实变函数集合标准答案

合集下载

实变函数答案

实变函数答案

习题1.11.证明下列集合等式.(1) ()()()C A B A C B A \\=; (2) ()()()C B C A C B A \\\ =; (3) ()()()C A B A C B A \\\=. 证明 (1) )()C \B (cC B A A =)()( c c C B A A B A = c C A B A )()( =)(\)(C A B A = .(2) cC B A A )(C \B)(=)()(c c C B C A ==)\()\(C A C A .(3) )(\C)\(B \cC B A A = c c C B A )( =)(C B A c = )()(C A B A c =)()\(C A B A =.2.证明下列命题.(1) ()A B B A = \的充分必要条件是:A B ⊂; (2) ()A B B A =\ 的充分必要条件是:=B A Ø; (3) ()()B B A B B A \\ =的充分必要条件是:=B Ø.证明 (1) A B A B B B A B B A B B A cc==== )()()()\(的充要条 是:.A B ⊂(2) ccccB A B B B A B B A B B A ===)()()(\)(必要性. 设A B B A =\)( 成立,则A B A c= , 于是有cB A ⊂, 可得.∅=B A反之若,∅≠B A 取B A x ∈, 则B x A x ∈∈且, 那么B x A x ∉∈且与cB A ⊂矛盾.充分性. 假设∅=B A 成立, 则cB A ⊂, 于是有A B A c= , 即.\)(A B B A =(3) 必要性. 假设B B A B B A \)()\( =, 即.\cC A B A B A == 若,∅≠B 取,B x ∈ 则,cB x ∉ 于是,cB A x ∉ 但,B A x ∈ 与cC A B A =矛盾.充分性. 假设∅=B 成立, 显然B A B A \= 成立, 即B B A B B A \)()\( =. 3.证明定理1.1.6.定理1.1.6 (1) 如果{}n A 是渐张集列, 即),1(1≥∀⊂+n A A n n 则{}n A 收敛且∞=∞→=1;lim n n n n A A(2) 如果{}n A 是渐缩集列, 即),1(1≥∀⊃+n A A n n 则{}n A 收敛且 ∞=∞→=1.lim n n n n A A证明 (1) 设),1(1≥∀⊂+n A A n n 则对任意 ∞=∈1,n n A x 存在N 使得,NAx ∈ 从而),(N n A x N ≥∀∈ 所以,lim n n A x ∞→∈ 则.lim 1n n n n A A ∞→∞=⊂ 又因为 ∞=∞→∞→⊂⊂1,lim lim n n n n n n A A A由此可见{}n A 收敛且 ∞=∞→=1;lim n n n n A A(2) 当)1(1≥∀⊃+n A A n n 时, 对于,l i mn n A x ∞→∈存)1(1≥∀<+k n n k k 使得),1(≥∀∈k A x k n 于是对于任意的,1≥n 存在0k 使得n n k >0, 从而,0n n A A x k ⊂∈ 可见.lim 1∞=∞→⊂n n n n A A 又因为,lim lim 1n n n n n n A A A ∞→∞→∞=⊂⊂ 所以可知{}n A 收敛且 ∞=∞→=1.lim n n n n A A4.设f 是定义于集合E 上的实值函数,c 为任意实数,证明: (1) ⎥⎦⎤⎢⎣⎡+≥=>∞=n c f E c f E n 1][1 ;(2) ⎥⎦⎤⎢⎣⎡+<=≤∞=n c f E c f E n 1][1 ; (3) 若))(()(lim E x x f x f n n ∈∀=∞→,则对任意实数c 有⎥⎦⎤⎢⎣⎡->=⎥⎦⎤⎢⎣⎡->=≥∞→∞=∞=∞=∞=k c f E k c f E c f E n n k n N n N k 1lim 1][111 .证明 (1) 对任意的[],c f E x >∈ 有,)(c x f > 则存在+∈Z n 使得nc x f 1)(+≥成立. 即,1⎥⎦⎤⎢⎣⎡+≥∈n c f E x 那么.11 ∞=⎥⎦⎤⎢⎣⎡+≥∈n n c f E x 故[];11 ∞=⎥⎦⎤⎢⎣⎡+≥⊂>n n c f E c f E 另一方面, 若,11 ∞=⎥⎦⎤⎢⎣⎡+≥∈n n c f E x 则存在+∈Z n 0使得,110 ∞=⎥⎦⎤⎢⎣⎡+≥∈n n c f E x 于是c n c x f >+≥01)(, 故[]c f E x >∈. 则有[].11 ∞=⎥⎦⎤⎢⎣⎡+≥⊃>n n c f E c f E(2) 设[]c f E x ≤∈, 则c x f ≤)(, 从而对任意的+∈Z n , 都有nc x f 1)(+<, 于是 ∞=⎥⎦⎤⎢⎣⎡+<∈11n n c f E x , 故有[];11 ∞=⎥⎦⎤⎢⎣⎡+<⊂≤n n c f E c f E另一方面, 设 ∞=⎥⎦⎤⎢⎣⎡+<∈11n n c f E x , 则对于任意的+∈Z n , 有n c x f 1)(+<, 由n 的任意性, 可知c x f ≤)(, 即[]c f E x ≤∈, 故[] ∞=⎥⎦⎤⎢⎣⎡+<⊃≤11n n c f E c f E . (3) 设[]c f E x ≥∈, 则c x f ≥)(. 由),)(()(lim E x x f x f n n ∈∀=∞→ 可得对于任意的+∈Z k , 存在N 使得)(1|)()(|N n k x f x f n ≥∀<-, 即)1(11)()(≥-≥->k kc k x f x f n , 即k c x f n 1)(->, 故)1(1lim ≥∀⎥⎦⎤⎢⎣⎡->∈∞→k k c f E x n n , 所以 ∞=∞→⎥⎦⎤⎢⎣⎡->∈11lim k n n k c f E x , 故[] ∞=∞→⎥⎦⎤⎢⎣⎡->⊂≥11lim k n n k c f E c f E ;另一方面, 设 ∞=∞→⎥⎦⎤⎢⎣⎡->∈101lim k nn k c f E x , 则对任意+∈Z k 有⎥⎦⎤⎢⎣⎡->∈∞→k c f E x n n 1lim 0.由下极限的定义知:存在1N 使得当1N n ≥时, 有)(10+∈∀⎥⎦⎤⎢⎣⎡->∈Z k k c f E x n , 即对任意+∈Z k 有kc x f n 1)(0->; 又由),)(()(lim E x x f x f n n ∈∀=∞→ 知),()(lim 00x f x f n n =∞→ 即对任意的+∈Z k , 存在2N 使得当2N n ≥时, 有kx f x f n 1|)()(|00<-. 取},max {21N N N =,则有k c x f n 1)(0->与k x f x f n 1|)()(|00<-同时成立, 于是有k c x f k x f n 1)(1)(00->>+,从而k c x f 2)(0->, 由k 的任意性知:c x f ≥)(0, 即[]c f E x ≥∈0, 故有[] ∞=∞→⎥⎦⎤⎢⎣⎡->⊃≥11lim k n n k c f E c f E ;综上所述:[].11lim 111 ∞=∞=∞=∞=∞→⎥⎦⎤⎢⎣⎡->=⎥⎦⎤⎢⎣⎡->=≥k N N n n n n n k c f E k c f E c f E5.证明集列极限的下列性质.(1) cn n cn n A A ∞→∞→=⎪⎭⎫ ⎝⎛lim lim _____;(2) c n ncn n A A _____lim lim ∞→∞→=⎪⎭⎫ ⎝⎛; (3) ()n n n n A E A E ∞→∞→=lim \\lim ;(4) ()n n n n A E A E ∞→∞→=lim \\lim .证明 (1) cn n n nm c m n c n m m c n n m m cn n A A A A A ∞→∞=∞=∞=∞=∞=∞=∞→====⎪⎭⎫ ⎝⎛lim )()(lim 111_____ .(2) c n n n n nm c m c n m m c n n m m c n n A A A A A _____111lim )()(lim ∞→∞=∞=∞=∞=∞=∞=∞→====⎪⎭⎫ ⎝⎛ . (3) () ∞=∞=∞=∞=∞=∞=∞→===111))(()()\(\lim n nm n n m cm cm n nm m n n A E A E A E A Ec n nm m n c nm m n nm cmA E A E AE )())(()(111 ∞=∞=∞=∞=∞=∞====∞=∞=∞→==1lim \\n n m n n mA E AE .(4) () ∞=∞=∞=∞=∞=∞=∞→===111))(()()\(\lim n nm cm n nm n nm cm m n n A E A E A E A Ecn nm m n c nm m n n m cm A E A E A E )())(()(111 ∞=∞=∞=∞=∞=∞====∞=∞=∞→==1lim \\n nm n n mA E AE .6.如果}{},{n n B A 都收敛,则}\{},{},{n n n n n n B A B A B A 都收敛且 (1) ()n n n n n n n B A B A ∞→∞→∞→=lim lim lim ;(2) ()n n n n n n n B A B A ∞→∞→∞→=lim lim lim ; (3) ()n n n n n n n B A B A ∞→∞→∞→=lim \lim \lim .习题1.21.建立区间)1,0(与]1,0[之间的一一对应. 解 令1111{,,,,}2345E = , 111{0,1,,,}234F = ,(0,1)\D E =,则(0,1)E D = ,[0,1]F D = .定义:(0,1)[0,1]φ→为: ;11();(1,2,)210;2x x D x x n n n x φ⎧⎪∈⎪⎪===⎨+⎪⎪=⎪⎩则φ为(0,1)[0,1]→之间的一个一一对应.2.建立区间],[b a 与],[d c 之间的一一对应,其中d c b a <<,. 解 定义: :[,][,]a b c d φ→为:()().([,])d c d c bc adx x a c x x a b b a b a b aφ---=-+=+∀∈--- 可以验证: :[,][,]a b c d φ→为一个一一对应.3.建立区间),(b a 与],[d c 之间的一一对应,其中d c b a <<,. 解 令{,,,}234b a b a b a E a a a ---=+++ ,{,,,,}23d c d c F c d c c --=++ (,)\D a b E =. 定义:(,)[,]a b c d φ→为:;();(1,2.)2;.2d cbc ad x x D b a b a d c b ax c x a n n n b a c x a φ--⎧+∈⎪--⎪--⎪=+=+=⎨+⎪-⎪=+⎪⎩可以验证: :(,)[,]a b c d φ→为一个一一对应.4.试问:是否存在连续函数,把区间]1,0[一一映射为区间)1,0(?是否存在连续函数,把区间]1,0[一一映射为]4,3[]2,1[ ?答 不存在连续函数把区间[0,1]一一映射为(0,1); 因为连续函数在闭区间[0,1]存在最大、最小值.也不存在连续函数把区间[0,1]一一映射为[1,2][3,4] ; 因为连续函数在闭区间[1,2]上存在介值性定理, 而区间[1,2][3,4] 不能保证介值性定理永远成立.5.证明:区间2~)1,0()1,0(~)1,0(R ⨯且ℵ=2R .证明 记(0,1)A =,则(0,1)(0,1)A A ⨯=⨯.任取(,)x y A A ∈⨯, 设1231230.,0.,x a a a y b b b == 为实数,x y 正规无穷十进小数表示, 并令1122(,)0.f x y a b a b = , 则得到单射:f A A A ⨯→. 因此由定理 1.2.2知A A A ⨯≤.若令10.5A A =⨯, 则1~A A A A ⊂⨯. 从而由定理1.2.2知: A A A ≤⨯. 最后, 根据Bernstein 定理知: (0,1)~(0,1)(0,1)⨯.对于(,)(0,1)(0,1)x y ∀∈⨯,定义2:(0,1)(0,1)R φ⨯→为:(,)((),())22x y tg x tg y ππφππ=--,则φ为2(0,1)(0,1)R ⨯→的一个一一对应,即2(0,1)(0,1)~R ⨯. 又因为: (0,1)~R , 则由对等的传递性知: 2(0,1)~(0,1)(0,1)~~R R ⨯且2R R ==ℵ.6.证明:{}1:),(22≤+=y x y x A 与{}1:),(22<+=y x y x B 对等并求它们的基数. 证明 令221{(,):(1,2,3,)}E x y x y n n =+== , \D A E =, 221{(,):(1,2,3,)}1F x y x y n n =+==+ .则,A E D B F D == . 定义: :A B φ→为:2222(,);(,),(,)11;(1,2,3,),(,).1x y x y D x y x y x y n x y E n n φ∈⎧⎪=⎨+=+==∈⎪+⎩可以验证: :A B φ→为一一对应, 即~A B . 又因为2~(0,1)(0,1)~~B R R ⨯, 所以A B ==ℵ.7.证明:直线上任意两个区间都是对等且具有基数ℵ.证明 对任意的,I J R ⊆, 取有限区间(,)a b I ⊆,则(,)a b I R ℵ=≤≤=ℵ, 则由Bernstern定理知I =ℵ, 同理J =ℵ. 故I J ==ℵ. 习题1.31.证明:平面上顶点坐标为有理点的一切三角形之集M 是可数集.证明 因为有理数集Q 是可数集,平面上的三角形由三个顶点所确定,而每个顶点由两个数决定,故六个数可确定一个三角形,所以M 中的每个元素由Q 中的六个相互独立的数所确定,即Q},,,,:{621621∈=x x x a M x x x 所以M 为可数集.2.证明:由平面上某些两两不交的闭圆盘之集M 最多是可数集.证明 对于任意的M O ∈, 使得Q ∈)(O f . 因此可得:Q →M f :. 因为1O 与2O 不相交,所以)()(21O f O f ≠. 故f 为单射,从而a M =≤Q .3.证明:(1)任何可数集都可表示成两个不交的可数集之并;(2)任何无限集都可表成可数个两两不交的无限集之并.证明 (2) 当E 可数时,存在双射Q )1,0(:→E f . 因为∞=⎪⎪⎭⎫⎝⎛⎪⎭⎫⎢⎣⎡+=11,11)1,0(n n n Q Q所以∞=∞=--=⎪⎪⎭⎫ ⎝⎛⎪⎭⎫⎢⎣⎡+==11111,11))1,0((n n n A n n f f E Q Q .其中:)(),3,2,1(1,111j i A A n n n f A j i n ≠Φ==⎪⎪⎭⎫⎝⎛⎪⎭⎫⎢⎣⎡+=- 且Q . 又因为Q Q ⎪⎭⎫⎢⎣⎡+⎪⎪⎭⎫ ⎝⎛⎪⎭⎫⎢⎣⎡+-n n n n f 1,11~1,111且Q ⎪⎭⎫⎢⎣⎡+n n 1,11 可数,所以E 可表示成可数个两两不交的无限集之并.当E 不可数时,由于E 无限,所以存在可数集E E ⊂1, 且1\E E 不可数且无限,从而存在可数集12\E E E ⊂,且)(\\)\(2121E E E E E E =无限不可数. 如此下去,可得),3,2,1( =n E n 都可数且不相交,从而1011)()\(E E E E E E i i n i ==∞=∞=.其中)0(≥i E i 无限且不交.4.证明:可数个不交的非空有限集之并是可数集.5.证明:有限或可数个互不相交的有限集之并最多是可数集.证明 有限个互不相交的有限集之并是有限集;而可数个互不相交的有限集之并最多是可数集.6.证明:单调函数的不连续点之集至多是可数集.证明 不妨设函数f 在),(b a 单调递增,则f 在0x 间断当且仅当0)(lim )(lim )0()0(_000>==--+→→+x f x f x f x f x x x x .于是,每个间断点0x 对应一个开区间))0(),0((00+-x f x f .下面证明:若x x '''<为()f x 的两个不连续点,则有(0)(0)f x f x '''+≤-. 事实上,任取一点1x ,使1x x x '''<<,于是11(0)lim ()inf{()}()sup {()}lim ()x x x x x x x x x f x f x f x f x f x f x +-'>'''→→'''<<'+==≤≤=,从而x '对应的开区间((0),(0))f x f x ''-+与x ''对应的开区间((0),(0))f x f x ''''-+不相交,即不同的不连续点对应的开区间互不相交,又因为直线上互不相交的开区间所构成的集合至多是可数集,所以可知单调函数的不连续点之集至多是可数集.7.证明:若存在某正数d 使得平面点集E 中任意两点之间的距离都大于d ,则E 至多是可数集.证明 定义映射}:)3,{(:E x dx E f ∈→,即))(3,()(E x d x D x f ∈=,其中)3,(d x D 表示以E x ∈为中心,以3d 为半径的圆盘. 显然当y x ≠时,有∅=)3,()3,(dy D d x D ,即)()(y f x f ≠,于是f 为双射,由第2题知:a E x dx ≤∈}:)3,{(,故a E ≤.习题1.41.直线上一切闭区之集具有什么基数?区间],[b a 中的全体有理数之集的基数是什么? 答 直线上一切闭区间之集的基数是c . 这是因为:2),(],[:R ∈→b a b a f 为单射,而R ∈→a b a f ],[:为满射,所以c M c =≤≤=2R R .区间],[b a 中的全体有理数之集的基数是c ,这是因为:a a =≤≤. 2.用],[b a C 表示],[b a 上的一切连续实值函数之集,证明: (1) 设},,,,{],[21 n r r r b a =Q ,],[,b a C g f ∈,则⇔=g f ),2,1)(()( ==k r g r f k k ;(2) 公式)),(,),(),(()(21 n r f r f r f f =π定义了单射)(],[:R S b a C →π;(3) c b a C =],[. 证明 (1) 必要性. 显然.充分性. 假设),2,1)(()( ==k r g r f k k 成立. 因为},,,{\],[321 r r r b a x ∈∀,存在有理数列∞=1}{n n x ,使得x x n n =∞→lim ,由],[,b a c g f ∈,可得)()lim ()(lim x f x f x f n n n ==∞→∞→及)()lim ()(lim x g x g x g n n n ==∞→∞→.又因为∞=1}{n n x 为有理点列,所以有)()(n n x g x f =,故],[b a x ∈∀,都有)()(x g x f =.(2) ],[,b a c g f ∈∀,设)()(g f ππ=,即)),(,),(),(()),(,),(),((2121 n n r g r g r g r f r f r f =.由(1)知:g f =. 故π为单射.(3) 由(2)知:c R S b a c =≤)(],[;又由],[b a c ⊂R ,可得],[b a c c ≤=R . 故c b a C =],[.3.设],[b a F 为闭区间]1,0[上的一切实值函数之集,证明: (1) ]},[:))(,{()(b a x x f x f ∈=π定义了一个单射)(],[:2R P b a F →π;(2) ]1,0[⊂∀E ,E E χα=)(定义了单射],[])1,0([:b a F P →α;(3) ],[b a F 的基数是c2.证明 (1) ],[,b a F g f ∈∀,设)()(g f ππ=,即]},[:))(,{(]},[:))(,{(b a x x g x b a x x f x ∈=∈.从而]),[)(()(b a x x g x f ∈∀=,故π为单射.(2) ]1,0[,⊂∀F E ,设)()(F E αα=,则F E F E χααχ===)()(,故α为单射.(3) 由(1)知:c P b a F 2)(],[2=≤R ;又由(2)知:],[2])1,0([b a F P c≤=,故c b a F 2],[=.4.证明:c n=C .证明 因为R R C ⨯~,而c =⨯R R ,故c =C ;又由定理1..4.5知:c n=C . 5.证明:若E 为任一平面点集且至少有一内点,则c E =.证明 显然c E =⨯≤R R . 设00E x ∈,则0>∃δ使得E x B ⊂),(0δ,可知E x B c ≤=),(0δ,故c E =.第一章总练习题.1 证明下列集合等式.(1) ()()F F E F E E F E \\\ ==; (2) ()()()G F G E G F E \\\ =.证明 (1) 因为\()()()()()\c c c c c E E F E E F E E F E E E F E F ==== ,()\()()()\c c c E F F E F F E F F F E F === .所以\\()()\E F E E F E F F == .(2) 因为()\()()()(\)(\),c c c c E F G E F G E F G E G F G E G F G ====所以()()()G F G E G F E \\\ =..2 证明下列集合等式.(1) ()B A B A n n n n \\11∞=∞== ;(2) ()B A B A n n n n \\11∞=∞== .证明 (1)1111\()()(\)ccnn n n n n n n AB A B A B A B ∞∞∞∞======= .(2)1111\()()(\)c c nn n n n n n n AB A B A B A B ∞∞∞∞======= .3.证明:22[][][]c c E f g c E f E g +≥⊂≥≥ ,其中g f ,为定义在E 的两个实值函数,c 为任一常数.证明 若()()22c c x E f E g ∉≥≥ , 则有()2c f x <且()2cg x <, 于是()()()()f x g x f g x c +=+<,故()x E f g c ∉+≥. 所以()()()22c cE f g c E f E g +≥⊂≥≥ .4.证明:nR 中的一切有理点之集n Q 与全体自然数之集对等.证明 因为0Q =ℵ,所以0Q Q Q Q n=⨯⨯⨯=ℵ (推论1.3.1). 又因为0N =ℵ, 所以0Q n N ==ℵ, 故Q ~n N .5.有理数的一切可能的序列所成之集)(Q S 具有什么基数? 6.证明:一切有理系数的多项式之集][x Q 是可数集. 证明 设},Q ,,,,,0,][:][{][Q 1100111∈≠++++==---n n n n n n n n n n a a a a a a x a x a x a x P x P x于是.][Q ][Q 0∞==n n x x显然,Q ~][Q 1n +x n 所以,Q ][Q 1n a x n ==+ 因此由定理1.3.5知:.][Q a x =7.证明:一切实系数的多项式之集][x R 的基数为c .证明 记},R ,,,,,0,][:][{][R 1100111∈≠++++==---n n n n n n n n n n a a a a a a x a x a x a x P x P x于是.][R ][R 0∞==n n x x显然,R~][R 1n +x n 所以,R 1n c n ==+ 因此由定理1.4.3知:.][R c x =8.证明:全体代数数(即可作为有理系数多项式之根的数)之集是可数集,并由此说明超越数(即不是代数数的实数)存在,而且全体超越数之集的基数是c .证明 由于有理系数多项式的全体是可数集,设其元素为,,,,,,210 n P P P P 记多项式)(x P n 的全体实根之集为,n A 由于n 次多项式根的个数为有限个,故n A 为有限集,从而代数数全体 ∞==n nAA 为可数个有限集的并,故A 为可数集,即.a A =设超越数全体所成之集为,B 即,\R A B = 则R,=B A 从而B 必为无限集,由于A 为可数集,而任一无限集添加一个可数集其基数不变,故.R cB A B ===9.证明:A B B A \~\,则B A ~. 证明 因为),()\(),()\(B A A B B B A B A A ==又因为,)(\)(\,~,\~\∅==B A A B B A B A B A B A A B B A所以由保并性知),()\(~)()\(B A A B B A B A即.~B A10.证明:若,,D B B A <≤则D A <.证明 (反证法) 假设,D A = 则由已知可得,B D ≤ 这与D B <矛盾. 故有D A <. 11.证明:若c B A = ,则c A =或c B =.证明 假设,a B A == 则有,a B A = 这与c B A = 矛盾,故有c A =或c B =.12.证明:若c A k k =+∈Z ,则存在+∈Z k 使得c A k =.证明同上.习题2.11.若E 是区间]1,0[]1,0[⨯中的全体有理点之集,求bE E E E ,,,'.解 E =∅;[0,1][0,1]bE E E '===⨯。

实变函数参考答案.docx

实变函数参考答案.docx

依然是旧版书的题号19.证明:若E为有界集,根据第15题则存在E中的闭集F使得mF〉O,于是F为有界闭集。

假设Vx w 氏〉0,s"i(EnO(x,氏))=0 ,就有F U U0(X,Q),根据Borel 有XE F限覆盖定理知存在P,使得Fc(j0(x;,^ ),从而Z=1p P加F =加(尸门[^0(兀,心丿)<工加(£门0(兀,/心))=0,矛盾,故假设不成立,即需证结z=l i=\论成立。

co oo若E为无界集,设B k =O(,0,k),k=l,2,...,则E = E^R n =En(|J5J = °k=\ k=l由于协E〉0,于是必然存在k,使得m(EC\B k)>Q,而Eg为有界集,由上即知3x e E A , s.t.\/3 > 0, m((E A B,) A 0(x, ^)) > 0 ,故而对E 而言,相应结论亦成立。

注:此题当然可以不使用Borel有限覆盖定理而得到证明,但作为替代,我们需要求助于习题一的24题(旧版书),此时关于E是否有界的讨论就可以省掉。

在此,我们看到习题一的24题(旧版书)的好处,它能将不可数覆盖转化为至多可数覆盖,从而可以运用(外)测度的相关运算性质。

另外,课本上“提示:利用闭集套定理”,那样做也是可以的,但是感觉繁琐了些,就不在此写出了。

附:对《实变函数参考答案(3)》的补充(一)上次的7.题有个位置有点问题:应该将||处的九4改为m{B - A)“7证明:若mA =+00 ,则m(A U B) + m(A A B) = mA + mB两端皆是+ 8,等式自然成立。

若mA < +8 ,则加(4 U 5) = mA + m(B - A),mB = m(A Cl B) + m(B - A),于是m{A U B) + m{A Pl B) = mA + m(B -A) + mB - m(B - A) = mA + mB ,等式亦成立。

实变函数第二章点集答案

实变函数第二章点集答案



13.
用三进位无限小数表示康托集 P 中的数时,完全可以 用不着数字 1,试用此事实证明 P 的基数为 c. (提示:把 P 中的点与二进位无限小数作对应)
先用三进位有限小数来表示集 P 的余区间的端点(都属于 P) 则有
证明
1 2 ( , ) (0.1,0.2), 3 3 1 2 ( , ) (0.01,0.02), 9 9 7 8 ( , ) (0.1,0.2), 9 9
n 1

11.
证明: f ( x )为a, b 上连续函数的充要条件是对任意实数 c , 集 E x f ( x ) c 和E1 x f ( x) c 都是闭集.




证明 若: f ( x )为a, b 上连续函数,用第八题同样的方法得
E 和E1 是闭集. E 若E 和E1 是闭集,若有 x0 a, b ,不是f (x) 的连续点,
n
9. 证明:每个闭集必是可数个开集的交集; 每个开集可以表示成可数个开集的合集.
证明 设 F 是闭集,令 Gn x d ( x, F )

1 ,Gn 是开集 n
1 1 ,所以存在 y 0 F ,使 d ( x 0 , y 0 ) . n n 1 1 (否则,任意 y F , d ( x 0 , y ) ,则 d ( x 0 , F ) inf d ( x 0 , y ) , yF n n 1 与 d ( x0 , F ) 矛盾) 。 n
其中 ai (i 1,2, , n 1) 为 0 到 9 除 7 外的一切自然数,

a1 ,, an1 是取遍满足上述条件的各种可能的n 1 个数
记这些全体开区间为

实变函数课后习题答案_北大版_周民强

实变函数课后习题答案_北大版_周民强
1 [a, b]. 若令 En = {x ∈ [a, b] : fn (x) ≥ 2 }, 试求集合 lim En .
证: lim En = [a, b]\E.
n→∞ n→∞
n→∞
∀ x ∈ [a, b] \ E, ∵ lim fn (x) = 1, ∴ ∃N, ∀ n ≥ N, fn (x) ≥
n→∞ 1 , i.e. 2 n→∞ n→∞

{x ∈ [0, 1] : |f (x)| >
n=1
1 } n
=

+ − 1 < |f (x1 ) + f (x2 ) + · · · + f (xp )| ≤ M, p < nM , 所以 E1 则 p· n /n 只含有限个数, 同理 E1/n 也只含有限个数, 由此可得 E 可数.
n=1
+ (E1 /n
S (C, r3 )), S (P, r) 表示以 P 为圆心 r 为半径的球面 }, E 可数.
10. 设 E 是平面 R2 中的可数集, 试证明存在互不相交的集合 A 与 B , 使得 E = A ∩ B, 且任一平行于 x 轴的直线交 A 至多是有限个点, 任一平行于 y 轴的直线交 B 至多是有限 个点. 2
证: ∵ E 可数, ∴ E 中点的横坐标, 纵坐标集合也可数, 分别记为 X = {x1 , x2 , · · · , xn , · · · }, Y = {y1 , y2 , · · · , yn , · · · }, 如此就可记 E = {(xi , yj ) ∈ E : i, j ∈ N}, 作从 E 到 N2 的映 射 f : f ((xi , yj )) = (i, j ); 记 A1 = {(i, j ) : i ≤ j }, B1 = {(i, j ) : i > j }, 令 A = f −1 (A1 ), B = f −1 (B1 ) 即可. 11. 设 {fα (x)}α∈I 是定义在 [a, b] 上的实值函数族. 若存在 M > 0, 使得 |fα (x)| ≤ M, x ∈ [a, b], α ∈ I, 试证明对 [a, b] 中任一可数集 E , 总有函数列 {fαn (x)}, 存在极 限 lim {fαn (x)}, x ∈ E.

实变函数练习及答案-推荐下载

实变函数练习及答案-推荐下载

2、设 E Rn ,若 E 是有界
3、设 f x是 E 上的可测函数, mA 0 ,则 f x是 E A 上的
B. 充分条件;
D. 无关条件。
点集,则 E 至少有一个聚点。
4、设在 E 上,fn x依测度收敛于 f x,则存在fn x的子列fnk x ,使得在 E 上,
一、选择题
1、以下集合,(
A. 所有系数为有理数的多项式集合;
C. 单调函数的不连续点所成集合;
)是不可数集合。
实变函数练习及答案
2、设 E 是可测集, A 是不可测集, mE . 不可测集;
3、下列说法正确的是( )
B. [0,1] 中的无理数集合;
D. 以直线上互不相交的开区间为元素的集。
B. 可测集但测度未必为零; D. 以上都不对。
A. f (x) 在[a,b] L —可积 f (x) 在[a,b]L —可积;
B. f (x) 在[a,b] R —可积 f (x) 在[a,b]R —可积;
C. f (x) 在[a,b] L —可积 f (x) 在[a,b]R —可积;
数,则 fn x 几乎处处收敛于 f x是fn x 依测度收敛于 f x的( )
1
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术通关,1系电过,力管根保线据护敷生高设产中技工资术艺料0不高试仅中卷可资配以料置解试技决卷术吊要是顶求指层,机配对组置电在不气进规设行范备继高进电中行保资空护料载高试与中卷带资问负料题荷试2下卷2,高总而中体且资配可料置保试时障卷,各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看度并22工且22作尽22下可22都能22可地护以缩1关正小于常故管工障路作高高;中中对资资于料料继试试电卷卷保破连护坏接进范管行围口整,处核或理对者高定对中值某资,些料审异试核常卷与高弯校中扁对资度图料固纸试定,卷盒编工位写况置复进.杂行保设自护备动层与处防装理腐置,跨高尤接中其地资要线料避弯试免曲卷错半调误径试高标方中高案资等,料,编试要5写、卷求重电保技要气护术设设装交备备置底4高调、动。中试电作管资高气,线料中课并敷3试资件且、设卷料中拒管技试试调绝路术验卷试动敷中方技作设包案术,技含以来术线及避槽系免、统不管启必架动要等方高多案中项;资方对料式整试,套卷为启突解动然决过停高程机中中。语高因文中此电资,气料电课试力件卷高中电中管气资壁设料薄备试、进卷接行保口调护不试装严工置等作调问并试题且技,进术合行,理过要利关求用运电管行力线高保敷中护设资装技料置术试做。卷到线技准缆术确敷指灵设导活原。。则对对:于于在调差分试动线过保盒程护处中装,高置当中高不资中同料资电试料压卷试回技卷路术调交问试叉题技时,术,作是应为指采调发用试电金人机属员一隔,变板需压进要器行在组隔事在开前发处掌生理握内;图部同纸故一资障线料时槽、,内设需,备要强制进电造行回厂外路家部须出电同具源时高高切中中断资资习料料题试试电卷卷源试切,验除线报从缆告而敷与采设相用完关高毕技中,术资要资料进料试行,卷检并主查且要和了保检解护测现装处场置理设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

实变函数题库集答案

实变函数题库集答案

实变函数试题库及参考答案 本科一、题1.设,A B 为集合,则()\A B B =A B (用描述集合间关系的符号填写)2.设A 是B 的子集,则A ≤B (用描述集合间关系的符号填写)3.如果E 中聚点都属于E ,则称E 是闭集4.有限个开集的交是开集5.设1E 、2E 是可测集,则()12m E E ≤12mE mE +(用描述集合间关系的符号填写) 6.设n E ⊂是可数集,则*m E =07.设()f x 是定义在可测集E 上的实函数,如果1a ∀∈,()E x f x a ⎡⎤≥⎣⎦是可测集,则称()f x 在E 上可测8.可测函数列的上极限也是可测函数 9.设()()n f x f x ⇒,()()n g x g x ⇒,则()()n n f x g x +⇒()()f x g x +10.设()f x 在E 上L 可积,则()f x 在E 上可积11.设,A B 为集合,则()\B A A ⊃A (用描述集合间关系的符号填写) 12.设{}211,2,A k k =-=,则A =a (其中a 表示自然数集N 的基数) 13.设n E ⊂,如果E 中没有不属于E ,则称E 是闭集14.任意个开集的并是开集15.设1E 、2E 是可测集,且12E E ⊂,则1mE ≤2mE16.设E 中只有孤立点,则*m E =0 17.设()f x 是定义在可测集E 上的实函数,如果1a ∀∈,()E x f x a ⎡⎤<⎣⎦是可测,则称()f x 在E 上可测18.可测函数列的下极限也是可测函数 19.设()()n f x f x ⇒,()()n g x g x ⇒,则()()n n f x g x ⇒()()f x g x20.设()n x ϕ是E 上的单调增收敛于()f x 的非负简单函数列,则()E f x dx =⎰()lim nE n x dx ϕ→∞⎰ 21.设,A B 为集合,则()\A B B ⊃B22.设A 为有理数集,则A =a (其中a 表示自然数集N 的基数)23.设n E ⊂,如果E 中的每个点都是内点,则称E 是开集24.有限个闭集的交是闭集25.设n E ⊂,则*m E ≥0 26.设E 是n 中的区间,则*m E =E 的体积27.设()f x 是定义在可测集E 上的实函数,如果1a ∀∈,()E x f x a ⎡⎤≤⎣⎦是可测集,则称()f x 在E 上可测28.可测函数列的极限也是可测函数 29.设()()n f x f x ⇒,()()n g x g x ⇒..a e ,则()n f x ⇒()g x30.设()n f x 是E 上的非负可测函数列,且单调增收敛于()f x ,由勒维定理,有()E f x dx =⎰()lim n E n f x dx →∞⎰31.设,A B 为集合,则()\B A B A =A B32.设A 为无理数集,则A =c (其中c 表示自然数集[]0,1的基数)33.设n E ⊂,如果E 中没有不是内点的点,则称E 是开集34.任意个闭集的交是闭集35.设n E ⊂,称E 是可测集,如果n T ∀⊂,()**m T m TE =+()*c m T E 36.设E 是外测度为零的集合,且F E ⊂,则*m F =037.设()f x 是定义在可测集E 上的实函数,如果1a ∀∈,()E x a f x b ⎡⎤≤<⎣⎦是可测,(a b ≤)则称()f x 在E 上可测38.可测函数列的上确界也是可测函数39.设()()n f x f x ⇒,()()n g x g x ⇒..a e ,则()()n n f x g x ⇒()()f x g x40.设()()n f x f x ⇒,那么由黎斯定理,(){}n f x 有子列()k n f x ,使()()k n f x f x →..a e 于E 41.设,A B 为两个集合,则__c A B AB -.(等于) 42.设n E R ⊂,如果E 满足E E '⊆(其中E '表示E 的导集),则E 是闭.43.若开区间(,)αβ为直线上开集G 的一个构成区间,则(,)αβ满(i)(a,b)G ⊆ (ii),a G b G ∉∉44.设A 为无限集.则A 的基数__A a (其中a 表示自然数集N 的基数) 答案:≥45.设12,E E 为可测集,2mE <+∞,则1212(\)__m E E mE mE -. 答案:≥46.设()f x 是定义在可测集E 上的实函数,若对任意实数a ,都有[()]E xf x a >是可测集E 上的可测函数.47.设x 是E (R ⊆)的内点,则*__0m E . 答案>48.设{}()n f x 为可测集E 上的可测函数列,且()(),n f x f x x E ⇒∈,则由____黎斯__定理可知得,存在{}()n f x 的子列{}()k n f x ,使得.()()()k a e n f x f x x E →∈. 49.设()f x 为可测集E (n R ⊆)上的可测函数,则()f x 在E 上的L 积分值不一定存在且|()|f x 在E 上不一定L 可积.50.若()f x 是[,]a b 上的绝对连续函数,则()f x 是[,]a b 上的有界变差函数.51.设,A B 为集合,则___(\)A B B A A 答案=52.设n E R ⊂,如果E 满足0E E =(其中0E 表示E 的内部),则E 是开集53.设G 为直线上的开集,若开区间(,)a b 满足(,)a b G ⊆且,a G b G ∉∉,则(,)a b 必为G 的构成区间54.设{|2,}A x x n n ==为自然数,则A 的基数=a (其中a 表示自然数集N 的基数)55.设,A B 为可测集,B A ⊆且mB <+∞,则__(\)mA mB m A B - 答案 =56.设()f x 是可测集E 上的可测函数,则对任意实数,()a b a b <,都有[()]E x a f x b <<是可测集57.若()E R ⊆是可数集,则__0mE 答案=58.设{}()n f x 为可测集E 上的可测函数列,()f x 为E 上的可测函数,如果.()()()a e n f x f x x E →∈,则()()n f x f x ⇒x E ∈不一定成立59. 设()f x 为可测集()nE R ⊆上的非负可测函数,则()f x 在E 上的L 积分值一定存在 60.若()f x 是[,]a b 上的有界变差函数,则()f x 必可表示成两个递增函数的差(或递减函数的差)多项选择题(每题至少有两个以上的正确答案)1.设[]{}0,1E =中无理数,则( ACD )A E 是不可数集B E 是闭集C E 中没有内点D 1mE = 2.设n E ⊂是无限集,则( AB )A E 可以和自身的某个真子集对等B E a ≥(a 为自然数集的基数)C E '≠∅D *0mE >3.设()f x 是E 上的可测函数,则(ABD )A 函数()f x 在E 上可测B ()f x 在E 的可测子集上可测C ()f x 是有界的D ()f x 是简单函数的极限4.设()f x 是[],a b 上的有界函数,且黎曼可积,则(ABC )A ()f x 在[],a b 上可测B ()f x 在[],a b 上L 可积C ()f x 在[],a b 上几乎处处连续D ()f x 在[],a b 上几乎处处等于某个连续函数5.设n E ⊂,如果E 至少有一个内点,则( BD )A *m E 可以等于0B *0m E >C E 可能是可数集DE 不可能是可数集6.设n E ⊂是无限集,则( AB )A E 含有可数子集B E 不一定有聚点C E 含有内点DE 是无界的7.设()f x 是E 上的可测函数,则( BD )A 函数()f x 在E 上可测B ()f x 是非负简单函数列的极限C ()f x 是有界的D ()f x 在E 的可测子集上可测8.设()f x 是[],a b 上的连续函数,则( ABD )A ()f x 在[],a b 上可测B ()f x 在[],a b 上L 可积,且()()()()[],ba ab R f x dx L f x dx =⎰⎰C ()f x 在[],a b 上L 可积,但()()()()[],ba ab R f x dx L f x dx ≠⎰⎰D ()f x 在[],a b 上有界9.设()D x 是狄利克莱函数,即()[][]10,100,1x D x x ⎧⎪=⎨为中有理数为中无理数,则( BCD )A ()D x 几乎处处等于1B ()D x 几乎处处等于0C ()D x 是非负可测函数 D ()D x 是L 可积函数10.设n E ⊂,*0m E =,则( ABD )A E 是可测集B E 的任何子集是可测集C E 是可数集DE 不一定是可数集11.设n E ⊂,()10E cx Ex x E χ∈⎧=⎨∈⎩,则( AB ) A 当E 是可测集时,()E x χ是可测函数B 当()E x χ是可测函数时,E 是可测集C 当E 是不可测集时,()E x χ可以是可测函数D 当()E x χ是不是可测函数时,E 不一定是可测集12.设()f x 是(),a b 上的连续函数,则(BD )A ()f x 在(),a b 上有界B ()f x 在(),a b 上可测C ()f x 在(),a b 上L 可积D ()f x 在(),a b 上不一定L 可积13.设()f x 在可测集E 上L 可积,则(AC )A ()f x +,()f x -都是E 上的非负可积函数B ()f x +和()f x -有一个在E 上的非负可积C ()f x 在E 上L 可积D ()f x 在E 上不一定L 可积14.设n E ⊂是可测集,则( AD )A c E 是可测集B mE <+∞C E 的子集是可测集DE 的可数子集是可测集15.设()()n f x f x ⇒,则( CD )A ()f x 几乎处处收敛于()f xB ()n f x 一致收敛于()f xC ()n f x 有子列()n f x ,使()()n f x f x →..a e 于ED ()n f x 可能几乎处处收敛于()f x16.设()f x 是[],a b 上有界函数,且L 可积,则(BD )A ()f x 在[],a b 上黎曼可积B ()f x 在[],a b 上可测C ()f x 在[],a b 上几乎处处连续D ()f x 在[],a b 上不一定连续17. 设{[0,1]}E =中的无理点,则(CD)(A )E 是可数集 (B )E 是闭集 (C )E 中的每个点均是聚点 (D )0mE >18. 若E (R ⊆)至少有一个内点,则(BD )(A )*m E 可以等于0 (B )*0m E = (C )E 可能是可数集 (D )E 不可能是可数集19.设[,]E a b ⊆是可测集,则E 的特征函数()E x χ是(ABC )(A )[,]a b 上的符号函数 (C )E 上的连续函数(B )[,]a b 上的可测函数 (D )[,]a b 上的连续函数20. 设()f x 是[,]a b 上的单调函数,则(ACD )(A )()f x 是[,]a b 上的有界变差函数 (B )()f x 是[,]a b 上的绝对连续函数(C )()f x 在[,]a b 上几乎处处收敛 (D )()f x 在[,]a b 上几乎处处可导21.设{[0,1]}E =中的有理点,则( AC )(A )E 是可数集 (B )E 是闭集(C )0mE = (D )E 中的每一点均为E 的内点22.若()E R ⊆的外测度为0,则( AB )(A )E 是可测集(B )0mE =(C )E 一定是可数集(D )E 一定不是可数集23.设mE <+∞,{}()n f x 为E 上几乎处处有限的可测函数列,()f x 为E 上几乎处处有限的可测函数,如果()(),()f x f x x E ⇒∈,则下列哪些结果不一定成立( ABCD )(A )()E f x dx ⎰存在(B )()f x 在E 上L -可积(C ).()()()a en f x f x x E →∈(D )lim ()()n E E n f x dx f x dx →∞=⎰⎰24.若可测集E 上的可测函数()f x 在E 上有L 积分值,则( AD )(A )()()f x L E +∈与()()f x L E -∈至少有一个成立(B )()()f x L E +∈且()()f x L E -∈(C )|()|f x 在E 上也有L -积分值(D )|()|()f x L E ∈三、单项选择1.下列集合关系成立的是( A )A ()\B A A =∅B ()\A B A =∅C ()\A B B A =D ()\B A A B =2.若n R E ⊂是开集,则( B )A E E '⊂B 0E E =C E E =DE E '=4.设(){}n f x 是E 上一列非负可测函数,则( B ) A ()()lim lim n n E E n n f x dx f x dx →∞→∞≤⎰⎰ B ()()lim lim n n E E n n f x dx f x dx →∞→∞≤⎰⎰ C ()()lim lim n n E E n n f x dx f x dx →∞→∞≤⎰⎰ D ()()lim lim n n E E n n f x dx f x →∞→∞≤⎰⎰5.下列集合关系成立的是( A )A c c A A αααα∈Λ∈Λ⎛⎫= ⎪⎝⎭B ccA A αααα∈Λ∈Λ⎛⎫= ⎪⎝⎭C c c A A αααα∈Λ∈Λ⎛⎫= ⎪⎝⎭D c cA A αααα∈Λ∈Λ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭6.若n R E ⊂是闭集,则( C )A E E '=B E E '⊂C E E '⊂D 0E E =A E 为闭集B E 是不可测集C mE =+∞D 0mE =9.下列集合关系成立的是(B )A c c A A αααα∈Λ∈Λ⎛⎫= ⎪⎝⎭BccA A αααα∈Λ∈Λ⎛⎫= ⎪⎝⎭C c c A A αααα∈Λ∈Λ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭D cc cA A αααα∈Λ∈Λ⎛⎫=⎪⎝⎭10.设n R E ⊂,则( A ) A E E ⊃B E E '⊂C E E '⊂D E E =11.设P 为康托集,则( B )A P 是可数集B 0mP =C P 是不可数集D P 是开集13.下列集合关系成立的是( A )A 若AB ⊂则c c B A ⊂B 若A B ⊂则c c A B ⊂C 若A B ⊂则A B B =D 若A B ⊂则A B B =14.设n R E ⊂,则( A ) A ()E E =B 0E E ⊃C E E '⊂D E E '⊂15.设(){},001E x x =≤≤,则( B )A 1mE =B 0mE =C E 是2R 中闭集DE 是2R 中完备集16.设()f x ,()g x 是E 上的可测函数,则( B )A ()()E x f x g x ⎡⎤≥⎣⎦不一定是可测集B ()()E x f x g x ⎡⎤≠⎣⎦是可测集C ()()E x f x g x ⎡⎤≤⎣⎦是不可测集D ()()E x f x g x ⎡⎤=⎣⎦不一定是可测集17.下列集合关系成立的是(A )(A )(\)A B B A B = (B )(\)A B B A =(C )(\)B A A A ⊆ (D )\B A A ⊆18. 若()n E R ⊆是开集,则 ( B )(A )E 的导集E ⊆ (B )E 的开核E =(C )E E = (D )E 的导集E =..19. 设P 的康托集,则(C)(A )P 为可数集 (B )P 为开集(C )0mP = (D )1mP =20、设E 是1R 中的可测集,()x ϕ是E 上的简单函数,则 ( D )(A )()x ϕ是E 上的连续函数 (B )()x ϕ是E 上的单调函数(C )()x ϕ在E 上一定不L 可积 (D )()x ϕ是E 上的可测函数21.下列集合关系成立的是( A )(A )()()()A B C A B A C = (B )(\)A B A =∅(C )(\)B A A =∅ (D )A B A B ⊆22. 若()n E R ⊆是闭集,则 ( B )(A )0E E = (B )E E =(C )E E '⊆ (D )E E '=23. 设Q 的有理数集,则( C )(A )0mQ > (B )Q 为闭集(C )0mQ = (D )Q 为不可测集24.设E 是n R 中的可测集,()f x 为E 上的可测函数,若()0Ef x dx =⎰,则 ( A )(A )在E 上,()f x 不一定恒为零 (B )在E 上,()0f x ≥(C )在E 上,()0f x ≡ (D )在E 上,()0f x ≠四、判断题1. 可数个闭集的并是闭集. ( × )2. 可数个可测集的并是可测集. ( √ )3. 相等的集合是对等的. ( √ )4. 称()(),f x g x 在E 上几乎处处相等是指使()()f x g x ≠的x 全体是可测集. ( √ )5. 可数个F σ集的交是F σ集. ( × )6. 可数个可测函数的和使可测函数. ( √ )7. 对等的集合是相等的. (× )8. 称()(),f x g x 在E 上几乎处处相等是指使()()f x g x =的x 全体是零测集. ( × )9. 可数个G σ集的并是G σ集. ( √ )..11. 对等的集合不一定相等. ( √ )12. 称()(),f x g x 在E 上几乎处处相等是指使()()f x g x ≠的x 全体是零测集.( √ )13. 可数个开集的交是开集 ( × )14. 可测函数不一定是连续函数. ( √ )15. 对等的集合有相同的基数. ( √ )16. 称()(),f x g x 在E 上几乎处处相等是指使()()f x g x ≠的x 全体的测度大于0 ( × )17. 可列个闭集的并集仍为闭集 ( × )18. 任何无限集均含有一个可列子集 ( √ )19. 设E 为可测集,则一定存在G σ集G ,使E G ⊆,且()\0m G E =. ( √ )20. 设E 为零测集,()f x 为E 上的实函数,则()f x 不一定是E 上的可测函数( × )21. 设()f x 为可测集E 上的非负可测函数,则()()f x L E ∈ ( × )22. 可列个开集的交集仍为开集 (× )23. 任何无限集均是可列集 ( × )24. 设E 为可测集,则一定存在F σ集F ,使F E ⊆,且()\0m E F =. ( √ )25. 设E 为零测集,则()f x 为E 上的可测函数的充要条件是:∀实数a 都有()E xf x a ⎡≥⎤⎣⎦是可测集 ( √ )26. 设()f x 为可测集E 上的可测函数,则()Ef x dx ⎰一定存在. ( × )五、简答题1. 简述无限集中有基数最小的集合,但没有最大的集合.答:因为任何无限集均含有可数集,所以可数集是无限集中基数最小的,但无限集没有基数最大的,这是由于任何集合A ,A 的幂集2A的基数大于A 的基数. 2. 简述点集的边界点,聚点和内点的关系.答: 内点一定是聚点,边界点不一定是聚点,点集的边界点或为孤立点或为聚点.3. 简单函数、可测函数与连续函数有什么关系?答:连续函数一定是可测函数;简单函数一定是可测函数;简单函数可表示成简单函数或连续函数的极限4. [],a b 上单调函数与有界变差函数有什么关系?答:单调函数是有界变差函数,有界变差函数可表示成两个单调增函数之差.5. 简述集合对等的基本性质.答:A A ;若A B ,则B A ;若A B ,且B C ,则A C .6. 简述点集的内点、聚点、边界点和孤立点之间关系.答:内点一定是聚点,内点不是孤立点,边界点由点集的孤立点和聚点组成.7. 可测集与开集、G σ集有什么关系?答:设E 是可测集,则0ε∀>,∃开集G ,使G E ⊃,使()\m G E ε<,或∃G 集G ,使G E ⊃,且()\0m G E =.8. [],a b 上单调函数、有界变差函数与绝对连续函数有什么关系?答:绝对连续函数是有界变差函数,反之不然;有界变差函数是单调增函数的差,而单调函数是有界变差函数. 9. 简述证明集合对等的伯恩斯坦定理. 答:若AB B *⊂,又B A A *⊂,则A B10. 简述1R 中开集的结构.答: 设G 为1R 中开集,则G 可表示成1R 中至多可数个互不相交的开区间的并. 11. 可测集与闭集、F σ集有什么关系?答:设E 是可测集,则0ε∀>,∃闭集F E ⊂,使()\m E F ε<或∃F σ集F E ⊂,使()\0m E F =.12. 为什么说绝对连续函数几乎处处可微?答:因为绝对连续函数是有界变差,由若当分解定理,它可表示成两个单调增函数的差,而单调函数几乎处处有有限的导数,所以绝对连续函数几乎处处可微.13. 简述连续集的基数大于可数集的基数的理由.答:连续集是无限集,因而包含可数子集,又连续集是不可数集,所以连续集的基数大于可数集的基数. 14. 简述nR 中开集的结构.答:nR 中开集可表示成可数个互不相交的半开半闭区间的并 15. 可测函数列几乎处处收敛、依测度收敛和近一致收敛的关系? 答:设()(),n f x f x 是可测集E 上的一列可测函数,那当mE <+∞时,()(),.n f x f x a e →于E ,必有()()n f x f x ⇒.反之不成立,但不论mE <+∞还是mE =+∞,(){}n f x 存在子列(){}k n f x ,使()(),.k n f x f x a e →于E .当mE <+∞时,()(),.n f x f x a e →于E ,由Egoroff 定理可得()n f x 近一致收敛于()f x ,反之,无需条件mE <+∞,结论也成立.16. 为什么说有界变差函数几乎处处可微?答:由若当分解定理,有界变差函数可表示成两个单调增函数的差,而单调函数几乎处处可微,所以有界变差函数几乎处处可微.17. 简述无穷多个开集的交集是否必为开集? 答:不一定,如[]1111,11,1n n n +∞=⎛⎫---+=- ⎪⎝⎭18. 可测集E 上的可测函数与简单函数有什么关系?答:简单函数必是可测函数但可测函数不一定是简单函数,可测函数一定可表示成简单函数列的极限形式. 19.[],a b 上的有界变差函数与单调函数有什么关系?答:单调函数必为有界变差函数但有界变差函数不一定为单调函数,有界变差函数可表示成单调函数之差. 20. 简述无穷多个闭集的并集是否必为闭集?答:不一定 如()1111,11,1n n n +∞=⎡⎤---+=-⎢⎥⎣⎦ 21. 可测集E 上的可测函数与连续函数有什么关系?答:E 上连续函数必为可测函数但E 上的可测函数不一定时连续函数,E 上可测函数在E 上是“基本上”连续的函数 22.[],a b 上的绝对连续函数与有界变差函数有什么关系?答:绝对连续函数必为有界变差函数但有界变差函数不一定为绝对连续函数六、计算题1. 设()[]230,1\xx E f x xx E⎧∈⎪=⎨∈⎪⎩,其中E 为[]0,1中有理数集,求()[]0,1f x dx ⎰.解:因为0mE =,所以()3,.f x x a e =于[]0,1,于是()[][]30,10,1f x dx x dx =⎰⎰,而3x 在[]0,1上连续,从而黎曼可积,故由黎曼积分与勒贝格积分的关系,[]()41331000,11|44x x dx R x dx ===⎰⎰ 因此()[]0,114f x dx =⎰. 2. 设{}n r 为[]0,1中全体有理数,(){}[]{}12121,,00,1\,,n n n x r r r f x x r r r ∈⎧⎪=⎨∈⎪⎩,求()[]0,1lim n n f x dx →∞⎰.解:显然()n f x 在[]0,1上可测,另外由()n f x 定义知,()0,.n f x a e =于[]0,1()1n ≥ 所以()[][]0,10,100nf x dx dx ==⎰⎰因此()[]0,1lim0nn f x dx →∞=⎰.3. 设()[]2sin 0,1\xx P f x x x P ∈⎧=⎨∈⎩,P 为康托集,求()[]0,1f x dx ⎰.解:因为0mP =,所以()2,.f x x a e =于[]0,1于是()[][]20,10,1f x dx x dx =⎰⎰而2x 在[]0,1上连续,所以[]()31221000,11|33x x dx R x dx ===⎰⎰ 因此()[]0,113f x dx =⎰.4. 设()()[]22sin ,0,11n nx nx f x x n x =∈+,求()[]0,1lim n n f x dx →∞⎰. 解:因为()n f x 在[]0,1上连续,所以可测()1,2,n =又()()[]2222sin 1,0,1,1,2,1122n nx nx nx nx f x x n n x n x nx =≤≤=∈=++而22lim01n nxn x →∞=+,所以()lim 0n n f x →∞=.因此由有界控制收敛定理()[]()[][]0,10,10,1limlim 00nnn n f x dx f x dx dx →∞→∞===⎰⎰⎰5. 设()3cos 0,\2x x E f x x x E π⎧∈⎪=⎨⎡⎤∈⎪⎢⎥⎣⎦⎩,E 为0,2π⎡⎤⎢⎥⎣⎦中有理数集,求()0,2f x dx π⎡⎤⎢⎥⎣⎦⎰. 解:因为0mE =,所以()cos ,.f x x a e =于[]0,1 于是()0,0,22cos f x dx xdx ππ⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦=⎰⎰而cos x 在0,2π⎡⎤⎢⎥⎣⎦上连续,所以黎曼可积,由牛顿莱布尼公式 []()22000,1cos cos sin |1xdx R xdx x ππ===⎰⎰因此()0,21f x dx π⎡⎤⎢⎥⎣⎦=⎰6. 设()()[]22cos ,0,11n nx nx f x x n x =∈+,求()[]0,1lim n n f x dx →∞⎰.解:因为()n f x 在[]0,1上连续,所以可测()1,2,n =又()()[]2222cos 1,0,1,1,2,1122n nx nx nx nx f x x n n x n x nx =≤≤=∈=++而22lim01n nxn x →∞=+,所以()lim 0n n f x →∞=.因此由有界控制收敛定理()[]()[][]0,10,10,1limlim 00nnn n f x dx f x dx dx →∞→∞===⎰⎰⎰7. 设()[]3sin 0,1\xx P f x xx P⎧∈⎪=⎨∈⎪⎩,P 为康托集,求()[]0,1f x dx ⎰.解:因为0mP =,所以(),.f x x a e =于[]0,1 于是()[][]0,10,1f x dx xdx =⎰⎰而x 在[]0,1上连续,所以[]()2121000,11|22x xdx R x dx ===⎰⎰ 因此()[]0,112f x dx =⎰. 8. 求()()0,ln limcos xn n x n e xdx n -→∞+⎰.解:令()()()()0,ln cos xn n x n f x x e x nχ-+= 显然()n f x 在()0,+∞上可测,且()()()()0,0,ln cos xn n x n e xdx f x dx n -+∞+=⎰⎰ 因为()()()()ln ln cos ,0,,1,2,x n x n x n f x e x x n n n-++≤≤∀∈+∞=不难验证()()ln n x n g x n+=,当n 足够大时,是单调递减非负函数,且 ()lim 0n n g x →∞=,所以()()()()()()0,0,0,ln limlim lim n n n n n x n dx g x dx g x n →∞→∞→∞+∞+∞+∞+==⎰⎰⎰()0,00dx +∞==⎰由勒贝格控制收敛定理()()0,lim0n n f x dx →∞+∞=⎰故()()0,ln lim cos 0x n n x n e xdx n -→∞+=⎰. 9. 设()[][]101001x D x x ⎧⎪=⎨⎪⎩为,上的有理点为,上的无理点,求()[]01D x dx ⎰,.证明 记1E 是[]0,1中有理数集,2E 是[]0,1中无理数集,则[]12120,1,E E E E ==∅,120,1mE mE ==,且()1210E E D x χχ=+,所以()[]120,1100D x dx mE mE =+=⎰.10 求()0ln limcos xn x n e xdx n+∞-→∞+⎰. 证明 易知()ln limcos 0xn x n e x n-→∞+=对任意0,1x n ≥≥,()()ln ln cos x x n x n e x n n-++≤ 设()ln ()x y f y y +=,0y >,则()2ln ()yx y x yf y y -++'=,当3y ≥时,()1ln yx y x y<<++,()0f y '<. 则()ln ()x n f n n+=是单调减函数且非负(3n ≥); 又()ln 1limlim 0n n x n nx n →∞→∞+==+,由Levi 单调收敛定理得()()00ln ln lim lim 00n n x n x n dx dx dx n n+∞+∞+∞→∞→∞++===⎰⎰⎰,即()ln ()x n L E n +∈,再由Lebsgue 控制收敛定理得()()000ln ln lim cos lim cos 00x xn n x n x n e xdx e xdx dx n n+∞+∞+∞--→∞→∞++===⎰⎰⎰11. 设()[]230,1xx Pf x xx P ⎧∈⎪=⎨∈-⎪⎩,其中P 为康托集,求()[]01f x dx ⎰,.解:因为P 为康托集,故0mP =,[]()0,1\1m P = 所以()[]320,1P P f x x x χχ-=+ 所以()[][]()2330,10,1f x dx x mP x m P x=+-=⎰12. 求()[]22,0,11n nxf x E n x ==+,求()lim n n Ef x dx →∞⎰.解:易知:[]()22lim00,11n nxx n x →∞=∈+令()()2221,1n nx f x g x n x x ==+, 则()()()22232222222221110111n nx n x nx n x nx g x f x nx nx x n x x x n x n x+-+--=-==≥+++ 所以()()[]()00,1,1n f x g x x n ≤≤∈≥ 又因为()g x 在[]0,1上Lebesgue 可积, 所以由控制收敛定理,得 22lim 001n E Enxdx dx n x →∞==+⎰⎰七、证明题1.证明集合等式:(\)A B B A B =证明(\)()c A B B A B B =()()()c c A B A B B A BB B A B ===2.设E 是[0,1]中的无理数集,则E 是可测集,且1mE =证明 设F 是[0,1]中的有理数集,则F 是可数集,从而*0m F =,因此F 是可测集,从而cF 可测,又[0,1]\[0,1]c E F F ==,故E 是可测集.由于EF =∅,所以1[0,1]()0m m E F mE mF mF ===+=+,故1mF =3.设(),()f x g x 是E 上的可测函数,则[|()()]E x f x g x >是可测集 证明 设{}n r 为全体有理数所成之集,则()11[|()()][|()()][|()][|()]n n n n n E x f x g x E x f x r g x E x f x r E x g x r ∞∞==>=≥>=≥<因为(),()f x g x 是E 上的可测函数,所以[|()]n E x f x r ≥,[|()]n E x g x r <是可测集,1,2,n =,于是由可测集性质知[|()()]E x f x g x >是可测集4.设()f x 是E 上的可测函数,则对任何常数0a >,有1[|()|]|()|EmE x f x a f x dx a ≥≤⎰ 证明 因为()f x 在E 上可测,所以|()|f x 在E 上非负可测,由非负可测函数积分性质,[|()|][|()|]|()||()|E x f x a E x f x a Eadx f x dx f x dx ≥≥≤≤⎰⎰⎰而[|()|][|()|]E x f x a adx a mE x f x a ≥=⋅≥⎰,所以1[|()|]|()|E mE x f x a f x dx a≥≤⎰ 5.设()f x 是E 上的L -可积函数,{}n E 是E 的一列可测子集,且lim 0n n mE →∞=,则lim ()0nE n f x dx →∞=⎰证明 因为lim 0n n mE →∞=,所以0,1N δ∀>∃≥,当n N ≥时,n mE δ<,又()f x 在E 上L -可积,所以由积分的绝对连续性,0,0,εδ∀>∃>当,e E me δ⊂<时|()|ef x dx ε<⎰于是当n N ≥时,n mE δ<,因此|()|nE f x dx ε<⎰,即lim ()0nE n f x dx →∞=⎰6.证明集合等式:\(\)A A B A B =证明 \(\)()(())()c c cc c cA AB AA B A A B A A B ===()()c AA AB A B ==7.设12,A A 是[0,1]的可测子集,且121mA mA +>,则12()0m A A >证明 因为12[0,1],[0,1]A A ⊂⊂,所以12[0,1]A A ⊂,于是12()[0,1]1m A A m ≤=另一方面,121122[\()]A A A A A A =,所以()12112211221122()[\()][\()]()m A A m A A A A m A A A mA mA m A A mA ==+=-+ 于是121212()()0m A A mA mA m A A =+->8.设()f x 是定义在可测集nE R ⊂上的实函数,n E 为E 的可测子集(1,2,n =),且1n n E E ∞==,则()f x 在E 上可测的充要条件是()f x 在每个n E 上可测 证明 对任何实数a ,因为11[|()][|()]([|()])n nn n E x f x a E x f x a E E x f x a ∞∞==>=>=>所以()f x 在E 上可测的充要条件是对每个1,2,n =,()f x 在每个n E 上可测9.设()f x 是E 上的可测函数,则对任何常数0a >,有()[|()]af x EmE x f x a e e dx -≥≤⎰证明 因为()f x 在E 上可测,所以()f x e是非负可测函数,于是由非负可测函数积分性质,()()[|()][|()]a f x f x E x f x a E x f x a Ee dx e dx e dx ≥≥≤≤⎰⎰⎰而[|()][|()]a a E x f x a e dx e mE x f x a ≥=⋅≥⎰,所以 ()[|()]af x EmE x f x a ee dx -≥≤⎰10.设()f x 是E 上的可积函数,{}n E 为E 的一列可测子集,mE <+∞,如果lim n n mE mE →∞= 则lim()()nE En f x dx f x dx →∞=⎰⎰证明 因()f x 在E 上L -可积,由积分的绝对连续性知,对任意0ε>,存在0δ>,对任何A E ⊆,当mA δ<时有|()|Af x dx ε<⎰,由于lim n n mE mE →∞=<+∞,故对上述的0δ>,存在0k ,当0n k >时n E E ⊆,且有()n n mE mE m E E δ-=-<,于是|()()||()|nnEE E E f x dx f x dx f x dx ε--=<⎰⎰⎰,即 lim()()nE En f x dx f x dx →∞=⎰⎰11.证明集合等式:()\(\)(\)A B C A C B C =证明 ()\()()()(\)(\)c c c AB C A B C A C B C A C B C ===12.设nE R ⊂是零测集,则E 的任何子集F 是可测集,且0mF =证明 设F E ⊂,*0m E =,由外测度的单调性和非负性,*00m F mE ≤≤=,所以*0m F =,于是由卡氏条件易知F 是可测集13.设(),(),(),()n n f x g x f x g x 是E 上几乎处处有限的可测函数,且()()n f x f x ⇒,()()n g x g x ⇒,则()()()()n n f x g x f x g x +⇒+.证明 对任何正数0σ>,由于|(()())(()())||()()||()()|n n n n f x g x f x g x f x f x g x g x +-+≤-+-所以[|(()())(()())|]n n E x f x g x f x g x σ+-+≥[|()()|][|()()|]22n n E x f x f x E x g x g x σσ⊂-≥-≥于是[|(()())(()())|]n n mE x f x g x f x g x σ+-+≥[|()()|][|()()|]22n n mE x f x f x mE x g x g x σσ≤-≥+-≥0()n →→∞故()()()()n n f xg x f x g x +⇒+ 14.设(),()f x g x 是E 上L -E 上也是L -可积的证明 因(),()f x g x 是E 上L -可积,所以|()|,|()|f x gx 在E 上L -可积,从而|()||()|f x g x +L -可积,|()||()|f x g x ≤=+ E 上L -可积15.设()f x 是可测集E 上的非负可测函数,如果()0Ef x dx =⎰,则()0.f x a e =于E证明 反证,令[|()0]A E x f x =>,则由()f x 的可测性知,A 是可测集.下证0mA =,若不然,则0mA >由于11[|()0][|()]n A E x f x E x f x n ∞==>=≥,所以存在1N ≥,使1[|()]0mE x f x d N≥=> 于是11[|()][|()]111()()[|()]0EE x f x E x f x NNd f x dx f x dx dx mE x f x N N N N ≥≥≥≥=≥=>⎰⎰⎰因此()0Ef x dx >⎰,矛盾,故()0.f x a e =于E16.证明等式:\()(\)(\)A B C A B A C =证明\()()()()()(\)(\)c cc c c A B C A B C A B C A B A C A B A C ====17.设n E R ⊂是有界集,则*m E <+∞.证明 因为E 是有界集,所以存在开区间I ,使E I ⊂由外测度的单调性,**m E m I ≤,而*||m I I =<+∞(其中||I 表示区间I 的体积),所以*m E <+∞18.1R 上的实值连续函数()f x 是可测函数证明 因为()f x 连续,所以对任何实数a ,{|()}x f x a >是开集,而开集为可测集,因此()f x 是可测函数 19.设mE <+∞,函数()f x 在E 上有界可测,则()f x 在E 上L -可积,从而[,]a b 上的连续函数是L -可积的 证明 因为()f x 在E 上有界可测,所以存在0M >,使|()|f x M <,x E ∈,|()|f x 是非负可测函数,由非负可测函数的积分单调性,|()|EEf x dx Mdx M mE <=⋅<+∞⎰⎰故|()|f x 在E 上L -可积,从而()f x 在E 上L -可积 因为[,]a b 上的连续函数是有界可测函数,所以L -可积的 20.设()n f x (1,2,n =)是E 上的L -可积函数,如果lim|()|0nn E n f x dx →∞=⎰,则()0n f x ⇒证明 对任何常数0σ>,[|()|][|()|]|()|n n n E x f x mE x f x f x dx σσσ≥⋅≥≤⎰所以 [|()|]1[|()|]|()|n n n E x f x mE x f x f x dx σσσ≥≥≤⎰1|()|0()nEfx dx n σ≤→→∞⎰因此 ()0n f x ⇒ 21. 证明集合等式 :()()()\\\A B C A C B C =.证明 ()()()()()()\\\c c c A B C A B C A C BC A C B C ===22. 设[]{}00,1E =中的有理点,则0E为可测集且00mE =.证明 因为0E 为可数集,记为{}012,,,n E r r r =,0ε∀>,取()11,1,2,22n n n n n I r r n εε++⎛⎫=--= ⎪⎝⎭ 显然 01n n E I +∞=⊂,所以0011102n n n n n n E I m E I εε+∞+∞+∞*===⊂≤≤==∑∑,让0ε→,得00m E *=.n T R ∀∈,由于()()00c T TE T E = 所以()()00c m T m TE m T E ***≤+. 又00,0c T E T m E *⊆=,所以()()()000c c m T m T E m T E m T E ****≥=+.故()()00c m T m T E m T E ***=+故0E 为可测集,且00mE =23. 证明:1R 上的实值连续函数()f x 必为1R 上的可测函数 证明 1,a b R ∀∈,不妨假设a b <,因为()f x 是1R 上的连续函数,故()f x 是[],a b 上的连续函数,记[],F a b =,由()f x 在F 上连续,则(),M m m M ∃<,使()m f x M ≤≤,则显然易证,()1,R F f αα∀∈≥是闭集,即()f x 为[],a b 上的可测函数,由,a b 的任意性可知,()f x 是1R 上的可测函数. 24. 设()()f x L E ∈,{}n E 为E 的一列可测子集,mE <+∞ ,如果lim n n mE mE →∞=,则()()lim n n E Ef x dx f x dx →∞=⎰⎰. 证明 因()f x 在E 上L 可积,由积分的绝对连续性知,对任意0ε>,存在0δ>,对任何A E ⊆,当mA δ<时有|()|A f x dx ε<⎰,由于lim n n mE mE →∞=<+∞,故对上述的0δ>,存在0k ,当0n k >时n E E ⊆,且有()n n mE mE m E E δ-=-<,于是\|()()||()|nn E E E E f x dx f x dx f x dx ε-=<⎰⎰⎰,即 lim ()()n E En f x dx f x dx →∞=⎰⎰ 25. 证明集合等式 :()()()\\\A BC A B A C =.证明()()()()()()()\\\c c c c c A B C AB C A B C A B A C A B A C ====26. 设1E R ⊆,且0m E *=,则E 为可测集. 证明 n T R ∀∈,由于()()n c T R T TE T E ∀∈= 所以()()c m T m TE m T E ***≤+. 又,0c T E T m E *⊆=,所以()()()c c m T m T E m T E m T E ****≥=+.故()()c m T m TE m T E ***=+所以E 为可测集 27. 证明:1R 上的单调函数()f x 必为可测函数.证明 1,a b R ∀∈,不妨假设a b <,因为()f x 是1R 上的单调函数,不妨设()f x 为单调增函数,故()f x 是[],a b 上的单调增函数,即()()121212,,,x x E x x f x f x ∀∈<≤,则1R α∀∈,有1) 当()sup x E f x α∈≤时,();E xf x α⎡>⎤=∅⎣⎦2) 当()inf x E f x α∈>时,();E x f x E α⎡>⎤=⎣⎦3) 当()()inf sup x E x E f x f x α∈∈≤<时,必有10x ER ∈,使 ()()000,f x f x αα+>≤或()()000,0f x f x αα+≥-<.由()f x 的单调增知,()0(),E xf x E x α⎡>⎤=+∞⎣⎦或[)0,E x +∞. 在所有情况下,()E x f x α⎡>⎤⎣⎦都可测.即()f x 是[],a b 上的可测函数.由由,a b 的任意性可知,()f x 是1R 上的可测函数. 28. 设()f x 为可测集nE R ⊆上的可测函数,则()()f x L E ∈的充要条件()()f x L E ∈. 证明 必要性 若()()f x L E ∈,因为()()()f x fx f x +-=+,且()()f x L E ∈ 所以()(),E E f x dx f x dx +-⎰⎰中至少有一个是有限值, 故()()()EE E f x dx f x dx f x dx +-=+⎰⎰⎰即()()f x L E ∈充分性 若()()f x L E ∈因为()()()f x f x f x +-=-,且()()f x L E ∈所以()(),E E f x dx f x dx +-⎰⎰中至少有一个是有限值, 故()()()E EE f x dx f x dx f x dx +-=-⎰⎰⎰,即()()f x L E ∈.。

实变函数参考答案

实变函数参考答案

习题1解答(A 组题)一、选择题1、C ;2、A ;3、D ;4、C ;5、C ;6、A ;7、A ;8、B ;9、D ;10、C 二、判断题1、×;2、×;3、×;4、×;5、√;6、×;7、×;8、×;9、×; 10、× 三、填空题1、=;2、∅;3、()0,1;4、[]1,1-;5、,EF EF ;6、()2,3-;7、≥;8、c9、设有两个集合A 和B ,若≤A B ,≥A B ,则=A B 。

四、证明题1、(1)()()()()()\\====C C CC A A B A A B AAB A A AB A B ;(2)()()()()()()\\==C C CC A B CD A B CD A C B D()()()()\==CA C BD A C BD 。

2、111\lim \∞∞∞∞∞∞→∞======⎛⎫⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭C Cn n n n n N n N N n N N n N A B A B A B AB ()111lim(\)∞∞∞∞∞∞→∞======⎛⎫⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭C C C n n n n n N n N N n N N n N A B A B A B A B 。

同理可证第2个集合等式。

3、当A =∅时,{}∅张成的环和σ-环均为它自身;张成的代数和σ-代数均为{},X ∅。

当A X =时,{}X张成的环、σ-环、代数和σ-代数均为{},X ∅。

当A 为X 的非空真子集时,{}A 张成的环和σ-环均为{},A ∅;张成的代数和σ-代数均为{},,,cA A X∅。

4、首先,令()()tan 12π⎡⎤=-⎢⎥⎣⎦f x x ,由于()f x 是()0,1上的严格单调递减的连续函数,且()()()0,10,=+∞f,所以()f x 是()0,1到()0,+∞的一一映射。

《实变函数》习题库参考答案

《实变函数》习题库参考答案

《实变函数》习题库参考答案《实变函数》习题库参考答案一、判断题 1、( √ )理由:由内点定义知,存在A P U ?),(0δ,从而对任意的)(0P U ,必含有A 中无穷多个点。

满足聚点定义 2、( √ )理由:[法一]:都具有连续基数,故对等 [法二]:可建立一个映射)2tan()(ππ-?--=a b a x x f ,则f(x)为),(b a 到R 的一一映射.3、( √ )理由:由B A ?知, A A B B )(-=,从而由有限可加性知,mA A B m mB +-=)(,又由+∞<="" 4、(="" b="" m="" ma="" p="" √="" 。

从而移项可得结论。

="" 知,+∞<-+∞理由:f(x)在区间[0,5)及[5,10]上均为连续函数,故分别在2个区间上是可测函数,从而再其和集上也是可测函数。

5、( × )理由:例如有理数集Q ,无理数2是Q 的聚点,但不是其内点。

6、( √ )理由:[法一]:都是可数集,故有相同的基数,即对等。

[法二]:可建立一个映射==+==...2,1,1,11,0,1)(n n x n x x f ,则f(x)为集合,1,,31,21,1,0n 到集合 ,1,,31,21,1n 的一一映射。

7、( √ )理由:由B A ?知A A B B )(-=,且φ=-A A B )(,故mA mA A B mmB =+-=)(8、( √ )理由:狄利克莱函数-∈∈=.]1,0[,0]1,0[,1)(Q x Qx x D 是[0,1]上的简单函数,故可测。

9、( √ )理由:由于E E ?Φ=',所以.}3,2,1{为闭集=E 10、( × )理由:如无界。

实变函数集合标准答案

实变函数集合标准答案
若有 ,则存在N,使对任意 ,有 ,因此若 时, , 即 ,令 ,得 ,此不可能,所以 。
8. 证明
证明 设 则存在N,使对任意 ,有 ,所以 ,所以 ;设 ,则有 ,使 ,即对任意 ,有 ,所以 ,因此 。
9. 作出一个(-1,1)和 的1—1对应,并写出这一一对应的解析表达式
解 ,对任意 ,
10. 证明:将球面去掉一点以后,余下的点所成的集合和整个平面上的点所成的集合是对等的.
实变函数集合标准答案
第一章集合
一、内容小结
1.这一章学习了集合的概念、表示方法、集合的运算(并、交、差、补);引入了集合列的上、下极限和极限的运算;对集合运算规则作了仔细的讨论,特别是德摩根公式。
2.引入了集合对等的概念,证明了判别两个集合对等的有力工具——伯恩斯坦定理。
3.引入了集合基数的概念,深入地研究了可数基数和连续基数。

则 , ,所以对每个 ,存在 ,于是 .下证 .事实上,若 ,则存在 使 ,于是 ,这与 矛盾,所以 ,这又与 矛盾,因此至少存在某个 使 的基数也是C.
20. 记每项取值为0或1的数列全体所成的集合为T,求证T的基数为C.
证明 设
作T到 的映射 ,则 是T到 的子集 的1—1映射,所以 反之, 区间与2进位无穷小数正规表示1—1对应,所以每个 都可唯一的写成 ,其中每个 ,令 ,则 是 到T的子集 上的1—1映射,因而 .综上所述得 。
17. 证明: 上的全体无理数做成的集合其基数为C.
证明 记 上的无理数全体为A, 上的有理数全体为 ,显然
令 ,
,
,
则 是A到 的1—1对应,由 的基数为C,可知A的基数也是C。
18. 若集A中每个元素,由互相独立的可数个指标决定,即 ,而每个 取遍一个基数为C的集,

实变函数第一章答案

实变函数第一章答案

习题1.11.证明下列集合等式.(1) ()()()C A B A C B A \\=; (2) ()()()C B C A C B A \\\ =; (3) ()()()C A B A C B A \\\=. 证明 (1) )()C \B (c C B A A =)()( c c C B A A B A = c C A B A )()( =)(\)(C A B A = .(2) c C B A A )(C \B)(=)()(c c C B C A ==)\()\(C A C A .(3) )(\C)\(B \c C B A A =c c C B A )( =)(C B A c = )()(C A B A c =)()\(C A B A =.2.证明下列命题.(1) ()A B B A = \的充分必要条件是:A B ⊂; (2) ()A B B A =\ 的充分必要条件是:=B A Ø; (3) ()()B B A B B A \\ =的充分必要条件是:=B Ø.证明 (1) A B A B B B A B B A B B A cc ==== )()()()\(的充要条 是:.A B ⊂(2) cc c c B A B B B A B B A B B A ===)()()(\)(必要性. 设A B B A =\)( 成立,则A B A c= , 于是有cB A ⊂, 可得.∅=B A反之若,∅≠B A 取B A x ∈, 则B x A x ∈∈且, 那么B x A x ∉∈且与cB A ⊂矛盾.充分性. 假设∅=B A 成立, 则c B A ⊂, 于是有A B A c= , 即.\)(A B B A =(3) 必要性. 假设B B A B B A \)()\( =, 即.\cC A B A B A == 若,∅≠B 取,B x ∈ 则,c B x ∉ 于是,c B A x ∉ 但,B A x ∈ 与c C A B A =矛盾.充分性. 假设∅=B 成立, 显然B A B A \= 成立, 即B B A B B A \)()\( =. 3.证明定理1.1.6.定理1.1.6 (1) 如果{}n A 是渐集列, 即),1(1≥∀⊂+n A A n n 则{}n A 收敛且∞=∞→=1;lim n n n n A A(2) 如果{}n A 是渐缩集列, 即),1(1≥∀⊃+n A A n n 则{}n A 收敛且 ∞=∞→=1.lim n n n n A A证明 (1) 设),1(1≥∀⊂+n A A n n 则对任意 ∞=∈1,n nA x 存在N 使得,NA x ∈ 从而),(N n A x N ≥∀∈ 所以,lim n n A x ∞→∈ 则.lim 1n n n n A A ∞→∞=⊂ 又因为 ∞=∞→∞→⊂⊂1,lim lim n n n n n n A A A由此可见{}n A 收敛且 ∞=∞→=1;lim n n n n A A(2) 当)1(1≥∀⊃+n A A n n 时, 对于,lim n n A x ∞→∈存在)1(1≥∀<+k n n k k 使得),1(≥∀∈k A x k n 于是对于任意的,1≥n 存在0k 使得n n k >0, 从而,0n n A A x k ⊂∈ 可见.lim 1∞=∞→⊂n n n n A A 又因为,lim lim 1n n n n n n A A A ∞→∞→∞=⊂⊂ 所以可知{}n A 收敛且 ∞=∞→=1.lim n n n n A A4.设f 是定义于集合E 上的实值函数,c 为任意实数,证明: (1) ⎥⎦⎤⎢⎣⎡+≥=>∞=n c f E c f E n 1][1 ;(2) ⎥⎦⎤⎢⎣⎡+<=≤∞=n c f E c f E n 1][1 ; (3) 若))(()(lim E x x f x f n n ∈∀=∞→,则对任意实数c 有⎥⎦⎤⎢⎣⎡->=⎥⎦⎤⎢⎣⎡->=≥∞→∞=∞=∞=∞=k c f E k c f E c f E n n k n N n N k 1lim 1][111 .证明 (1) 对任意的[],c f E x >∈ 有,)(c x f > 则存在+∈Z n 使得nc x f 1)(+≥成立. 即,1⎥⎦⎤⎢⎣⎡+≥∈n c f E x 那么.11 ∞=⎥⎦⎤⎢⎣⎡+≥∈n n c f E x 故[];11 ∞=⎥⎦⎤⎢⎣⎡+≥⊂>n n c f E c f E另一方面, 若,11 ∞=⎥⎦⎤⎢⎣⎡+≥∈n n c f E x 则存在+∈Z n 0使得,110 ∞=⎥⎦⎤⎢⎣⎡+≥∈n n c f E x 于是c n c x f >+≥01)(, 故[]c f E x >∈. 则有[].11 ∞=⎥⎦⎤⎢⎣⎡+≥⊃>n n c f E c f E(2) 设[]c f E x ≤∈, 则c x f ≤)(, 从而对任意的+∈Z n , 都有nc x f 1)(+<, 于是 ∞=⎥⎦⎤⎢⎣⎡+<∈11n n c f E x , 故有[];11 ∞=⎥⎦⎤⎢⎣⎡+<⊂≤n n c f E c f E另一方面, 设 ∞=⎥⎦⎤⎢⎣⎡+<∈11n n c f E x , 则对于任意的+∈Z n , 有n c x f 1)(+<, 由n 的任意性, 可知c x f ≤)(, 即[]c f E x ≤∈, 故[] ∞=⎥⎦⎤⎢⎣⎡+<⊃≤11n n c f E c f E . (3) 设[]c f E x ≥∈, 则c x f ≥)(. 由),)(()(lim E x x f x f n n ∈∀=∞→ 可得对于任意的+∈Z k , 存在N 使得)(1|)()(|N n k x f x f n ≥∀<-, 即)1(11)()(≥-≥->k kc k x f x f n , 即k c x f n 1)(->, 故)1(1lim ≥∀⎥⎦⎤⎢⎣⎡->∈∞→k k c f E x n n , 所以 ∞=∞→⎥⎦⎤⎢⎣⎡->∈11lim k n n k c f E x ,故[] ∞=∞→⎥⎦⎤⎢⎣⎡->⊂≥11lim k n n k c f E c f E ; 另一方面, 设 ∞=∞→⎥⎦⎤⎢⎣⎡->∈101lim k nn k c f E x , 则对任意+∈Z k 有⎥⎦⎤⎢⎣⎡->∈∞→k c f E x n n 1lim 0.由下极限的定义知:存在1N 使得当1N n ≥时, 有)(10+∈∀⎥⎦⎤⎢⎣⎡->∈Z k k c f E x n , 即对任意+∈Z k 有kc x f n 1)(0->; 又由),)(()(lim E x x f x f n n ∈∀=∞→ 知),()(lim 00x f x f n n =∞→ 即对任意的+∈Zk , 存在2N 使得当2N n ≥时, 有kx f x f n 1|)()(|00<-. 取},max{21N N N =, 则有k c x f n 1)(0->与kx f x f n 1|)()(|00<-同时成立, 于是有kc x f k x f n 1)(1)(00->>+, 从而k c x f 2)(0->, 由k 的任意性知:c x f ≥)(0, 即[]c f E x ≥∈0, 故有[] ∞=∞→⎥⎦⎤⎢⎣⎡->⊃≥11lim k n n k c f E c f E ;综上所述:[].11lim 111 ∞=∞=∞=∞=∞→⎥⎦⎤⎢⎣⎡->=⎥⎦⎤⎢⎣⎡->=≥k N N n n n n n k c f E k c f E c f E5.证明集列极限的下列性质.(1) cn n cn n A A ∞→∞→=⎪⎭⎫ ⎝⎛lim lim _____;(2) c n ncn n A A _____lim lim ∞→∞→=⎪⎭⎫ ⎝⎛; (3) ()n n n n A E A E ∞→∞→=lim \\lim ;(4) ()n n n n A E A E ∞→∞→=lim \\lim .证明 (1) cn n n nm c m n c n m m c n n m m cn n A A A A A ∞→∞=∞=∞=∞=∞=∞=∞→====⎪⎭⎫ ⎝⎛lim )()(lim 111_____ .(2) c n nn n nm c m c n m m c n n m m cn n A A A A A _____111lim )()(lim ∞→∞=∞=∞=∞=∞=∞=∞→====⎪⎭⎫ ⎝⎛ . (3) () ∞=∞=∞=∞=∞=∞=∞→===111))(()()\(\lim n nm n nm cm cmn nm mn n A E AE A E A Ec n nm m n c nm m n nm cm A E A E A E )())(()(111 ∞=∞=∞=∞=∞=∞==== ∞=∞=∞→==1lim \\n nm n n m A E A E .(4) () ∞=∞=∞=∞=∞=∞=∞→===111))(()()\(\lim n nm cm n nm n n m cm m n n A E A E A E A Ec n nm m n cnm m n n m cm A E A E A E )())(()(111 ∞=∞=∞=∞=∞=∞==== ∞=∞=∞→==1lim \\n nm n n m A E A E .6.如果}{},{n n B A 都收敛,则}\{},{},{n n n n n n B A B A B A 都收敛且 (1) ()n n n n n n n B A B A ∞→∞→∞→=lim lim lim ;(2) ()n n n n n n n B A B A ∞→∞→∞→=lim lim lim ;(3) ()n n n n n n n B A B A ∞→∞→∞→=lim \lim \lim .习题1.21.建立区间)1,0(与]1,0[之间的一一对应. 解 令1111{,,,,}2345E =, 111{0,1,,,}234F =,(0,1)\D E =,则(0,1)ED =,[0,1]F D =.定义:(0,1)[0,1]φ→为:;11();(1,2,)210;2x x D x x n nn x φ⎧⎪∈⎪⎪===⎨+⎪⎪=⎪⎩则φ为(0,1)[0,1]→之间的一个一一对应.2.建立区间],[b a 与],[d c 之间的一一对应,其中d c b a <<,. 解 定义::[,][,]a b c d φ→为:()().([,])d c d c bc ad x x a c x x a b b a b a b aφ---=-+=+∀∈---可以验证::[,][,]a b c d φ→为一个一一对应.3.建立区间),(b a 与],[d c 之间的一一对应,其中d c b a <<,. 解 令{,,,}234b a b a b a E a a a ---=+++,{,,,,}23d c d c F c d c c --=++ (,)\D a b E =. 定义:(,)[,]a b c d φ→为:;();(1,2.)2;.2d cbc ad x x D b a b a d c b ax c x a n n n b a c x a φ--⎧+∈⎪--⎪--⎪=+=+=⎨+⎪-⎪=+⎪⎩可以验证::(,)[,]a b c d φ→为一个一一对应.4.试问:是否存在连续函数,把区间]1,0[一一映射为区间)1,0(?是否存在连续函数,把区间]1,0[一一映射为]4,3[]2,1[ ?答 不存在连续函数把区间[0,1]一一映射为(0,1); 因为连续函数在闭区间[0,1]存在最大、最小值.也不存在连续函数把区间[0,1]一一映射为[1,2][3,4]; 因为连续函数在闭区间[1,2]上存在介值性定理, 而区间[1,2][3,4]不能保证介值性定理永远成立.5.证明:区间2~)1,0()1,0(~)1,0(R ⨯且ℵ=2R . 证明 记(0,1)A =,则(0,1)(0,1)A A ⨯=⨯. 任取(,)x y A A ∈⨯, 设1231230.,0.,x a a a y bb b == 为实数,x y 正规无穷十进小数表示, 并令1122(,)0.f x y a b a b =, 则得到单射:f A A A ⨯→. 因此由定理1.2.2知A A A ⨯≤.若令10.5A A =⨯, 则1~A A A A ⊂⨯. 从而由定理1.2.2知:A A A ≤⨯. 最后, 根据Bernstein 定理知:(0,1)~(0,1)(0,1)⨯.对于(,)(0,1)(0,1)x y ∀∈⨯,定义2:(0,1)(0,1)R φ⨯→为:(,)((),())22x y tg x tg y ππφππ=--,则φ为2(0,1)(0,1)R ⨯→的一个一一对应,即2(0,1)(0,1)~R ⨯. 又因为:(0,1)~R , 则由对等的传递性知:2(0,1)~(0,1)(0,1)~~R R ⨯且2R R ==ℵ.6.证明:{}1:),(22≤+=y x y x A 与{}1:),(22<+=y x y x B 对等并求它们的基数. 证明 令221{(,):(1,2,3,)}E x y x y n n =+==, \D A E =, 221{(,):(1,2,3,)}1F x y x y n n =+==+.则,A E D B F D ==. 定义::A B φ→为:2222(,);(,),(,)11;(1,2,3,),(,).1x y x y D x y x y x y n x y E n n φ∈⎧⎪=⎨+=+==∈⎪+⎩可以验证::A B φ→为一一对应, 即~A B . 又因为2~(0,1)(0,1)~~B R R ⨯, 所以A B ==ℵ.7.证明:直线上任意两个区间都是对等且具有基数ℵ.证明 对任意的,I J R ⊆, 取有限区间(,)a b I ⊆,则(,)a b I R ℵ=≤≤=ℵ, 则由Bernstern 定理知I =ℵ, 同理J =ℵ. 故I J ==ℵ.习题1.31.证明:平面上顶点坐标为有理点的一切三角形之集M 是可数集.证明 因为有理数集Q 是可数集,平面上的三角形由三个顶点所确定,而每个顶点由两个数决定,故六个数可确定一个三角形,所以M 中的每个元素由Q 中的六个相互独立的数所确定,即Q},,,,:{621621∈=x x x a M x x x 所以M 为可数集.2.证明:由平面上某些两两不交的闭圆盘之集M 最多是可数集.证明 对于任意的M O ∈, 使得Q ∈)(O f . 因此可得:Q →M f :. 因为1O 与2O 不相交,所以)()(21O f O f ≠. 故f 为单射,从而a M =≤Q .3.证明:(1)任何可数集都可表示成两个不交的可数集之并;(2)任何无限集都可表成可数个两两不交的无限集之并.证明 (2) 当E 可数时,存在双射Q )1,0(:→E f . 因为∞=⎪⎪⎭⎫⎝⎛⎪⎭⎫⎢⎣⎡+=11,11)1,0(n n n Q Q所以∞=∞=--=⎪⎪⎭⎫ ⎝⎛⎪⎭⎫⎢⎣⎡+==11111,11))1,0((n n n A n n f f E Q Q .其中:)(),3,2,1(1,111j i A A n n n f A j i n ≠Φ==⎪⎪⎭⎫⎝⎛⎪⎭⎫⎢⎣⎡+=- 且Q . 又因为Q Q ⎪⎭⎫⎢⎣⎡+⎪⎪⎭⎫ ⎝⎛⎪⎭⎫⎢⎣⎡+-n n n n f 1,11~1,111且Q ⎪⎭⎫⎢⎣⎡+n n 1,11 可数,所以E 可表示成可数个两两不交的无限集之并.当E 不可数时,由于E 无限,所以存在可数集E E ⊂1, 且1\E E 不可数且无限,从而存在可数集12\E E E ⊂,且)(\\)\(2121E E E E E E =无限不可数. 如此下去,可得),3,2,1( =n E n 都可数且不相交,从而1011)()\(E E E E E E i i n i ==∞=∞=.其中)0(≥i E i 无限且不交.4.证明:可数个不交的非空有限集之并是可数集.5.证明:有限或可数个互不相交的有限集之并最多是可数集.证明 有限个互不相交的有限集之并是有限集;而可数个互不相交的有限集之并最多是可数集.6.证明:单调函数的不连续点之集至多是可数集.证明 不妨设函数f 在),(b a 单调递增,则f 在0x 间断当且仅当0)(lim )(lim )0()0(_000>==--+→→+x f x f x f x f x x x x .于是,每个间断点0x 对应一个开区间))0(),0((00+-x f x f .下面证明:若x x '''<为()f x 的两个不连续点,则有(0)(0)f x f x '''+≤-. 事实上,任取一点1x ,使1x x x '''<<,于是11(0)lim ()inf{()}()sup {()}lim ()x x x x x x x x x f x f x f x f x f x f x +-'>'''→→'''<<'+==≤≤=,从而x '对应的开区间((0),(0))f x f x ''-+与x ''对应的开区间((0),(0))f x f x ''''-+不相交,即不同的不连续点对应的开区间互不相交,又因为直线上互不相交的开区间所构成的集合至多是可数集,所以可知单调函数的不连续点之集至多是可数集.7.证明:若存在某正数d 使得平面点集E 中任意两点之间的距离都大于d ,则E 至多是可数集.证明 定义映射}:)3,{(:E x dx E f ∈→,即))(3,()(E x d x D x f ∈=,其中)3,(d x D 表示以E x ∈为中心,以3d 为半径的圆盘. 显然当y x ≠时,有∅=)3,()3,(dy D d x D ,即)()(y f x f ≠,于是f 为双射,由第2题知:a E x dx ≤∈}:)3,{(,故a E ≤.习题1.41.直线上一切闭区之集具有什么基数?区间],[b a 中的全体有理数之集的基数是什么? 答 直线上一切闭区间之集的基数是c . 这是因为:2),(],[:R ∈→b a b a f 为单射,而R ∈→a b a f ],[:为满射,所以c M c =≤≤=2R R .区间],[b a 中的全体有理数之集的基数是c ,这是因为:a b a a =≤≤Q Q ],[. 2.用],[b a C 表示],[b a 上的一切连续实值函数之集,证明: (1) 设},,,,{],[21 n r r r b a =Q ,],[,b a C g f ∈,则⇔=g f ),2,1)(()( ==k r g r f k k ;(2) 公式)),(,),(),(()(21 n r f r f r f f =π定义了单射)(],[:R S b a C →π;(3) c b a C =],[.证明 (1) 必要性. 显然.充分性. 假设),2,1)(()( ==k r g r f k k 成立. 因为},,,{\],[321 r r r b a x ∈∀,存在有理数列∞=1}{n n x ,使得x x n n =∞→lim ,由],[,b a c g f ∈,可得)()lim ()(lim x f x f x f n n n ==∞→∞→与)()lim ()(lim x g x g x g n n n ==∞→∞→.又因为∞=1}{n n x 为有理点列,所以有)()(n n x g x f =,故],[b a x ∈∀,都有)()(x g x f =.(2) ],[,b a c g f ∈∀,设)()(g f ππ=,即)),(,),(),(()),(,),(),((2121 n n r g r g r g r f r f r f =.由(1)知:g f =. 故π为单射.(3) 由(2)知:c R S b a c =≤)(],[;又由],[b a c ⊂R ,可得],[b a c c ≤=R . 故c b a C =],[.3.设],[b a F 为闭区间]1,0[上的一切实值函数之集,证明: (1) ]},[:))(,{()(b a x x f x f ∈=π定义了一个单射)(],[:2R P b a F →π;(2) ]1,0[⊂∀E ,E E χα=)(定义了单射],[])1,0([:b a F P →α;(3) ],[b a F 的基数是c2.证明 (1) ],[,b a F g f ∈∀,设)()(g f ππ=,即]},[:))(,{(]},[:))(,{(b a x x g x b a x x f x ∈=∈.从而]),[)(()(b a x x g x f ∈∀=,故π为单射.(2) ]1,0[,⊂∀F E ,设)()(F E αα=,则F E F E χααχ===)()(,故α为单射.(3) 由(1)知:cP b a F 2)(],[2=≤R ;又由(2)知:],[2])1,0([b a F P c ≤=,故c b a F 2],[=.4.证明:c n =C .证明 因为R R C ⨯~,而c =⨯R R ,故c =C ;又由定理1..4.5知:c n =C . 5.证明:若E 为任一平面点集且至少有一点,则c E =.证明 显然c E =⨯≤R R . 设00E x ∈,则0>∃δ使得E x B ⊂),(0δ,可知E x B c ≤=),(0δ,故c E =.第一章总练习题.1 证明下列集合等式.(1) ()()F F E F E E F E \\\ ==; (2) ()()()G F G E G F E \\\ =.证明 (1) 因为\()()()()()\c c c c c E EF E E F E E F E E E F E F ====, ()\()()()\c c c E F F E F F E F F F E F ===.所以\\()()\E F E EF EF F ==.(2) 因为()\()()()(\)(\),c c c c E F G EF G E F G E G F G E G F G ====所以()()()G F G E G F E \\\ =..2 证明下列集合等式.(1) ()B A B A n n n n \\11∞=∞== ;(2) ()B A B A n n n n \\11∞=∞== .证明 (1)1111\()()(\)ccn n nn n n n n A B A B A B A B ∞∞∞∞=======. (2)1111\()()(\)c c n n nn n n n n A B A B A B A B ∞∞∞∞=======.3.证明:22[][][]c c E f g c E f E g +≥⊂≥≥,其中g f ,为定义在E 的两个实值函数,c 为任一常数.证明 若()()22c c x E f E g ∉≥≥, 则有()2c f x <且()2cg x <, 于是()()()()f x g x f g x c +=+<,故()x E f g c ∉+≥. 所以()()()22c c E f g c E f E g +≥⊂≥≥.4.证明:nR 中的一切有理点之集nQ 与全体自然数之集对等. 证明 因为0Q =ℵ,所以0Q Q Q Q n=⨯⨯⨯=ℵ(推论1.3.1). 又因为0N =ℵ, 所以0Q nN ==ℵ, 故Q ~n N .5.有理数的一切可能的序列所成之集)(Q S 具有什么基数?6.证明:一切有理系数的多项式之集][x Q 是可数集. 证明 设},Q ,,,,,0,][:][{][Q 1100111∈≠++++==---n n n n n n n n n n a a a a a a x a x a x a x P x P x 于是.][Q ][Q 0∞==n n x x显然,Q ~][Q 1n +x n 所以,Q ][Q 1n a x n ==+ 因此由定理1.3.5知:.][Q a x =7.证明:一切实系数的多项式之集][x R 的基数为c .证明 记},R ,,,,,0,][:][{][R 1100111∈≠++++==---n n n n n n n n n n a a a a a a x a x a x a x P x P x 于是.][R ][R 0∞==n n x x显然,R ~][R 1n +x n 所以,R][R 1n c x n ==+ 因此由定理1.4.3知:.][R c x =8.证明:全体代数数(即可作为有理系数多项式之根的数)之集是可数集,并由此说明超越数(即不是代数数的实数)存在,而且全体超越数之集的基数是c .证明 由于有理系数多项式的全体是可数集,设其元素为,,,,,,210 n P P P P 记多项式)(x P n 的全体实根之集为,n A 由于n 次多项式根的个数为有限个,故n A 为有限集,从而代数数全体 ∞==n nAA 为可数个有限集的并,故A 为可数集,即.a A =设超越数全体所成之集为,B 即,\R A B = 则R,=B A 从而B 必为无限集,由于A 为可数集,而任一无限集添加一个可数集其基数不变,故.R cB A B ===9.证明:A B B A \~\,则B A ~. 证明 因为),()\(),()\(B A A B B B A B A A ==WORD11 / 11 又因为,)(\)(\,~,\~\∅==B A A B B A B A B A B A A B B A 所以由保并性知),()\(~)()\(B A A B B A B A即.~B A10.证明:若,,D B B A <≤则D A <.证明 (反证法) 假设,D A = 则由已知可得,B D ≤ 这与D B <矛盾. 故有D A <.11.证明:若c B A = ,则c A =或c B =.证明 假设,a B A == 则有,a B A = 这与c B A = 矛盾,故有c A =或c B =.12.证明:若c A k k =+∈Z ,则存在+∈Z k 使得c A k =.证明同上.。

实变函数答案(魏勇版)

实变函数答案(魏勇版)

11.证明:若f ( x)在[a, b]上单增,则 f ( x)在[a, b]上 可测. 证明:由于 f ( x)在[a, b]上单增,所以 f ( x)在[a, b]上 的间断点至多可数 .设E是f ( x)在[a, b]上的间断点集, . 从而f ( x)在[a, b] E上可测; 又f ( x)在E上可测, 故 f ( x)在[a, b]上可测.
x, x (0,1] E0 f ( x) , x, x E0
则对a R1, (0,1]( f a)或为或为单元素集 {a}, 即 (0,1]( f a)恒可测.但(0,1]( f 0) E0不可测, 从而f ( x)
在(0,1]上不可测 .
(2). 由(3)知对r Q, E( f r )可测,更推不出 f ( x)在 E上可测.
N 1 n N n N



m* En 0( N ),
n N
于是m* ( lim En ) 0, 故 lim En可测,且m( lim En ) 0.
n n n
10.证明: (1). f ( x)在E上可测 r Q, E( f r )可测. (2).若对r Q, E( f r )可测,f ( x)是否在E上可测? (3).若对a R1, E( f a)可测,f ( x)是否在E上可测? 证明: (1“ ). ”显然成立 . ( [
记c max{ K1, K2 ,, KN ,1 K}, 则对n,x E0, 有 fn ( x) c.
么? 解:由于对 a 0,
[0,1 ( ] f a) [0,1 ( ] f 0 ) E 不可测,所以 f ( x)在[0,1]不可测. 但 f ( x) 1 ,x [0,1] ;所以 f ( x) 在[0,1]可测.

《实变函数》作业参考答案

《实变函数》作业参考答案

《实变函数》作业参考答案《实变函数》作业参考答案一.判断题1.对;2.错;3.对;4.对;5.错;6.对;7.错;8.对; 9.对; 10.对; 11.对; 12.错。

二.1.证明:).()(B A B A II-=-∈∈αααα证明:直接的用定义,证明左边包含右边,右边包含左边。

2.试找出使)1,0(和]1,0[之间一一对应的一种方法。

证明:令)1,0(,...},,{321?x x x ,做)(x f ,使得>====+2,01)(212n x x x x x x x x f n n ,其它处,.)(x x f = 三.证明题1. 设)(x f n 是E 上几乎处处有限的可测函数列,∞ε,存在常数c 与可测集E E ?0,ε<)\(0E E m ,使在0E 上,对一切n ,有c x f <|)(|。

证明:直接利用鲁津定理。

2. 证明:证明})(|{a x f x CG >=是开集,事实上,对任意CG x ∈,则a x f >)(,由连续函数的局部保号性,存在0>δ,使得对一切的),(δx B t ∈,有a t f >)(,即CG x B ?),(δ,所以x 是内点,从而})(|{a x f x CG >=是开集。

3. 设)(x f 在],[b a E =可积,则对任何0>ε,必存在E 上的连续函数)(x g ,使得ε<-?dx x g x f b a|)()(|证明:教材第121页例1。

4. 设在E 上)()(x f x f n ?,且)()(x g x f n ≤几乎处处于E 上成立,,...,2,1=n 试证)()(x g x f ≤在E 上几乎处处成立。

证明:利用黎次定理,由在E 上)()(x f x f n ?,得到存在子列)(x f i n 使得)()(lim x f x f i n i=几乎处处成立,在利用控制性)()(x g x f n ≤,所以)()(x g x f ≤在E 上几乎处处成立。

实变函数集合标准答案

实变函数集合标准答案

实变函数集合标准答案(总8页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--2第一章 集合一、 內容小结1. 这一章学习了集合的概念、表示方法、集合的运算(并、交、差、补);引入了集合列的上、下极限和极限的运算;对集合运算规则作了仔细的讨论,特别是德摩根公式。

2. 引入了集合对等的概念,证明了判别两个集合对等的有力工具——伯恩斯坦定理。

3. 引入了集合基数的概念,深入地研究了可数基数和连续基数。

二、 学习要点1. 准确熟练地掌握集合的运算法则,特别要注意集合运算既有和代数运算在形式上一许多类似的公式,但也有许多本质。

但是千万不要不加证明地把代数恒等式搬到集合运算中来。

例如:(a+b)-a=b,但是(A+B)-B=A 却不一定成立。

条件为A,B 不交。

2. 可数集合是所有无限集中最小的无限集。

若可数A 去掉可数B 后若还无限则C 必可数。

3. 存在不可数集。

无最大基数集。

以下介绍学习中应掌握的方法4. 肯定方面与否定方面。

B X B X ∉∈与,5. 集合列的上、下限集是用集合运算来解决分析问题的基础,应很好地掌握。

其中用交并表示很重要。

对第四章的学习特别重要。

6. 基数部分重点:集合对等、构造集合的一一对应;利用对等的传递性(伯恩斯坦定理)来进行相应的证明。

7. 集合可数性的证明方法很重要:可排列、与已知可数集对等、利用集合的运算得到可数、第四节定理6.8. 证明集合基数为C 中常用到已知的基数为C 的集合。

∞E R n ,三、 习题解答1. 证明:)()()(C A B A C B A =证明 则若设,).(A x C B A x ∈∈ B A x ∈,得).()(C A B A x ∈若则同样有设,C B x ∈B A x ∈且C A x ∈,得).()(C A B A x ∈因此)()()(C A B A C B A ⊂3设)()(C A B A x ∈则若,.A x ∈当然有)()(C A B A x ∈,若,.A x ∉由B A x ∈且C A x ∈,可知B x ∈若.且c x ∈.,所以,C B x ∈同样有).(C B A x ∈因此⊂)()(C A B A )(C B A ,所以)()()(C A B A C B A = 2. 证明⑴B B A B A A B A -=-=-)()( ⑵)()()(C A B A C B A -=- ⑶)()(C B A C B A -=--⑷)()()(C A B A C B A -=--⑸)()()()(D B C A D C B A -=-- ⑹.)(B A B A A =-- 证明 ⑴().)()()()(B A B C A A C A B C A C A B A C A B A A s s s s s -====-B C B A B B A s )()(=-=B A B C B B C A s s -=)()( ⑵).()(()(()(()()()()()()(C B A C C B A C C B A A C B A C C A C B A C A C B A C A B A s s s s s s -=====-⑶)()()()(C B A C B C A CC B C A C B A s s s -===--⑷4).()()()()()()()(C A B A C A B C A C B C A C C B C A C C B A C B A s s s s s -====-=--⑸).()()()()()()()(D B C A D B C C A D C C B C A D C B A s s s -===--⑹.)()()(B A B A C A B C A C A B A A s s s ===--3. 证明:)()()(C B C A C B A --=- ;).()()(C A B A C B A --=- 证明:).()()()()()(C B C A C C B C C A C C B A C B A s s s --===-).()()()()()(C B A C B C A C C B C A C C A B C A C A B A s s s s s -====--4.证明: ∞=∞==11.)(i i s i i s A C A C证明 设)(1∞=∈i i s A C x ,则S x ∈,但 ∞=∉1i i A x ,因此对任意i ,i A x ∉,所以i s A C x ∈,因而 ∞=∈1.i i s A C x5设 ∞=∈1.i i s A C x 则任意i , i s A C x ∈,即S x ∈,i A x ∉,因此则S x ∈,但∞=∉1i i A x ,得)(1∞=∈i i s A C x ,所以 ∞=∞==11.)(i i s i i s A C A C5.证明:⑴ Λ∈Λ∈-=-αααα)()(B A B A ; ⑵ Λ∈Λ∈-=-αααα)()(B A B A . 证明 ⑴ Λ∈Λ∈Λ∈Λ∈-===-αααααααα)()()()(B A B C A B C A B A ss⑵ Λ∈Λ∈Λ∈Λ∈-===-αααααααα)()()()(B A B C A B C A B A ss.6.设{}n A 是一列集合,作11A B =,1),(11>-=-=n A A B n n n νν。

实变函数部分课后习题答案(最新版)

实变函数部分课后习题答案(最新版)

备注:证明题每章都是二选一,计算题在第五章第二章1.证明点集F 为闭集的充要条件是F F =. 证明:因为'F F F = ,若F 为闭集,则'F F ⊂ 所以'F F F F F F F =⊂=⊂ 故F F =反过来,若'F F F F =⊂ ,则必有'F F ⊂,从而F 为闭集.2.设()f x 是(),-∞∞上的实值连续函数,证明:对于任意常数a ,(){};x f x a >都是开集,(){};x f x a ≥都是闭集.证明:任取常数a ,若 (){}0;x x f x a ∈>,则()0f x a >,由于()f x 连续,0,0a x δ∃>, 使()(){}00,,;a x x N x x f x a δ∈⊂≥,这表明(){};x f x a >是开集.任取常数a ,若{}(){};n x x f x a ∈≥,且0n x x →,则从()n f x a ≥和()f x 连续知 ()()0lim n n f x f x a →∞=≥,故(){}0;x x f x a ∈≥这表明(){}(){}';;x f x a x f x a ≥⊂≥.,故(){};x f x a ≥是闭集.第三章68页3.证明对任意可测集合A 和B 都有()()()()m A B m A B m A m B +=+ (*) 证明:若()m A B =∞ ,则,A B A B ⊂∞=∞=∞=⋃⇒)(,)(,)(B m A m B A m∞=+=⋂+⋃=∞∴)()()()(B m A m B A m B A m 成立.若()m A B <∞ 则(*)等价于()()()()m A B m A m B m A B =+- 注意到()(),A B A B A A B A =--=∅ 且,A B 可测B A ⇒-可测()()()m A B m A m B A =+-A 可测()()()()()c m B m A B m A B m A B m B A =+=+-)()()()(B A m B m A B m B A m ⋂-=-∴∞<⋂()()()()m A B m A m B m A B ∴=+-9、设n E R ⊂,那么E 可测当且仅当对任意正数ε,存在开集G E ⊃及闭集F E ⊂使得()m G F ε-<。

实变函数参考答案(习题一)

实变函数参考答案(习题一)

旧版书习题一2.证明:(i )右边=⊂--))(())((D B C D B A 左边 (ii )右边=⊃--))(())((D B C D B A 左边3.解:等式右边=)()()(C C C A B A C B A --=- ,我们猜想C C A C =-,即A C ⊂为等式成立的充要条件。

由上充分性是显然的,再注意到由原等式,我们有A CB AC B A C ⊂--=-⊂)()( ,故而必要性也成立。

4.证明:(i )因为1inf lim ,..,inf lim 100inflim =⇔∈≥∀∈∃⇔∈⇔=n nnA nn n nA A x n n t s N n A x χχ,所以等式成立。

(ii )因为1sup lim ..,,sup lim 1sup lim =⇔∈≥∃∈∀⇔∈⇔=nknnA nn k n nA A x t s k n N k A x χχ,所以等式成立。

5.证明:先证明}{n B 互不相交。

事实上,Φ=-⊂>∀⊂≥∀n m n m m n n B B A A B n m A B n 故而,,,,1。

再证明集合等式。

等式左边。

等式右边时,时显然成立,当==-=-=≥===-===-=nj j ni i j j ij j ni i j j i A A A A A n n 11111111)()(216.证明:(i )左边⊃右边是显然的,下证另一边也成立。

右边。

故于是左边,则∈-≤∃>-∈∀x a x f nt s n a x f x ,)(1..,,0)((ii )以E 为全集,左边=ca x f E x a x f E x a x f x E })(|{})(|{})(|{->-∈=-≤-∈=≥∞=∞=+-<-=+-≥-=11)(}1)(|{)}1)(|{(n cn i na x f x E na x f x E右边=->=∞= 1}1)(|{n na x f x E7.证明:将需证的等式记为M=F=P 。

《实变函数》习题库参考答案

《实变函数》习题库参考答案

《实变函数》习题库参考答案一、判断题 1、( √ )理由:由内点定义知,存在A P U ⊂),(0δ,从而对任意的)(0P U ,必含有A 中无穷多个点。

满足聚点定义 2、( √ )理由:[法一]:都具有连续基数,故对等 [法二]:可建立一个映射)2tan()(ππ-⋅--=a b a x x f ,则f(x)为),(b a 到R 的一一映射.3、( √ )理由:由B A ⊂知, A A B B )(-=,从而由有限可加性知,mA A B m mB +-=)(,又由 +∞<mB 知,+∞<-+∞<)(,A B m mA 。

从而移项可得结论。

4、( √ )理由:f(x)在区间[0,5)及[5,10]上均为连续函数,故分别在2个区间上是可测函数, 从而再其和集上也是可测函数。

5、( × )理由:例如有理数集Q ,无理数2是Q 的聚点,但不是其内点。

6、( √ )理由:[法一]:都是可数集,故有相同的基数,即对等。

[法二]:可建立一个映射⎪⎩⎪⎨⎧==+==...2,1,1,11,0,1)(n n x n x x f ,则f(x)为集合 ⎭⎬⎫⎩⎨⎧ ,1,,31,21,1,0n 到集合⎭⎬⎫⎩⎨⎧ ,1,,31,21,1n 的一一映射。

7、( √ )理由:由B A ⊂知A A B B )(-=,且φ=-A A B )(, 故mA mA A B m mB =+-=)(8、( √ )理由:狄利克莱函数⎩⎨⎧-∈∈=.]1,0[,0]1,0[,1)(Q x Qx x D 是[0,1]上的简单函数,故可测。

9、( √ )理由:由于E E ⊆Φ=',所以.}3,2,1{为闭集=E 10、( × )理由:如无界。

,但,则N mN N E +∞<==0 11、( √ )理由:由于可测。

在连续,从而在]2,1[2)(]2,1[2)(-=-=x f x f 12、( √ ) 理由:事实上:)()(***CE T m E T m T m T E +=∀⇔:可测]([)(**CE C T m CE T m +=可测。

实变函数(程其襄版)第一至四章课后习题答案

实变函数(程其襄版)第一至四章课后习题答案
第一章 集合
早在中学里我们就已经接触过集合的概念,以及集合的并、交、补的运算,因此这章的前两节具有复习性质,不过,无限多个集合的并和交,是以前没有接触过的,它是本书中常常要用到,是学习实变函数论时的一项基本功。
康托尔在19世纪创立了集合论,对无限集合也以大小,多少来分,例如他断言:实数全体比全体有理数多,这是数学向无限王国挺近的重要里程碑,也是实变函数论的出发点。
{ : >1}=
习惯上,N表示自然数集,(本书中的自然数集不包含0),Z表示整数集,Q表示有理数集,R表示实数集.
设 是定义在E上的函数,记 ={ : ∈E},称之为f的值域。若D是R中的集合,则 ={ : ∈E ,},称之为D的原像,在不至混淆时,{ : ∈E, 满足条件p}可简写成{ : 满足条件 }.
1.集合的表示
一个具体集合A可以通过例举其元素 来定义,可记
也可以通过该集合中的各个元素必须且只需满足的条件p来定义,并记为
A={x:x满足条件p}
如例1可以表示为{4,7,8,3}例3可以表示为
设A是一个集合,x是A的元素,我们称x属于A,记作 ,x不是A的元素,记作 。
为方便表达起见, 表示不含任何元素的空集,例如
顺便说明一下,一个集合的各个元素必须是彼此互异的,哪些事物是给定集合的元素必须是明确的,下面举出几个集合的例子。
例14,7 ,8,3四个自然数构成的集合。
例2全体自然数
例30和1之间的实数全体
例4 上的所有实函数全体
例5A,B,C三个字母构成的集合
例6平面上的向量全体
全体高个子并不构成一个集合,因为一个人究竟算不算高个子并没有明确的界限,有时难以判断他是否属于这个集合。
若 ,说明所有的 没有公共的元素。

实变函数第一章答案

实变函数第一章答案

第一章:集合与实数集(8)设是上的实函数,假若存在M>0,使得对于任何有限个两两不等的实数x1,...,x n,⃒⃒⃒n∑︁k=1f(x k)⃒⃒⃒≤M.证明:{x:f(x)=0}是至多可数集。

证明:令A+={x:f(x)>0},A−={x:f(x)<0}.则{x:f(x)=0}=A+∪A−.所以,只要证明A+,A−都是至多可数集。

我们仅考虑A+.注意到A+=∪∞n=1A n,+,其中A n,+={x:|f(x)|>1/n}.这样问题就归结为证明对于任意的n,A n是至多可数集.由假设条件知道:A n是一个有限集合,其中的点的个数不超过[nM]+1个.(9)证明:R上单调函数的间断点是至多可数的.证明:设f是R上的单增函数,我们首先证明:对于任意的x0∈R,lim x→x0−0f(x),limx→x0+0f(x)都是存在有限的.为简单起见,我们仅考虑左极限的存在性.我们只要证明:(a)对于任意的{x n},x n→x0,x n<x0,lim n→∞x n都存在有限(b)对于任意的{x n},x n→x0,x n<x0,{y n},y n→x0,y n<x0,lim n→∞x n=lim n→∞y n.结论(a)是明显的,至于结论(b),我们只要注意到对于任意的n,一定存在N>n使得当m>N时y m>x n,从而f(x m)>f(x n),这依次隐含着lim n→∞f(x n)≤limm→∞f(y m).2同理可证lim n→∞f(x n)≥limm→∞f(y m).现在回到要证明的结论.假如f在x0不连续,则f(x0−0)<f(x0+0),这样我们就得到一个区间(f(x0−),f(x0+)).对于f的任意两个不连续点x1,x2,区间(f(x1−0),f(x1+0))和(f(x2−0),f(x2+0))相互不交(事实上,我们假设x1<x2.注意到f(x1−0)≤f(x1+0)≤f(x2−0)≤f(x2+0),则(f(x1−0),f(x1+0))和(f(x2−0),f(x2+0))相交当然是不可能的),这样我们就知道:从集合{x0:f在x0不连续}到集合{所有开区间但这些开区间两两相互不交}之间存在一一映射.而后者是一个至多可数集,这就证明了我们的结论.(10)设f是[a,b]上的单调增加的函数,并且f([a,b])在[f(a),f(b)]中稠密。

实变函数练习及答案

实变函数练习及答案

实变函数练习及答案实变函数练习及答案一、选择题1、以下集合,()是不可数集合。

.A 所有系数为有理数的多项式集合; .B [0,1]中的无理数集合;.C 单调函数的不连续点所成集合; .D 以直线上互不相交的开区间为元素的集。

2、设E 是可测集,A 是不可测集,0mE =,则E A U 是().A 可测集且测度为零; .B 可测集但测度未必为零; .C 不可测集; .D 以上都不对。

3、下列说法正确的是().A ()f x 在[,]a b L —可积?()f x 在[,]a b L —可积; .B ()f x 在[,]a b R —可积?()f x 在[,]a b R —可积;.C ()f x 在[,]a b L —可积?()f x 在[,]a b R —可积; .D ()f x 在(],a +∞R —广义可积?()f x 在[,]a b L —可积4、设{}n E 是一列可测集,12......,n E E E 则有() .A 1()lim n nn n m E mE∞→∞=>U ; .B 1()lim n nn n m E mE∞→∞==U ;.C 1()lim n n n n m E mE ∞→∞==I ; .D 以上都不对。

5、()()\\\A B C A B C =U 成立的充分必要条件是().A A B ?; .B B A ?; .C A C ?; .D C A ?。

6、设E 是闭区间[]0,1中的无理点集,则().A 1mE =; .B 0mE =; .C E 是不可测集; .D E 是闭集。

7、设mE <+∞,(){}nf x 是E 上几乎处处有限的可测函数列,()f x 是E 上几乎处处有限的可测函数,则(){}nf x 几乎处处收敛于()f x 是(){}n f x 依测度收敛于()f x 的().A 必要条件; .B 充分条件; .C 充分必要条件; .D 无关条件。

实变函数试题库参考答案

实变函数试题库参考答案

实变函数试题库参考答案(共37页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--《实变函数》试题库及参考答案(完整版)选择题1,下列对象不能构成集合的是:( )A 、全体自然数B 、0,1 之间的实数全体C 、[0, 1]上的实函数全体D 、全体大个子2、下列对象不能构成集合的是:( )A 、{全体实数}B 、{全体整数}C 、{全体小个子}D 、{x :x>1}3、下列对象不能构成集合的是:( )A 、{全体实数}B 、{全体整数}C 、{x :x>1}D 、{全体胖子}4、下列对象不能构成集合的是:( )A 、{全体实数}B 、{全体整数}C 、{x :x>1}D 、{全体瘦子}5、下列对象不能构成集合的是:( )A 、{全体小孩子}B 、{全体整数}C 、{x :x>1}D 、{全体实数}6、下列对象不能构成集合的是:( )A 、{全体实数}B 、{全体大人}C 、{x :x>1}D 、{全体整数}7、设}1:{ααα≤<-=x x A , I 为全体实数, 则ααA I∈⋃= ( ) A 、(-1, 1) B 、(-1, 0) C 、(-∞, +∞) D 、(1, +∞)8、设}1111:{ix i x A i -≤≤+-=, N i ∈, 则i i A ∞=⋃1= ( ) A 、(-1, 1) B 、(-1, 0) C 、[0, 1] D 、[-1, 1]9、设}110:{ix x A i +≤≤=, N i ∈, 则i i A ∞=⋂1= ( ) A 、(0, 1) B 、[0, 1] C 、[0, 1] D 、(0, +∞)10、设}1211:{ix i x A i +<<-=, N i ∈, 则i i A ∞=⋃1= ( ) A 、[1, 2] B 、(1, 2) C 、 (0, 3) D 、(1, 2)11、设}23:{+≤≤=i x i x A i , N i ∈, 则i i A ∞=⋂1= ( ) A 、(-1, 1) B 、[0, 1] C 、Φ D 、{0}12、设}11:{ix i x A i <<-=, N i ∈, 则i i A ∞=⋂1= ( ) A 、(-1, 1) B 、[0, 1] C 、Φ D 、{0}13、设]1212,0[12--=-n A n , ]211,0[2nA n +=, N n ∈,则=∞→n n A lim ( )A 、[0, 2]B 、[0, 2]C 、[0, 1]D 、[0, 1]14、设]1212,0[12--=-n A n , ]211,0[2nA n +=, N n ∈, 则=∞→n n A lim ( ) A 、[0, 2]B 、[0, 2]C 、[0, 1]D 、[0, 1]15、设),0(n A n =, N n ∈, 则=∞→n n A lim ( )A 、ΦB 、[0, n]C 、RD 、(0, ∞)16、设)1,0(nA n =, N n ∈, 则=∞→n n A lim ( ) A 、(0, 1)B 、(0, n1) C 、{0} D 、Φ 17、设)1,0(12nA n =-, ),0(2n A n =, N n ∈, 则=∞→n n A lim ( )A 、ΦB 、(0, n1) C 、(0, n) D 、(0, ∞) 18、设)1,0(12nA n =-, ),0(2n A n =, N n ∈, 则=∞→n n A lim ( )A 、ΦB 、(0, n1) C 、(0, n) D 、(0, ∞) 19、设A 、B 、C 是三个集合, 则A-(A-B)= ( )A 、B B 、AC 、A ⋂BD 、A ⋃B20、设A 、B 、C 是三个集合, 则A-(B ⋃C)= ( )A 、(A-B)⋂(A-C)B 、(A-B)⋃(A-C)C 、A ⋂BD 、A ⋂C21、设A 、B 、C 是三个集合, 则A-(B ⋂C)= ( )A 、(A-B)⋂(A-C)B 、(A-B)⋃(A-C)C 、A ⋂BD 、A ⋂C22、设A 、B 、S 是三个集合, 且S A ⊂, S B ⊂, 则)(B A C s -= ( )A 、BC A C s s ⋃ B 、B C A C s s ⋂ C 、B A C s ⋃D 、B A C s ⋂23、设A 、B 、S 是三个集合, 且S A ⊂, S B ⊂, 则)(B A C s ⋃= ( )A 、BC A C s s ⋃ B 、B C A C s s ⋂ C 、B A C s ⋃D 、B C A s ⋃24、设A 、B 、C 是三个集合, 则A-(B-C) = ( )A 、 A ⋃C-B B 、 A-B-C C 、 (A-B)⋃(A ⋂C)D 、 C-(B-A)25、集合E 的全体内点所成的集合称为E 的 ( )A 、开核B 、边界C 、导集D 、闭包26、集合E 的全体聚点所成的集合称为E 的 ( )A 、开核B 、边界C 、导集D 、闭包27、集合E 的全体边界点和内点所成的集合是E 的 ( )A 、开核B 、边界C 、导集D 、闭包28、E-E '所成的集合是 ( )A 、开核B 、边界C 、外点D 、{E 的全体孤立点}29、E 的全体边界点所成的集合称为E 的 ( )A 、开核B 、边界C 、导集D 、闭包30、设点P 是集合E 的边界点, 则 ( )A 、P 是E 的聚点B 、P 是E 的孤立点C 、P 是E 的内点D 、P 是CE 的边界点31、设)3,2()1,0(⋃=G , 则下列那一个是G 的构成区间: ( )A 、(0, 1)B 、(21, 1) C 、[0, 1] D 、(0, 2) 32、设)1,0(1=G , )2,21()0,1(2⋃-=G 21G G G ⋃=, 则下列那一个是G 的构成区间: ( )A 、(0, 1)B 、(0, 2)C 、(-1, 21) D 、(-1, 2) 33、设)4,0(1=G , )4,3()1,0(2⋃=G 21G G G ⋃=, 则下列那一个是G 的构成区间: ( )A 、(0, 1)B 、(3, 4)C 、(0, 4)D 、 (1, 4)34、设)1,0(1=G , )4,3()2,1(2⋃=G 21G G G ⋃=, 则下列那一个是G 的构成区间: ( )A 、(0, 1)B 、(0, 3)C 、(0, 4)D 、(1, 4)35、设)2,0(1=G , )4,3()2,1(2⋃=G 21G G G ⋃=, 则下列那一个是G 的构成区间: ( )A 、(0, 1)B 、(0, 2)C 、(1, 2)D 、(1, 4)36、设)2,1()1,0(1⋃=G , )23,21()0,1(2⋃-=G 21G G G ⋃=, 则下列那一个是G 的构成区间: ( )A 、(21, 23) B 、(1, 2) C 、(0, 1) D 、(-1, 0) 37、若B A ⊂ ,则下列命题错误的是: ( )A 、B A ⊂ B 、A '⊂B 'C 、B A ∂⊂∂D 、B A ⊂38、若C B A =⋃, 则下列命题正确的是:( )A 、 CB A =⋃ B 、 A '⋃B '=C ' C 、C B A ∂=∂⋃∂D 、{A 的孤立点}⋃{B 的孤立点}={C 的孤立点}39、若C B A =⋂, 则下列命题错误的是:( )A 、 CB A =⋂ B 、C '⊂ A '⋂B ' C 、C B A =⋂D 、{A 的孤立点}⋂{B 的孤立点}={C 的孤立点}40、设CA 是A 的余集,则下列命题正确的是:( )A 、 )()(CA A C =B 、)(CA A ∂=∂C 、C(A ')=(CA )'D 、CA A C =)(41、设A -B=C, 则下列命题正确的是:( )A 、CB A ∂=∂-∂ B 、C B A =- C 、A '-B '=C 'D 、{A 的孤立点}-{B 的孤立点}={C 的孤立点}42、 (2-4-1-2) 下列命题错误的是:( )A 、A 是闭集B 、A '是闭集C 、A ∂是闭集D 、 A 是闭集43、若A 是闭集,B 是开集,则A -B 是:( )A 、开集B 、闭集C 、既非开集又非闭集D 、无法判断44、若A 是开集,B 是闭集,则A -B 是:( )A 、开集B 、闭集C 、既非开集又非闭集D 、无法判断45、若}{n A 是一开集列,则n n A ∞=⋃1是:( ) A 、开集 B 、闭集 C 、既非开集又非闭集 D 、无法判断46、若}{n A 是一开集列,则n n A ∞=⋂1是:( ) A 、开集 B 、闭集 C 、既非开集又非闭集 D 、无法判断47、若}{n A 是一闭集列,则n n A ∞=⋃1是:( ) A 、开集 B 、闭集 C 、既非开集又非闭集 D 、无法判断48、若}{n A 是一闭集列,则n n A ∞=⋂1是:( ) A 、开集 B 、闭集 C 、既非开集又非闭集 D 、无法判断49、若]1,0[ Q E =,则=mE ( )A 、0B 、1C 、2D 、350、下述结论( )正确.A 、E m E m **>B 、E m E m *≥*C 、E m E m **<D 、E m E m **≤51、下列说法正确的是( )A 、xx f 1)(=在(0,1)有限 B 、xx f 1)(=在)1,21(无界 C 、⎪⎩⎪⎨⎧=∞+∈=0,]1,0(,1)(x x x x f ,在[0,1]有限 D 、⎪⎩⎪⎨⎧=∈=0,1]1,0(,1)(x x x x f ,在[0,1]有界 52、函数列n n x x f =)(在[0,1]上( )于0.A 、a ,e 一致收敛B 、收敛C 、一致收敛D 、基本上一致收敛53、设E 是[0,1]中的不可测集,⎩⎨⎧-∈-∈=E x E x x f ]1,0[,1,1)( 则下列函数在[0,1]上可测的是( ).A 、)(x fB 、)(x f +C 、|)(|x fD 、)(x f -54、若)(x f 可测,则它必是( ).A 、连续函数B 、单调函数C 、简单函数D 、简单函数列的极限55、若Q E -=]1,0[,则=mE ( )A 、0B 、1C 、2D 、356、下列说法不正确的是( )A 、E 的测度有限,则E 必有界B 、E 的测度无限,则E 必无界C 、有界点集的测度有限D 、n R 的测度无限57、(4-4-2-1)下述论断正确的是( )A 、x x f tg )(=在)4,0(π无界 B 、⎪⎩⎪⎨⎧=∞+∈=2,)2,0[,tg )(ππx x x x f 在]2,0[π有限 C 、⎪⎩⎪⎨⎧=∈=2,1)2,0[,tg )(ππx x x x f 在]2,0[π有界 D 、x x f tg )(=在)2,0(π有限58、函数列n n x x f )21()(=在[0, 2]上( )于0. A 、收敛 B 、一致收敛 C 、基本上一致收敛 D 、.一致收敛59、设⎩⎨⎧-∈-∈=Ex x E x x x f ]1,0[,,)(其中E 是[0,1]的不可测集,则下列函数在[0, 1]可测的是( ).A 、|)(|x fB 、)(x fC 、)(x f +D 、)(x f -60、一个函数在其定义域中的( )点处都是连续的.A 、边界点B 、内点C 、聚点D 、孤立点.61、0P 是康托尔(cantor )集,则=0mP ( )A 、0B 、1C 、2D 、362、设A 是B 的真子集,则( )A 、B m A m **< B 、B m A m **≤C 、B m A m **>D 、B m A m **≥63、下列说法正确的是( )A 、x x f ctg )(=在)2,4(ππ无界 B 、⎪⎩⎪⎨⎧=∞+∈=0,]2,0(ctg )(x x x x f π在]2,0[π有限C 、⎪⎩⎪⎨⎧=∈=0,1]2,0(ctg )(x x xx f π在]2,0[π有界 D 、x x f ctg )(=在)2,0(π有限64、函数列n n n x x f 2)(=在]21,0[上( )于0. A 、收敛 B 、一致收敛、 C 、基本上一致收敛 D 、a. e.一致收敛65、设E 是[0, 1]上的不可测集,⎩⎨⎧-∈-∈=Ex xE x x x f ]1,0[)(22则下列函数在[0, 1]可测的是( ). A 、)(x f B 、)(x f + C 、|)(|x f D 、)(x f -66、设E 为可测集,则下列结论中正确的是( )A 、若)}({x f n 在E 上a , e 收敛于一个a , e 有限的可测函数)(x f ,则)(x f n 一致收敛于)(x fB 、若)}({x f n 在E 上a , e 收敛于一个a , e 有限的可测函数)(x f ,则)(x f n 基本上一致收敛于)(x fC 、若)}({x f n 在E 上a , e 收敛于一个a , e 有限的可测函数)(x f ,则)(x f n ⇒)(x fD 、若)}({x f n 在E 上基本上一致收敛于)(x f ,则)(x f n a , e 收敛于)(x f67、G 表示康托尔(cantor )集在[0,1]中的余集,则mG=( ) A 、0 B 、1 C 、2 D 、368、设21,S S 都可测,则21S S ( )A 、可测B 、不可测C 、可能可测也可能不可测D 、以上都不对 69、下列说法正确的是( ) A 、x x f sec )(=在)4,0(π上无界B 、x x f sec )(=在)4,0(π上有限C 、⎪⎩⎪⎨⎧=∞+∈=2)2,0[sec )(ππx x xx f 在]2,0[π上有限 D 、⎪⎩⎪⎨⎧=∈=21)2,0[sec )(ππx x x x f 在]2,0[π上有界 70、函数列n n n x x f 3)(=在]31,0[上( )于0 A 、收敛 B 、一致收敛 C 、基本上一致收敛 D 、a. e.一致收敛71、设⎩⎨⎧-∈∈-=E x x Ex x x f ]1,0[,,)(33,其中E 是[0, 1]上的不可测集,则( )在[0, 1]可测.A 、)(x f 、B 、)(x f +C 、)(x f -D 、|)(|x f 72、关于连续函数与可测函数,下列论述中正确的是( )A 、它们是同一概念B 、a , e 有限的可测函数是连续函数C 、a , e 有限的可测函数是基本上连续的函数D 、a , e 有限的可测函数是a , e 连续的函数 73、()=-)2,1()1,0( m ( ) A 、1、 B 、2 C 、3 D 、4 74、A 可测,B 是A 的真子集,则( )A 、mB mA ≥ B 、B m mA *≥C 、B m mA *=D 、以上都不对 75、下列说法正确的是( ) A 、21)(x x f =在(0, 1)有限、 B 、21)(xx f =在]1,21[无界C 、⎪⎩⎪⎨⎧=∞+∈=0,]1,0(,1)(2x x x x f 在[0, 1]有限D 、⎪⎩⎪⎨⎧=∈=1,1]1,0(,1)(2x x x x f 在[0, 1]有界76、函数列x x f n n sin )(=在]2,0[π上( )于0.A 、收敛B 、基本上一致收敛C 、一致收敛D 、a. e.一致收敛77、设⎩⎨⎧-∈∈-=Ex x Ex x x f ]1,0[,,)(22其中E 是[0, 1]上的不可测集,则( )在[0, 1]上是可测的.A 、|)(|x fB 、)(x fC 、)(x f +D 、)(x f - 78、关于简单函数与可测函数下述结论不正确的是( )A 、简单函数一定是可测函数B 、简单函数列的极限是可测函数C 、简单函数与可测函数是同一概念D 、简单函数列的极限与可测函数是同一概念79、()=-]3,2()1,1[ m ( ) A 、1 B 、2 C 、3 D 、4 80、L 可测集类,对运算( )不封闭.A 、可数和B 、有限交C 、单调集列的极限D 、任意和. 81、下列说法正确的是( ) A 、31)(x x f =在)1,21(无界 B 、31)(xx f =在)1,0(有限C 、⎪⎩⎪⎨⎧=∞+∈=0]1,0(1)(3x x xx f 在[0, 1]有限 D 、⎪⎩⎪⎨⎧=∈=01]1,0(1)(3x x xx f 在[0, 1]有界82、函数列x x f n n cos )(=在]2,0[π上( )于0.A 、基本一致收敛B 、收敛C 、一致收敛D 、a. e.一致收敛83、设E 是]2,0[π中的不可测集,⎪⎩⎪⎨⎧-∈-∈=E x x E x x x f ]2,0[,sin ,sin )(π则下列函数在]2,0[π上可测的是( ).A 、)(x fB 、|)(|x fC 、)(x f +D 、)(x f - 84、关于依测度收敛,下列说法中不正确的是( )A 、依测度收敛不一定一致收敛B 、依测度收敛不一定收敛C 、若)}({x f n 在E 上.收敛于.有限的可测函数)(x f ,则)()(x f x f n ⇒D 、若)()(x f x f n ⇒,则存在子列)}({x f i n a. e.收敛于)(x f85、设)(x f 是可测集E 上的非负可测函数,则)(x f ( )A 、必可积B 、必几乎处处有限C 、必积分确定D 、不一定积分确定 86、设)(x f 在可测集E 上可积,则在E 上( )A 、)(x f +与)(x f -只有一个可积B 、)(x f +与)(x f -皆可积C 、)(x f +与)(x f -不一定可积D 、)(x f +与)(x f -至少有一个不可积 87、设0=mE (Φ≠E ),)(x f 是E 上的实函数,则下面叙述正确的是( )A 、)(x f 在E 上不一定可测B 、)(x f 在E 上可测但不一定可积C 、)(x f 在E 上可积且积分值为0D 、)(x f 在E 上不可积 88、)(x f 在可测集E 上)(L 可积的必要条件是,)(x f 为( )A 、连续函数B 、几乎处处连续函数C 、单调函数D 、几乎处处有限的可测函数89、设)(x D 为狄立克雷函数,则⎰=10)()(dx x D L ( )A 、 0B 、 1C 、1/2D 、不存在 90、设)(x f 为Cantor 集的特征函数,则⎰=10)()(dx x f L ( )A 、 0B 、 1/3C 、2/3D 、 1 填空题1、设A 为一集合,B 是A 的所有子集构成的集合;若A =n, 则B =2、设A 为一集合,B 是A 的所有子集构成的集合;若A 是一可数集, 则B =3、若c A =, c B =, 则=⋃B A4、若c A =, B 是一可数集, 则=⋃B A5、若c A =, n B =, 则=⋃B A6、若}{n A 是一集合列, 且c A n =, =⋃∞=n n A 17、若I A ∈αα}{是任意集族, 其中I 是指标集, 则ααA I∈⋂=8、若I A ∈αα}{是任意集族, 其中I 是指标集, 则ααA I∈⋃=9、若I A ∈αα}{是任意集族, 其中I 是指标集, S 是一集合, 则)(ααA C IS ∈⋂=10、若I A ∈αα}{是任意集族, 其中I 是指标集, S 是一集合, 则)(ααA C IS ∈⋃=11、若}{n A 是任意一个集合列, 则=∞→n n A lim12、若}{n A 是任意一个集合列, 则=∞→n n A lim13、欧氏空间n R 中, 任意两点),,(21n x x x x =, ),,(21n y y y y =的距离d(x, y)=14、C[a, b]空间中,任意两元素x(t), y(t) 的距离 d(x, y)= 15、2l 空间中, 任意两元素 ),,,(21 n x x x x =, ),,(21 n y y y y =的距离 d(x, y)=16、欧氏空间2R 中, 任意两点),(21x x x =, ),(21y y y =的距离 d(x, y)= 17、欧氏空间3R 中, 任意两点),,(321x x x x =, ),,(321y y y y =的距离d(x, y)=18、欧氏空间4R 中, 任意两点),,,(4321x x x x x =, ),,,(4321y y y y y =的距离d(x,y)=19、设2R X =,}1:),{(22<+=y x y x E ,则E =20、设3R X =, }1:),,{(222<++=z y x z y x E , 则E =21、设2R X =,}1:),{(22<+=y x y x E ,则E ∂= 22、设2R X =,}1:),{(22<+=y x y x E ,则E '=23、设3R X =, }1:),,{(222<++=z y x z y x E , 则 E ∂= 24、设3R X =, }1:),,{(222<++=z y x z y x E , 则E '= 25、设A= [0, 1] , B = [3, 4] , 则 d(A, B) = 26、设C 是康托完备集, G= [0, 1]-C , 则d (C, G) = 27、设C 是康托完备集, 则C 的半径)(C δ=28、两个非空集合A, B 距离的定义为 d (A, B ) = 29、一个非空集合A 的直径的定义为)(A δ= 30、设A = [0, 1] ⋂Q, 则)(A δ=31、nR E ⊂,对每一列覆盖E 的开区间 ∞=⊃1i i E I ,定义=E m *________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
证明任意A中的圆,由三个独立记号所决定; ,其中 是圆心的坐标, 是圆半径, 各自跑遍有理数, 跑遍大于0的有理数,因而都是可数集.所以 .
14.证明:增函数的不连续点最多只有可数多个.
证明设 是 上的增函数,记不连续点全体为E,由数学分析知:
⑴任意 , 及 都存在。
⑵ 的充分必要条件为
⑶任意 ,若 ,则 因此每一 ,对应于直线上的开区间 ,且由(3)可知E中点 对应的这样的开区间是互不相交的,由11题知至多可数。
17.证明: 上的全体无理数做成的集合其基数为C.
证明记 上的无理数全体为A, 上的有理数全体为 ,显然
令 ,
,
,
则 是A到 的1—1对应,由 的基数为C,可知A的基数也是C。
18.若集A中每个元素,由互相独立的可数个指标决定,即 ,而每个 取遍一个基数为C的集,
则A的基数也是C。
证明设 , , ,因而有 到实数集R的1—1映射 .令 是A到 的一映射,对任意 。 ,下面证明 是1—1映射.
15.试找出使(0,1)和 之间1—1对应的一种方法.
解记(0,1)中有理数全体

显然 是(0,1)和 之间的1—1映射。
16.设A是一可数集合,则A的所有有限子集所成的集合亦必可数.
证明设 ,A的有限子集的全体为 , , 的子集全体为 ,易计算 中共有 个元素,而 ,因此 至多为可数的.又A中一个元素组成的集合是可数的,因而 是可数的.
证明只要证明球面S: 去掉 点后与 平面M对等即可.
此可由球极投影来做到;对任意 ,

易验证 是1—1的,映上的,因此S与M是对等的,证毕。
11.证明:由直线上某些互不相交的开区间所谓集A的元素,则A至多为可数集.
证明设 ,在每一 中任取一点有理数 使 与 对应.因为 是互不相交的,因此这个对应是1—1的,而G与有理数的子集对等,因此G至多可数。
3.存在不可数集。无最大基数集。
以下介绍学习中应掌握的方法
4.肯定方面与否定方面。
5.集合列的上、下限集是用集合运算来解决分析问题的基础,应很好地掌握。其中用交并表示很重要。对第四章的学习特别重要。
6.基数部分重点:集合对等、构造集合的一一对应;利用对等的传递性(伯恩斯坦定理)来进行相应的证明。
7.集合可数性的证明方法很重要:可排列、与已知可数集对等、利用集合的运算得到可数、第四节定理6.
5.证明:
⑴ ;
⑵ .
证明⑴
⑵ .
6.设 是一列集合,作 , 。证明 是一列互不相交的集,而且
证明若 ,不妨设 ,显然
设 ,若 ,则 ,若 ,令 是最小的自然数使 ,即 而 ,这样 ,所以 证毕。
7.设 ,求出集列 的上限集和下限集。
解 ;Байду номын сангаас
设 ,则存在N,使 时,因此 时, ,即 ,所以 属于下标比N大的一切偶数指标集,从而 属于无限多 ,得 ,又显然 ,所以 。
第一章集合
一、內容小结
1.这一章学习了集合的概念、表示方法、集合的运算(并、交、差、补);引入了集合列的上、下极限和极限的运算;对集合运算规则作了仔细的讨论,特别是德摩根公式。
2.引入了集合对等的概念,证明了判别两个集合对等的有力工具——伯恩斯坦定理。
3.引入了集合基数的概念,深入地研究了可数基数和连续基数。
8.证明集合基数为C中常用到已知的基数为C的集合。
三、习题解答
1.证明:
证明 ,得
若 且 ,得 因此
设 当然有 ,若 由 且 ,可知 且 ,所以 同样有 因此 ,
所以
2.证明






证明⑴
=





3.证明: ;
证明:
4.证明:
证明设 ,则 ,但 ,因此对任意 , ,所以 ,因而
设 则任意 , ,即 , ,因此则 ,但 ,得 ,所以

则 , ,所以对每个 ,存在 ,于是 .下证 .事实上,若 ,则存在 使 ,于是 ,这与 矛盾,所以 ,这又与 矛盾,因此至少存在某个 使 的基数也是C.
20.记每项取值为0或1的数列全体所成的集合为T,求证T的基数为C.
证明设
作T到 的映射 ,则 是T到 的子集 的1—1映射,所以 反之, 区间与2进位无穷小数正规表示1—1对应,所以每个 都可唯一的写成 ,其中每个 ,令 ,则 是 到T的子集 上的1—1映射,因而 .综上所述得 。
12.证明:所有系数为有理数的多项式组成一可数集.
证明 : 次有理系数多项式全体所成的集合
:所有系数为有理数的多项式全体所成的集合
由 +1个独立记号所决定,(系数),每个记号(首位不取0)可独立跑遍全体有理数(可数个)
因此由§4定理6, ,又由§4定理6, .
13.设A是平面上以有理点(即坐标都是有理数)为中心,有理数为半径的圆的全体,则A是可数集.
二、学习要点
1.准确熟练地掌握集合的运算法则,特别要注意集合运算既有和代数运算在形式上一许多类似的公式,但也有许多本质。但是千万不要不加证明地把代数恒等式搬到集合运算中来。例如:(a+b)-a=b,但是(A+B)-B=A却不一定成立。条件为A,B不交。
2.可数集合是所有无限集中最小的无限集。若可数A去掉可数B后若还无限则C必可数。
若 ,则对任意 , ,由于 是一对一的,因此 ,所以 ,对任意 ,因为 是映上的,必有 ,使 ,所以有 ,使 ,即 是1—1映射.所以A与 的基数相同,等于C。
19.若 的基数为C,证明:存在 使 的基数也是C.
证明由于 ,我们不妨设 ,用反证法,若 , ,设 为 到R中如下定义的映射:若 则 ,令
若有 ,则存在N,使对任意 ,有 ,因此若 时, ,即 ,令 ,得 ,此不可能,所以 。
8.证明
证明设 则存在N,使对任意 ,有 ,所以 ,所以 ;设 ,则有 ,使 ,即对任意 ,有 ,所以 ,因此 。
9.作出一个(-1,1)和 的1—1对应,并写出这一一对应的解析表达式
解 ,对任意 ,
10.证明:将球面去掉一点以后,余下的点所成的集合和整个平面上的点所成的集合是对等的.
相关文档
最新文档