圆锥曲线与平面向量交汇问题【强烈推荐】

合集下载

专题15 圆锥曲线与其它知识的交汇问题【原卷版】

专题15 圆锥曲线与其它知识的交汇问题【原卷版】

第三章 解析几何专题15 圆锥曲线与其它知识的交汇问题【压轴综述】纵观近几年的高考试题,高考对圆锥曲线的考查,出现一些与其它知识交汇的题目,如与平面向量交汇、与三角函数交汇、与不等式交汇、与导数交汇等等本专题在分析研究近几年高考题及各地模拟题的基础上,重点说明求解此类问题的方法规律. 一、与平面向量交汇问题主要体现在以下两个方面:一是用向量的数量积解决有关角的问题; 二是用向量的坐标表示解决共线问题.(1)用向量的数量积解决有关角的问题,其步骤是:先写出向量坐标式a =(x 1,y 1),b =(x 2,y 2),再用向量数量积的坐标公式cos θ=x 1x 2+y 1y 2x 21+y 21·x 22+y 22求角. (2)当a ,b 不共线时,有〈a ,b 〉为:直角⇔a ·b =0;钝角⇔a ·b <0(且a ,b 不反向);锐角⇔a ·b >0(且a ,b 不同向).(3)解题时,利用向量关系列出点之间的方程是关键.二、在涉及最值、范围问题时,往往与不等式、函数、导数等相结合.基本解题思路是构建不等式,创造应用基本不等式的条件;构建函数关系,应用导数研究函数的单调性、极(最)值等.【压轴典例】例1.(2019·浙江温州中学高三月考)设点M 是长方体1111ABCD A B C D -的棱AD 的中点,14AA AD ==,5AB =,点P 在面11BCC B 上,若平面1D PM 分别与平面ABCD 和平面11BCC B 所成的锐二面角相等,则P 点的轨迹为( )A.椭圆的一部分B.抛物线的一部分C.一条线段D.一段圆弧例2.(2019·四川石室中学高三开学考试(文))设双曲线()2222:10,0x y C a b a b-=>>的左,右顶点为,,A B P 是双曲线上不同于,A B 的一点,设直线,AP BP 的斜率分别为,m n ,则当()2323ln ln 3b mn mn m n a ⎛⎫+--+ ⎪⎝⎭取得最小值时,双曲线C 的离心率为( )A.12例3.(2019·全国高考真题(文))双曲线C :22221(0,0)x y a b a b-=>>的 一条渐近线的倾斜角为130°,则C的离心率为( ) A .2sin40°B .2cos40°C .1sin50︒D .1cos50︒例4.(2018·全国高考真题(理))设抛物线C :y 2=4x 的焦点为F ,过点(–2,0)且斜率为23的直线与C 交于M ,N 两点,则FM FN ⋅=( ) A .5B .6C .7D .8例5.(四川省攀枝花市第十二中学2019届10月月考)在平面直角坐标系xOy 中,已知点A(0,-1),B 点在直线y =-3上,M 点满足∥,·=·,M 点的轨迹为曲线C .(1)求C 的方程;(2)P 为C 上的动点,l 为C 在P 点处的切线,求O 点到l 距离的最小值.例6.(广东省华南师范大学附属中学2019届高三上学期第二次月考)设,分别是椭圆的左、右焦点.(1)若是该椭圆上的一个动点,求的最大值和最小值;(2)设过定点的直线 与椭圆交于不同的两点,且为锐角(其中为坐标原点),求直线 的斜率的取值范围.例7.(江西师范大学附属中学2018届10月月考)在平面直角坐标系中,点,点在轴上,点在轴非负半轴上,点满足:(1)当点在轴上移动时,求动点的轨迹C 的方程;(2)设为曲线C 上一点,直线过点且与曲线C 在点处的切线垂直,与C 的另一个交点为,若以线段为直径的圆经过原点,求直线的方程.例8.(江苏省苏州市2018届高三上期末)如图,已知椭圆的右顶点为A (2,0),点P (2e ,)在椭圆上(e 为椭圆的离心率).(1)求椭圆的方程;(2)若点B ,C (C 在第一象限)都在椭圆上,满足,且,求实数的值.【压轴训练】1.两圆222240x y ax a +++-=和2224140x y by b +--+=恰有三条公切线,若,a R b R ∈∈且0ab ≠,则2211a b +的最小值为( ) A.1B.3C.19D.492.已知两点(0,3)A -,(4,0)B ,若点P 是圆2220x y y +-=上的动点,则△ABP 面积的最小值是( ) A .112B .6C .8D .2123.(2008·全国高考真题(理))若直线1x ya b+=通过点(cos sin )M αα,,则( ) A.221a b +≤B.221a b +≥C.22111a b +≤D.22111a b+≥ 4.(2018·北京高考真题(理))在平面直角坐标系中,记d 为点()cos ,sin P θθ到直线20x my --=的距离,当θ、m 变化时,d 的最大值为( ) A .1 B .2 C .3D .45.(四川省眉山市仁寿第一中学校南校区2019届高三第一次调研)已知、是椭圆:的两个焦点,为椭圆上一点,且,若的面积为9,则的值为( )A . 1B . 2C . 3D . 46.(2018届北京市城六区高三一模)已知点在圆上,点在圆上,则下列说法错误的是( )A. 的取值范围为B. 取值范围为C. 的取值范围为D. 若,则实数的取值范围为7.(2018届四川省蓉城名校高三4月联考)已知圆1C : ()2251x y ++=, 2C : ()225225x y -+=,动圆C 满足与1C 外切且2C 与内切,若M 为1C 上的动点,且10CM C M ⋅=,则CM 的最小值为( )A. 4 D. 8.(2019·天津高三开学考试)设()f x ,()g x 是定义在R 上的两个周期函数,()f x 的周期为4,()g x的周期为2,且()f x 是奇函数,当(]0,2x ∈时,()f x =()()2,010.5,12k x x g x x ⎧+<≤=⎨<≤⎩,设函数()()()h x f x g x =+,若在区间(]0,13x ∈上,函数()h x 有11个零点,则k 的取值范围是______. 9.(2019·云南师大附中高三月考(文))边长为1的正方体1111ABCD A B C D -中,点M 为上底面1111D C B A 的中心,N 为下底面ABCD 内一点,且直线MN 与底面ABCD 所成线面角的正切值为2,则点N 的轨迹围成的封闭图象的面积为_____.10.(2019·江苏高考真题)在平面直角坐标系中,P 是曲线上的一个动点,则点P 到直线x +y =0的距离的最小值是_____.11.(2019·山东高三月考)已知抛物线()2:20C y px p =>的焦点为F ,准线为l .若位于x 轴上方的动点A 在准线l 上,线段AF 与抛物线C 相交于点B ,且1AF AF BF-=,则抛物线C 的标准方程为____.12.(2018·江苏高考真题)在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,()5,0B ,以AB 为直径的圆C 与直线l 交于另一点D .若0AB CD ⋅=,则点A 的横坐标为________.13.(2019·江苏高三月考)设A ,B 分别为椭圆C :22221x y a b+=(a >b >0)的右顶点和上顶点,已知椭圆C过点P(2,1),当线段AB 长最小时椭圆C 的离心率为_______.14.(2019·河南南阳中学高三月考)已知平面上一定点()2,0C 和直线:8l x =,P 为该平面上一动点,作PQ l ⊥,垂足为Q ,且11022PC PQ PC PQ ⎛⎫⎛⎫+⋅-= ⎪ ⎪⎝⎭⎝⎭(1)求动点P 的轨迹方程;(2)若EF 为圆22:(1)1+-=N x y 的任一条直径,求PE PF ⋅的最小值.15.(2019·江苏高考真题)如图,一个湖的边界是圆心为O 的圆,湖的一侧有一条直线型公路l ,湖上有桥AB (AB 是圆O 的直径).规划在公路l 上选两个点P 、Q ,并修建两段直线型道路PB 、QA .规划要求:线段PB 、QA 上的所有点到点O 的距离均不小于圆....O 的半径.已知点A 、B 到直线l 的距离分别为AC 和BD (C 、D 为垂足),测得AB =10,AC =6,BD =12(单位:百米).(1)若道路PB 与桥AB 垂直,求道路PB 的长;(2)在规划要求下,P 和Q 中能否有一个点选在D 处?并说明理由;(3)对规划要求下,若道路PB 和QA 的长度均为d (单位:百米).求当d 最小时,P 、Q 两点间的距离.16.(2018届江西省重点中学协作体第二次联考)已知椭圆:的离心率为,短轴为.点满足.(1)求椭圆的方程;(2)设为坐标原点,过点的动直线与椭圆交于点、,是否存在常数使得为定值?若存在,求出的值;若不存在,请说明理由. 17.(河北省衡水金卷2018年调研卷(二))已知点,过点作与轴平行的直线,点为动点在直线上的投影,且满足.(1)求动点的轨迹的方程;(2)已知点为曲线上的一点,且曲线在点处的切线为,若与直线相交于点,试探究在轴上是否存在点,使得以为直径的圆恒过点?若存在,求出点的坐标,若不存在,说明理由.18. (2019·广东高三月考(理))已知F 为抛物线2:4T x y =的焦点,直线:2l y kx =+与T 相交于,A B 两点.()1若1k =,求FA FB +的值;()2点(3,2)C --,若CFA CFB ∠=∠,求直线l 的方程.。

高考数学复习点拨 圆锥曲线问题的三类交汇题型分析

高考数学复习点拨 圆锥曲线问题的三类交汇题型分析

圆锥曲线问题的三类交汇题型分析与其他知识进行综合,在知识网络的交汇点处设计试题(如与向量综合,与数列综合、与函数及不等式综合等),历来都是高考出题的热点.本文的出发点就是为同学们展示与解析这一类热点问题.1.重视圆锥曲线与向量的综合、交汇.纵观近几年的全国各地高考数学,发现解析几何与向量的交汇是解析题的重要形式,大部分的条件给出都是以向量形式出现,甚至题目的问题也以向量形式描述圆锥曲线的几何特征.因此理解向量条件所表达的几何意义,用好向量的基本运算是解决此类问题的关键. 例1.已知A 、B 为抛物线22x py =(p>0)上两点,直线AB 过焦点F ,A 、B 在准线上的射影分别为C 、D ,(1)若6OA OB ⋅=-,求抛物线的方程;(2)CD 是否恒存在一点K ,使得0KA KB ⋅=.解题指导:本题仍然属于直线与圆锥曲线的位置关系问题.所以解题的根本仍然脱离不了韦达定理.解:(1)提示:记A (1,1y x )、B (22,y x )设直线AB 方程为2p kx y +=代入抛物线方程得0222=-+-p kpx x ,24121221,p y y p x x =-==∙OB OA 62432121-=-=+p y y x x ∴22=P 于是所求抛物线的方程为y x 242=.(2)设线段AB 中点P 在在准线上的射影为T ,则)()(+∙+=∙∙++∙+=)(++=241PB PA ∙=412+-2=412-412=0故存在点K 即点T ,使得0=∙KB KA [实质:以AB 为直径的圆与准线相切].点评:向量在解决几何问题时,能够起到把几何思维转化为代数思维的功效.也就是能够把抽象思维转化为直观思维. 本题第二问0=∙,实际就是论证KA KB ⊥. 2.重视圆锥曲线与数列相综合、交汇.与数列交汇体现在两个方面:一是在几何图形中构造出数列模型,然后求解数列的相关问题;二是以数列的知识给出几何图形的某个条件,然后求解几何的某些问题如下面的例2。

圆锥曲线与向量的综合性问题

圆锥曲线与向量的综合性问题

圆锥曲线与向量的综合性问题一、常见基本题型:在向量与圆锥曲线相结合的题目中,主要是利用向量的相等、平行、垂直去寻找坐标之间的数量关系,往往要和根与系数的关系结合运用。

(1) 问题的条件以向量的形式呈现,间接的考查向量几何性质、运算性质,例1、设(1,0)F ,M 点在x 轴的负半轴上,点P 在y 轴上,且,MP PN PM PF =⊥.当点P 在y 轴上运动时,求点N 的轨迹C 的方程;解:(解法一)MP PN =,故P 为MN 的中点.设(,)N x y ,由M 点在x 轴的负半轴上,则(,0),(0,),(0)2y M x P x -> 又(1,0)F ,(,),(1,)22y y PM x PF ∴=--=- 又PM PF ⊥,204y PM PF x ∴⋅=-+= 所以,点N 的轨迹C 的方程为24(0)y x x =>(解法二)MP PN =,故P 为MN 的中点.设(,)N x y ,由M 点在x 轴的负半轴上,则(,0),(0,),(0)2y M x P x -> - 又由,MP PN PM PF =⊥,故FN FM =,可得22FN FM =由(1,0)F ,则有222(1)(1)x y x -+=--,化简得:24(0)y x x =>所以,点N 的轨迹C 的方程为24(0)y x x => 例2、已知椭圆的方程为22221(0)x y a b a b+=>>,它的一个焦点与抛物线28y x =的焦点重合,离心率5e =,过椭圆的右焦点F 作与坐标轴不垂直的直线l ,交椭圆 于A 、B 两点.(1)求椭圆的标准方程;(2)设点(1,0)M ,且()MA MB AB +⊥,求直线l 的方程;解:(Ⅰ)设椭圆的右焦点为(,0)c ,因为28y x =的焦点坐标为(2,0),所以2c =因为c e a ==25a =,21b = 故椭圆方程为:2215x y += (Ⅱ)由(I )得(2,0)F ,设l 的方程为(2)y k x =-(0k ≠) 代入2215x y +=,得, 设1122(,),(,),A x y B x y 则2212122220205,5151k k x x x x k k -+==++, 12121212(4),()y y k x x y y k x x ∴+=+--=-112212122121(1,)(1,)(2,),(,)MA MB x y x y x x y y AB x x y y ∴+=-+-=+-+=--12212112()0,(2)()()()0MA MB AB x x x x y y y y +⋅=∴+--+-+=2222220420,310,5151k k k k k k ∴--=∴-==++ 所以直线l的方程为2020x x -=-=或(2)所求问题以向量的形式呈现例3、已知椭圆E的长轴的一个端点是抛物线2y =(1)求椭圆E 的方程;(2)过点C (—1,0),斜率为k 的动直线与椭圆E 相交于A 、B 两点,请问x 轴上 是否存在点M ,使⋅为常数若存在,求出点M 的坐标;若不存在,请 说明理由。

专题15 圆锥曲线与其它知识的交汇问题(解析版)

专题15 圆锥曲线与其它知识的交汇问题(解析版)

专题15 圆锥曲线与其它知识的交汇问题【压轴综述】纵观近几年的高考试题,高考对圆锥曲线的考查,出现一些与其它知识交汇的题目,如与平面向量交汇、与三角函数交汇、与不等式交汇、与导数交汇等等本专题在分析研究近几年高考题及各地模拟题的基础上,重点说明求解此类问题的方法规律.一、与平面向量交汇问题主要体现在以下两个方面:一是用向量的数量积解决有关角的问题;二是用向量的坐标表示解决共线问题.(1)用向量的数量积解决有关角的问题,其步骤是:先写出向量坐标式a =(x 1,y 1),b =(x 2,y 2),再用向量数量积的坐标公式cos θ=x 1x 2+y 1y 2x 21+y 21·x 22+y 22求角. (2)当a ,b 不共线时,有〈a ,b 〉为:直角⇔a ·b =0;钝角⇔a ·b <0(且a ,b 不反向);锐角⇔a ·b >0(且a ,b 不同向).(3)解题时,利用向量关系列出点之间的方程是关键.二、在涉及最值、范围问题时,往往与不等式、函数、导数等相结合.基本解题思路是构建不等式,创造应用基本不等式的条件;构建函数关系,应用导数研究函数的单调性、极(最)值等.【压轴典例】例1.(2020·上海高三专题练习)设,为曲线的焦点,是曲线与的一个交点,则的值为( ) A . B .C .D .【答案】B【详解】设点为曲线与在第一象限内的交点,由曲线的方程可得、()220F ,,再由椭圆的定义可得:,又因曲线的焦点和曲线 的焦点相同,再由双曲线的定义可得:,∴,,中,由余弦定理可得: ,所以121212cos |||13|PF PF F PF PF PF ⋅=∠=.例2.(2020·江苏南京市·高三)光线从椭圆的一个焦点发出,被椭圆反射后会经过椭圆的另一个焦点;光线从双曲线的一个焦点发出,被双曲线反射后的光线等效于从另一个焦点射出.如图,一个光学装置由有公共焦点的椭圆Γ与双曲线构成,现一光线从左焦点发出,依次经过与Γ反射,又回到了点历时秒;若将装置中的去掉,此光线从点发出,经Γ两次反射后又回到了点历时秒;若则Γ与的离心率之比为( ) A . B .1:2C .2:3D .3:4【答案】C【详解】设椭圆的长半轴长为,双曲线的实半轴长为,在左图中,由椭圆定义可得:1212BF BF a +=①,由双曲线定义可得:2122AF AF a -=②,①②得:111222AF AB BF a a ++=-,1ABF ∴的周长为:;在右图中,光线从椭圆的一个焦点发出,被椭圆反射后经过椭圆的另一个焦点,即直线过,1CDF ∴的周长为,又两次时间分别为,,且,光线速度相同,,,椭圆与双曲线焦点相同,,.例3.(2020浙江温州中学高三)设点是长方体的棱的中点,14AA AD ==,,点在面上,若平面分别与平面ABCD 和平面所成的锐二面角相等,则点的轨迹为( )A.椭圆的一部分B.抛物线的一部分C.一条线段D.一段圆弧【答案】C【解析】设在平面ABCD 的投影为,平面与平面ABCD 所成的锐二面角为 则,在平面的投影为中点,平面与面所成的锐二面角为 ,则11cos CPM D PMS S β∆∆=,故即得到111125,22C M h h ⨯⨯=⨯⨯=,即到直线的距离为定值,故在与平行的直线上,又点在面上,故轨迹为一条线段.例4.(2020·广州市天河中学)(多选)已知椭圆,双曲线若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,下列结论正确的是( ) 参考数据() A .椭圆的离心率 B .双曲线的离心率C .椭圆上不存在点A 使得120AF AF ⋅< D .双曲线上存在不同的四个点B i (i =1,2,3,4),使得12i i B F B F ⊥ 【答案】ABD【详解】如图,不妨设,双曲线N 的两条渐近线与椭圆M 在第一象限的交点坐标为,由正六边形的性质,可得12PF PF ⊥,2160PF F ∠=︒,211,||PF PF ∴==椭圆M 的长轴长,∴,,∴当为椭圆的上顶点时为钝角,120AF AF ⋅<,故C 错误;椭圆M 离心率,故A 正确;双曲线N 的渐近线方程为,∴,又∵2224m n c +==,,双曲线N 的离心率为,故B 正确;以为直径作圆,显然与双曲线N 有四个不同的交点,这四个点关于所张的角为直角,故D 正确.例5.(2020·四川石室中学高三)设双曲线的左,右顶点为是双曲线上不同于的一点,设直线的斜率分别为,则当()2323ln ln 3b mn mn m n a ⎛⎫+--+ ⎪⎝⎭取得最小值时,双曲线C 的离心率为( ) A. B.C.D.【答案】D【解析】由双曲线,则(,0),(,0)A a B a -,设,则,可得,则0000,y y m n x a x a==+-,所以, 所以,设,则322()326ln 3f t t t t t =+--, 则,当(0,2)t ∈时,()0f t '<,单调递减;当(2,)t ∈+∞时,()0f t '>,单调递增,所以当时,函数取得最小值,即当()2323ln ln 3b mn mn m n a ⎛⎫+--+ ⎪⎝⎭取得最小值时,,所以双曲线的离心率为c e a ====,故选D . 例6.(2020·全国高三专题练习)已知点P 在曲线C :上,曲线C 在点P 处的切线为,过点P 且与直线垂直的直线与曲线C 的另一交点为Q ,O 为坐标原点,若OP ⊥OQ ,则点P 的纵坐标为_______. 【答案】1【详解】依据题意直作出图象,如下:设,,则:,.因为,所以曲线C 在点P 处的切线斜率为:,又过点P 且与直线垂直的直线与曲线C 的另一交点为Q ,所以且,所以,所以直线的方程为:()0001y y x x x -=--联立直线与抛物线方程可得:,整理得:22001111022x x x x +--=.所以,又因为OP ⊥OQ ,所以1OP OQ k k ⋅=-,即:,整理得:.所以,解得: 所以,所以点P 的纵坐标为。

高考圆锥曲线与向量综合专题非常经典建议收藏

高考圆锥曲线与向量综合专题非常经典建议收藏

圆锥曲线与向量综合专题1.几何与向量综合时可能出现的向量内容(1)给出直线的方向向量或;(2)给出与相交,等于已知过的中点;(3)给出,等于已知是的中点;(4)给出,等于已知A、B与PQ的中点三点共线;(5)给出以下情形之一:①;②存在实数;③若存在实数,等于已知三点共线.(6)给出,等于已知是的定比分点,为定比,即(7)给出,等于已知,即是直角,给出,等于已知是钝角, 给出,等于已知是锐角。

(8)给出,等于已知是的平分线。

(9)在平行四边形中,给出,等于已知是菱形;(10)在平行四边形中,给出,等于已知是矩形;(11)在中,给出,等于已知是的外心(三角形外接圆的圆心,三角形的外心是三角形三边垂直平分线的交点);(12)在中,给出,等于已知是的重心(三角形的重心是三角形三条中线的交点);(13)在中,给出,等于已知是的垂心(三角形的垂心是三角形三条高的交点);(14)在中,给出等于已知通过的内心;(15)在中,给出等于已知是的内心(三角形内切圆的圆心,三角形的内心是三角形三条角平分线的交点);(16)在中,给出,等于已知是中边的中线;题型一题型二题型三APQ FOxy题型四 四心考查1.已知椭圆2222:1(0)x y C a b a b+=>>,过C 上一点()22,2的切线l 的方程为2420x y +-=.(Ⅰ)求椭圆C 的方程;(Ⅱ)设过点()0,1M 且斜率不为0的直线交椭圆于,A B 两点,试问y 轴上是否存在点P ,使得PA PB PM PA PB λ⎛⎫ ⎪=+ ⎪⎝⎭u u u r u u u r u u u u r u u u r u u u r ?若存在,求出点P 的坐标;若不存在,说明理由.2.设椭圆C :)0(12222>>=+b a b y a x 的左焦点为F ,上顶点为A ,过点A 作垂直于AF 的直线交椭圆C 于另外一点P ,交x 轴正半轴于点Q , 且PQ AP 58=(1)求椭圆C 的离心率;(2)若过A 、Q 、F 三点的圆恰好与直线l :053=-+y x 相切,求椭圆C 的方程.3、在平面直角坐标系内已知两点(1,0)A -、(1,0)B ,若将动点(,)P x y 的横坐标保持不变,倍后得到点()Q x ,且满足1AQ BQ ⋅=u u u r u u u r.(Ⅰ)求动点P 所在曲线C 的方程;(Ⅱ)过点B 作斜率为的直线l 交曲线C 于M 、N 两点,且0OM ON OH ++=u u u u r u u u r u u u r r ,又点H 关于原点O 的对称点为点G ,试问M 、G 、N 、H 四点是否共圆?若共 圆,求出圆心坐标和半径;若不共圆,请说明理由.。

圆锥曲线题型总结:圆锥曲线与向量结合的三种题型【精品】

圆锥曲线题型总结:圆锥曲线与向量结合的三种题型【精品】

圆锥曲线题型总结:圆锥曲线与向量结合的三种题型【精品】圆锥曲线与向量的结合——圆锥曲线题型总结一、AP=λPB解题方法总结如下:设直线AB与圆锥曲线C相交于点A、B,P为直线AB上的任意一点,A(x1,y1),B(x2,y2),则可以得到AP=λPB。

利用这个条件,可以构造两根之和与两根之积,消去x2,然后利用XXX定理求解。

例如,对于题目“设双曲线C:2-x^2/a^2=y^2/b^2(a>b)与直线l:x+y=1相交于两个不同的点A、B.设直线l与y轴的交点为P,且PA=5PB.求a的值.”,可以按照上述方法解题。

首先联立方程组,得到两个交点的坐标。

然后利用构造两根之和与两根之积的方法,消去x2,得到一个关于a的方程。

最后利用XXX定理求解,得到a的值。

二、PR/PQ的取值范围对于题目“已知x-1>0(x>1),设直线y=-2x+m与y轴交于点P,与双曲线C相交于点Q、R,且|PQ|<3/2|PR|,求PR/PQ的取值范围.”,可以采用向量的方法解题。

设向量PQ 为a,向量PR为b,则PR/PQ=|b|/|a|。

根据向量的定义,可以得到a和b的表达式。

然后根据题目中的条件,可以列出一个关于m的不等式。

最后,通过分析不等式的解集,可以得到PR/PQ的取值范围。

已知直线 $C:x-1=0$($x\neq 1$ 且 $x\neq -1$),设直线$y=x+m$($m>0$)与 $y$ 轴交于点 $P$,与轨迹 $C$ 相交于点 $Q$、$R$,且 $|PQ|<|PR|$,求 $m$ 的取值范围。

解法一:设 $Q(x_1,y_1)$,$R(x_2,y_2)$,联立$\begin{cases} 4x^2-y^2-4=PRx \\ 3x-2mx-m-4=0 \end{cases}$。

则可设 $x_2=-\lambda x_1$($\lambda>1$),即 $-x_1x_2=\lambda x_2^2$,此时$y_P=x_P+m$,$y_Q=x_Q+m$。

圆锥曲线题型总结:圆锥曲线与向量结合的三种题型【精品】

圆锥曲线题型总结:圆锥曲线与向量结合的三种题型【精品】

圆锥曲线题型总结:圆锥曲线与向量的结合一、PB AP λ=【2004全国1理21】设双曲线C :1x 222=-y a(a >0)与直线l :x+y=1相交于两个不同的点A 、B .设直线l 与y 轴的交点为P ,且PB PA 125=.求a 的值. 【解析】设A (x 1,y 1),B (x 2,y 2),P (0,1)联立⎪⎩⎪⎨⎧=+=-1x 1x 222y y a 整理得(1-2a )2x +22a x-22a =0.又因为PB PA 125=,即⎪⎪⎩⎪⎪⎨⎧-=-=)1(125)1(125x 2121y y x 构造两根之和与两根之积得⎪⎪⎩⎪⎪⎨⎧=•=+②x 125①1217x 2221221x x x x 由②①2消去x 2得21221)x x x x +(=60289,再由韦达定理得221a 2a -=60289,解得a=1317.【2014四川理】已知3x 22y -=1(x>1)设直线y=﹣2x+m 与y 轴交于点P ,与C 相交于点Q 、R ,且|PQ|<|PR|,求PQPR 的取值范围.【解析】设Q (x 1,y 1),R (x 2,y 2),联立⎩⎨⎧+-==--m x y y 203x 322整理得 2x +4mx-2m +3=0.因为直线与双曲线的右支相交,所以⎪⎩⎪⎨⎧>•>+>∆00x 02121x x x 解得m>1.又因为x ≠1,所以m ≠2.则可设PQ PR=12x x =12x x =λ(λ>1),则⎩⎨⎧=•+=+②x ①)1(x 2221221λλx x x x ,利用②①2消去x 2得21221)x x x x +(=λλ21)(+,再利用韦达定理得21221)x x x x +(=316m 22+m ;316m 22+m =λλ21)(+,于是316m 22+m )(),(16,7647644⋃∈,解得1<λ<7或7<λ<7+43,故PQPR 的取值范围是(1,7)⋃(7,7+43)【2012四川文21】 已知C:4x 22y -=1(x ≠1且x ≠-1)设直线(0)y x m m =+>与y 轴交于点P ,与轨迹C 相交于点Q R 、,且||||PQ PR <,求||||PR PQ 的取值范围。

【高考数学二轮复习压轴题微专题】第47讲 圆锥曲线与平面向量的交汇-原卷+解析

【高考数学二轮复习压轴题微专题】第47讲 圆锥曲线与平面向量的交汇-原卷+解析

第47讲 圆锥曲线与平面向量的交汇平面向量及其运算特点是融数、形于一体,因为它具有代数形式和几何形式的双重身 份,是中学数学知识的一个重要交汇点. 平面向量的运算法则, 特别是坐标运算可将几何 问题转化为代数问题而解析几何的学科特点正是运用代数的方法研究平面图形的性质, 两者是何等的一致!所以两者的结合或者说运用平面向量来解决解析几何问题是一件十 分自然的事情, 可谓是“竹外桃花三两枝,春江水暖鸭先知”了! 平面向量与解析几何的交 叉渗透,水乳交融,使数学问题的情境新颖别致,使解答过程如行云流水、自然流畅、赏心 悦目,使数学之美充分展现,丰富多彩.典型例题【例1】(1) 已知 F 为抛物线 2y x = 的焦点, 点 ,A B 在该抛物线上且位于 x 轴的两侧, 2OA OB ⋅= (其中 O 为坐标原点 ), 则 ABO ∆ 与 AFO ∆ 面积之和的最小值是( )A. 2B. 3C.D.(2) 如图 331- 所示, 在矩形 ABCD 中, 1,AB AD == 若 AP AB AD λμ=+, 则λμ+ 的最大值为( ).A. 3B.C.D.2【例2】 已知一条曲线 C 在 y 轴右边, C 上每一点到点 (1,0)F 的距离减去它到 y 轴距离的 差都是 1. (1) 求曲线 C 的方程,(2)是否存在正数 m , 对于过点(,0)M m 且与曲线 C 有两个交点 ,A B 的任一直线,都有 0FA FB ⋅< 若存在,求出 m 的取值范围;若不存在,请说明理由.【例3】在平面直角坐标系 xOy 中, O 为坐标原点, 动点 P 与两个定点, (1,0)(40)M N 、的距离之比为 12.(1) 求动点 P 的轨迹 W 的方程;(2) 若直线 :3l y kx =+ 与曲线 W 交于 ,A B 两点, 在曲线 W 上是否存在一点 Q , 使得 OQ OA OB =+ ? 若存在,求出此时直线 l 的斜率;若不存在,说明理由.【例4】 已知曲线 C 上的动点 M 到 y 轴的距离比到点 (1,0)F 的距离小 1 . (1) 求曲线 C 的方程;(2)过 F 作弦 PQ RS 、, 设 ,PQ RS 的中点分别为 ,A B . 若 0PQ RS ⋅=, 求AB 取 最小值时, 弦 PQ RS 、 所在直线的方程;(3) 是否存在一定点 T , 使得 AF TB FT λ=- 若存在,求出 T 的坐标;若不存在, 试说明理由.【例5】 设椭圆 2222:1(0)x y C a b a b +=>> 过点 M , 且左焦点为 1(F. (1) 求椭圆 C 的方程;(2) 当过点 (4,1)P 的动直线 l 与椭圆 C 相交于两不同点 ,A B 时, 在线段 AB 上 取点 Q ,满足 ||||||||AP QB AQ PB ⋅=⋅. 证明: 点 Q 总在某定直线上.强化训练1. 如图 3-33 所示, 设抛物线 2:C y x = 的焦点为 F , 动点 P 在直线 :20l x y --=上运 动, 过 P 作抛物线 C 的两条切线 ,PA PB , 切点分别为 ,A B . 求证:AFP BFP ∠=∠.2. 如图 334- 所示, 在 ABC ∆ 中, 已知 (3,0),(3,0),A B CD AB -⊥ 于点D,ABC ∆ 的垂心, 且 9CD CH =. (1) 求点 H 的轨迹方程;(2) 设 (1,0),(1,0)P Q -, 是否存在这样的 H 点, 使得 111||||||HP PQ QH ⋅⋅成等差数列? 如果存在, 求出H 点坐标,如果不存在,请说明理由;(3)设直线 ,AH BH 与直线 :9l x = 分别交于 M N 、 点,请问 : 以 MN 为直径的圆是否经过点 H 的轨迹外的定点? 并说明理由.第47讲 圆锥曲线与平面向量的交汇平面向量及其运算特点是融数、形于一体,因为它具有代数形式和几何形式的双重身 份,是中学数学知识的一个重要交汇点. 平面向量的运算法则, 特别是坐标运算可将几何 问题转化为代数问题而解析几何的学科特点正是运用代数的方法研究平面图形的性质, 两者是何等的一致!所以两者的结合或者说运用平面向量来解决解析几何问题是一件十 分自然的事情, 可谓是“竹外桃花三两枝,春江水暖鸭先知”了! 平面向量与解析几何的交 叉渗透,水乳交融,使数学问题的情境新颖别致,使解答过程如行云流水、自然流畅、赏心 悦目,使数学之美充分展现,丰富多彩.典型例题【例1】(1) 已知 F 为抛物线 2y x = 的焦点, 点 ,A B 在该抛物线上且位于 x 轴的两侧, 2OA OB ⋅= (其中 O 为坐标原点 ), 则 ABO ∆ 与 AFO ∆ 面积之和的最小值是A. 2B. 3C. 1728D.10(2) 如图 331- 所示, 在矩形 ABCD 中, 1,AB AD == 若 AP AB AD λμ=+, 则λμ+ 的最大值为( ).A. 3B. 22C.5D.2【分析】 本例两小题是平面向量与解析几何的交汇,在考查直线与抛物线、直线与圆位置关系及最值求法的同时,还考查平面向量的坐标运算、数量积等的应用、不等式知识与三角知识的应用.【解析】(1) 设点 ()()1122,,,A x y B x y (不妨假设 )120,0y y ><, 直线 AB 的方程为 x ty m =+, 与 x 轴的交点为 (,0)M m .由 2,,x ty m y x =+⎧⎨=⎩ 消去 x 得2120,y ty m y y m --=∴=-. 又 ()212122,20OA OB y y y y ⋅=∴+-=, 解得 122y y =- 或 1 .∵ 点 A B 、 在抛物线上且位于 x 轴的两侧, ∴122y y =-, 故 2m =. 又 1,04F ⎛⎫⎪⎝⎭,于是()1211112224ABO AFO S S y y y ∆∆+=⨯⨯-+⨯111192922388y y y y =+⨯=当且仅当 11928y y =, 即 143y = 时取等号. ∴ABO ∆ 与 AFO ∆ 面积之和的最小值是 3 , 故选 B . (2)【解法1】如图3-32所示,建立平面直角坐标系,计算得255r CG ==, 设 (,)P m n , 由 AP AB AD λμ=+, 得(,)(0,1)(2,0)m n λμ=+, ∴2,m n μλ==. 动点 (,)P m n 在圆 C 上, ∴224(22)(1)5μλ-+-=, 由三角換元得5252sin cos 255λμαα+=++=+sin()3αϕ+ (其中255sin ,cos 55ϕϕ⎫==⎪⎪⎭. 故选 A .【解法2】设动点 (,)P x y 点P 的轨迹方程为22 4(2)(1)5x y -+-=由 AP AB AD λμ=+, 得2x z y λμ=+=+, 即直线 220x y z +-= 与圆相交, 故圆心到直线的距离小于等于半径, 即22|222|25512z +-+. ∴13z , 故 3λμ+, 故选 A .【解法3】由解法二将2x y z =-代人224(2)(1),5x y -+-=整理得222520(3)2040840x z x z z -++-+= 方程有解, 由 0∆ 得 2430z z -+, ∴13z , 故 3λμ+, 故选 A .【例2】 已知一条曲线 C 在 y 轴右边, C 上每一点到点 (1,0)F 的距离减去它到 y 轴距离的 差都是 1. (1) 求曲线 C 的方程,(2)是否存在正数 m , 对于过点(,0)M m 且与曲线 C 有两个交点 ,A B 的任一直线,都有 0FA FB ⋅< 若存在,求出 m 的取值范围;若不存在,请说明理由.【分析】 本例是解析几何与向量的综合,是高考命题的又一热点,求解时应注意根据向量式的特征, 征求其几何意义或将向量式转化为坐标式,根据其几何意义或坐标 特征, 征求解题思路, 当题中涉及两直线所成角时可转化为向量, 而本例给出的 0FA FB ⋅< 是否存在的㮠讨,则可利用数量积求解.【解析】 (1) 设 (,)P x y 是曲线 C 上任意一点,那么点 (,)P x y 满足x = 1(0)x >, 化简得 24(0)y x x =>.(2)设过点 (,0)(0)M m m > 的直线 l 与曲线 C 的交点为 ()()1122,,,A x y B x y .设 l 的方程为 x ty m =+, 由 24,x ty m y x =+⎧⎨=⎩ 得 2440y ty m --=,()2160t m ∆=+>, 于是 121244y y ty y m +=⎧⎨=-⎩ ①又()()11221,,1,FA x y FB x y =-=-∵()()()121212*********FA FB x x y y x x x x y y ⋅<⇔--+=-+++<②又 24y x =, 是不等式②等价于 ()222221212121210444416y y y y y y y y ⎛⎫⋅+-++<⇔+ ⎪⎝⎭()212121212104y y y y y y ⎡⎤-+-+<⎣⎦③将①式代入不等式③, 有 22614m m t -+<.④对任意实数 2,4t t 的最小值为 0 ,∴ 不等式(4)对于一切 t 成立等价于 2610m m -+<, 即33m -<<+由此可知,存在正数 m , 对于过点 (,0)M m 且与曲线 C 有两个交点 ,A B 的任一直线,都有 0FA FB ⋅<, 且 m 的取值范围是(3-+.【例3】在平面直角坐标系 xOy 中, O 为坐标原点, 动点 P 与两个定点, (1,0)(40)M N 、的距离之比为 12.(1) 求动点 P 的轨迹 W 的方程;(2) 若直线 :3l y kx =+ 与曲线 W 交于 ,A B 两点, 在曲线 W 上是否存在一点 Q , 使得 OQ OA OB =+ ? 若存在,求出此时直线 l 的斜率;若不存在,说明理由.【分析】 第(1)问, 由直接法求出动点P 的轨迹 W 的方程,不难得出是一个圆,由于圆具有完美的对称性,在第 (2) 问中, 若存在点 Q 随 OQ OA OB =+, 根据向量的加法以及 ||||OA OB =, 易得四边形 OAQB 为菱形. 对于解析几何问题的解决, 其思维特征 是: 以几何特征寻找代数关系, 以代数关系挖掘几何特征.【解析】(1) 设点 P 的坐标为 (,)x y , 依题意有 ||1||2PM PN =.即=, 化简得 224x y +=. ∴ 动点 P 的轨迹 W 的方程为224x y +=. 【解法1】直线:3l y kx =+与曲线22:4W x y +=相交于A, B $两点,原点到直线 l 的距离2,d k =<∴>或k <.假设存在点 Q , 使得 OQ OA OB =+,∵,A B 在圆上,且 OQ OA OB =+, 由向量加法的平行四边形法则可知四边形 OAQB 为菱形, ∴OQ 与 AB 互相垂直平分,进而得到原点 O 到直线 :3l y kx =+ 的距离为1||12d OQ ==, 即1d ==, 解得28,k k ==±经验证 k 的值满足条件.∴ 存在点 Q , 使得 OQ OA OB =+.【解法2】直线:3l y kx =+与曲线22:4W x y +=相交于$ A, B $两点, 联立223,4,y kx x y =+⎧⎨+=⎩ 消去 y 得()221650k x kx +++= 由()22362010k k ∆=-+>, 得k >或k <. 设 ()()1122,,,A x y B x y , 则 1221226,15,1k x x k x x k ⎧+=-⎪⎪+⎨⎪=⎪+⎩ 假设存在点 (,)Q x y ,, 使得 OQ OA OB =+, 则 ()122121226,166.1k x x x k y y y k x x k ⎧=+=-⎪⎪+⎨⎪=+=++=⎪+⎩ ∵ 点 (,)Q x y 在圆 224x y += 上, ∴222266411k k k ⎛⎫⎛⎫-+= ⎪ ⎪++⎝⎭⎝⎭, 解得k =±.经验证 k 的值满足条件, ∴ 存在点 Q , 使得 OQ OA OB =+.【例4】 已知曲线 C 上的动点 M 到 y 轴的距离比到点 (1,0)F 的距离小 1 . (1) 求曲线 C 的方程;(2)过 F 作弦 PQ RS 、, 设 ,PQ RS 的中点分别为 ,A B . 若 0PQ RS ⋅=, 求AB 取 最小值时, 弦 PQ RS 、 所在直线的方程;(3) 是否存在一定点 T , 使得 AF TB FT λ=- 若存在,求出 T 的坐标;若不存在, 试说明理由.【分析】 第 (1) 问, 䀛得动点 M 到直线 1x =- 的距离与到点 (1,0)F 的距离相 等, 符合抛物线的定义, 由求轨迹方程的定义法, 即得曲线 C 的方程; 第 (2) 问, 以直线PQ 坐标中的 k 用1k -代, 即得 B 点的坐标),从而求得向量 AB 的模, 并运用均值不等式求 ||AB 的最小值, 由等号成立的条件确定 k 的值,弦 PQ RS 、 所在直线的方程; 第 (3) 问,是 探索性问题,首先由条件 AF TB FT λ=-,通过向星变形可确定,, A T B 三点共线,再探求直线 AB 是否过定点. 本例看似难度不高, 但步步紧扣、层层深入, 解析几何常用的方程理论与平面向量的运算融为一体,正所谓“青山缭绕疑无路,忽见千帆隐映来”,解题者在詹题过程中碰到阻隔在所难免,想办法穿越阻隔,前面就是坦途,风景无限好!【解析】(1) 由条件 M 到 (1,0)F 的距离等于到直线 1x =- 的距离, 曲线 C 是以F 为焦点,直 线 1x =- 为准线的抛物线, 其方程为 24y x =.(2)设 PQ:(1)l y k x =-, 代人 24y x = 得:()2222220k x k x k -++=. 由韦达定理得 ()()22121222212222222,1,121221,,0A A A k x x k x x x y k x k k k k x x A PQ RS k k ⎧+++⎪+=∴===+=-=⎨⎪=⎩⎛⎫∴+⋅= ⎪⎝⎭∴PQ RS ⊥, 只要将 A 点坐标中的 k 换成1k -, 得()212,2B k k +-. 故||14AB ⎡==⎢ (当且仅 当1k =± 时取 "=“ ),||AB ∴ 最小时,弦 PQ RS 、 所在的直线方程为 (1)y x =±-,即 10x y +-= 或 10x y --=.(3) ∴AF TB FT AF FT TB AT TB λλλ=-⇒+=⇒=, 即 ,,A T B 三点共线. ∴ 是否存在一定点 T , 使得 AF TB FT λ=-, 即探求直线 AB 是否过定点.由 (2) 知, 直线 AB 的方程为 ()222222212211k k y k x k k k --+=--⎛⎫+-+ ⎪⎝⎭.即 ()21(3),k y k x -=-∴ 直线AB 过定点 (3,0).故存在一定点 (3,0)T , 使得 AF TB FT λ=-.【例5】 设椭圆 2222:1(0)x y C a b a b +=>> 过点M , 且左焦点为1(F. (1) 求椭圆 C 的方程;(2) 当过点 (4,1)P 的动直线 l 与椭圆 C 相交于两不同点 ,A B 时, 在线段 AB 上 取点 Q ,满足 ||||||||AP QB AQ PB ⋅=⋅. 证明: 点 Q 总在某定直线上.【分析】 本例是具有射影几何背景的解析几何试题,考查直线、椭圆的方程及其几何性质、线段定比分点公式的应用.第(2)小题的求解是一个难点,下面提供的两种解法都是抓住A,P ,B,Q 四点共线来展开的,这是解决本小题的突破口.【解析】(1) 由题意,得2222222211c a b c a b ⎧=⎪⎪+=⎨⎪=-⎪⎩解得222224, 2.a b c a b ===-所求椭圆方程为 22142x y +=.(2)证法一、 设 Q A B 、、 的坐标分别为 ()()1122(,),,,,x y x y x y , 由题设知 ||AP 、||||||PB AQ QB 、、 均不为零, 记||||||||AP AQ PB QB λ==, 则 0λ>, 且 1λ≠. 又 ,A P ,,B Q四点共线, 从而,AP PB AQ QBλλ=-=, 于是有121212124,1,,1111x x y y x x y y x y λλλλλλλλ--++====--++从而 22212241x x x λλ-=-,①2221221y y y λλ-=-②又点 ,A B 在椭圆 C 上,即 221124x y +=,③ 222224x y += ④①+② 2⨯ 并结合③④得 424x y +=. 即点 (,)Q x y 总在定直线 220x y +-= 上. 证法二、设点()()1122(,),, ,,Q x y A x y B x y由题设知 |||||||| PA PB AQ QB 、、、 均不为零, 且 ||||||||PA PB AQ QB =, 又 ,,,P A Q B 四点共线, 可设 ,(0,1)PA AQ PB BQ λλλ=-=≠±.于是1141,11x y x y λλλλ--==--, ①2241,11x y x y λλλλ++==++②由于 ()()1122,,,A x y B x y 在椭圆 C 上, 将①②分别代人 C 的方程 2224x y +=. 整理得 ()222244(22)140x y x y λλ+--+-+=,③()222244(22)140xy x y λλ+-++-+=, ④④ - ③得 8(22)0,0,220x y x y λλ+-=≠∴+-=.即点 (,)Q x y 总在定直线 220x y +-= 上.强化训练1. 如图 3-33 所示, 设抛物线 2:C y x = 的焦点为 F , 动点 P 在直线 :20l x y --= 上运 动, 过 P 作抛物线 C 的两条切线 ,PA PB , 切点分别为 ,A B . 求证:AFP BFP ∠=∠.【解析】【证明】设切点A B 、的坐标分别为()200,x x 和()()21110,x x xx ≠,可得切线AP 的方程为20020x x y x --=,切线BP 的方程为21120x x y x --=.解得点P 的坐标为0101,2P P x x x y x x +==. 则22010********,,,,,4244x x FA x x FP x x FB x x +⎛⎫⎛⎫⎛⎫=-=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 由于点P 在抛物线外,即0FP ≠,201001001222001112444cos .14x x x x x x x x FP FA AFP FP FAFPFPx x ∠+⎛⎫⎛⎫⋅+--+ ⎪⎪⋅⎝⎭⎝⎭∴===⎛⎫+- ⎪⎝⎭201101101222111112444cos .14x x x x x x x x FP FB BFP FP FBFPFPx x ∠+⎛⎫⎛⎫⋅+--+ ⎪⎪⋅⎝⎭⎝⎭===⎛⎫+- ⎪⎝⎭综上可知AFP BFP ∠∠=.2. 如图 334- 所示, 在 ABC ∆ 中, 已知 (3,0),(3,0),A B CD AB -⊥ 于点D,ABC ∆ 的垂心, 且 9CD CH =. (1) 求点 H 的轨迹方程;(2) 设 (1,0),(1,0)P Q -, 是否存在这样的 H 点, 使得 111||||||HP PQ QH ⋅⋅成等差数列? 如果存在, 求出H 点坐标,如果不存在,请说明理由;(3)设直线 ,AH BH 与直线 :9l x = 分别交于 M N 、 点,请问 : 以 MN 为直径的圆是否经过点 H 的轨迹外的定点? 并说明理由. 【解析】(1)设点(),H x y ,由题意得9,8C x y ⎛⎫⎪⎝⎭,则()93,,3,8AC x y BH x y ⎛⎫=+=- ⎪⎝⎭.由于AC BH ⊥,于是229908AC BH x y ⋅=-+=. 又0y =时,,AC BH 共线,不合题意,故点H 的轨迹方程为()221098x y y +=≠. (2)【解法一】()()1,0,1,0P Q -是点H 的轨迹椭圆()221098x y y +=≠的两个焦点, 6HP QH ∴+=.(1)若111,,HP PQ QH 成等差数列,则1121PH QH PQ+==.(2)由(1)(2)可解得33HP QH ==3HP =3QH =+而24,HP 24,QH故111,,HP PQ QH不能构成等差数列. 【解法二】设()()()3cos ,0,,2H αααπππ∈⋃.则()()3cos 1,22sin ,3cos PH QH αααα=+=-.故21111663213cos 3cos 9cos 84PQPHQHααα+=+=<=<=+--, 111,,HP PQ QH∴不能构成等差数列. (3)【解法一】设()00,H x y ,则()()0000:3,:333y yAH y x BH y x x x =+=-+-, 当9x =时可以求得00001269,,9,33y y M N x x ⎛⎫⎛⎫⎪ ⎪+-⎝⎭⎝⎭.以MN 为直径的圆的方程为()()000012699033y y x x y y x x ⎛⎫⎛⎫--+--= ⎪⎪+-⎝⎭⎝⎭,即220000126(9)64033y y x y y x x ⎛⎫-+-+-=⎪+-⎝⎭,解得1,0x y =⎧⎨=⎩(舍去)或17,0.x y =⎧⎨=⎩故以MN 为直径的圆必过椭圆外定点()17,0.【解法二】设()()9,,9,M m N n ,则()()3,0,3,0A B -.于是()()12,,3cos AM m AH αα==+,由,,A H M三点共线得()123cos 30cos 1m m αααα⨯-+=⇔=+由,,B H N三点共线得cos 1n αα=-,9,,9,cos 1cos 1M N αααα⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪+-⎝⎭⎝⎭又以MN 为直径的圆的方程为:()()990cos 1cos 1x x y y αααα⎛⎫⎛⎫--+--= ⎪⎪ ⎪⎪+-⎝⎭⎝⎭,即22(9)640cos 1cos 1x y y αααα⎛⎫-+-+-= ⎪ ⎪+-⎝⎭解得1,x y =⎧⎨=⎩(舍去),或(){17,17,0.x MN =故以为直径的圆必过椭圆外定点。

平面向量与圆锥曲线结合的高考题解法

平面向量与圆锥曲线结合的高考题解法

平面向量与圆锥曲线结合的高考题解法胡群海【期刊名称】《数学教学研究》【年(卷),期】2007(000)010【摘要】平面向量是新教材新增内容,体现了现代数学思想.它作为工具性知识兼具代数与几何形式的双重身份,故它是联系多项知识的媒介,成为中学数学知识的一个交汇点.而圆锥曲线对高中数学的许多知识点都有一定的亲合力.在知识网络的交汇点上设计试题是高考命题的主导思想,因此,解析几何与平面向量的融合交汇必将成为新课程高考命题改革的发展方向.本文就近年高考中出现得比较频繁的一种题型,即平面向量与圆锥曲线相耦合的题型进行分析,以便大家能够准确地理解这类问题的特性,掌握解决它的方法和技巧.1与轨迹方程有关的问题图1例1(2006年陕西)如图1,三定点A(2,1),B(0,-1),C(-2,1),三动点D,E,M满足AD=tAB,BE=tBC,DM=tDE,t∈[0,1].(Ⅰ)求动直线DE的斜率的变化范围;(Ⅱ)求动点M 的轨迹方程.命题立意此题旨在考查运动变化的思想,斜率的概念,及求动点轨迹方程的参数法.思路分析(Ⅰ)由AD=tAB,BE=t BC,DM=tDE,可知D是AB线上的动点,E 是CB线段上的动点,M是DE线段上的动点,且t∈[0,1],所以kDE的斜率是随着线段DE由AB按顺时针方向旋转转到AC为止.(Ⅱ)由DM=tDE和...【总页数】4页(P26-29)【作者】胡群海【作者单位】湖北省武穴实验高中,435400【正文语种】中文【中图分类】G63【相关文献】1.高考数学中圆锥曲线试题解法探究 [J], 丁宇韬2.高考中圆锥曲线的最值问题解法探讨 [J], 孙威3.高考数学中圆锥曲线试题解法探究 [J], 吕成荣[1]4.2020年高考圆锥曲线问题解法探索与备考建议 [J], 唐宜钟5.一道高考题的“昨天·今天·明天”——关于常态二次圆锥曲线定点(定向)问题解法的“融合”与应用 [J], 周如俊因版权原因,仅展示原文概要,查看原文内容请购买。

向量“搭台” 曲线“唱戏”——向量与圆锥曲线综合问题例谈

向量“搭台”  曲线“唱戏”——向量与圆锥曲线综合问题例谈

0 引言
平面 向量 是 高 中数 学 大 纲 版 教材 的新 增 内
且 斜率为 k 点 ) ( >O 的直 线与 C相 交 于 A、 B两 点.
若 一3 , 志 商 则 =( ) .
( 1 A) ( B) ( C) ( 2 D)
容, 是高 中数 学新课 程教材 的必修 内容. 圆锥 曲线 是 高中数学 的重点 内容 , 是高考 中的重 头“ . 也 戏”
收 稿 日期 :0 00 —0 2 1—82 .
作者简介: 珠( 6一, 甘肃庆阳 兰化总校 李平 1 2 男, 9 ) 人, 二中 高级教师, 省级骨干教师, 要从事高中 圭 数学教学 研究.
是解 直线 与圆锥 曲 线 问题 的通 法 , 常用 于 做解 答
1 小题 大 做 , 隐含 失分
例 I (0 0全 国卷 Ⅱ文 、 1 ) 21 理 2 已知 椭圆 C:
x 2
1_
y =1Ⅱ >o 的离 心率 为 , (>6 ) 过右 焦点 F


题 ( 考大题 ) 此法 思 维量 不 大 , 运 算 量大 , 高 . 但 对
者掌握 的情况 , 这部 分试 题 在 高考 数 学 试题 中 占
22 一一2 ts+4 , =一t ( +4 , √ (。 ) 一3 z s /。 )
消 去 Y 得 , / , 一1 s=√ . 2 s一1 2 七 / 2 故选 B .
解析 2 设直线 z 为椭 圆的右 准线 , 为离 心 e 率 , A, 过 B分 别 作 AA,BB , 垂 直 于 zA-B 为 , , 垂 足 , B作 B 垂 直 于 A 过 E A。与 E, 由第 二定 义
NO 2 O V. O1

直线圆锥曲线有关向量的问题(精品)

直线圆锥曲线有关向量的问题(精品)

直线圆锥曲线有关向量的问题高考考什么知识要点:1.直线与圆锥曲线的公共点的情况00),(02=++⇒⎩⎨⎧==++C Bx Ax y x f c by ax 曲线:直线:)0'''(2=++C y B yA 或(1)没有公共点 → 方程组无解 (2)一个公共点 → 0,0)0)=∆≠→=→A ii A i 相切相交(3)两个公共点 → 0,0>∆≠A2.连结圆锥曲线上两个点的线段称为圆锥曲线的弦,要能熟练地利用方程的根与系数关系来计算弦长,常用的弦长公式:1212AB x y =-=-3.以平面向量作为工具,综合处理有关长度、角度、共线、平行、垂直、射影等问题 4.几何与向量综合时可能出现的向量内容(1) 给出直线的方向向量或;(2)给出与相交,等于已知过的中点;(3)给出,等于已知是的中点;(4)给出,等于已知A 、B 与PQ 的中点三点共线;(5) 给出以下情形之一:①;②存在实数;③若存在实数,等于已知三点共线.(6) 给出,等于已知是的定比分点,为定比,即 (7) 给出,等于已知,即是直角,给出,等于已知是钝角, 给出,等于已知是锐角。

(8)给出,等于已知是的平分线。

(9)在平行四边形中,给出,等于已知是菱形;(10)在平行四边形中,给出,等于已知是矩形;(11)在中,给出,等于已知是的外心(三角形外接圆的圆心,三角形的外心是三角形三边垂直平分线的交点);(12)在中,给出,等于已知是的重心(三角形的重心是三角形三条中线的交点);(13)在中,给出,等于已知是的垂心(三角形的垂心是三角形三条高的交点);(14)在中,给出等于已知通过的内心;(15)在中,给出等于已知是的内心(三角形内切圆的圆心,三角形的内心是三角形三条角平分线的交点);(16)在中,给出,等于已知是中边的中线;高考怎么考主要题型:1.三点共线问题;2.公共点个数问题;3.弦长问题;4.中点问题;5.定比分点问题;6.对称问题;7.平行与垂直问题;8.角的问题。

圆锥曲线与平面向量的交汇

圆锥曲线与平面向量的交汇

圆锥曲线与平面向量的交汇
作者:鄢文俊陈侃
来源:《高中生学习·高二文综版》2015年第03期
由于平面向量具有代数和几何形式的双重身份,这就使其成为表述圆锥曲线问题的重要载体.因此在向量与圆锥曲线的交汇处设计试题,已经逐渐成为各省市考查的热点之一. 本文就这一类问题进行分析,以便同学们能够准确地理解这类问题,掌握解决的方法和技巧.
求轨迹的方程
通过以上例题,我们可以得到解平面向量与圆锥曲线交汇题的一般方法是:设出点的坐标,将平面向量用坐标表示,运用相应的运算法则,将向量关系转化成代数关系.然后再应用函数、方程、不等式、数列等知识来求解.虽然这类问题有一定的难度,但掌握基本的方法和技巧后,定会游刃有余的.。

例谈圆锥曲线与平面向量交汇题

例谈圆锥曲线与平面向量交汇题

例谈圆锥曲线与平面向量交汇题
李昭平
【期刊名称】《中学生数理化(高二高三版)》
【年(卷),期】2006(000)001
【摘要】@@ 由于平面向量具有代数(坐标)表示和几何表示的特点,这就使其成为表述圆锥曲线问题的重要载体.圆锥曲线与平面向量的交汇题是近几年各省市考题的热点之一.这种问题往往以圆锥曲线为主线,融向量、函数、方程、不等式、数列等知识于一体,具有知识点多、覆盖面广、综合性强的特点,能有效考查考生的思维水平和综合能力.下面举例介绍这种问题的六大类型,供同学们学习时参考.
【总页数】5页(P12-16)
【作者】李昭平
【作者单位】无
【正文语种】中文
【相关文献】
1.破解圆与平面向量的交汇题两大策略 [J], 唐照明
2.例谈2012年高考中平面向量与三角函数的交汇 [J], 谢飞平
3.圆锥曲线与平面向量交汇问题研究 [J], 孙德贵;宋远芬
4.试析近年高考解析几何题与平面向量交汇问题 [J], 刘瑞美
5.例谈圆锥曲线与平面向量交汇 [J], 张忠香
因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档