考研高数总复习函数的极限
高数考研重点罗列

考研数学高等数学重难点第一章函数与极限(考研必考章节,其中求极限是本章最重要题型,要掌握求极限的几种经典方法)第一节映射与函数(一般章节)一集合(不用看)二映射(不用看)三函数(了解)第二节数列的极限(一般章节)(本节用极限定义证明极限的题目考纲不作要求,可不看)一数列极限的定义(了解)二收敛数列的性质(了解)第三节函数的极限(一般章节)一函数极限的定义(了解)二函数极限的性质(了解)第四节无穷小与无穷大(重要)一无穷小(重要)二无穷大(了解)第五节极限运算法则(注意运算法则的前提条件是极限存在)第六节极限存在准则(理解)两个重要极限(重要两个重要极限要会证明)第七节无穷小的比较(重要)第八节函数的连续性与间断点(重要基本必考小题)一函数的连续性二函数的间断点第九节连续函数的运算与初等函数的连续性(了解)一连续函数的和、差、积、商的连续性二反函数与复合函数的连续性三初等函数的连续性第十节闭区间上连续函数的性质(重要,不单独考大题,但考大题会用到)一有界性与最大值最小值定理(重要)二零点定理与介值定理(重要)三一致连续性。
(不用看)第二章导数与微分(小题的必考章节)第一节导数概念(重要)一引例(数三可只看切线问题举例)二导数的定义(重难点,考的频率很高)三导数的几何意义(理解)另外:数一数二要知道导数的物理意义,数三要知道导数的经济意义(边际与弹性)四函数可导性与连续性的关系(重要,要会证明)第二节函数的求导法则(考小题)一函数的和、差、积、商求导法则二反函数的求导法则三复合函数的求导法则四基本求导法则与求导公式(要非常熟)第三节高阶导数(重要,考的可能性大)第四节隐函数及由参数方程所确定的函数的导数(考小题)、相关变化率(不用看)一隐函数的导数二由参数方程所确定的函数的导数三相关变化率(不用看)第五节函数的微分(考小题)一微分的定义二微分的几何意义三基本初等函数的微分公式与微分运算法则四微分在近似计算中的应用(不用看,基本上只要有近似两个字,考纲俊不作要求)第三章微分中值定理与导数的应用(考大题、难题经典章节)第一节微分中值定理(最重要,与中值定理的应用有关的证明题)一罗尔定理(要会证)二拉格朗日中值定理(要会证)三柯西中值定理(要会证)另外要会证明费马定理第二节洛比达法则(重要,基本上必定要考)第三节泰勒公式(掌握其应用,可以不用证明公式本身)第四节函数的单调性与曲线的凹凸性(考小题)一函数单调性的判定法二曲线的凹凸性与拐点第五节函数的极值与最大值最小值(考小题为主)一函数的极值及其求法二最大值最小值问题第六节函数图形的描绘(重要)第七节曲率(了解,只有数一数二考,数三不用看)一弧微分(不用看)二曲率及其计算公式(了解)三曲率圆与曲率半径(了解)四曲率中心的计算公式渐屈线与渐伸线(不用看)第八节方程的近似解(只要有近似,考研不考,不用看)第四章不定积分(重要)相对于数一、数三,本章数二考大题的可能性更大第一节不定积分的概念与性质一原函数与不定积分的概念(理解)二基本积分表(全背且熟练准确)三不定积分的性质(理解)第二节换元积分法(重要,其中第二类换元积分法更加重要)一第一类换元法二第二类换元法第三节分部积分法(考研必考)第四节有理函数的积分(重要)一有理函数的积分二可化为有理函数积分的习题举例第五节积分表的使用(不用看)第五章定积分(重要,考研必考)第一节定积分的概念与性质(理解)一定积分问题举例(了解)其中“变速直线运动的路程”数三不用看二定积分定义(理解)三定积分的近似计算(不用看)四定积分的性质(理解)第二节微积分基本公式(重要)一变速直线运动中位置函数与速度函数之间的联系(了解)数三不用看二积分上限的函数及其导数(极其重要,要会证明)三牛顿-莱布尼茨公式(重要,要会证明)第三节定积分的换元积分法与分部积分法(重要,分部积分法更重要)一定积分的换元法二定积分的分部积分法第四节反常积分(考小题)一无穷限的反常积分二无界函数的反常积分第五节反常积分的审敛法T函数(不用看)第六章定积分的应用(考小题为主)第一节定积分的元素法(理解)第二节定积分在几何学上的应用(面积最重要)一平面图形的面积二体积(数三只看旋转体的体积)三平面曲线的弧长(数三不用看,数一数二记住公式即可)第三节定积分在物理学上的应用(数三不用看,数一数二了解)一变力引直线所作的功二水压力三引力第七章微分方程(必考章节,本章相对于数学二相对最重要)第一节微分方程的基本概念(了解)第二节可分离变量的微分方程(理解)第三节齐次方程(理解)一齐次方程二可化为齐次的方程(不用看)第四节一阶线性微分方程(重要,熟记公式)一线性方程二伯努利方程(只有数一考,记住公式即可)第五节可降阶的高阶微分方程(只有数一数二考,理解)一型的微分方程二型的微分方程三型的微分方程第六节高阶线性微分方程(理解)一二阶线性微分方程举例(不用看)二线性微分方程的解的结构(重要)三常数变易法(不用看)第七节常系数齐次线性微分方程(最重要,考大题的备选章节)第八节常系数非齐次线性微分方程(最重要,考大题的备选章节)一型二第九节欧拉方程(只有数一考,了解)第九节常系数线性微分方程的解法举例(不用看)第八章空间解析几何与向量代数(只有数一考,考小题,了解)第一节向量及其线性运算一向量概念二向量的线性运算三空间向量坐标系四利用坐标作向量的线性运算五向量的模、方向角、投影第二节数量积、向量积、混合积一两向量的数量积二两向量的向量积三向量的混合积第三节曲面及其方程一曲面方程的概念二旋转曲面三柱面四二次曲面第四节空间曲线及其方程一空间曲线的一般方程二空间曲线的参数方程三空间曲线在坐标面上的投影第五节平面及其方程一平面的点法式方程二平面的一般方程三两平面的夹角第六节空间直线及其方程一空间直线的一般方程二空间直线的对称式方程与参数方程三两直线的夹角四直线与平面的夹角第九章多元函数微分法及其应用(考大题经典章节,但难度不大)第一节多元函数的基本概念(了解)一平面点集 n维空间二多元函数概念三多元函数的极限四多元函数的连续性第二节偏导数(理解)一偏导数的定义及其计算法二高阶偏导数(重要)第三节全微分(理解)一全微分的定义二全微分在近似计算中的应用(不用看)第四节多元复合函数的求导法则第五节隐函数的求导公式(理解小题)一一个方程的情形二方程组的情形(不用看)第六节多元函数微分学的几何应用(只有数一考,考小题)一一元向量值函数及其导数(不用看)二空间曲线的切线与法平面三曲面的切平面与法线第七节方向导数与梯度(只有数一考,考小题)一方向导数二梯度第八节多元函数的极值及其求法(重要,大题的常考题型)一多元函数的极值及最大值最小值二条件极值、拉格朗日乘数法第九节二元函数的泰勒公式(只有数一考,了解)一二元函数的泰勒公式(了解)二极值充分条件的证明(不用看)第十节最小二乘法(不用看)第十章重积分(重要,数二数三相对于数一,本章更加重要.数二数三基本必考大题)第一节二重积分的概念与性质(了解)一二重积分的概念(了解)二二重积分的性质(了解)第二节二重积分的计算法(重要,数二数三极其重要)一利用直角坐标计算二重积分二利用极坐标计算二重积分三二重积分的换元法(不用看)第三节三重积分(只有数一考,理解)一三重积分的概念(了解)二三重积分的计算(重要)第四节重积分的应用(只有数一考,了解)一曲面的面积二质心三转动惯量四引力第五节含参变量的积分(不用看)第十一章曲线积分与曲面积分(只有数一考,数二数三均不考;数一考大题、考难题经典章节)第一节对弧长的曲线积分(重要)一对弧长的曲线积分的概念(理解)与性质(了解)二对弧长的曲线积分的计算法(重要)第二节对坐标的曲线积分(重要)一对坐标的曲线积分的概念(理解)与性质(了解)二对坐标的曲线积分的计算法(重要)第三节格林公式及其应用(重要)一格林公式(重要)二平面上曲线积分与路径无关的条件(重要)三二元函数的全微分求积(理解)四曲线积分的基本定理(不用看)第四节对面积的曲面积分(重要)一对坐标的曲面积分的概念与性质(了解)二对坐标的曲面积分的计算法(重要)三两类曲面积分之间的联系(了解)第五节对坐标的曲面积分(重要)一对坐标的曲面积分的概念与性质(了解)二对面积的曲面积分的计算法(重要)第六节高斯公式(重要)、通量(不用看)与散度(了解)一高斯公式(重要)二沿任意闭曲面的曲面积分为零的条件(不用看)三通量与散度(了解)第七节斯托克斯公式(重要)环流量与旋度(了解)一斯托克斯公式(重要)二空间曲面积分与路径无关的条件(不用看)三环流量与旋度第十二章无穷级数(数学二不考,不用看;数一数三考大题、考难题的经典章节)第一节常数项级数的概念与性质(一般考点)一常数项级数的概念(了解)二收敛级数的基本性质(考选择题章节)三柯西审敛原理(不用看)第二节常数项级数的审敛法(理解)一正项级数及其审敛法二交错级数及其审敛法三绝对收敛与条件收敛四绝对收敛级数的性质(不用看)第三节幂级数(重要)一函数项级数的概念(了解)二幂级数及其收敛性(最重要)三幂级数的运算(乘或除不用看)第四节函数展开为幂级数(数一相对数三本节更重要)第五节函数的幂级数展开式的应用(不用看)一近似计算二微分方程的幂级数解法三欧拉公式第六节函数项级数的一致收敛性及一致收敛级数的基本性质(不用看)一函数项级数的一致收敛性二一致收敛级数的基本性质第七节傅里叶级数(数三不用看,数一了解)一三角函数系的正交性二函数展开为傅里叶级数三正弦级数和余弦级数第八节一般周期函数的傅里叶级数(数三不用看,数一了解)一周期为2l的周期函数的傅里叶级数二傅里叶级数的复数形式(不用看)。
考研高数极限试题及答案

考研高数极限试题及答案模拟试题:一、选择题(每题3分,共15分)1. 极限 \(\lim_{x \to 0} \frac{\sin x}{x}\) 的值是多少?A. 0B. 1C. -1D. \(\frac{1}{2}\)2. 函数 \(f(x) = \frac{x^2 - 1}{x - 1}\) 在 \(x = 1\) 处的极限是多少?A. 2B. 1C. 0D. 不存在3. 极限 \(\lim_{x \to +\infty} \frac{x^2}{e^x}\) 存在吗?A. 是B. 否4. 函数 \(g(x) = \begin{cases}x^2 & \text{if } x \neq 0 \\0 & \text{if } x = 0\end{cases}\) 在 \(x = 0\) 处的右极限是多少?A. 0B. 1C. \(\frac{1}{2}\)D. 不存在5. 极限 \(\lim_{x \to 1} (x^2 - 1)\) 等于多少?A. 0B. 1C. 2D. 3二、计算题(每题10分,共40分)6. 计算极限 \(\lim_{x \to 2} \frac{x^2 - 4}{x - 2}\)。
7. 计算极限 \(\lim_{x \to 0} \frac{\cos x - 1}{x}\)。
8. 计算极限 \(\lim_{x \to +\infty} \frac{\sin x}{x}\)。
9. 计算极限 \(\lim_{n \to \infty} \frac{1}{n^2} +\frac{1}{n^3}\)。
三、解答题(每题20分,共40分)10. 证明 \(\lim_{x \to 0} x \sin \frac{1}{x} = 0\)。
11. 已知 \(\lim_{x \to 2} f(x) = 3\),证明 \(\lim_{x \to 2} [f(x)]^2 = 9\)。
考研高数中求极限的几种特殊方法

考研高数中求极限的几种特殊方法在数学分析中,极限是研究函数的重要工具。
通过极限,我们可以研究函数的性质,进行函数的计算,以及解决与函数相关的问题。
求函数极限的方法有很多种,以下是几种常见的方法。
对于一些简单的初等函数,我们可以直接根据函数的定义代入特定的x值来求得极限。
例如,求lim (x→2) (x-2),我们可以直接代入x=2,得到极限为0。
当函数在某一点处的极限存在时,如果从该点趋近的数列是无穷小量,则此函数在该点处的极限就等于该数列的极限。
例如,求lim (x→0) (1/x),我们可以令x=1/t,当t→∞时,x→0,而t=1/x趋近于无穷小量,所以lim (x→0) (1/x) = lim (t→∞) (t) = ∞。
洛必达法则是求未定式极限的重要方法。
如果一个极限的形式是0/0或者∞/∞,那么我们可以通过对函数同时取微分的方式来找到极限的值。
例如,求lim (x→+∞) (x^2+3)/(2x^2+1),分子分母同时求导,得到lim (x→+∞) (2x/4x) = lim (x→+∞) (1/2) = 1/2。
对于一些复杂的函数,我们可以通过泰勒展开的方式将其表示为无限多项多项式之和的形式。
通过选取适当的x值,我们可以使得多项式的和尽可能接近真实的函数值。
例如,求lim (x→0) ((1+x)^m-1)/x,我们可以使用泰勒展开得到lim (x→0) ((1+x)^m-1)/x = lim (x→0) m(1+x)^(m-1) = m。
夹逼定理是一种通过构造两个有界序列来找到一个数列的极限的方法。
如果一个数列的项可以划分为三部分,而每一部分都分别被两个有界序列所夹逼,那么这个数列的极限就等于这两个有界序列的极限的平均值。
例如,求lim (n→∞) (n!/(n^n))^(1/n),令a_n=(n!/(n^n))^(1/n),则a_n ≤ a_{n+1}且a_n ≥ a_{n-1},因此由夹逼定理可知lim a_n=lim a_{n+1}=lim a_{n-1}=1。
考研数学分析总结-数二

1高数部分1.1 高数第一章《函数、极限、连续》求极限题最常用的解题方向:1.利用等价无穷小;2.利用洛必达法则,对于00型和∞∞型的题目直接用洛必达法则,对于∞0、0∞、∞1型的题目则是先转化为00型或∞∞型,再使用洛比达法则;3.利用重要极限,包括1sin lim0=→x x x 、e x x x =+→10)1(lim 、e x x x =+∞→)1(1lim ;4.夹逼定理。
1.2 高数第二章《导数与微分》、第三章《不定积分》、第四章《定积分》第二章《导数与微分》与前面的第一章《函数、极限、连续》、后面的第三章《不定积分》、第四章《定积分》都是基础性知识,一方面有单独出题的情况,如历年真题的填空题第一题常常是求极限;更重要的是在其它题目中需要做大量的灵活运用,故非常有必要打牢基础。
对于第三章《不定积分》,陈文灯复习指南分类讨论的非常全面,范围远大于考试可能涉及的范围。
在此只提醒一点:不定积分⎰+=C x F dx x f )()(中的积分常数C 容易被忽略,而考试时如果在答案中少写这个C 会失一分。
所以可以这样建立起二者之间的联系以加深印象:定积分⎰dx x f )(的结果可以写为F(x)+1,1指的就是那一分,把它折弯后就是⎰+=C x F dx x f )()(中的那个C,漏掉了C 也就漏掉了这1分。
第四章《定积分及广义积分》可以看作是对第三章中解不定积分方法的应用,解题的关键除了运用各种积分方法以外还要注意定积分与不定积分的差异——出题人在定积分题目中首先可能在积分上下限上做文章:对于⎰-aa dx x f )(型定积分,若f(x)是奇函数则有⎰-aa dx x f )(=0;若f(x)为偶函数则有⎰-aa dx x f )(=2⎰a dx x f 0)(;对于⎰20)(πdx x f 型积分,f(x)一般含三角函数,此时用x t -=2π的代换是常用方法。
所以解这一部分题的思路应该是先看是否能从积分上下限中入手,对于对称区间上的积分要同时考虑到利用变量替换x=-u 和利用性质0=⎰-a a 奇函数 、⎰⎰=-a aa 02偶函数偶函数。
考研数学高数1极限与函数

第一讲:极限与函数数列极限:数列极限的严格定义不需要掌握,但需要理解如下定理:lim {}n n n x a x a →∞=⇔-是无穷小量数列极限的四则运算:设lim n n x x →∞=,lim n n y y →∞=,则:lim()n n n x y x y →∞±=±、lim()n n n x y xy →∞=、lim()(0)n n n x xy y y→∞=≠ 推论:若lim 0n n x →∞=,数列{}n y 有界,则lim 0n n n x y →∞=例:计算下列极限n n n n n 323)1(lim ++-∞→ )12(lim --+∞→n n n n数列极限的性质唯一性:如果数列{}n x 收敛,则其期限必唯一 有界性:如果数列{}n x 收敛,则该数列必定有界保序性:设数列{}n x 、{}n y 均收敛,且当n 足够大时,有n n x y >,则必有lim lim n n n n x y →∞→∞≥保序性的推论(保号性):设数列{}n x 收敛,且当n 足够大时,有0n x >,则必有lim 0n n x →∞≥注意:1、后面的不等式并不是严格的不等号;2、保序性的逆命题不一定成立思考:求如下几个数列的极限:1111{sin }{sin }{sin }n n n n n n、、数列极限的三个常用定理:数列与其子列的关系:如果数列{}n x 收敛,则其任意子列均收敛,且收敛于同一极限lim n n x →∞;如果数列{}n x 中存在两个子列收敛于不同的极限,或是一个收敛一个发散到无穷大,则{}n x必发散。
例:计算(1)1lim[]nn n n-→∞+夹逼准则:如果当n 足够大时,数列{}n x 、{}n y 、{}n z 满足不等式n n n x y z ≤≤,且{}n x 、{}n z 收敛于同一极限,则{}n y 必收敛于该极限例:计算下列极限1、设0>>>c b a ,nn n n n c b a x ++=,求222111lim (1)(2)nn n n →∞⎡⎤+++⎢⎥+⎣⎦2、2lim n n →∞⎛⎫+++ 3、222111lim (1)(2)n n n n →∞⎡⎤+++⎢⎥+⎣⎦4、(思考)⎪⎪⎭⎫⎝⎛++++++∞→22222212111lim n n n n n (需要用定积分来求)单调有界数列必收敛定理:如果数列{}n x 单调递增且有上界,或是单调递减且有下界,则{}n x 必收敛。
考研高数总复习函数的极限(讲义)PPT课件

无穷小与函数极限的关系是相互依存的,无穷小是函数极限的一种表现形式,而函数极限又是无穷小的 一种表现形式。
无穷小在求极限中的应用
利用无穷小的性质,可以将复杂的函数极限转化为简单的无穷小量,从而 简化计算过程。
在求函数极限时,可以利用等价无穷小替换,将复杂的函数表达式替换为 简单的无穷小量,从而得到更易处理的极限表达式。
利用极限的四则运算法则,消去零因子,化 简函数形式,再求极限。
利用两个重要极限求解
利用重要极限$lim_{x to 0} frac{sin x}{x} = 1$求解:当函数 形式为$frac{sin x}{x}$时,可以利用此重要极限求解。
利用重要极限$lim_{x to infty} frac{1}{x} = 0$求解:当函数 形式为$frac{1}{x}$时,可以利用此重要极限求解。
考研高数总复习函数的极限(讲义 )ppt课件
contents
目录
• 函数极限的基本概念 • 函数极限的求解方法 • 函数极限的应用 • 函数极限的深入理解 • 总结与展望
01 函数极限的基本概念
函数极限的定义
1 2
函数极限的定义
当自变量趋近某一特定值时,函数值的变化趋势。
函数极限的表示方法
lim f(x) = A,表示当x趋近于某个值时,f(x)趋 近于A。
THANKS FOR WATCHING
感谢您的观看
在物理学中,函数极限被用来描述物体运动的速度、加速度等概念;在 工程中,函数极限被用来描述信号的变化趋势;在经济中,函数极限被
用来描述市场的变化趋势。
通过对函数极限的学习,我们可以更好地理解和应用这些概念,为未来 的学习和工作打下坚实的基础。
考研数学高数定理定义总结

考研数学高数定理定义总结第一章函数与极限1、函数的有界性在定义域内有f(x)≥K1则函数f(x)在定义域上有下界,K1 为下界;如果有f(x)≤K2,则有上界,K2称为上界。
函数f(x)在定义域内有界的充分必要条件是在定义域内既有上界又有下界。
2、数列的极限定理(极限的唯一性)数列{xn}不能同时收敛于两个不同的极限。
定理(收敛数列的有界性)如果数列{xn}收敛,那么数列{xn}一定有界。
如果数列{xn}无界,那么数列{xn}一定发散;但如果数列{xn}有界,却不能断定数列{xn}一定收敛,例如数列1,-1,1,-1,(-1)n+1…该数列有界但是发散,所以数列有界是数列收敛的必要条件而不是充分条件。
定理(收敛数列与其子数列的关系)如果数列{xn}收敛于a,那么它的任一子数列也收敛于a.如果数列{xn}有两个子数列收敛于不同的极限,那么数列{xn}是发散的,如数列1,-1,1,-1,(-1)n+1…中子数列{x2k-1}收敛于1,{xnk}收敛于-1,{xn}却是发散的;同时一个发散的数列的子数列也有可能是收敛的。
3、函数的极限函数极限的定义中0<|x-x0|表示x≠x0,所以x→x0时f(x)有没有极限与f(x)在点x0有没有定义无关。
定理(极限的局部保号性)如果lim(x→x0)时f(x)=A,而且A>0(或A<0),就存在着点那么x0的某一去心邻域,当x在该邻域内时就有f(x)>0(或f(x)>0),反之也成立。
函数f(x)当x→x0时极限存在的充分必要条件是左极限右极限各自存在并且相等,即f(x0-0)=f(x0+0),若不相等则limf(x)不存在。
一般的说,如果lim(x→∞)f(x)=c,则直线y=c是函数y=f(x)的图形水平渐近线。
如果lim(x→x0)f(x)=∞,则直线x=x0是函数y=f(x)图形的铅直渐近线。
4、极限运算法则定理有限个无穷小之和也是无穷小;有界函数与无穷小的乘积是无穷小;常数与无穷小的乘积是无穷小;有限个无穷小的乘积也是无穷小;定理如果F1(x)≥F2(x),而limF1(x)=a,limF2(x)=b,那么a≥b.5、极限存在准则两个重要极限lim(x→0)(sinx/x)=1;lim(x→∞)(1+1/x)x=1.夹逼准则如果数列{xn}、{yn}、{zn}满足下列条件:yn≤xn≤zn且limyn=a,limzn=a,那么limxn=a,对于函数该准则也成立。
2020考研高数求极限的16个方法及常考题型

2020考研高数求极限的16个方法及常考题型2017考研高数求极限的16个方法及常考题型极限可以说是高数的重点,是每年都必考的一个知识点,复习高数的时候,求极限大家一定要多理解多做题,下面总结了16类求极限的方法及一些常考察的题型,把它们掌握了,相信对于求极限的问题已经基本可以解决了。
解决极限的方法如下:1、等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用,前提是必须证明拆分后极限依然存在,e的X次方-1或者(1+x)的a次方-1等价于Ax等等。
全部熟记(x趋近无穷的时候还原成无穷小)。
2、洛必达法则(大题目有时候会有暗示要你使用这个方法)。
首先他的使用有严格的使用前提!必须是X趋近而不是N趋近!(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件(还有一点数列极限的n当然是趋近于正无穷的,不可能是负无穷!)必须是函数的导数要存在!(假如告诉你g(x),没告诉你是否可导,直接用,无疑于找死!!)必须是0比0无穷大比无穷大!当然还要注意分母不能为0。
洛必达法则分为3种情况:0比0无穷比无穷时候直接用;0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。
通项之后这样就能变成第一种的形式了;0的0次方,1的无穷次方,无穷的0次方。
对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,LNx 两端都趋近于无穷时候他的幂移下来趋近于0,当他的幂移下来趋近于无穷的时候,LNX趋近于0)。
3、泰勒公式(含有e的x次方的时候,尤其是含有正余弦的加减的时候要特变注意!)E的x展开sina,展开cosa,展开ln1+x,对题目简化有很好帮助。
4、面对无穷大比上无穷大形式的解决办法,取大头原则最大项除分子分母!!!看上去复杂,处理很简单!5、无穷小于有界函数的处理办法,面对复杂函数时候,尤其是正余弦的复杂函数与其他函数相乘的时候,一定要注意这个方法。
2023考研数学高数重要定理:函数与极限

2023考研数学高数重要定理:函数与极限2023考研数学高数重要定理:函数与极限函数与极限1、函数的有界性在定义域内有f〔x〕-geK1那么函数f 〔x〕在定义域上有下界,K1为下界假如有f〔x〕-leK2,那么有上界,K2称为上界。
函数f〔x〕在定义域内有界的充分要条件是在定义域内既有上界又有下界。
2、数列的极限定理〔极限的性〕数列xn不能同时收敛于两个不同的极限。
定理〔收敛数列的有界性〕假如数列xn收敛,那么数列xn一定有界。
假如数列xn无界,那么数列xn一定发散但假如数列xn 有界,却不能断定数列xn一定收敛,例如数列1,-1,1,-1,〔-1〕n+1…该数列有界但是发散,所以数列有界是数列收敛的要条件而不是充分条件。
定理〔收敛数列与其子数列的关系〕假如数列xn收敛于a,那么它的任一子数列也收敛于a.假如数列xn有两个子数列收敛于不同的极限,那么数列xn是发散的,如数列1,-1,1,-1,〔-1〕n+1…中子数列x2k-1收敛于1,xnk收敛于-1,xn却是发散的同时一个发散的数列的子数列也有可能是收敛的。
3、函数的极限函数极限的定义中定理〔极限的部分保号性〕假如lim〔x-rarrx0〕时f 〔x〕=A,而且A》0〔或A0〔或f〔x〕》0〕,反之也成立。
函数f〔x〕当x-rarrx0时极限存在的充分要条件是左极限右极限各自存在并且相等,即f〔x0-0〕=f〔x0+0〕,假设不相等那么limf〔x〕不存在。
一般的说,假如lim〔x-rarr-infin〕f〔x〕=c,那么直线y=c是函数y=f〔x〕的图形程度渐近线。
假如lim〔x-rarrx0〕f〔x〕=-infin,那么直线x=x0是函数y=f〔x〕图形的铅直渐近线。
4、极限运算法那么定理:有限个无穷小之和也是无穷小有界函数与无穷小的乘积是无穷小常数与无穷小的乘积是无穷小有限个无穷小的乘积也是无穷小定理假如F1〔x〕-geF2〔x〕,而limF1〔x〕=a,limF2〔x〕=b,那么a-geb.5、极限存在准那么:两个重要极限lim〔x-rarr0〕〔sinx/x〕=1lim〔x-rarr-infin〕〔1+1/x〕x=1.夹逼准那么假如数列xn、yn、zn满足以下条件:yn-lexn-lezn且limyn=a,limzn=a,那么limxn=a,对于函数该准那么也成立。
2023考研数学高数必背定理:函数与极限

2023考研数学高数必背定理:函数与极限1500字函数与极限是数学高等教育中的重点内容,也是考研数学高数部分经常出现的题型。
为了帮助考生巩固相关知识,我将为大家介绍一些必背的函数与极限定理,希望对大家的备考有所帮助。
1. 函数的极限定义:设函数f(x)在点x0的某一去心邻域内有定义,如果对于任意给定的正数ε,总存在正数δ,使得当0 < |x - x0| < δ时,有|f(x) - A| < ε,那么称函数f(x)在点x0处的极限为A,记作lim(x→x0)f(x) = A。
这个定义表达了函数在某点的极限值是指函数逼近某个常数。
2. 函数极限的性质:a. 唯一性:如果函数在某点的极限存在,那么它一定唯一;b. 保号性:若lim(x→x0)f(x) = A > 0,则存在x0的一个去心邻域,使得当x在该去心邻域内时,f(x) > 0。
3. 无穷大与无穷小:a. 无穷小定义:如果函数f(x)在x0的某一去心邻域内有定义,并且lim(x→x0)f(x) = 0,那么称f(x)是当x趋于x0时的无穷小。
b. 无穷大定义:如果函数f(x)在x0的某一去心邻域内有定义,并且lim(x→x0)|f(x)| = ∞,那么称f(x)是当x趋于x0时的无穷大。
4. 函数连续性定理:a. 第一类函数连续性:如果函数f(x)在区间[a, b]上连续,并且在区间上的每一个点x0处都满足lim(x→x0)f(x) = f(x0),那么称函数在区间[a, b]上连续;b. 第二类函数连续性:如果函数f(x)在区间[a, b]上连续,且函数在x0的某一去心邻域内有定义,那么函数在点x0处连续的充分必要条件是函数在点x0的左右极限lim(x→x0-)f(x)和lim(x→x0+)f(x)存在且相等。
5. 闭区间上连续函数的性质:a. 有界性:如果函数f(x)在闭区间[a, b]上连续,则函数在[a, b]上有界,即存在正数M,使得|f(x)| ≤ M对于所有的x∈[a, b]成立;b. 最值性:如果函数f(x)在闭区间[a, b]上连续,则函数在[a, b]上必定存在最大值和最小值。
考研高数总复习函数的极限(讲义)

因为0 a 1, 有an+1 a x an
由于x + n +
且 lim an1 lim an 0
n
n
即 lim a[ x]1 lim a[ x] 0
x
x
由夹逼定理,所以 lim a x 0. x
子列收敛性(函数极限与数列极限的关系)
定义1. 设在过程x a(a可以是x0 , x0 ,或x0 )中, 有数列xn ( a), 使得n 时xn a.则称数列
定义4:lim x x0
f
(x)
A
0,
0,
使得当0
|
x
x0
|
时,
恒有 | f (x) A | 成立.
x x0
0 | x x0 |
x x0
0 x0 x
x x0
0 x x0
定义5:设函数y f (x)在点 x0 的某左邻域内有定义,A是常数,
若 0, 0, 使得当0 x0 x 时, 恒有 | f (x) A | 成立,
A
(1) lim 1 0. x x
(2) lim sin x 0. x x
(3) lim arctan x 不存在. x
2. 自变量趋于有限值时函数的极限
自变量 x 趋于有限值 x0 包括三种情况:
1). x x0 2). x x0 3). x x0
x趋于x0正(或x0加). x趋于x0负(或x0减). x趋于x0 .
0,满足n
时,xn
0,
则数列{sin(xn )}就是函数sin x当x 0时的一个子列,
即,lim sin( 1 ) 0.
n
n
函数极限与数列极限的关系
函数极限存在的充要条件是它的任何子列的极限都存在, 且相等.
2020考研数学复习:高数必考的38个知识点

2020考研数学复习:高数必考的38个知识点2020考研数学复习:高数必考的38个知识点一、函数极限连续1、正确理解函数的概念,了解函数的奇偶性、单调性、周期性和有界性,理解复合函数、反函数及隐函数的概念。
2、理解极限的概念,理解函数左、右极限的概念以及极限存在与左右极限之间的关系。
掌握利用两个重要极限求极限的方法。
理解无穷小、无穷大以及无穷小阶的概念,会用等价无穷小求极限。
3、理解函数连续性的概念,会判别函数间断点的类型。
了解初等函数的连续性和闭区间上连续函数的性质(最.大值、最小值定理和介值定理),并会应用这些性质。
重点是数列极限与函数极限的概念,两个重要的极限:lim (sinx/x)=1,lim(1+1/x)=e,连续函数的概念及闭区间上连续函数的性质。
难点是分段函,复合函数,极限的概念及用定义证明极限的等式。
二、一元函数微分学1、理解导数和微分的概念,导数的几何意义,会求平面曲线的切线方程,理解函数可导性与连续性之间的关系。
2、掌握导数的四则运算法则和一阶微分的形式不变性。
了解高阶导数的概念,会求简单函数的n阶导数,分段函数的一阶、二阶导数。
会求隐函数和由参数方程所确定的函数的一阶、二阶导数及反函数的导数。
3、理解并会用罗尔中值定理,拉格朗日中值定理,了解并会用柯西中值定理。
4、理解函数极值的概念,掌握函数最.大值和最小值的求法及简单应用,会用导数判断函数的凹凸性和拐点,会求函数图形水平铅直和斜渐近线。
5、了解曲率和曲率半径的概念,会计算曲率和曲率半径及两曲线的交角。
6、掌握用罗必塔法则求未定式极限的方法,重点是导数和微分的概念,平面曲线的切线和法线方程函数的可导性与连续性之间的关系,一阶微分形式的不变性,分段函数的导数。
罗必塔法则函数的极值和最.大值、最小值的概念及其求法,函数的凹凸性判别和拐点的求法。
难点是复合函数的求导法则隐函数以及参数方程所确定的函数的一阶、二阶导数的计算。
三、一元函数积分学1、理解原函数和不定积分和定积分的概念。
高数考研知识点归纳

高数考研知识点归纳高等数学是考研数学的重要组成部分,其知识点广泛且深入,以下是对高数考研知识点的归纳总结:一、极限与连续性- 极限的定义与性质- 无穷小的比较- 函数的连续性与间断点- 连续函数的性质二、导数与微分- 导数的定义与几何意义- 基本导数公式- 高阶导数- 隐函数与参数方程的导数- 微分的概念与应用三、中值定理与导数的应用- 罗尔定理- 拉格朗日中值定理- 柯西中值定理- 泰勒公式- 导数在几何、物理等领域的应用四、不定积分与定积分- 不定积分的概念与性质- 基本积分公式- 换元积分法- 分部积分法- 定积分的定义与性质- 定积分的计算方法五、级数- 级数的概念与性质- 正项级数的收敛性判别- 幂级数与泰勒级数- 函数项级数的一致收敛性六、多元函数微分学- 偏导数与全微分- 多元函数的极值问题- 方向导数与梯度- 多元函数的泰勒展开七、重积分与曲线积分、曲面积分- 二重积分与三重积分- 重积分的计算方法- 曲线积分与曲面积分- 格林公式、高斯公式与斯托克斯定理八、常微分方程- 一阶微分方程的解法- 高阶微分方程- 线性微分方程的解法- 微分方程的应用结束语:考研高等数学的知识点繁多,要求考生不仅要掌握基本的概念和公式,还要能够灵活运用这些知识点解决实际问题。
通过系统地复习和大量的练习,可以提高解题速度和准确率,为考研数学取得高分打下坚实的基础。
希望以上的知识点归纳能够帮助考生更好地复习和准备考研高等数学。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 自变量趋向无穷大时函数的极限 自变量x趋于无穷大包括三种情况:
1). x 2). x 3). x
x沿x轴正向趋于无穷大. x沿x轴负向趋于无穷大. x沿x轴正向和负向都趋于无穷大.
(1)x 时,函数极限的定义:
当x 时,函数f (x)无限接近某个常数A, 称A为函数f (x)在x 时的极限.
因为0 a 1, 有an+1 a x an
由于x + n +
且 lim an1 lim an 0
n
n
即 lim a[x]1 lim a[ x] 0
x
x
由夹逼定理,所以 lim ax 0. x
子列收敛性(函数极限与数列极限的关系)
定义1. 设在过程x a(a可以是x0 , x0 ,或x0 )中, 有数列xn ( a), 使得n 时xn a.则称数列
n
xn
0,且
xn
0;
取
xn
2n
1 1
,
2
lim
n
xn
0, 且
xn
0;
而 lim sin 1 lim sin n 0,
n
xn
n
二者不相等,
lim sin 1 lim sin(2n 1 ) 1
n
xn
n
2
故 lim sin 1 不存在.
x1
x 1
lim f (x) lim x 1
x1
x1
左右极限存在且相等,
所以,lim f (x) 1 x1
3. 函数极限的性质
定理2(极限的唯一性)若lim f (x)存在,则极限值唯一。
定理3(局部有界性) 若当x x0时,f (x)有极限, 则f (x)在点x0的某去心邻域内有界; 若当x 时,f (x)有极限, 则存在X 0, 当| x | X时,函数f (x)有界。
(2) lim ex 0. x+
(3) lim arctan x .
x+
2
(2)x 时,函数极限的定义:
当x 时,函数f (x)无限接近某个常数A, 称A为函数f (x)在x 时的极限.
定义2. 设y f (x)是区间(, b]上的函数,A是一个常数.
若对于任意给定的 0, 存在一个正数X,使得当x X时,
记作 lim f (x) A x x0+ 或 f (x0+ ) A
或 f (x) A (x x0+ ) 或 f (x0 +0) A
例4. 用定义验证 lim ex 1. x0+
证明 因为当x 0时,| ex 1| ex 1, 由ex 1 x ln(1 ), 因此, 0,取 ln(1 ), 则当0 x 0 x 时, 总有 | ex 1| ex 1 . 所以,lim ex 1.
f (xn ),即f (x1), f (x2 ), , f (xn ), 为函数f (x)
当x a时的子列.
定理7. 若lim xa
f
( x)
A, 数列f
(xn )是f
( x)当x
a
时的一个子列, 则有lim n
f
(xn )
A.
已知 limsin x 0, x0
取
xn
1 n
0,满足n
时,xn
定义4 ( 定义):设函数y f (x)
在点 x0 的某去心邻域内有定义,A 是常数,若 0, 0,
使得当0 | x x0 | 时, 恒有 | f (x) A | 成立,
则称A为函数f (x)当x 趋于 x0 的极限, 记作 lim f (x) A
xx0
或 f (x) A (x x0 ).
例5.
f
(x)
x,
x,
x 0,讨论x 0时,函数极限的存在性. x0
解. lim f (x) lim(x) 0,
x0
x0
lim f (x) lim x 0,
x0
x0
因此,lim f (x) 0, x0
例6. 讨论 lim x 的存在性. x0 x
解 lim x lim x
x x0
A
A
A
X O X
x
当| x | >X时, 函数 y f (x)图形完全落在以
直线y A为中心线, 宽为2的带形区域内.
lim f (x) A当且仅当 lim f (x) A且 lim f (x) A.
x
x
x
若lim f (x) A, 则y A是y f (x)的水平渐近线. x y
A
(2) lim cos x 1. x0
(3) lim ex 1. x0
(4) lim x3 a3. xa
(5) lim x a (a 0). xa
定义4:lim x x0
f
(x)
A
0,
0,
使得当0
|
x
x0
|
时,
恒有 | f (x) A | 成立.
x x0
0 | x x0 |
(1) lim 1 0. x x
sin x
(2) lim
0.
x x
(3) lim arctan x 不存在. x
2. 自变量趋于有限值时函数的极限
自变量 x 趋于有限值 x0 包括三种情况:
1). x x0 2). x x0 3). x x0
x趋于x0正(或x0加). x趋于x0负(或x0减). x趋于x0 .
0,
则数列{sin(xn )}就是函数sin x当x 0时的一个子列,
即,lim sin( 1 ) 0.
n
n
函数极限与数列极限的关系
函数极限存在的充要条件是它的任何子列的极限都存在, 且相等.
例9.证明 lim sin 1 不存在.
x0
x
证明:取
xn
1
n
,
y sin 1 x
lim
5
限定| x 2 | 1, 1 x 3 | x 2 | 5. 取 =min{1, }.
证明: 0, 取 min{1, },
5
5
则当0 | x 2 | 时,
恒有:| x2 4 || x 2 | | x - 2 || x 2 | 5 ,
因此 lim x2 4. x2
(1) lim sin x 0. x0
x x0
或
f (x) A (x x0 ) 或
f (x0 ) A
或 f (x0 0) A
定义6:设函数y f (x)在点 x0 的某右邻域内有定义,A是常数,
若 0, 0,
使得当0 x x0 时,
恒有 | f (x) A | 成立,
则称A为函数 f (x) 在点 x0 的右极限,
lim f (x) A 0,
x
X 0, 当x X时,恒有 | f (x) A| .
lim
x
f
(几x) 何A解的几 释何: 意义:
y
y f (x)
A
A
A
OX
x
当x X时, 函数 y f (x)图形完全落在以
直线y A为中心线, 宽为2的带形区域内.
例1. 证明 lim 1 0. x x+
A是一常数. 若对于任意给定的 0, 存在一个正数X, 使得当| x | X时,恒有: | f (x) A | 成立,
则称常数A为函数y f (x)当x 时的极限.
记作 lim f (x) A, 或 f (x) A (x ) x
几lim何f (x解) 释A的 : 几何意义:
x
y y f (x)
0, X 0, 当x X时,恒有 | 1 0| .
x
要使 | 1 0| ,即 1 , 只要x 1 即可。
x 0, 取 X 1 , 则当 x X时恒有
1 0 ,
x
故 lim 1 0. x x +
(1) lim sin x 0. x x +
x 1
x 1
x 1
证明: 0, 取 = , 则当0 | x 1| 时,
恒有:| x2 1 2 || x 1| ,
x 1
因此
x2 1
lim
2.
x1 x 1
例3. 用定义验证 lim x2 4. x2
0, 0, 使得当0 | x 2 | 时,恒有 | x2 4 | .
| x2 4 || (x 2) | | (x 2) | | (x, 2) | 5 . | x 2 | .
大家好
1.5 函数的极限
xn f (n) : n , xn f (n) A?
函数极限的一般概念:定义在区间上的函数f (x),当自变量x 在区间上“连续地”变化时,函数f (x)是否无限接近某一常数?
函数极限讨论的两类问题:
1). 自变量趋于无穷大时函数的极限; 2). 自变量趋于有限值时函数的极限。
x0+
定理1 lim f (x) A的充要条件是 lim f (x) A 且 lim f (x) A
xx0
xx0
xx0
(1) 若f (x)在点x0处极限存在,等于A, 则f (x)在x0的左、右极限都存在且都等于A;
(2) 若f (x)在点x0处的左、右极限有一个不存在, 或者都存在,但不相等,则f (x)在x0处无极限.
(1) lim sin x 0. x x
(2) lim ex 0. x
(3) lim arctan x .
x
2
(3)x 时,函数极限的定义:
当x 时, 函数f (x)无限接近某个常数A, 称A为函数f (x)在x 时的极限.
定义3. 设y f (x)是区间(,b] [a, )上的函数,