点评】本题考查了二次函数的性质,用到的知识点:二次函数y=ax2+bx+c(a≠0)的对称轴是直线x=﹣;当a>0时,抛物线开口向上,当a<0时,抛物线开口向下;二次函数与y轴交于点(0,c).14.(3分)已知二次函数y=3(x﹣1)2+k的图象上三点A(2,y1),B(3,y2),C(﹣4,y3),则y1、y2、y3的大小关系是y1<y2<y3.【分析】根据二次函数的解析式得出图象的开口向上,对称轴是直线x=1,根据x>1时,y随x的增大而增大,即可得出答案.【解答】解:∵y=3(x﹣1)2+k,∴图象的开口向上,对称轴是直线x=1,A(﹣4,y3)关于直线x=﹣2的对称点是(6,y3),∵2<3<6,∴y1<y2<y3,故答案为y1<y2<y3.【点评】本题主要考查对二次函数图象上点的坐标特征,二次函数的性质等知识点的理解和掌握,能熟练地运用二次函数的性质进行推理是解此题的关键.15.(3分)点A(2,y1)、B(3,y2)是二次函数y=﹣(x﹣1)2+2的图象上两点,则y1>y2.【分析】先确定对称轴是:x=1,由知a=﹣1,抛物线开口向下,当x>1时,y随x的增大而减小,根据横坐标3>2得:y1>y2.【解答】解:∵二次函数对称轴为:x=1,a=﹣1,∴当x>1时,y随x的增大而减小,∵3>2>1,∴y1>y2,故答案为:>.【点评】本题考查了二次函数图象上的点的坐标特征,明确二次函数的增减性:①当a>0时,抛物线y=ax2+bx+c (a≠0)的开口向上,x<﹣时,y随x的增大而减小;x>﹣时,y随x的增大而增大;②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<﹣时,y随x的增大而增大;x>﹣时,y随x的增大而减小.16.(3分)已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表:x…﹣1 0 1 4 …y…10 5 2 5 …则当x≥1时,y的最小值是1.【分析】先用待定系数法求出二次函数的解析式,得出其对称轴的直线方程,进而可得出结论.【解答】解:∵由表可知,当x=﹣1时,y=10,当x=0时,y=5,当x=1时,y=2,∴,解得,∴抛物线的解析式为y=x2﹣4x+5,∴其对称轴为直线x=﹣=﹣=2.∵x≥1,∴当x=2时,y最小===1.故答案为:1.【点评】本题考查的是二次函数的最值,熟知用待定系数法求二次函数的解析式是解答此题的关键.三.解答题(共8小题,满分72分)17.(8分)如图,抛物线y=ax2+bx+c的图象经过点A(﹣2,0),点B(4,0),点D(2,4),与y轴交于点C,作直线BC,连接AC、C D.(1)求抛物线的函数表达式;(2)E是抛物线上的点,求满足∠ECD=∠ACO的点E的坐标.【分析】(1)设抛物线的解析式为y=a(x﹣x1)(x﹣x2),再把点代入即可得出解析式;(2)分两种情况:①当点E在直线CD的抛物线上方;②当点E在直线CD的抛物线下方;连接CE,过点E作EF⊥CD,再由三角函数得出点E的坐标.【解答】解:(1)∵抛物线y=ax2+bx+c的图象经过点A(﹣2,0),点B(4,0),点D(2,4),∴设抛物线的解析式为y=a(x﹣x1)(x﹣x2),∴y=a(x+2)(x﹣4),∴﹣8a=4,∴a=﹣,∴抛物线的解析式为y=﹣(x+2)(x﹣4)=﹣x2+x+4,(2)①当点E在直线CD的抛物线上方,记E′,连接CE′,过点E′作E′F′⊥CD,垂足为F′,由(1)得OC=4,∵∠ACO=∠E′OF′,∴tan∠ACO=tan∠E′CF′,∴==,设线段E′F′=h,则CF′=2h,∴点E′(2h,h+4),∵点E′在抛物线上,∴﹣(2h)2+2h+4=h+4,∴h1=0(舍去),h2=,∴E′(1,);②当点E在直线CD的抛物线下方;同①的方法得,E(3,),综上,点E的坐标为(1,),(3,).【点评】本题考查了用待定系数法求二次函数的解析式,掌握二次函数的解析式三种不同的形式是解题的关键.18.(8分)如图,在平面直角坐标系xOy中,已知矩形OACB的边OA,OB分别在x轴上和y轴上,线段OA=24,OB=12;点P从点O开始沿OA边匀速移动,点M从点B开始沿BO边匀速移动.如果点P,点M同时出发,它们移动的速度相同都是1个单位/秒,设经过x秒时(0≤x≤12),△POM的面积为y.(1)求直线AB的解析式;(2)求y与x的函数关系式;(3)连接矩形的对角线AB,当x为何值时,以M、O、P为顶点的三角形等于△AOB面积的;(4)当△POM的面积最大时,将△POM沿PM所在直线翻折后得到△PDM,试判断D点是否在直线AB上,请说明理由.【分析】(1)设直线AB的解析式为y=kx+b,用待定系数法即可求解;(2)根据S△OMP=,即可求解;(3)根据面积之间关系列出等式即可求解;(4)当△POM的面积最大时,将△POM沿PM据直线翻折后得到△PDM,先求出D点坐标,看是否在直线y=上即可判断;【解答】解:(1)设直线AB的解析式为y=kx+b,A点坐标为(24,0),B为(0,12),把A、B两点的坐标代入上式,得:,解得,∴y=;(2)∵S△OMP=,∴y=•x即y=﹣;(3)∵S△AOB=,∴S△AOB=18,即y=18,当﹣,解得:x=6;(4)当△POM的面积最大时,将△POM沿PM据直线翻折后得到△PDM,当x=﹣=6时,S△POM=y有最大值.此时OP=6,OM=12﹣x=6∴△OMP是等腰直角三角形.∵将△POM沿PM所在直线翻折后得到△POM.∴四边形OPDM是正方形∴D(6,6),把D(6,6)代入y=x=6时,y=﹣×6+12=9≠6∴点D不在直线AB上.【点评】本题考查了二次函数的最值及矩形的性质,难度较大,关键是正确理解与把握题中给出的已知信息.19.(8分)平面直角坐标系xOy中,抛物线y=mx2﹣2m2x+2交y轴于A点,交直线x=4于B点.(1)抛物线的对称轴为x=m(用含m的代数式表示);(2)若AB∥x轴,求抛物线的表达式;(3)记抛物线在A,B之间的部分为图象G(包含A,B两点),若对于图象G上任意一点P(x p,y p),y p≤2,求m的取值范围.【分析】(1)根据抛物线的对称轴为直线x=﹣,代入数据即可得出结论;(2)由AB∥x轴,可得出点B的坐标,进而可得出抛物线的对称轴为x=2,结合(1)可得出m=2,将其代入抛物线表达式中即可;(3)分m>0及m<0两种情况考虑,依照题意画出函数图象,利用数形结合即可得出m的取值范围.【解答】解:(1)抛物线的对称轴为x==m.故答案为:m.(2)当x=0时,y=mx2﹣2m2x+2=2,∴点A(0,2).∵AB∥x轴,且点B在直线x=4上,∴点B(4,2),抛物线的对称轴为直线x=2,∴m=2,∴抛物线的表达式为y=2x2﹣8x+2.(3)当m>0时,如图1.∵A(0,2),∴要使0≤x p≤4时,始终满足y p≤2,只需使抛物线y=mx2﹣2m2x+2的对称轴与直线x=2重合或在直线x=2的右侧.∴m≥2;当m<0时,如图2,在0≤x p≤4中,y p≤2恒成立.综上所述,m的取值范围为m<0或m≥2.【点评】本题考查了二次函数的性质、二次函数的图象以及待定系数法求二次函数解析式,解题的关键是:(1)牢记抛物线的对称轴为直线x=﹣;(2)根据二次函数的性质找出对称轴为x=2;(3)分m>0及m<0两种情况考虑.20.(8分)已知一条抛物线的对称轴是直线x=1;它与x轴相交于A,B两点(点A在点B的左边),且线段AB 的长是4;它还与过点C(1,﹣2)的直线有一个交点是D(2,﹣3).(1)求这条直线的函数解析式;(2)求这条抛物线的函数解析式;(3)若这条直线上有P点,使S△PAB=12,求点P的坐标.【分析】(1)由于所求直线经过点C(1,﹣2)和D(2,﹣3),利用待定系数法即可确定直线的解析式;(2)由于抛物线的对称轴是直线x=1;它与x轴相交于A,B两点(点A在点B的左边),且线段AB的长是4,由此可以确定A、B的坐标,还经过D(2,﹣3),利用待定系数法可以确定抛物线的函数解析式;(3)由于线段AB的长是4,利用三角形的面积公式可以求出P的纵坐标的绝对值,然后代入(1)中直线解析式即可确定P的坐标.【解答】解:(1)∵直线经过点:C(1,﹣2)、D(2,﹣3),设解析式为y=kx+b,∴,解之得:k=﹣1,b=﹣1,∴这些的解析式为y=﹣x﹣1;(2)由抛物线的对称轴是:x=1,与x轴两交点A、B之间的距离是4,可推出:A(﹣1,0),B(3,0)(2分)设y=ax2+bx+c,由待定系数法得:,解之得:,所以抛物线的解析式为:y=x2﹣2x﹣3(2分);(3)设点P的坐标为(x,y),它到x轴的距离为|y|.(1分)∴,解之得:y=±6(1分)由点P在直线y=﹣x﹣1上,得P点坐标为(﹣7,6)和(5,﹣6).【点评】此题分别考查了抛物线与x轴的交点坐标与对称轴的关系、待定系数法确定函数的解析式即三角形的面积公式等知识,有一定的综合性,一起学生熟练掌握各个知识点才能很好解决问题.21.(8分)某商场购进一种单价为40元的商品,如果以单价60元售出,那么每天可卖出300个,根据销售经验,每降价1元,每天可多卖出20个,假设每个降价x(元),每天销售y(个),每天获得利润W(元).(1)写出y与x的函数关系式y=300+20x;(2)求出W与x的函数关系式(不必写出x的取值范围)【分析】(1)利用每天可卖出300个,每降价1元,每天可多卖出20个,进而得出y与x的函数关系式;(2)利用销量×每千克商品的利润=总利润,进而得出答案.【解答】解:(1)设每个降价x(元),每天销售y(个),y与x的函数关系式为:y=300+20x;故答案为:y=300+20x;(2)由题意可得,W与x的函数关系式为:W=(300+20x)(60﹣40﹣x)=﹣20x2+100x+6000.【点评】此题主要考查了根据实际问题列二次函数关系式,正确掌握销量与每千克利润与总利润的关系是解题关键.22.(10分)某公园有一个抛物线形状的观景拱桥ABC,其横截面如图所示,在图中建立的直角坐标系中,抛物线的解析式为y=﹣+c且过顶点C(0,5)(长度单位:m)(1)直接写出c的值;(2)现因搞庆典活动,计划沿拱桥的台阶表面铺设一条宽度为1.5m的地毯,地毯的价格为20元/m2,求购买地毯需多少元?(3)在拱桥加固维修时,搭建的“脚手架”为矩形EFGH(H、G分别在抛物线的左右侧上),并铺设斜面EG.已知矩形EFGH的周长为27.5m,求斜面EG的倾斜角∠GEF的度数.(精确到0.1°)【分析】(1)根据点在抛物线上易求得c;(2)根据解析式求出A,B,C三点坐标,求出地毯的总长度,再根据地毯的价格求出购买地毯需要的钱;(3)由已知矩形EFGH的周长,求出GF,EF边的长度,再根据三角函数性质求出倾斜角∠GEF的度数.【解答】解:(1)抛物线的解析式为y=﹣+c,∵点(0,5)在抛物线上∴c=5;(2)由(1)知,OC=5,令y=0,即﹣+5=0,解得x1=10,x2=﹣10;∴地毯的总长度为:AB+2OC=20+2×5=30,∴30×1.5×20=900答:购买地毯需要900元.(3)可设G的坐标为(m,﹣+5)其中m>0则EF=2m,GF=﹣+5,由已知得:2(EF+GF)=27.5,即2(2m﹣+5)=27.5,解得:m1=5,m2=35(不合题意,舍去),把m1=5代入,﹣+5=﹣×52+5=3.75,∴点G的坐标是(5,3.75),∴EF=10,GF=3.75,在Rt△EFG中,tan∠GEF===0.375,∴∠GEF≈20.6°.【点评】此题考查二次函数和三角函数的性质及其应用,要结合图形做题.23.(10分)如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于点C,已知点A(﹣1,0),点C(0,2)(1)求抛物线的函数解析式;(2)若D是抛物线位于第一象限上的动点,求△BCD面积的最大值及此时点D的坐标.【分析】(1)把A与C坐标代入抛物线解析式求出b与c的值,确定出解析式即可;(2)连接OD,设出D坐标,四边形OCDB的面积等于三角形OCD面积+三角形OBD面积,表示出三角形BCD 面积S与m的二次函数解析式,求出最大面积及D坐标即可.【解答】解:(1)将A,C代入得:,则抛物线的函数解析式为y=﹣x2+x+2;(2)连接OD,则有B(4,0),设D(m,﹣m2+m+2),∵S﹣S△OCD﹣S△OBD=×2m+×4(﹣m2+m+2)=﹣m2+4m+4,四边形OCDB∴S△BCD=S四边形OCDB﹣S△OBC=﹣m2+4m+4﹣×4×2=﹣m2+4m=﹣(m﹣2)2+4,当m=2时,S△BCD取得最大值4,此时y D=﹣×4+×2+2=3,即D(2,3).【点评】此题考查了抛物线与x轴的交点,以及待定系数法求二次函数解析式,熟练掌握二次函数的性质是解本题的关键.24.(12分)如图1,在平面直角坐标系xOy中,直线l:与x轴、y轴分别交于点A和点B(0,﹣1),抛物线经过点B,且与直线l的另一个交点为C(4,n).(1)求n的值和抛物线的解析式;(2)点D在抛物线上,且点D的横坐标为t(0<t<4).DE∥y轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2).若矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;(3)M是平面内一点,将△AOB绕点M沿逆时针方向旋转90°后,得到△A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若△A1O1B1的两个顶点恰好落在抛物线上,请直接写出点A1的横坐标.【分析】(1)把点B的坐标代入直线解析式求出m的值,再把点C的坐标代入直线求解即可得到n的值,然后利用待定系数法求二次函数解析式解答;(2)令y=0求出点A的坐标,从而得到OA、OB的长度,利用勾股定理列式求出AB的长,然后根据两直线平行,内错角相等可得∠ABO=∠DEF,再解直角三角形用DE表示出EF、DF,根据矩形的周长公式表示出p,利用直线和抛物线的解析式表示DE的长,整理即可得到P与t的关系式,再利用二次函数的最值问题解答;(3)根据逆时针旋转角为90°可得A1O1∥y轴时,B1O1∥x轴,然后分①点O1、B1在抛物线上时,表示出两点的横坐标,再根据纵坐标相同列出方程求解即可;②点A1、B1在抛物线上时,表示出点B1的横坐标,再根据两点的纵坐标相差A1O1的长度列出方程求解即可.【解答】解:(1)∵直线l:y=x+m经过点B(0,﹣1),∴m=﹣1,∴直线l的解析式为y=x﹣1,∵直线l:y=x﹣1经过点C(4,n),∴n=×4﹣1=2,∵抛物线y=x2+bx+c经过点C(4,2)和点B(0,﹣1),∴,∴抛物线的解析式为y=x2﹣x﹣1;(2)令y=0,则x﹣1=0,解得x=,∴点A的坐标为(,0),∴OA=,在Rt△OAB中,OB=1,∴AB===,∵DE∥y轴,∴∠ABO=∠DEF,在矩形DFEG中,EF=DE•cos∠DEF=DE•=DE,DF=DE•sin∠DEF=DE•=DE,∴p=2(DF+EF)=2(+)DE=DE,∵点D的横坐标为t(0<t<4),∴D(t,t2﹣t﹣1),E(t,t﹣1),∴DE=(t﹣1)﹣(t2﹣t﹣1)=﹣t2+2t,∴p=×(﹣t2+2t)=﹣t2+t,∵p=﹣(t﹣2)2+,且﹣<0,∴当t=2时,p有最大值;(3)∵△AOB绕点M沿逆时针方向旋转90°,∴A1O1∥y轴时,B1O1∥x轴,设点A1的横坐标为x,①如图1,点O1、B1在抛物线上时,点O1的横坐标为x,点B1的横坐标为x+1,∴x2﹣x﹣1=(x+1)2﹣(x+1)﹣1,解得x=,②如图2,点A1、B1在抛物线上时,点B1的横坐标为x+1,点A1的纵坐标比点B1的纵坐标大,∴x2﹣x﹣1=(x+1)2﹣(x+1)﹣1+,解得x=﹣,综上所述,点A1的横坐标为或﹣.【点评】本题是二次函数综合题型,主要考查了一次函数图象上点的坐标特征,待定系数法求二次函数解析式,锐角三角函数,长方形的周长公式,以及二次函数的最值问题,本题难点在于(3)根据旋转角是90°判断出A1O1∥y 轴时,B1O1∥x轴,注意要分情况讨论.。
2023-2024学年九年级数学上册《第二十二章 二次函数》单元测试卷及答案(人教版)
2023-2024学年九年级数学上册《第二十二章二次函数》单元测试卷及答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列函数表达式中,一定为二次函数的是()A.y=2x−5B.ℎ=12t2C.y=ax2+bx+c D.y=x2+1x2.抛物线y=2x2−4x+1的对称轴是直线()A.x=−3B.x=−32C.x=1D.x=−13.同一坐标系中作y=3x2,y=−3x2,y=13x2的图像,它们的共同特点是()A.关于y轴对称,抛物线开口向上B.关于y轴对称,抛物线开口向下C.关于y轴对称,抛物线的顶点在原点D.关于x轴对称,抛物线的顶点在原点4.已知二次函数y=3(x+2)2的图象上有三点A(1,y1),B(2,y2),C(−3,y3)则y1,y2,y3的大小关系为()A.y1>y2>y3B.y2>y1>y3C.y3>y1>y2D.y3>y2>y1 5.将y=x2+6x+7进行配方,正确的结果是()A.y=(x−3)2−2B.y=(x−3)2+2C.y=(x+3)2−16D.y=(x+3)2−26.对于二次函数y=x2−4x−1的图象,下列说法错误的是()A.开口向上B.与x轴有两个交点C.抛物线的顶点坐标是(2,-5)D.当x≥2时,y随x的增大而减小7.如图所示二次函数y=ax2+bx+c的图象的一部分,图象过点(﹣3,0),对称轴为直线x=﹣1,以下结论:①2a﹣b=0;②abc<0;③当﹣3<x<1时,y>0;④对于a的每一个确定值,若一元二次方程ax2+bx+c=t(t为常数,t≥0)的根为整数,则t的值只有3个.其中正确的有()A.4个B.3个C.2个D.1个8.如图,铅球运动员掷铅球的高度y(m)与水平距离x(m)之间的函数解析式是y=−112x2+23x+53,则该运动员此次掷铅球的成绩是()A.6m B.12m C.8m D.10m二、填空题9.如果函数y=(k-2)x k2−2k+2+kx+1是关于x的二次函数,那么k的值是。
人教版九年级数学上册第22章二次函数单元测试卷含答案
人教版九年级数学上册第22章二次函数单元测试卷含答案一、选择题(共8题;共24分)1.二次函数y=x2-2x+3顶点坐标是()A. (-1,-2)B. (1,2)C. (-1,2)D. (0,2)2.已知抛物线y=(x−4)2-3与y轴交点的坐标是()A. (0,3)B. (0,-3)C. (0,)D. (0,-)3.二次函数y= 的图象()A. 向左移动1个单位,向上移动3个单位B. 向右移动1个单位,向上移动3个单位C. 向左移动1个单位,向下移动3个单位D. 向右移动1个单位,向下移动3个单位4.在平面直角坐标系xOy中,将抛物线y=2x2先向左平移1个单位长度,再向下平移3个单位长度后所得到的抛物线的解析式为()A. y=2(x-1)2-3B. y=2(x-1)2+3C. y=2(x+1)2-3D. y=2(x+1)2+35.已知二次函数的图象如下图所示,则四个代数式,,,中,值为正数的有()A. 4个B. 3个C. 2个D. 1个6.如图,二次函数y=ax2+bx+c的图象与x轴交于点A(﹣1,0),B(3,0).下列结论:①2a﹣b=0;②(a+c)2<b2;③当﹣1<x<3时,y<0;④当a=1时,将抛物线先向上平移2个单位,再向右平移1个单位,得到抛物线y=(x﹣2)2﹣2.其中正确的是()A. ①③B. ②③C. ②④D. ③④7.已知一次函数y=ax2+bx+c+2的图象如图所示,顶点为(﹣1,0),下列结论:①abc<0;第 1 页共43 页②b2﹣4ac=0;③a>2;④4a﹣2b+c>0.其中正确结论的个数是()A. 1B. 2C. 3D. 48.如图,已知顶点为(-3,-6)的抛物线y=ax2+bx+c经过点(-1,-4),则下列结论中错误的是()A. b2>4acB. ax2+bx+c≥-6C. 若点(-2,m),(-5,n)在抛物线上,则m>nD. 关于x的一元二次方程ax2+bx+c=-4的两根为-5和-1二、填空题(共10题;共30分)9.若抛物线的开口向上,则的取值范围是________.10.抛物线的顶点坐标是________.11.若A(,),B(,),C(1,)为二次函数y= +4x﹣5的图象上的三点,则、、的大小关系是________.12.抛物线与x轴交于点(1,0),(﹣3,0),则该抛物线可设为:________.13.把二次函数y=﹣2x2+4x+3化成y=a(x﹣m)2+k的形式是________.14.如图,对称轴平行于y轴的抛物线与x轴交于(1,0),(3,0)两点,则它的对称轴为________.15.将二次函数y=x2-2x化为y=(x-h)2+k的形式,结果为________16.二次函数y=x2+(2m+1)x+(m2﹣1)有最小值﹣2,则m=________.17.若二次函数y=mx2+2x+1的图象与x轴只有一个公共点,则常数m的值是________.18.抛物线y=ax2+bx+c满足下列条件:(1)4a﹣b=0;(2)a﹣b+c>0;(3)与x轴有两个第 2 页共43 页交点,且两交点的距离小于2.以下有四个结论:①a<0;②c>0;③ac= b2;④ <a<.则其中正确结论的序号是________.三、解答题(共9题;共66分)19.如图,一块矩形草地的长为100m,宽为80m,欲在中间修筑两条互相垂直的宽为x(m)的小路,这时草坪的面积为y(m2).求y与x的函数关系式,并求出x的取值范围.20.已知抛物线C1:y1=2x2﹣4x+k与x轴只有一个公共点.(1)求k的值;(2)怎样平移抛物线C1就可以得到抛物线C2:y2=2(x+1)2﹣4k?请写出具体的平移方法;(3)若点A(1,t)和点B(m,n)都在抛物线C2:y2=2(x+1)2﹣4k上,且n<t,直接写出m的取值范围.21.直线l:y=﹣x+6交y轴于点A,与x轴交于点B,过A、B两点的抛物线m与x轴的另一个交点为C,(C在B的左边),如果BC=5,求抛物线m的解析式,并根据函数图像指出当m的函数值大于0的函数值时x的取值范围.22.如图,抛物线y=ax2+bx+c的顶点为C(1,4),交x轴于点A(3,0),B两点,交y轴于点D.(1)求点B、点D的坐标,(2)判断△ACD的形状,并求出△ACD的面积.第 3 页共43 页23.某产品每件成本28元,在试销阶段产品的日销售量y(件)与每件产品的日销售价x(元)之间的关系如图中的折线所示.为维持市场物价平衡,最高售价不得高出83元.(1)求y与x之间的函数关系式;(2)要使每日的销售利润w最大,每件产品的日销售价应定为多少元?此时每日销售利润是多少元?24.已知,抛物线y=ax²+bx+4与x轴交于点A(-3,0)和B(2,0),与y轴交于点C.(1)求抛物线的解析式;(2)如图1,若点D为CB的中点,将线段DB绕点D旋转,点B的对应点为点G,当点G恰好落在抛物线的对称轴上时,求点G的坐标;(3)如图2,若点D为直线BC或直线AC上的一点,E为x轴上一动点,抛物线对称轴上是否存在点F,使以B,D,F,E为顶点的四边形为菱形?若存在,请求出点F的坐标;若不存在,请说明理由.25.如图,抛物线y=﹣x2﹣2x+3的图象与x轴交A、B两点,与y轴交于点C,点D为抛物线第 4 页共43 页的顶点.(1)求点A、B、C的坐标;(2)点M为线段AB上一点(点M不与点A、B重合),过M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过P作PQ∥AB交抛物线于点Q,过Q作QN⊥x轴于N,当矩形PMNQ的周长最大时,求△AEM的面积;(3)在(2)的条件下,当矩形PMNQ的周长最大时,连接DQ,过抛物线上一点F作y轴FG=2 DQ,求点F的坐标.的平行线,与直线AC交于点G(点G在点F的上方),若26.甲、乙两人分别站在相距6米的A、B两点练习打羽毛球,已知羽毛球飞行的路线为抛物线的一部分,甲在离地面1米的C处发出一球,乙在离地面1.5米的D处成功击球,球飞行过程中的最高点H与甲的水平距离AE为4米,现以A为原点,直线AB为x轴,建立平面直角坐标系(如图所示).求羽毛球飞行的路线所在的抛物线的表达式及飞行的最高高度.27.已知如图,在△ABC中,AB=BC=4,∠ABC=90°,M是AC的中点,点N在AB上(不同于A、B),将△ANM绕点M逆时针旋转90°得△A1PM第 5 页共43 页(1)画出△A1PM(2)设AN=x,四边形NMCP的面积为y,直接写出y关于x的函数关系式,并求y的最大或最小值.第 6 页共43 页参考答案一、单选题1.B2.C3.C4.C5.A6.D7.C8.C二、填空题9.a>2 10.(0,-1)11.<<12.y=a(x﹣1)(x+3)(a≠0)13.y=﹣2(x﹣1)2+5 14.直线x=2 15.16.17.1 18.①三、解答题19.解:设中间修筑两条互相垂直的宽为x(m)的小路,草坪的面积为y(m2),根据题意得出:y=100﹣80﹣80x﹣100x+x2=x2﹣180x+8000(0<x<80)20.解:(1)根据题意得:△=16﹣8k=0,解得:k=2;(2)C1是:y1=2x2﹣4x+2=2(x﹣1)2,抛物线C2是:y2=2(x+1)2﹣8.则平移抛物线C1就可以得到抛物线C2的方法是向左平移2个单位长度,向下平移8个单位长度;(3)当x=1时,y2=2(x+1)2﹣8=0,即t=0.在y2=2(x+1)2﹣8中,令y=0,解得:x=1或﹣3.则当n<t时,即2(x+1)2﹣8<0时,m的范围是﹣3<m<1.21.解:∵y=﹣x+6交y轴于点A,与x轴交于点B,∴x=0时,y=6,∴A(0,6),y=0时,x=8,∴B(8,0),∵过A、B两点的抛物线m与x轴的另一个交点为C,(C在B的左边),BC=5,∴C(3,0).设抛物线m的解析式为y=a(x﹣3)(x﹣8),将A(0,6)代入,得24a=6,解得a= ,∴抛物线m的解析式为y= (x﹣3)(x﹣8),即y= x2﹣x+6;函数图像如下:第7 页共43 页当抛物线m的函数值大于0时,x的取值范围是x<3或x>8.22.解:(1)∵抛物线的顶点坐标为(1,4),∴可设抛物线解析式为y=a(x﹣1)2+4,∵与x轴交于点A(3,0),∴0=4a+4,解得a=﹣1,∴抛物线解析式为y=﹣(x﹣1)2+4=﹣x2+2x+3,令y=0,可得﹣x2+2x+3=0,解得x=﹣1或x=3,令x=0,可得y=3∴B点坐标为(﹣1,0),D点坐标为(0,3);(2)∵A(3,0),D(0,3),C(1,4),∴AD==3,CD==,AC==2,∴AD2+CD2=(3)2+()2=20=(2)2=AC2,∴△ACD是以AC为斜边的直角三角形,∴S△ACD =AD•CD=×3×=3.23.解:(1)当30<x≤40时,设此段的函数解析式为:y=kx+b,解得,k=﹣3,b=156∴当30<x≤40时,函数的解析式为:y=﹣3x+156;当40<x≤80时,设此段函数的解析式为:y=mx+n,解得,m=,n=56,∴当40<x≤80时,函数的解析式为:y=;第8 页共43 页当80<x≤83时,y=16;由上可得,y与x之间的函数关系式是:y=;(2)当30<x≤40时,w=(x﹣28)y=(x﹣28)(﹣3x+156)=﹣3x2+240x﹣4368=﹣3(x﹣40)2+432∴当x=40时取得最大值,最大值为w=432元;当40<x≤80时,w=(x﹣28)y=(x﹣28)()==,∴当x=70时,取得最大值,最大值为w=882元;当80<x≤83时,w=(x﹣28)×16∴当x=83时,取得最大值,最大值为w=880元;由上可得,当x=70时,每日点的销售利润最大,最大为882元,即要使每日的销售利润w最大,每件产品的日销售价应定为70元,此时每日销售利润是882元.24.(1)由A(-3,0)和B(2,0),得:即= ax²+bx+4∴∴∴.(2)易得C(0,4),则BC= .第9 页共43 页由可对称轴为x= ,则可设点G的坐标为,∵点D是BC的中点∴点D的坐标为,由旋转可得,DG=DB∴……………∴………∴点G的坐标为或(3)①当BE为对角线时,因为菱形的对角线互相垂直平分,所以此时D即为对称轴与AC 的交点或对称轴对BC的交点,F为点D关于x轴的对称点,设,∵C,A,∴,∴,∴,∴当时,,∴D,第10 页共43 页∴F;易得∴当时,y=5,∴D,∴F;②当BE为菱形的边时,有DF∥BEI)当点D在直线BC上时设D,则点F∵四边形BDFE是菱形∴FD=DB根据勾股定理得,整理得:=0,解得:,∴F或II)当点D在直线AC上时设D,则点F∵四边形BFDE是菱形,∴FD=FB ,第11 页共43 页第 12 页 共 43 页根据勾股定理得,整理得:,解得:(舍去),∴F,综上所述,点F 的坐标分别为:,,,,.25.(1)解:当y=0时,﹣x 2﹣2x+3=0,解得x 1=1,x 2=﹣3,则A (﹣3,0),B (1,0);当x=0时,y=﹣x 2﹣2x+3=3,则C (0,3); (2)解:抛物线的对称轴为直线x=﹣1, 设M (x ,0),则点P (x ,﹣x 2﹣2x+3),(﹣3<x <﹣1), ∵点P 与点Q 关于直线=﹣1对称, ∴点Q (﹣2﹣x ,﹣x 2﹣2x+3), ∴PQ=﹣2﹣x ﹣x=﹣2﹣2x ,∴矩形PMNQ 的周长=2(﹣2﹣2x ﹣x 2﹣2x+3)=﹣2x 2﹣8x+2=﹣2(x+2)2+10, 当x=﹣2时,矩形PMNQ 的周长最大,此时M (﹣2,0), 设直线AC 的解析式为y=kx+b , 把A (﹣3,0),C (0,3)代入得,解得,∴直线AC 的解析式为y=3x+3, 当x=﹣2时,y=x+3=1, ∴E (﹣2,1),∴△AEM 的面积= ×(﹣2+3)×1= ;(3)解:当x=﹣2时,Q (0,3),即点C 与点Q 重合,当x=﹣1时,y=﹣x 2﹣2x+3=4,则D (﹣1,4), ∴DQ== , ∴FG=2DQ=2×=4,设F(t,﹣t2﹣2t+3),则G(t,t+3),∴GF=t+3﹣(﹣t2﹣2t+3)=t2+3t,∴t2+3t=4,解得t1=﹣4,t2=1,∴F点坐标为(﹣4,﹣5)或(1,0).26.解:由题意得:C(0,1),D(6,1.5),抛物线的对称轴为直线x=4,设抛物线的表达式为:y=ax2+bx+1(a≠0),则据题意得:,解得:,∴羽毛球飞行的路线所在的抛物线的表达式为:y=﹣x2+ x+1,∵y=﹣(x﹣4)2+ ,∴飞行的最高高度为米27.(1)解:如图所示:△A1PM,即为所求;(2)解:过点M作MD⊥AB于点D,∵AB=BC=4,∠ABC=90°,M是AC的中点,∴MD=2,设AN=x,则BN=4﹣x,故四边形NMCP的面积为:y= ×4×4﹣x×2﹣x×(4﹣x)= x2﹣3x+8第13 页共43 页= (x﹣3)2+ ,故y的最小值为:第14 页共43 页人教新版九年级上册数学第22章二次函数单元训练试题含答案一.选择题(共15小题)1.下列函数中,y关于x的二次函数是()A.y=2x+1 B.y=2x(x+1)C.y =D.y=(x﹣2)2﹣x22.在同一坐标系中,一次函数y=ax+b与二次函数y=bx2+a的图象可能是()A .B .C .D .3.一个二次函数的图象的顶点坐标是(2,4),且过另一点(0,﹣4),则这个二次函数的解析式为()A.y=﹣2(x+2)2+4 B.y=﹣2(x﹣2)2+4C.y=2(x+2)2﹣4 D.y=2(x﹣2)2﹣44.如图,Rt△AOB中,AB⊥OB,且AB=OB=3,设直线x=t截此三角形所得阴影部分的面积为S,则S与t之间的函数关系的图象为下列选项中的()A .B .第15 页共43 页C .D .5.已知点(﹣2,y1),(﹣5.4,y2),(1.5,y3)在抛物线y=2x2﹣8x+m2的图象上,则y1,y2,y3大小关系是()A.y2>y1>y3B.y2>y3>y1C.y1>y2>y3D.y3>y2>y16.如图是二次函数y=ax2+bx+c的图象,对于下列说法:①ac>0,②2a+b>0,③4ac<b2,④a+b+c<0,⑤当x>0时,y随x的增大而减小,其中正确的是()A.①②③B.①②④C.②③④D.③④⑤7.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,给出下列结论:①b2=4ac;②abc>0;③a>c;④4a﹣2b+c>0,其中正确的个数有()A.1个B.2个C.3个D.4个8.将二次函数y =x2+x﹣1化为y=a(x+h)2+k的形式是()A.y =B.y =(x﹣2)2﹣2C.y =(x+2)2﹣2 D.y =(x﹣2)2+29.二次函数y=﹣x2+mx的图象如图,对称轴为直线x=2,若关于x的一元二次方程﹣x2+mx第16 页共43 页﹣t=0(t为实数)在1<x<5的范围内有解,则t的取值范围是()A.t>﹣5 B.﹣5<t<3 C.3<t≤4 D.﹣5<t≤410.如图,一边靠学校院墙,其它三边用40米长的篱笆围成一个矩形花圃,设矩形ABCD 的边AB=x米,面积为S平方米,则下面关系式正确的是()A.S=x(40﹣x)B.S=x(40﹣2x)C.S=x(10﹣x)D.S=10(2x﹣20)11.当﹣2≤x≤1时,关于x的二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m的值为()A.2 B.2或C.2或或D.2或或12.已知二次函数y=﹣x2+2x+m的图象与x轴的一个交点的横坐标是a,且3<a<4,则关于x的方程﹣x2+2x+m=0的解在什么范围内()A.0<x1<1,3<x2<4 B.﹣1<x1<0,3<x2<4C.﹣2<x1<﹣1,3<x2<4 D.﹣4<x1<﹣3,3<x2<413.若一次函数y=(a+1)x+a的图象过第一、三、四象限,则二次函数y=ax2﹣ax()A .有最大值.B .有最大值﹣.C .有最小值.D .有最小值﹣.14.已知函数y=(k﹣3)x2+2x+1的图象与x轴有交点,则k的取值范围是()A.k≤4且k≠3 B.k<4且k≠3 C.k<4 D.k≤415.如图,已知二次函数y=(x+1)2﹣4,当﹣2≤x≤2时,则函数y的最小值和最大值()第17 页共43 页A.﹣3和5 B.﹣4和5 C.﹣4和﹣3 D.﹣1和5二.填空题(共5小题)16.函数y=ax2﹣ax+3x+1的图象与x轴有且只有一个交点,那么a的值和交点坐标分别为.17.正方形边长3,若边长增加x,则面积增加y,y与x的函数关系式为.18.点A(x1,y1)、B(x2,y2)在二次函数y=x2﹣4x﹣1的图象上,若当1<x1<2,3<x2<4时,则y1与y2的大小关系是y1y2.(用“>”、“<”、“=”填空)19.已知抛物线y=ax2+x+c与x轴交点的横坐标为﹣1,则a+c=.20.从地面垂直向上抛出一小球,小球的高度h(米)与小球运动时间t(秒)之间的函数关系式是h=10t﹣5t2,则小球运动到的最大高度为米.三.解答题(共5小题)21.已知函数y=(m2﹣m)x2+(m﹣1)x+m+1.(1)若这个函数是一次函数,求m的值;(2)若这个函数是二次函数,则m的值应怎样?22.某商场购进一种单价为40元的商品,如果以单价60元售出,那么每天可卖出300个,根据销售经验,每降价1元,每天可多卖出20个,假设每个降价x(元),每天销售y(个),每天获得利润W(元).(1)写出y与x的函数关系式;(2)求出W与x的函数关系式(不必写出x的取值范围)23.某大学生创业团队抓住商机,购进一批干果分装成营养搭配合理的小包装后出售,每袋成本3元.试销期间发现每天的销售量y(袋)与销售单价x(元)之间满足一次函数关系,部分数据如表所示,其中3.5≤x≤5.5,另外每天还需支付其他各项费用80元.第18 页共43 页第 19 页 共 43 页(1)请直接写出y 与x 之间的函数关系式;(2)如果每天获得160元的利润,销售单价为多少元?(3)设每天的利润为w 元,当销售单价定为多少元时,每天的利润最大?最大利润是多少元?24.已知,抛物线y =﹣x2+bx +c 经过点A (﹣1,0)和C (0,3). (1)求抛物线的解析式;(2)在抛物线的对称轴上,是否存在点P ,使PA +PC 的值最小?如果存在,请求出点P 的坐标,如果不存在,请说明理由;(3)设点M 在抛物线的对称轴上,当△MAC 是直角三角形时,求点M 的坐标.25.如图,在平面直角坐标系中,点O 是原点,点A 的坐标为(4,0),以OA 为一边,在第一象限作等边△OAB . (1)求点B 的坐标;(2)求经过O 、A 、B 三点的抛物线的解析式; (3)直线y =x 与(2)中的抛物线在第一象限相交于点C ,求点C 的坐标;(4)在(3)中,直线OC 上方的抛物线上,是否存在一点D ,使得△OCD 的面积最大?如果存在,求出点D 的坐标和面积的最大值;如果不存在,请说明理由.第20 页共43 页参考答案一.选择题(共15小题)1.解:A、y=2x+1是一次函数,故A错误;B、y=2x(x+1)是二次函数,故B正确;C、y =不是二次函数,故C错误;D、y=(x﹣2)2﹣x2是一次函数,故D错误;故选:B.2.解:A 、由抛物线可知,图象与y轴交在负半轴a<0,由直线可知,图象过一,三象限,a>0,故此选项错误;B 、由抛物线可知,图象与y轴交在正半轴a>0,二次项系数b为负数,与一次函数y=ax+b中b>0矛盾,故此选项错误;C 、由抛物线可知,图象与y轴交在负半轴a<0,由直线可知,图象过二,四象限a<0,故此选项正确;第21 页共43 页D 、由直线可知,图象与y轴交于负半轴,b<0,由抛物线可知,开口向上,b>0矛盾,故此选项错误;故选:C.3.解:∵二次函数的图象的顶点坐标是(2,4),∴设这个二次函数的解析式为y=a(x﹣2)2+4,把(0,﹣4)代入得a=﹣2,∴这个二次函数的解析式为y=﹣2(x﹣2)2+4.故选:B.4.解:∵Rt△AOB中,AB⊥OB,且AB=OB=3,∴∠AOB=∠A=45°,∵CD⊥OB,∴CD∥AB,∴∠OCD=∠A,∴∠AOD=∠OCD=45°,∴OD=CD=t,∴S△OCD =×OD×CD=t2(0≤t≤3),即S =t2(0≤t≤3).故S与t之间的函数关系的图象应为定义域为[0,3]、开口向上的二次函数图象;故选:D.5.解:对称轴为x =﹣=2,因为﹣5.4<﹣2<1.5<2,所以y2>y1>y3.第22 页共43 页6.解:①由图象可知:a>0,c<0,∴ac<0,故①错误;②由于对称轴可知:<1,∴2a+b>0,故②正确;③由于抛物线与x轴有两个交点,∴△=b2﹣4ac>0,故③正确;④由图象可知:x=1时,y=a+b+c<0,故④正确;⑤当x >时,y随着x的增大而增大,故⑤错误;故选:C.7.解:①∵抛物线与x轴有2个交点,∴△=b2﹣4ac>0,所以①错误;②∵抛物线开口向上,∴a>0,∵抛物线的对称轴在y轴的左侧,∴a、b同号,∴b>0,∵抛物线与y轴交点在x轴上方,∴c>0,∴abc>0,所以②正确;③∵x=﹣1时,y<0,即a﹣b+c<0,∵对称轴为直线x=﹣1,∴﹣=﹣1,第23 页共43 页∴a﹣2a+c<0,即a>c,所以③正确;④∵抛物线的对称轴为直线x=﹣1,∴x=﹣2和x=0时的函数值相等,即x=﹣2时,y>0,∴4a﹣2b+c>0,所以④正确.所以本题正确的有:②③④,三个,故选:C.8.解:y =x2+x﹣1=(x+2)2﹣2.故选:C.9.解:如图,关于x的一元二次方程﹣x2+mx﹣t=0的解就是抛物线y=﹣x2+mx与直线y =t的交点的横坐标,当x=1时,y=3,当x=5时,y=﹣5,由图象可知关于x的一元二次方程﹣x2+mx﹣t=0(t为实数)在1<x<5的范围内有解,直线y=t在直线y=﹣5和直线y=4之间包括直线y=4,∴﹣5<t≤4.故选:D.10.解:∵AB=x米,∴BC=40﹣2x米,∴S=x(40﹣2x).故选:B.第24 页共43 页11.解:当m<﹣2,x=﹣2时,y最大=﹣(﹣2﹣m)2+m2+1=4,解得m =﹣(舍),当﹣2≤m≤1,x=m时,y最大=m2+1=4,解得m =﹣;当m>1,x=1时,y最大=﹣(1﹣m)2+m2+1=4,解得m=2,综上所述:m 的值为﹣或2,故选:B.12.解:∵二次函数y=﹣x2+2x+m的对称轴为x=1,且与x轴的一个交点的横坐标是a满足3<a<4,∴抛物线与x轴的另一个交点的横坐标在﹣2和﹣1之间,∴关于x的方程﹣x2+2x+m=0的解的范围是﹣2<x1<﹣1,3<x2<4,故选:C.13.解:∵一次函数y=(a+1)x+a的图象过第一、三、四象限,∴a+1>0且a<0,∴﹣1<a<0,∴二次函数y=ax2﹣ax 有最大值﹣,故选:B.14.解:当k=3时,函数y=2x+1是一次函数,它的图象与x轴有一个交点;当k≠3,函数y=(k﹣3)x2+2x+1是二次函数,当22﹣4(k﹣3)≥0,k≤4即k≤4时,函数的图象与x轴有交点.综上k的取值范围是k≤4.故选:D.15.解:∵二次函数y=(x+1)2﹣4,对称轴是:x=﹣1∵a=1>0,∴x>﹣1时,y随x的增大而增大,x<﹣1时,y随x的增大而减小,由图象可知:在﹣2≤x≤2内,x=2时,y有最大值,y=(2+1)2﹣4=5,第25 页共43 页x=﹣1时y有最小值,是﹣4,故选:B.二.填空题(共5小题)16.解:当a=0时,函数为:y=3x+1,图象为直线,与x 轴有且只有一个交点(﹣,0);当a≠0时,函数为:y=ax2﹣ax+3x+1,图象为抛物线,△=(3﹣a)2﹣4•a•1=a2﹣10a+9;当△=0时,抛物线与x轴有且只有一个交点,此时a=1或9;若a=1,抛物线为y=x2+2x+1,图象与x轴有且只有一个交点(﹣1,0);若a=9,抛物线为y=9x2﹣6x+1,图象与x 轴有且只有一个交点(,0).故当a=0,交点坐标(﹣,0);当a=1,交点坐标(﹣1,0);当a=9,交点坐标(,0).17.解:由正方形边长3,边长增加x,增加后的边长为(x+3),则面积增加y=(x+3)2﹣32=x2+6x+9﹣9=x2+6x.故应填:y=x2+6x.18.解:由二次函数y=x2﹣4x﹣1=(x﹣2)2﹣5可知,其图象开口向上,且对称轴为x =2,∵1<x1<2,3<x2<4,∴A点横坐标离对称轴的距离小于B点横坐标离对称轴的距离,∴y1<y2.故答案为:<.19.解:∵抛物线y=ax2+x+c与x轴交点的横坐标为﹣1,∴抛物线y=ax2+x+c经过(﹣1,0),∴a﹣1+c=0,∴a+c=1,故答案为1.20.解:∵h=10t﹣5t2=﹣5(t﹣1)2+5,又∵﹣5<0,∴t=1时,h有最大值,最大值为5,第26 页共43 页故答案为5.三.解答题(共5小题)21.解:依题意得∴∴m=0;(2)依题意得m2﹣m≠0,∴m≠0且m≠1.22.解:(1)设每个降价x(元),每天销售y(个),y与x的函数关系式为:y=300+20x;故答案为:y=300+20x;(2)由题意可得,W与x的函数关系式为:W=(300+20x)(60﹣40﹣x)=﹣20x2+100x+6000.23.解:(1)设y=kx+b,将x=3.5,y=280;x=5.5,y=120代入,得,解得,则y与x之间的函数关系式为y=﹣80x+560;(2)由题意,得(x﹣3)(﹣80x+560)﹣80=160,整理,得x2﹣10x+24=0,解得x1=4,x2=6.∵3.5≤x≤5.5,∴x=4.答:如果每天获得160元的利润,销售单价为4元;第27 页共43 页(3)由题意得:w=(x﹣3)(﹣80x+560)﹣80=﹣80x2+800x﹣1760=﹣80(x﹣5)2+240,∵3.5≤x≤5.5,∴当x=5时,w有最大值为240.故当销售单价定为5元时,每天的利润最大,最大利润是240元.24.解:(1)将A(﹣1,0)、C(0,3)代入y=﹣x2+bx+c中,得:,解得:,∴抛物线的解析式为y=﹣x2+2x+3.(2)连接BC交抛物线对称轴于点P,此时PA+PC取最小值,如图1所示.当y=0时,有﹣x2+2x+3=0,解得:x1=﹣1,x2=3,∴点B的坐标为(3,0).∵抛物线的解析式为y=﹣x2+2x+3=﹣(x﹣1)2+4,∴抛物线的对称轴为直线x=1.设直线BC的解析式为y=kx+d(k≠0),将B(3,0)、C(0,3)代入y=kx+d中,得:,解得:,∴直线BC的解析式为y=﹣x+3.∵当x=1时,y=﹣x+3=2,∴当PA+PC的值最小时,点P的坐标为(1,2).(3)设点M的坐标为(1,m),则CM=,AC==,AM=.分三种情况考虑:①当∠AMC=90°时,有AC2=AM2+CM2,即10=1+(m﹣3)2+4+m2,解得:m1=1,m2=2,第28 页共43 页∴点M的坐标为(1,1)或(1,2);②当∠ACM=90°时,有AM2=AC2+CM2,即4+m2=10+1+(m﹣3)2,解得:m =,∴点M的坐标为(1,);③当∠CAM=90°时,有CM2=AM2+AC2,即1+(m﹣3)2=4+m2+10,解得:m =﹣,∴点M的坐标为(1,﹣).综上所述:当△MAC是直角三角形时,点M的坐标为(1,1)、(1,2)、(1,)或(1,﹣).25.解:(1)如图1,过点B作BE⊥x轴于点E,∵△OAB是等边三角形,∴OE=2,BE=2,∴点B的坐标为(2,2);(2)根据抛物线的对称性可知,点B(2,2)是抛物线的顶点,设抛物线的解析式为y=a(x﹣2)2+2,第29 页共43 页当x=0时,y=0,∴0=a(0﹣2)2+2,∴a =﹣,∴抛物线的解析式为y =﹣(x﹣2)2+2,即:y =﹣x2+2x;(3)设点C的横坐标为x ,则纵坐标为x,即点C的坐标为(x ,x )代入抛物线的解析式得:x =﹣x2+2x,解得:x=0或x=3,∵点C在第一象限,∴x=3,∴点C的坐标为(3,);(4)存在.设点D的坐标为(x ,﹣x2+2x),△OCD的面积为S,如图2,过点D作DF⊥x轴于点F,交OC于点G,则点G的坐标为(x ,x),作CM⊥DF于点M,则OF+CM=3,DG =﹣x2+2x ﹣x =﹣x2+x,∴S=S△OCD=S△DGO+S△DGC =DG•OF +DG•CM =DG•(OF+CM )=DG×3=(﹣x2+x)×3,∴S =﹣x2+x =﹣(x ﹣)2+,∴△OCD 的最大面积为,此时点D 的坐标为(,).第30 页共43 页第31 页共43 页人教版九年级数学上册第二十二章二次函数单元练习题含答案一、选择题1.一枚炮弹射出x秒后的高度为y米,且y与x之间的关系为y=ax2+bx+c(a≠0),若此炮弹在第3.2秒与第5.8秒时的高度相等,则在下列时间中炮弹所在高度最高的是()A.第3.3sB.第4.3sC.第5.2sD.第4.6s2.二次函数y=ax2+bx+c,自变量x与函数y的对应值如表:下列说法正确的是()A.抛物线的开口向下B.当x>-3时,y随x的增大而增大C.二次函数的最小值是-2D.抛物线的对称轴是x =-3.已知矩形的周长为36m,矩形绕着它的一条边旋转形成一个圆柱,设矩形的一条边长为x m,圆柱的侧面积为y m2,则y与x的函数关系式为()A.y=-2πx2+18πxB.y=2πx2-18πxC.y=-2πx2+36πxD.y=2πx2-36πx4.如图,假设篱笆(虚线部分)的长度16m,则所围成矩形ABCD的最大面积是()A.60m2B.63m2第32 页共43 页C.64m2D.66m25.已知抛物线y=ax2+bx+c过(1,-1)、(2,-4)和(0,4)三点,那么a、b、c的值分别是()A.a=-1,b=-6,c=4B.a=1,b=-6,c=-4C.a=-1,b=-6,c=-4D.a=1,b=-6,c=46.二次函数y=2x2-3的图象是一条抛物线,下列关于该抛物线的说法,正确的是()A.抛物线开口向下B.抛物线经过点(2,3)C.抛物线的对称轴是直线x=1D.抛物线与x轴有两个交点7.抛物线y=-2x2的对称轴是()A.直线x =B.直线x =-C.直线x=0D.直线y=08.如图,抛物线y=x2-2x-3与x轴交于点A、D,与y轴交于点C,四边形ABCD是平行四边形,则点B的坐标是()A.(-4,-3)B.(-3,-3)第33 页共43 页C.(-3,-4)D.(-4,-4)二、填空题9.在同一平面直角坐标系中,如果两个二次函数y1=a1(x+h1)2+k1与y2=a2(x+h2)2+k2的图象的形状相同,并且对称轴关于y轴对称,那么我们称这两个二次函数互为梦函数.如二次函数y=(x+1)2-1与y=(x-1)2+3互为梦函数,写出二次函数y=2(x+3)2+2的其中一个梦函数_____________________.10.二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象可知:当k__________时,方程ax2+bx+c=k有两个不相等的实数根.11.已知函数y=(m-2)x2-3x+1,当________时,该函数是二次函数;当_______时,该函数是一次函数.12.抛物线y=2x2-4x-6与x轴交于点A、B,与y轴交于点C.有下列说法:①抛物线的对称轴是x=1;②A、B两点之间的距离是4;③△ABC的面积是24;④当x<0时,y随x的增大而减小.其中,说法正确的是_________________.(只需填写序号)13.如图,抛物线y=-x2+2x+3与y轴交于点C,点D(0,1),点P是抛物线上的动点.若△PCD是以CD为底的等腰三角形,则点P的坐标为________________.14.观察下表:第34 页共43 页则一元二次方程x2-2x-2=0在精确到0.1时一个近似根是______,利用抛物线的对称性,可推知该方程的另一个近似根是_______.15.如图所示,已知抛物线y=ax2+bx+c(a≠0)经过原点和点(-2,0),则2a-3b______0.(>、<或=)16.如图,坐标系中正方形网格的单位长度为1,抛物线y1=-x2+3向下平移2个单位后得抛物线y2,则阴影部分的面积S=_____________.三、解答题17.如图,排球运动员站在点O处练习发球,将球从点O正上方2米的点A处发出把球看成点,其运行的高度y(米)与运行的水平距离x(米)满足关系式y=a(x-6)2+h,已知球网与点O的水平距离为9米,高度为2.43米,球场的边界距点O的水平距离为18米.(1)当h=2.6时,求y与x的函数关系式;(2)当h=2.6时,球能否越过球网?球会不会出界?请说明理由;(3)若球一定能越过球网,又不出边界.则h的取值范围是多少?第35 页共43 页18.如图,某足球运动员站在点O处练习射门,将足球从离地面0.5m的A处正对球门踢出(点A在y轴上),足球的飞行高度y(单位:m)与飞行时间t(单位:s)之间满足函数关系y=at2+5t+c,已知足球飞行0.8s时,离地面的高度为3.5m.(1)足球飞行的时间是多少时,足球离地面最高?最大高度是多少?(2)若足球飞行的水平距离x(单位:m)与飞行时间t(单位:s)之间具有函数关系x=10t,已知球门的高度为2.44m,如果该运动员正对球门射门时,离球门的水平距离为28m,他能否将球直接射入球门?19.已知函数y=ax2+bx+c(a,b,c是常数),当a,b,c满足什么条件时,(1)它是二次函数?(2)它是一次函数?(3)它是正比例函数?20.将抛物线y=mx2+n向下平移6个单位长度,得到抛物线y=-x2+3,设原抛物线的顶点为P,且原抛物线与x轴相交于点A、B,求△PAB的面积.21.已知二次函数y=-x2+2x+m.(1)如果二次函数的图象与x轴有两个交点,求m的取值范围;(2)如图,二次函数的图象过点A(3,0),与y轴交于点B,直线AB与这个二次函数图象的对称轴交于点P,求点P的坐标.第36 页共43 页第二十二章《二次函数》单元练习题答案解析1.【答案】D【解析】∵炮弹在第3.2秒与第5.8秒时的高度相等,∴抛物线的对称轴方程为x=4.5.∵4.6s最接近4.5s,∴当4.6s时,炮弹的高度最高.2.【答案】D【解析】将点(-4,0)、(-1,0)、(0,4)代入到二次函数y=ax2+bx+c中,得,解得,∴二次函数的解析式为y=x2+5x+4.A、a=1>0,抛物线开口向上,A不正确;B、-=-,当x≥-时,y随x的增大而增大,B不正确;C、y=x2+5x+4=(x +)2-,二次函数的最小值是-,C不正确;D、-=-,抛物线的对称轴是x =-,D正确.3.【答案】C【解析】根据题意,矩形的一条边长为x m,则另一边长为(36-2x)÷2=18-x(m),则圆柱体的侧面积y=2πx(18-x)=-2πx2+36πx.4.【答案】C【解析】设BC=x m,则AB=(16-x)m,矩形ABCD面积为y m2,根据题意得y=(16-x)x=-x2+16x=-(x-8)2+64,当x=8m时,y max=64m2,则所围成矩形ABCD的最大面积是64m2.5.【答案】D【解析】根据题意,得,第37 页共43 页解得.6.【答案】D【解析】A、a=2,则抛物线y=2x2-3的开口向上,所以A选项错误;B、当x=2时,y=2×4-3=5,则抛物线不经过点(2,3),所以B选项错误;C、抛物线的对称轴为直线x=0,所以C选项错误;D、当y=0时,2x2-3=0,此方程有两个不相等的实数解,所以D选项正确.7.【答案】C【解析】对称轴为y轴,即直线x=0.8.【答案】A【解析】令y=0,可得x=3或x=-1,∴A点坐标为(-1,0);D点坐标为(3,0);令x=0,则y=-3,∴C点坐标为(0,-3),∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵AD=BC=4,∴B点的坐标为(-4,-3).9.【答案】y=2(x-3)2+2(答案为不唯一).【解析】由一对梦函数的图象的形状相同,并且对称轴关于y轴对称,可|a1|=a2,h1与h2互为相反数,二次函数y=2(x+3)2+2的一个梦函数是y=2(x-3)2+2.10.【答案】<2【解析】由二次函数和一元二次方程的关系可知y的最大值即为k的最大值,因此当k<2时,方程ax2+bx+c=k有两个不相等的实数根.11.【答案】m≠2;m=2【解析】y=(m-2)x2-3x+1,当m≠2时,该函数是二次函数;当m=2时,该函数是一次函数.12.【答案】①②④【解析】①抛物线y=2x2-4x-6的对称轴是直线x =-=1,故①正确;②2x2-4x-6=0,解得x=-1或3,所以AB=4;故②正确;③∵AB=4,C(0,-6),∴S△ABC =×4×6=12,故③错误;④∵抛物线y=2x2-4x-6的开口向上,对称轴是直线x=1,∴当x<1时,y随x的增大而减小;x>1时,y随x的增大而增大;∴当x<0时,y随x的增大而减小,故④正确,所以正确的第38 页共43 页是①②④.13.【答案】(1+,2)或(1-,2)【解析】∵△PCD是以CD为底的等腰三角形,∴点P在线段CD的垂直平分线上,如图,过P作PE⊥y轴于点E,则E为线段CD的中点,∵抛物线y=-x2+2x+3与y轴交于点C,∴C(0,3),且D(0,1),∴E点坐标为(0,2),∴P点纵坐标为2,在y=-x2+2x+3中,令y=2,可得-x2+2x+3=2,解得x =1±,∴P点坐标为(1+,2)或(1-,2).14.【答案】2.7;-0.7【解析】∵x=2.7时,y=-0.11;x=2.8时,y=0.24,∴方程的一个根在2.7和2.8之间,又∵x=2.7时的y值比x=2.8更接近0,∴方程的一个近似根为2.7;∵此函数的对称轴为x=1,设函数的另一根为x ,则=1,解得x=-0.7.15.【答案】>【解析】∵抛物线的开口向下,∴a<0.∵抛物线经过原点和点(-2,0),∴对称轴是x=-1,又对称轴x =-,∴-=-1,b=2a.∴2a-3b=2a-6a=-4a>0.16.【答案】4【解析】根据题意知,图中阴影部分的面积即为平行四边形的面积:2×2=4.17.【答案】解:(1)∵h=2.6,球从O点正上方2m的A处发出,∴抛物线y=a(x-6)2+h过点(0,2),∴2=a(0-6)2+2.6,解得a =−,故y与x的关系式为y =-(x-6)2+2.6;(2)当x=9时,y =−(x-6)2+2.6=2.45>2.43,所以球能过球网;第39 页共43 页当y=0时,−(x-6)2+2.6=0,解得x1=6+2>18,x2=6-2(舍去),故会出界;(3)当球正好过点(18,0)时,抛物线y=a(x-6)2+h还过点(0,2),代入解析式得,解得,此时二次函数解析式为y =−(x-6)2+,此时球若不出边界h ≥,当球刚能过网,此时函数解析式过(9,2.43),抛物线y=a(x-6)2+h还过点(0,2),代入解析式得,解得,此时球要过网h ≥,故若球一定能越过球网,又不出边界,h的取值范围是h ≥.【解析】(1)利用h=2.6,球从O点正上方2m的A处发出,将点(0,2)代入解析式求出即可;(2)利用当x=9时,y =-(x-6)2+2.6=2.45,当y=0时,−(x-6)2+2.6=0,分别得出即可;(3)根据当球正好过点(18,0)时,抛物线y=a(x-6)2+h还过点(0,2),以及当球刚能过网,此时函数解析式过(9,2.43),第40 页共43 页抛物线y=a(x-6)2+h还过点(0,2)时分别得出h的取值范围,即可得出答案.18.【答案】解:(1)由题意得函数y=at2+5t+c的图象经过(0,0.5)(0.8,3.5),∴,解得,∴抛物线的解析式为y =-t2+5t +,∴当t =时,y最大=4.5;(2)把x=28代入x=10t得t=2.8,∴当t=2.8时,y =-×2.82+5×2.8+=2.25<2.44,∴他能将球直接射入球门.【解析】(1)由题意得函数y=at2+5t+c的图象经过(0,0.5),(0.8,3.5),于是得到,求得抛物线的解析式为y =-t2+5t +,当t =时,y最大=4.5;(2)把x=28代入x=10t得t=2.8,当t=2.8时,y =-×2.82+5×2.8+=2.25<2.44,于是得到他能将球直接射入球门.19.【答案】解:(1)当a≠0时,y=ax2+bx+c是二次函数;(2)当a=0,b≠0,c≠0时,y=ax2+bx+c是一次函数;(3)当a=0,b≠0,c=0时,y=ax2+bx+c是正比例函数.【解析】(1)根据二次项系数不等于零是二次函数,可得答案;(2)根据二次项系数等于零而一次项系数不等于零,且常数项不等于零是一次函数,可得答案;(3)根据二次项系数等于零而一次项系数不等于零,且常数项等于零是正比例函数,可得答案.20.【答案】解:∵将抛物线y=mx2+n向下平移6个单位长度,得到y=mx2+n-6,∴m=-1,n-6=3,∴n=9,∴原抛物线y=-x2+9,∴顶点P(0,9),令y=0,第41 页共43 页。
人教新版九年级数学上册第22章《 二次函数》单元测试卷【含答案】
人教新版九年级数学上册第22章《二次函数》单元测试卷一.选择题1.若y=(2﹣m)是二次函数,则m等于()A.±2B.2C.﹣2D.不能确定2.下列函数不属于二次函数的是()A.y=(x﹣1)(x+2)B.y=(x+1)2C.y=1﹣x2D.y=2(x+3)2﹣2x23.下列函数中是二次函数的是()A.y=3x﹣1B.y=x3﹣2x﹣3C.y=(x+1)2﹣x2D.y=3x2﹣14.二次函数y=﹣x2+2x的图象可能是()A.B.C.D.5.抛物线y=x2﹣2x+3的对称轴为()A.直线x=﹣1B.直线x=﹣2C.直线x=1D.直线x=26.若函数y=(1﹣m)+2是关于x的二次函数,且抛物线的开口向上,则m的值为()A.﹣2B.1C.2D.﹣17.在同一坐标系中一次函数y=ax+b和二次函数y=ax2+bx的图象可能为()A.B.C.D.8.在同一坐标系中,一次函数y=ax+2与二次函数y=x2+a的图象可能是()A.B.C.D.9.若二次函数y=(x﹣m)2﹣1,当x≤3时,y随x的增大而减小,则m的取值范围是()A.m=3B.m>3C.m≥3D.m≤310.已知a,b是非零实数,|a|>|b|,在同一平面直角坐标系中,二次函数y1=ax2+bx与一次函数y2=ax+b的大致图象不可能是()A.B.C.D.二.填空题11.若是二次函数,则m=.12.如图,⊙O的半径为2,C1是函数y=x2的图象,C2是函数y=﹣x2的图象,则阴影部分的面积是.13.如图所示,在同一坐标系中,作出①y=3x2;②y=x2;③y=x2的图象,则图象从里到外的三条抛物线对应的函数依次是(填序号).14.若y=(m﹣1)x|m|+1﹣2x是二次函数,则m=.15.已知y=(a+1)x2+ax是二次函数,那么a的取值范围是.16.若y=(m2+m)是二次函数,则m的值等于.17.小颖同学想用“描点法”画二次函数y=ax2+bx+c(a≠0)的图象,取自变量x的5个值,分别计算出对应的y值,如下表:x…﹣2﹣1012…y…112﹣125…由于粗心,小颖算错了其中的一个y值,请你指出这个算错的y值所对应的x=.18.已知抛物线y=ax2+bx+c的部分图象如图所示,若y>0,则x的取值范围是.19.已知抛物线y=ax2与y=2x2的形状相同,则a=.20.二次函数y=x2+bx+c的图象上有两点(3,4)和(﹣5,4),则此抛物线的对称轴是直线x=.三.解答题21.函数是关于x的二次函数,求m的值.22.已知函数y=(m2﹣m)x2+(m﹣1)x+m+1.(1)若这个函数是一次函数,求m的值;(2)若这个函数是二次函数,则m的值应怎样?23.画出二次函数y=x2的图象.24.已知,在同一平面直角坐标系中,正比例函数y=﹣2x与二次函数y=﹣x2+2x+c的图象交于点A(﹣1,m).(1)求m,c的值;(2)求二次函数图象的对称轴和顶点坐标.25.已知函数y=(m2﹣m)x2+(m﹣1)x+m+1.(1)若这个函数是一次函数,求m的值;(2)若这个函数是二次函数,则m的值应怎样?26.已知是x的二次函数,求出它的解析式.27.抛物线y=﹣x2+(m﹣1)x+m与y轴交于(0,3)点.(1)求出m的值并画出这条抛物线;(2)求它与x轴的交点和抛物线顶点的坐标;(3)x取什么值时,抛物线在x轴上方?(4)x取什么值时,y的值随x值的增大而减小?答案与试题解析一.选择题1.解:根据二次函数的定义,得:m2﹣2=2解得m=2或m=﹣2又∵2﹣m≠0∴m≠2∴当m=﹣2时,这个函数是二次函数.故选:C.2.解:A、整理为y=x2+x﹣3,是二次函数,不合题意;B、整理为y=x2+x+,是二次函数,不合题意;C、整理为y=﹣x2+1,是二次函数,不合题意;D、整理为y=12x+18,是一次函数,符合题意.故选:D.3.解:二次函数的一般式是:y=ax2+bx+c,(其中a≠0)(A)最高次数项为1次,故A错误;(B)最高次数项为3次,故B错误;(C)y=x2+2x+1﹣x2=2x﹣1,故C错误;故选:D.4.解:∵y=﹣x2+2x,a<0,∴抛物线开口向下,A、C不正确,又∵对称轴x=﹣=1,而D的对称轴是直线x=0,∴只有B符合要求.故选:B.5.解:∵y=x2﹣2x+3=(x﹣1)2+2,∴对称轴为x=1,故选:C.6.解:∵函数y=(1﹣m)+2是关于x的二次函数,且抛物线的开口向上,∴,解得m=﹣2.故选:A.7.解:A、由抛物线可知,a>0,x=﹣>0,得b<0,由直线可知,a>0,b<0,正确;B、由抛物线可知,a>0,由直线可知,a<0,错误;C、由抛物线可知,a<0,x=﹣>0,得b>0,由直线可知,a<0,b<0,错误;D、由抛物线可知,a<0,由直线可知,a>0,错误.故选:A.8.解:∵二次函数y=x2+a∴抛物线开口向上,∴排除B,∵一次函数y=ax+2,∴直线与y轴的正半轴相交,∴排除A;∵抛物线得a<0,∴排除C;故选:D.9.解:∵二次函数的解析式y=(x﹣m)2﹣1的二次项系数是1,∴该二次函数的开口方向是向上;又∵该二次函数的图象的顶点坐标是(m,﹣1),∴该二次函数图象在[﹣∞,m]上是减函数,即y随x的增大而减小;而已知中当x≤3时,y随x的增大而减小,∴x≤3,∴x﹣m≤0,∴m≥3.故选:C.10.解:解得或.故二次函数y=ax2+bx与一次函数y=ax+b(a≠0)在同一平面直角坐标系中的交点在x 轴上为(﹣,0)或点(1,a+b).在A中,由一次函数图象可知a>0,b>0,二次函数图象可知,a>0,b>0,﹣<0,a+b>0,故选项A有可能;在B中,由一次函数图象可知a>0,b<0,二次函数图象可知,a>0,b<0,由|a|>|b|,则a+b>0,故选项B有可能;在C中,由一次函数图象可知a<0,b<0,二次函数图象可知,a<0,b<0,a+b<0,故选项C有可能;在D中,由一次函数图象可知a<0,b>0,二次函数图象可知,a<0,b>0,由|a|>|b|,则a+b<0,故选项D不可能;故选:D.二.填空题11.解:∵是二次函数,∴,解得m=﹣2.故﹣2.12.解:由图形观察可知,把x轴上边的阴影部分的面积对称到下边就得到一个半圆阴影面积,则阴影部分的面积s==2π.故2π.13.解:①y=3x2,②y=x2,③y=x2中,二次项系数a分别为3、、1,∵3>1>,∴抛物线②y=x2的开口最宽,抛物线①y=3x2的开口最窄.故依次填:①③②.14.解:由y=(m﹣1)x|m|+1﹣2x是二次函数,得,解得m=﹣1.故﹣1.15.解:根据二次函数的定义可得a+1≠0,即a≠﹣1.故a的取值范围是a≠﹣1.16.解:根据二次函数的定义,得:,解得:m=2.故2.17.解:根据表格给出的各点坐标可得出,该函数的对称轴为直线x=0,求得函数解析式为y=3x2﹣1,则x=2与x=﹣2时应取值相同.故这个算错的y值所对应的x=2.18.解:已知抛物线与x轴的一个交点是(﹣1,0),对称轴为x=1,根据对称性,抛物线与x轴的另一交点为(3,0),观察图象,当y>0时,﹣1<x<3.19.解:∵抛物线y=ax2与y=2x2的形状相同,∴|a|=2,∴a=±2.故答案为±2.20.解:∵点(3,4)和(﹣5,4)的纵坐标相同,∴点(3,4)和(﹣5,4)是抛物线的对称点,而这两个点关于直线x=﹣1对称,∴抛物线的对称轴为直线x=﹣1.故答案为﹣1.三.解答题21.解:由题意可知解得:m=2.22.解:(1)依题意得∴∴m=0;(2)依题意得m2﹣m≠0,∴m≠0且m≠1.23.解:函数y=x2的图象如图所示,24.解:(1)∵点A(﹣1,m)在函数y=﹣2x的图象上,∴m=﹣2×(﹣1)=2,∴点A坐标为(﹣1,2),∵点A在二次函数图象上,∴﹣1﹣2+c=2,解得c=5;(2)∵二次函数的解析式为y=﹣x2+2x+5,∴y=﹣x2+2x+5=﹣(x﹣1)2+6,∴对称轴为直线x=1,顶点坐标为(1,6).25.解:(1)根据一次函数的定义,得:m2﹣m=0解得m=0或m=1又∵m﹣1≠0即m≠1;∴当m=0时,这个函数是一次函数;(2)根据二次函数的定义,得:m2﹣m≠0解得m1≠0,m2≠1∴当m1≠0,m2≠1时,这个函数是二次函数.26.解:由二次函数的定义,可知m2+m≠0,即m≠0,m≠﹣1又因为m2﹣2m﹣1=2,m2﹣2m﹣3=0解得m=3或m=﹣1(不合题意,舍去)所以m=3故y=12x2+9.27.解:(1)由抛物线y=﹣x2+(m﹣1)x+m与y轴交于(0,3)得:m=3.∴抛物线为y=﹣x2+2x+3=﹣(x﹣1)2+4.列表得:X﹣10123y03430图象如右.(2)由﹣x2+2x+3=0,得:x1=﹣1,x2=3.∴抛物线与x轴的交点为(﹣1,0),(3,0).∵y=﹣x2+2x+3=﹣(x﹣1)2+4∴抛物线顶点坐标为(1,4).(3)由图象可知:当﹣1<x<3时,抛物线在x轴上方.(4)由图象可知:当x>1时,y的值随x值的增大而减小.。
人教版数学九年级上册第22章《二次函数》单元测试题 含答案
人教版2020-2021学年九年级上册第22章单元测试题满分120分姓名:___________班级:___________学号:___________成绩:___________一、选择题(每小题3分,共30分)1.下列函数中,属于二次函数的是A .y=x –3B .y=x 2–(x+1)2C .y=x (x –1)–1D .21y x= 2.抛物线y =(x ﹣2)2+3的顶点坐标是( )A .(2,3)B .(﹣2,3)C .(2,﹣3)D .(﹣2,﹣3) 3.将抛物线y ()2321y x =+-向右平移2个单位长度,再向上平移3个单位长度,所得的抛物线为( )A .232y x =+B .()2342y x =++ C .()2353y x =+- D .234y x =- 4.在同一坐标系中,二次函数2y ax bx =+与一次函数y ax a =-的图象可能是( ) A .B .C .D . 5.已知两点M (6,y 1),N (2,y 2)均在抛物线y =ax 2+bx +c (a ≠0)上,点P (x 0,y 0)是抛物线的顶点,若y 0≤y 2<y 1,则x 0的取值范围是( )A .x 0<4B .x 0>﹣2C .﹣6<x 0<﹣2D .﹣2<x 0<2 6.在平面直角坐标系中,若函数()222y k x kx k =--+的图象与坐标轴共有三个交点,则下列各数中可能的k 值为( )A .1-B .0C .1D .27.若二次函数y=(m +1)x 2-mx +m 2-2m-3的图象经过原点,则m 的值必为( ) A .-1或3 B .-1 C .3 D .-3或18.如图,以40m /s 的速度将小球沿与地面成30°角的方向击出时,小球的飞行路线将是一条抛物线.如果不考虑空气阻力,小球的飞行高度h (单位:m )与飞行时间t (单位:s )之间具有函数关系h =20t ﹣5t 2.下列叙述正确的是( )A .小球的飞行高度不能达到15mB .小球的飞行高度可以达到25mC .小球从飞出到落地要用时4sD .小球飞出1s 时的飞行高度为10m9.如图,边长为2cm 的等边ABC ∆中,动点P 从点A 出发,沿着A B C A →→→的路线以1/cm s 的速度运动,设点P 运动的时间为x 秒,2y AP =,则能表示y 与x 的函数关系的大致图象是( )A .B .C .D . 10.已知二次函数y =ax +bx +c (a ≠0)的图象如图所示,以下结论中正确的个数是( ) ①abc >0、②3a >2b 、③m (am +b )≤a ﹣b (m 为任意实数)、④4a ﹣2b +c <0.A .1B .2C .3D .4二、填空题(每小题4分,共24分)11.若y=(a+3)x |a|﹣1﹣3x+2是二次函数,则a 的值为__.12.二次函数y =(m ﹣1)x 2的图象开口向下,则m _____.13.已知函数22y x x =--,当 时,函数值y 随x 的增大而增大.14.抛物线2(1)1y k x x =--+与x 轴有交点,则k 的取值范围是___________________.15.某同学用描点法y=ax 2+bx+c 的图象时,列出了表:x … ﹣2 ﹣1 0 1 2 … y … ﹣11 ﹣2 1 ﹣2 ﹣5 …由于粗心,他算错了其中一个y 值,则这个错误的y 值是_______.16.如图,用一段长为20米的篱笆围成一个一边靠墙(墙的长度不限)的长方形菜园ABCD ,设AB 为x 米,则菜园的面积y (平方米)与x (米)的关系式为_____.(不要求写出自变量x 的取值范围)三、解答题(共7小题,共66分)17.(7分)已知抛物线y =ax 2+bx +c 经过(﹣1,0),(0,﹣3),(2,3)三点.(1)求这条抛物线的表达式;(2)写出抛物线的开口方向、对称轴和顶点坐标18.(本题8分)已知二次函数2y x 4x 3=-+.()1用配方法将其化为2y a(x h)k =-+的形式;()2在所给的平面直角坐标系xOy 中,画出它的图象.19.(本题8分)如图,在喷水池的中心A 处竖直安装一个水管AB .水管的顶端安有一个喷水管、使喷出的抛物线形水柱在与池中心A 的水平距离为1m 处达到最高点C .高度为3m .水柱落地点D 离池中心A 处3m .建立适当的平面直角坐标系,解答下列问题.(1)求水柱所在抛物线的函数解析式;(2)求水管AB 的长.20.(本题8分)已知,如图,抛物线2y x bx c =-++经过直线3y x =-+与坐标轴的两个交点,A B .此抛物线与x 轴的另一个交点为C .抛物线的顶点为D .()1求此抛物线的解析式;()2若点M为抛物线上一动点,是否存在点M.使ACM∆的面积相等?若∆与ABC存在,求点M的坐标;若不存在,请说明理由.21.(本题8分)某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?22.(本题9分)如图,直线y=x+m与二次函数y=ax2+2x+c的图象交于点A(0,3),已知该二次函数图象的对称轴为直线x=1.(1)求m的值及二次函数解析式;(2)若直线y=x+m与二次函数y=ax2+2x+c的图象的另一个交点为B,求△OAB的面积;(3)根据函数图象回答:x为何值时该一次函数值大于二次函数值.23.(本题9分)二次函数y=ax2+bx+c的图象如图所示,经过(﹣1,0)、(3,0)、(0,﹣3).(1)求二次函数的解析式;(2)不等式ax2+bx+c>0的解集为;(3)方程ax2+bx+c=m有两个实数根,m的取值范围为.24.(本题9分)如图,抛物线y=ax2+c经过点A(0,2)和点B(-1,0).(1)求此抛物线的解析式;(2)将此抛物线平移,使其顶点坐标为(2,1),平移后的抛物线与x轴的两个交点分别为点C,D(点C在点D的左边),求点C,D的坐标;(3)将此抛物线平移,设其顶点的纵坐标为m,平移后的抛物线与x轴两个交点之间的距离为n,若1<m<3,直接写出n的取值范围.参考答案一、选择题1.C【解析】A .是一次函数,故本选项错误;B .整理后是一次函数,故本选项错误;C .整理后是二次函数,故本选项正确;D .y 与x 2是反比例函数关系,故本选项错误.故选C .2.A 【解答】解:y =(x ﹣2)2+3是抛物线的顶点式方程,根据顶点式的坐标特点可知,顶点坐标为(2,3).故选:A .3.A 【解答】解:将抛物线()2321y x =+-向右平移2个单位长度,得到平移后解析式为:231y x =-,∴再向上平移3个单位长度所得的抛物线解析式为:232y x =+;故选:A .4.A 【解答】由一次函数y ax a =-可知,一次函数的图象与x 轴交于点(1,0),即可排除B 、C 、D , 对于A 选项,观察二次函数2y ax bx =+的图象,∵开口向上,∴0a >,当0a >时,一次函数y ax a =-经过一、二、四象限,∴A 选项符合题意,故选:A .5.A 【解答】∵点C (x 0,y 0)是抛物线的顶点,y 1>y 2≥y 0,∴抛物线有最小值,函数图象开口向上,∴a >0,36a +6b +c >4a +2b +c ,∴8a >﹣b ,∴822b a a a-=<4,∴x 0<4. 故选A .6.C 【解答】解:∵函数与坐标轴有3个交点∴此函数为二次函数∴k-2≠0∴k≠2∵与y 轴必有一个交点∴与x 轴有两个交点∴△>0∴(-2k )2-4k (k-2)>0∴k >0∴k 可以为1故选C .7.C 【解答】解:由图像过原点可得,m 2-2m-3=0,解得m=-1或3;再由二次函数定义可知m +1≠0,即m≠-1,故m=3.8.C 【解答】A 、当h =15时,15=20t ﹣5t 2,解得:t 1=1,t 2=3,故小球的飞行高度能达到15m ,故此选项错误;B 、h =20t ﹣5t 2=﹣5(t ﹣2)2+20,故t =2时,小球的飞行高度最大为:20m ,故此选项错误;C 、∵h =0时,0=20t ﹣5t 2,解得:t 1=0,t 2=4,∴小球从飞出到落地要用时4s ,故此选项正确;D 、当t =1时,h =15,故小球飞出1s 时的飞行高度为15m ,故此选项错误;故选C .9.C 【解答】解:点P 在AB 段时(02x ≤≤),AP=x ,则2y x ,是二次函数,可排除A 、B ;点P 在BC 段时(24x ≤≤),如下图所示,D 为BC 中点,根据等边三角形的性质可知,()213PD AB BD AB BP x x =+-+=+-=-,2222222241(3)(3)3AP AD PD AB BD PD x x ∴=+=-+=-+-=-+,也是二次函数,且顶点是(3,3),故选项C 正确;点P 在AC 段时(46x ≤≤),AP=6-x ,则2(6)y x =-,是二次函数,故选项C 正确. 故选:C .10.C 【解答】解:∵抛物线开口向下,∴a <0,∵抛物线的对称轴为直线x =﹣2b a=﹣1<0, ∴b =2a ,∴b <0,∵抛物线与y 轴的交点在x 轴上方,∴c >0,∴abc >0,所以①正确;∵b =2a ,∴3a ﹣2b =3a ﹣4a =﹣a >0,∴3a >2b ,所以②正确;∵抛物线的对称轴为直线x =﹣1,∴当x =﹣1时,y 有最大值,∴am 2+bm +c ≤a ﹣b +c (m 为任意实数),∴m (am +b )≤a ﹣b (m 为任意实数),所以③正确;∵抛物线的对称轴为直线x =﹣1,抛物线与x 轴的一个交点在点(0,0)和(1,0)之间, ∴抛物线与x 轴的一个交点在点(﹣3,0)和(﹣2,0)之间,∴当x =﹣2时,y >0,∴4a ﹣2b +c >0,所以④错误.故选:C .二、填空题11.3【解答】根据题意得:,解得:a =3.故答案为:3.12.<1【解答】∵二次函数y =(m ﹣1)x 2的图象开口向下,∴m ﹣1<0,解得:m <1,故答案为:<1.13.x≤﹣1.【解答】:∵22y x x =--=2(1)1x -++,a=﹣1<0,抛物线开口向下,对称轴为直线x=﹣1,∴当x≤﹣1时,y 随x 的增大而增大,故答案为x≤﹣1.14.54k 且1k ≠【解答】解:∵抛物线2(1)1y k x x =--+与x 轴有交点, ∴2(1)4(1)10k ∆=--⨯-⨯≥, ∴54k ≤, 又∵10k -≠,∴1k ≠,∴k 的取值范围是54k 且1k ≠; 故答案为:54k 且1k ≠. 15.﹣5.【解答】解:由函数图象关于对称轴对称,得(﹣1,﹣2),(0,1),(1,2)在函数图象上,把(﹣1,﹣2),(0,1),(1,﹣2)代入函数解析式,得212a b c c a b c -+=-⎧⎪=⎨⎪++=-⎩,解得,301a b c =-⎧⎪=⎨⎪=⎩, 函数解析式为y=﹣3x 2+1x=2时y=﹣11,故答案为﹣5.16.y =﹣2x 2+20x 【解答】∵AB 的边长为x 米,而菜园ABCD 是矩形菜园,∴BC =20﹣2x ,∵菜园的面积=AB ×BC =x •(20﹣2x ),∴y =﹣2x 2+20x .故填空答案:y =﹣2x 2+20x .三.解答题17.【解答】(1)把(-1,0),(0,-3),(2,3)代入y=ax 2+bx+c ,得03423a b c c a b c -+=⎧⎪=-⎨⎪++=⎩,解得213a b c =⎧⎪=-⎨⎪=-⎩.所以,这个抛物线的表达式为y =2x 2﹣x ﹣3.(2)y =2x 2﹣x ﹣3=2(x ﹣14)2﹣258, 所以,抛物线的开口向上,对称轴为x =14,顶点坐标为(14,﹣258) 18.【解答】:()21y x 4x 3=-+ =222x 4x 223-+-+=2(x 2)1--()22y (x 2)1=--,∴顶点坐标为()2,1-,对称轴方程为x 2=.函数二次函数2y x 4x 3=-+的开口向上,顶点坐标为()2,1-,与x 轴的交点为()3,0,()1,0,∴其图象为:19.(1)y =﹣34(x ﹣1)2+3(0≤x ≤3);(2)2.25m 【解答】解:(1)以池中心为原点,竖直安装的水管为y 轴,与水管垂直的为x 轴建立直角坐标系.由于在距池中心的水平距离为1m 时达到最高,高度为3m ,则设抛物线的解析式为:y =a (x ﹣1)2+3,代入(3,0)求得:a =﹣34(x ﹣1)2+3. 将a 值代入得到抛物线的解析式为:y =﹣34(x ﹣1)2+3(0≤x ≤3); (2)令x =0,则y =94=2.25. 故水管AB 的长为2.25m .20.【解答】()1由题意得()303.)0(A B ,,,将点A 和点B 的坐标代入得: 39330c b =⎧⎨-++=⎩解得: 2 3.b c ==,∴抛物线的解析式为2y x 2x 3=-++;()2设M 的坐标为(,)x y .ACM ∆与ABC ∆的面积相等,1122AC y AC OB ∴= 3y OB ∴==.当3y =时,2233x x -++=, 解得02x x ==或,)3(2,M ∴或(0,3),当3y =-时, 2233x x -++=-,解得:1x =+1x =-()13M ∴+-或(13)--.综上所述点M 的坐标为()0,3或()2,3或()13-或()13--. 21.【解答】(1)由题意得: 222434(24002000)(8)5020025x x x y x =-++=--+; (2)将y=4800代入,∴22243200=480025x x -++, 解得x 1=100,x 2=200,要使百姓得到实惠,则降价越多越好,所以x=200,故每台冰箱降价200元(3)2224320025y x x =-++22(150)500025x =--+, 每台冰箱降价150元时,商场每天销售这种冰箱的利润最高,最高利润为5000元 22.【解答】解:(1)∵直线y =x +m 经过点A (0,3),∴m =3,∴直线为y =x +3,∵二次函数y =ax 2+2x +c 的图象经过点A (0,3),且对称轴为直线x =1. ∴3212c a=⎧⎪⎨-=⎪⎩,解得13a c =-⎧⎨=⎩, ∴二次函数解析式为y =﹣x 2+2x +3;(2)解2323y x y x x =+⎧⎨=-++⎩得03x y =⎧⎨=⎩或14x y =⎧⎨=⎩, ∴B (1,4),∴△OAB 的面积=1312⨯⨯=32; (3)由图象可知:当x <0或x >1时,该一次函数值大于二次函数值.23.【解答】解:(1)把(﹣1,0)、(3,0)、(0,﹣3)代入y =ax 2+bx +c 得09303a b c a b c c -+=⎧⎪++=⎨⎪=-⎩,解得:123a b c =⎧⎪=-⎨⎪=-⎩,∴二次函数的解析式为y =x 2﹣2x ﹣3;(2)由函数图象可知抛物线和x 轴的两个交点横坐标为﹣1,3,所以不等式ax 2+bx +c >0的解集为x <﹣1或x >3;(3)设y =ax 2+bx +c 和y =m ,方程ax 2+bx +c =m 有两个实数根,则二次函数图象与直线y =m 有两个交点或一个交点, 即223x x m --=有两个实数根,∴0∆≥,即()()224130m --⨯⨯--≥,解得m ≥﹣4.24.【解答】(1)∵抛物线y=ax 2+c 经过点A (0,2)和点B (-1,0).∴解得:∴ 此抛物线的解析式为y=-2x 2+2;(2)∵ 此抛物线平移后顶点坐标为(2,1),∴ 抛物线的解析式为y=-2(x-2)2+1令y=0,即-2(x-2)2+1=0解得 x 1=2+,x 2=2-.∵ 点C 在点D 的左边∴ C ( 2-,0),D (2+,0)(3)<n <.考点:1.二次函数图象与几何变换;2.待定系数法求二次函数解析式.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学上册第二十二章二次函数单元复习试题(含答案)
下列函数中,其中是以x 为自变量的二次函数是( )
A .y=12
x (x ﹣3) B .y=(x+2)(x ﹣2)﹣(x ﹣1)2 C .y=x
2+1x
D .【答案】A
【解析】
【分析】 根据二次函数的定义对各选项分析判断后利用排除法求解.
【详解】
解:A 、()21133222
y x x x x =
-=-,是以x 为自变量的二次函数,故本选项正确;
B 、()()()22222142125y x x x x x x x =+---=--+-=-,是以x 为自变量的一次函数,故本选项错误;
C 、分母上有自变量x ,不是以x 为自变量的二次函数,故本选项错误;
D 、二次三项式是被开方数,不是以x 为自变量的二次函数,故本选项错误.
故选:A .
【点睛】
本题考查了二次二次函数的定义,熟记概念是解题的关键.
37.在平面直角坐标系中,平移二次函数243y x x =++的图象能够与二次
函数2y x 的图象重合,则平移方式为( )
A .向左平移2个单位,向下平移1个单位
B.向左平移2个单位,向上平移1个单位
C.向右平移2个单位,向下平移1个单位
D.向右平移2个单位,向上平移1个单位
【答案】D
【解析】
二次函数y=x2+4x+3=(x+2)2-1,
将其向右平移2个单位,再向上平移1个单位得到二次函数y=x2.
故选D.
点睛:抛物线的平移时解析式的变化规律:左加右减,上加下减.
38.二次函数2105
=+-的最小值是().]
y x x
A.-35 B.-30 C.-5 D.20
【答案】B.
【解析】
试题分析:∵y=x2+10x-5=x2+10x+25-30=(x+5)2-30,
∴y的最小值为-30.
故选:B.
考点:二次函数的最值.
39.将如图所示的抛物线向右平移1个单位长度,再向上平移3个单位长度后,得到的抛物线解析式是()
A.y=(x﹣1)2+1 B.y=(x+1)2+1 C.y=2(x+1)2+1
D .y=2(x ﹣1)2+1.
【答案】D
【解析】
【分析】 根据平移规律,可得答案.
【详解】
由图象,得
y=2x 2-2,
由平移规律,得
y=2(x-1)2+1,
故选D .
【点睛】
本题考查了二次函数图象与几何变换,利用平移规律:左加右减,上加下减是解题关键.
40.如图,二次函数2(0)y ax bx c a =++≠的图象与y 轴正半轴相交,其顶点坐标为1,12⎛⎫ ⎪⎝⎭
,下列结论:①0ac <;②0a b +=;③b a c <+;④44c a =+.其中正确的个数是( ).
A .1
B .2
C .3
D .4
【答案】C
【解析】
【分析】
由抛物线开口方向得到a<0,由抛物线与y 轴的交点在x 轴上方得到c>0,可对①进行判断;由抛物线的对称轴为直线x=122
b a -=,得到a+b=0,可对②进行判断;当x=-1时,由图象可知y <0,即可对③进行判断;根据顶点坐标为1,12⎛⎫ ⎪⎝⎭,代入函数解析式,以及抛物线的对称轴为12,可对④进行判断. 【详解】
①∵由图象可知抛物线开口向下
∴a<0
∵抛物线与y 轴的交点在x 轴上方
∴c>0
∴0ac <
故①正确
②∵抛物线的对称轴为直线x=12=
∴122
b a -= ∴0a b +=
故②正确
③当x=-1时,由图象可知y <0
∴y=a-b+c <0
∴a+c <b
故③错误
④∵抛物线顶点坐标为1
,12⎛⎫ ⎪⎝⎭
∴11142
a b c ++= ∵b=-a ∴11142
a a c -+= ∴44c a =+
故④正确
综上所述①②④正确
故选:C
【点睛】
本题考查了二次函数图象与系数的关系,通过图象性质可判定二次函数的系数之间关系.。