拉挤成型工艺及应用
碳纤维拉挤成型工艺
碳纤维拉挤成型工艺引言:碳纤维材料以其轻质高强的特性,在航空航天、汽车制造、体育器材等领域得到广泛应用。
而碳纤维拉挤成型工艺作为一种重要的碳纤维制备技术,具有高效、灵活、经济的优势。
本文将详细介绍碳纤维拉挤成型工艺的原理、步骤以及应用前景。
一、碳纤维拉挤成型工艺的原理碳纤维拉挤成型工艺是利用拉伸过程中的热流和剪应力对碳纤维进行塑性变形,使其形成连续的纤维预制件。
具体而言,碳纤维束经过预处理后,通过拉伸机构进行拉伸,同时通过加热机构提供热源,使碳纤维在拉伸的同时发生塑性变形,最终形成拉挤后的碳纤维材料。
二、碳纤维拉挤成型工艺的步骤1. 碳纤维预处理:碳纤维束经过脱脂、干燥等处理,去除其中的杂质和水分,以提高成型后的质量。
2. 模具准备:根据产品的形状和尺寸要求,制作相应的拉挤模具,确保成型后的产品符合设计要求。
3. 碳纤维拉伸:将经过预处理的碳纤维束通过拉伸机构进行拉伸。
拉伸过程中,碳纤维受到热流和剪应力的作用,发生塑性变形,形成连续的纤维预制件。
4. 热源加热:为了促进碳纤维的塑性变形,需要通过加热机构对拉伸过程中的碳纤维进行加热。
加热温度和时间需要根据具体的碳纤维材料和产品要求进行控制。
5. 模具成型:将拉挤后的碳纤维预制件放入模具中,通过压力和温度控制,使其形成最终的碳纤维拉挤产品。
三、碳纤维拉挤成型工艺的应用前景1. 航空航天领域:碳纤维拉挤成型工艺可以制备出轻质高强的航空航天结构件,用于飞机、导弹等载具,可以大幅度降低重量,提高载荷能力。
2. 汽车制造领域:碳纤维拉挤成型工艺可以用于制造汽车车身、底盘等部件,提高车辆的安全性和燃油经济性。
3. 体育器材领域:碳纤维拉挤成型工艺可以用于制造高强度、轻量化的体育器材,如高尔夫球杆、网球拍等,提高运动员的竞技水平。
4. 建筑领域:碳纤维拉挤成型工艺可以制备出耐久、抗震的建筑结构材料,如桥梁、楼板等,提高建筑物的安全性和使用寿命。
5. 医疗领域:碳纤维拉挤成型工艺可以制备出人工骨骼、关节等医用器械,具有良好的生物相容性和力学性能,可以改善患者的生活质量。
我国玻璃钢拉挤成型工艺、产品应用及
我国玻璃钢拉挤成型工艺、产品应用及现状一、概述拉挤成型工艺是将浸透胶液的连续无捻粗纱、毡、带或布等增强材料,在牵引力的作用下,通过模具加热挤拉成型、固化,连续不断地生产长度不限的玻璃钢型材。
2008年,拉挤成型工艺用不饱和聚酯树脂消费量4万吨,过氧化物消费量约为600吨。
拉挤成型工艺是玻璃钢成型工艺中的一种特殊工艺,适于生产各种断面形状的玻璃钢型材,如棒、管、实体型材(工字形、槽形、方形型材)和空腹型材等。
其优点是:1、生产过程连续进行,制品质量稳定,重复性好;2、增强材料含量可根据要求进行调整,产品强度高;3、能够调整制品的纵向强度和横向强度,满足不同的使用要求;4、能够生产截面形状复杂的制品,满足特殊场合使用的要求;5、制品具有良好的整体性,原材料的利用率高;6、设备的投资费用低。
二、拉挤工艺用原材料1、树脂基体在拉挤工艺中,应用最多的是不饱和聚酯树脂,还有环氧树脂、乙烯基树脂、热固性甲基丙烯酸树脂、改性酚醛树脂、阻燃性树脂等。
(1)不饱和聚酯树脂用作拉挤的基本上是邻苯和间苯型。
间苯型树脂有较好的力学性能、坚韧性、耐热性和耐腐蚀性能。
目前国内使用的较多的是邻苯型,因其价格较间苯型有优势,但质量因生产厂家不同差距较大,使用时要根据不同的产品慎重选择。
(2)乙烯基树脂乙烯基树脂具有较好的综合性能,可提高耐化学性能和耐水解稳定性。
(3)环氧树脂环氧树脂和不饱和聚酯树脂、酚醛树脂相比,具有优良的力学性能、高介电性能、耐表面漏电、耐电弧,是优良绝缘材料。
(4)酚醛树脂它是最早的一类热固性树脂。
具有突出的瞬时耐高温烧蚀性能,目前酚醛树脂已成功应用在拉挤成型工艺中。
2、增强材料拉挤工艺用的增强材料主要是玻璃纤维及其制品,如无捻粗纱、玻璃纤维毡等。
为了满足制品的特殊性能要求,可用芳纶纤维、碳纤维、超高分子量聚乙烯纤维及玄武岩纤维等。
(1)玻璃纤维用于拉挤工艺的玻璃纤维主要有无碱、中碱和高强玻璃纤维。
玻璃纤维制品的品种有:①无捻粗纱无捻粗纱有并股纱和直接纱,线密度为1100(1200)号到4400(4800)号。
拉挤成型工艺及应用
展-囝1为现今的拉挤成型工艺流程示意图。
拉挤成型工艺及应用黄克均张建伟.济南250031)内容提要概述拉挤成型工艺及其应用前景,通过对拉挤成«工艺与其它复合材料加工工艺的 比较,阐述了拉挤戋型工艺的特点和这种新的复合材料加工工艺在航空、躭天、交通、电气、化工和建 筑等领域的发展潜力。
关键词拉挤成5复合杈枰树脂材料工艺应明1前言拉挤成型工艺是复合材料的主要成型工艺方法 之一。
用拉挤成型工艺可以全自动地生产不变截面 的棒、板,如c 型槽(板)、丨型梁、圆柱棒、j 型棒等。
最初的拉挤制品是钓鱼竿和电机檜楔等。
自70年代 以来,拉挤成型工艺不断完善,拉挤成型制品应用范 围已遍及航天,航空、交通、建筑、化工和电气等各个 领域,甚至用来制造桥梁结构架、汽车和轮船传动轴 等主承力结90年代初拉挤制品的世界年产量 为复合材料总年产量的3%〜5%,达9万〜15万t, 其中美国占一半左右。
拉挤制品的年增长率达到 10%〜15%,是复合材料制品中增长最快的- 种[卜2拉挤工艺过程21拉挤工艺拉挤成型工艺是指将浸溃了树脂的连续纤维粗 纱经加热模拉出形成预定截面型材的过程。
在拉挤 成型工艺的发展中,有三种同时发展起来的工艺:(1) 隧道炉拉挤工艺该工艺是把玻纤粗纱或 类似的增强材料牵引穿过树脂浴后,经过整形套管 除去包藏的空气和多余的树脂达到预定的直径,然 后牵引穿过隧道炉并悬空连续固化得到最终产品。
(2>间歜成型拉挤工艺该工艺是把增强纤维 牵引穿过树脂浸溃槽并进入对分式阴模,在脖止状 态下由模外加热固化。
通常模具的进入端要冷却以 防树脂固化.当一段增强纤维上的浸溃树脂完全固 化后,打开模具再把下一段牵引到模中。
(3)高频或微波加热拉挤工艺该工艺与上述 两种方法类似,但采用高銕或微波加热,这种方法树 脂固化速度快,在模内即可固化。
由于70年代初连续纤维毡的问世解决了拉挤 型材的横向强度问题,使拉挤成型工艺获得高速发1一纱团架>2纤维控制系统,3树脂浸溃槽;4 加热的模具,5牵引机,6切割锯 图1拉挤成型工艺流程图 通常拉挤过程包括纤维粗纱自纱团架经纤维控 制系统向前牵引,在浸溃槽中用适宜的浸溃树脂浸 润并整理,将合在一起的浸溃过树脂的纤维束穿过 成型模.使已成型的浸溃了树脂的预浸件穿过拉挤模等过程22材料拉挤成型工艺中使用的材料包括树脂、增强材料、无机填料和内脱模剂等[14〕。
拉挤成型工艺
拉挤成型工艺
拉挤成型工艺是指将目标材料拉伸并利用外力,在一定温度下让其外形、截面等特性发生变化,从而达到不同功能需求的一种成形工艺。
一、拉挤成型工艺的概述
1. 介绍
拉挤成型是针对金属、塑料等可加工的材料,利用机械加工手段,使材料在一定温度下拉伸、压缩,在外形、截面、特性上发生变化,改变材料原来的形状而达到指定目的的金属加工工艺。
2. 工艺特点
拉挤成型工艺是金属外形调整中最重要也是最基础的成形工艺之一,它具有生产效率高、工序简便、节约成本、表面状态好、后期处理少等优点,几乎可以覆盖金属外形调整的所有领域。
二、拉挤成型工艺的分类
1. 拉伸成型
拉伸成型工艺的原理是,将材料在固定的拉伸缸内,以所需要的温度和拉伸力拉伸,使其形状发生变化而达到指定成型目的。
2. 压缩成型
压缩成型工艺是一种以压力为所施加的外力,利用模具内挤压力在一定温度下,使硬物料的外形、截面或其它性能得到变化的一种工艺。
三、拉挤成型工艺的应用
1. 电子行业
在电子行业,拉挤成型工艺广泛应用于电线电缆的加工制作中,可以实现电缆以及其他电子元器件的制作、变径和改型。
2. 机械行业
拉挤成型是机械加工领域中金属零件的基本工艺,可以实现连杆、轴、活塞等机械零件的主体构建。
3. 其他行业
此外,除了电子行业和机械行业,拉挤成型工艺还可以应用于能源行业,如用于油钻管、制作锅炉、制作液压缸等;交通运输行业,可以制作法兰、轴箱、制作汽车、摩托车等等。
拉挤树脂及其成型工艺介绍
一、拉挤成型工艺简介
(二)拉挤产品的主要应用领域
电工领域 主要用 于高压电缆保护管、 电缆架、绝缘梯、绝 缘杆、电杆、灯柱、 变压器和电机的零部 件等。
一、拉挤成型工艺简介
(二)拉挤产品的主要应用领域
建筑领域 主要用于 门、窗结构用型材、桥 梁、栏杆、帐篷支架和
天花板吊架等。
一、拉挤成型工艺简介
三、拉挤树脂的组成与选择
(一)拉挤工艺对树脂的要求
在拉挤成型工艺中应用最多的是不饱和聚酯树脂,其中以邻苯型和间 苯型应用最为广泛,间苯型树脂具有良好的力学性能、耐热性和韧性, 在使用中应根据不同需求选择相应的不饱和聚酯树脂。
三、拉挤树脂的组成与选择
(一)拉挤工艺对树脂的要求
本公司拉挤树脂的主要种类
拉挤成型工艺包括立式拉挤工艺和卧式拉挤工艺,两种工艺的设备主 体基本相同,一般包括:纱架、浸胶槽、模具(包括预成型模和成型 模)、牵引设备和切割装置等。
送纱装置
送纱装置的作用是从纱架上的纱筒中引出无捻粗纱,然后 装置进入浸胶槽中浸渍树脂胶液。
通过导纱
二、拉挤成型工艺的原理及设备
(二)拉挤设备
浸胶装置 1、浸胶装置包括5个部分: (1)树脂槽:存放树脂胶液 (2)导向辊:将纤维无捻粗纱集束引入树脂槽 (3)压 辊:将纤维无捻粗纱置入树脂胶液中进行浸渍 (4)分纱栅板:将浸渍树脂的纤维按铺层设计分开 (5)挤胶辊:控制含胶量并排除气泡
三、拉挤树脂的组成与选择
(二)拉挤树脂的主要原材料
不饱和二元酸 顺丁烯二酸酐 性
反 丁 烯 二 酸
为树脂提供可以参与交联固化的双键,提高树脂的活 树脂固化活性优异顺酐,赋予树脂气干性
交联单体 苯 乙 烯 参与交联固化,使固化后的分子结构呈网络结构,制 品具备机械性能
玻璃钢拉挤成型工艺以及玻璃钢拉挤成型工艺产品的应用
玻璃钢拉挤成型工艺以及玻璃钢拉挤成型工艺产品的应用玱璃钢拉挤成型工艺以及玱璃钢拉挤成型工艺产品的应用玱璃钢拉挤成型工艺目前已经成为新型产业群,产品具有耐腐蚀性强,能耐各种稀酸、碱、盐介质的腐蚀等特点,阻燃性好,潍坊科林环保已经经国家与业测试机构检测,材料的氧指数可达到28%以上。
可放心选购。
一、工艺及控制1、拉挤工艺拉挤成型工艺过程是由送纱、浸胶、预成型、固化定型、牵引、切断等工序组成。
无捻粗纱从纱架引出后,经过导纱装置进入树脂槽浸透树脂胶液,然后进入预成型模,将多余树脂和气泡排出,再进入成型模凝胶、固化。
固化后的制品由牵引机连续不断地从模具拉出,最后由切断机定长切断。
拉挤成型工艺中除立式和卧式机组外,尚有弯曲形制品拉挤成型工艺,反应注射拉挤工艺等。
增强热塑性塑料拉挤工艺在最近几年也取得了一定的突破。
最近美国道化学公司采用聚氨酯不玱纤经过拉挤制成强度、韧性、抗损伤性能均很优良的型材。
其拉挤速度可达到热固性塑料拉挤速度的10倍。
2、工艺控制拉挤成型工艺控制的参数主要包括成型温度、固化时间、牵引张力及牵引速度等。
(1)成型温度在拉挤成型过程中,材料在穿越模具时发生的变化是最关键的。
玱璃纤维浸胶后通过加热的金属模具,一般将连续拉挤过程分为预热区、胶凝区和固化区。
在模具上使用加热板戒加热套来加热。
树脂在加热过程中,温度逐渐升高,粘度降低。
通过预热区后,树脂体系开始胶凝、固化,在固化区内产品受热继续固化,以保证出模时有足够的固化度。
模具的加热条件是根据树脂体系来确定的。
以聚酯树脂配方为例,一般来讲,模具温度应大于树脂的放热峰值,温度上限为树脂的降解温度。
温度、胶凝时间、拉速应当匹配。
预热区温度可以较低,胶凝区不固化区温度相似。
温度分布应使产品固化放热峰出现在模具中部靠前,胶凝固化分离点应控制在模具中部。
温度梯度不宜过大。
(2)拉挤速度的确定拉挤模具的长度一般为0.6-1.2m。
在一定的温度条件下,树脂体系的胶凝时间对工艺参数速度的确定是非常重要的。
我国复合材料拉挤成型技术及应用发展情况分析
( 5)可制造含 凹凸复 杂断面形 状 的制 品 ; ( 6)制品质量稳定 、外 观平滑 。
2 我 国拉挤技术发展 的历程
2 . 1 技术 源流
( 1 )日、欧美有关拉挤成型的技术文献 ;
( 2 ) 引进国外拉挤成型技术及生产线予我以启发和参考
据统 计我 国已引进英 国 P U L T R E X, 美国P C、C P E、C P A、 A DV AN C E D C O MP OS I T E S 、 P U L T R US I O N T E C HN OL OG Y、F I BE R F L E X、C O AS T、B R O T H E R,意 大利 T OP G L AS S ,
( 4 )向深度和广度进军 ( 进入 2 1 世纪迄今 )
拉绕 、在线编织拉挤、树脂注射浸渍、纤维预加张力 、拉挤非金属模具微波加热、钢模 具感应加热等技术已逐渐推广 。拉挤生产装备及其产品技术含量、附加值提升。面向国内外 两个市场 ,拓宽产品应用领域 。拉挤成套技术、拉挤产品已进入欧美 F I 等发达国家市场。
空部门等多家引用 ;制造了 3 O台履带式拉挤机 ,惜未及时推广。
中意玻璃钢公司时任董事长岳红军主编的 《 玻璃钢拉挤工艺与制品》一书出版 ,这是国
内迄今唯一关于拉挤的专著 ,至今仍对拉挤技术进步起促进作用。
无锡一民营企业开发蔬菜大棚竿拉挤在线覆膜技术。
由武汉理工大学设计 、哈尔滨玻璃钢研究院与山东武城北方玻璃钢厂制生产的地铁接触 轨保护罩成功用于伊朗德黑兰地铁 。 多家拉挤产 品生产及设备制造企业兴起。
丹阳已有厂家生产 。悉江苏九鼎新材料公司与美国专家联合设计连续毡生产线 已投产 。九鼎 自己就生产拉挤型材,其连续毡谅必有 良好的工艺性等综合性能。 膨体纱有利于改善界面 、提高力学性能,亦可改善拉挤制品表面品质 ,国内引进加拿大
8- 拉挤成型工艺解读
玻 璃 钢 型 材
8、1 拉挤成型工艺概述
拉挤成型工艺是将浸渍树脂胶液的连续玻璃 纤维束、带或布等,在牵引力的作用下,通过挤 压模具成型、固化,连续不断地生产长度不限的 玻璃钢型材。
8、1 拉挤成型工艺概述
这种工艺最适于生产各种断面形状的玻璃钢 型材,如棒、管、实体型材(工字形、槽形、 方形型材)和空腹型材(门窗型材、叶片等)等。
4固化炉电阻或远红外加热5牵引装置履带式牵引机液压机械式6切割装置砂轮其它刀具86应用建筑领域运输领域电工领域运动娱乐领域航空航天领域高压电缆保护管玻璃钢型材门窗型材雷达天线罩运动娱乐拉挤成型工艺玻璃钢型材不饱和聚酯树脂玻璃纤维无捻粗纱增强材料辅助材料83拉挤成型工艺拉挤成型示意图液压式拉挤设备右图hydraulicpultrusionmachine纱架如送纱工序可以增加连续纤维毡或用三向织物以提高制品横向强度成型模成型模具
②增强材料 为了满足制品的特殊性能要求,可以选用芳 纶纤维、碳纤维等。
③辅助材料
拉挤工艺的辅助材料主要有脱模剂 和填料。
8、3 拉挤成型工艺
送纱
浸胶
预成型
牵引
切断
固化定型
8、3 拉挤成型工艺
拉挤成型示意图
拉挤成型工艺参数
1、固化温度和时间
固化体系
拉挤成型工艺参数
2பைடு நூலகம்浸胶时间
浸透
拉挤成型工艺的缺点
拉挤成型工艺的缺点是产品形状单调,只能生产 线形型材,而且横向强度不高。
8、2 拉挤工艺用原材料
①树脂基体 不饱和聚酯树脂、环氧树脂、乙烯基树脂、 热固性甲基丙烯酸树脂、改性酚醛树脂、阻燃性 树脂等。
复合材料-拉挤成型工艺-(综合版改)
热塑型复合材料拉挤工 艺
非反应型拉挤
反应型拉挤
熔体 浸渍
溶剂 浸渍
粉末 浸渍
混杂 无捻粗 纱法预聚体 ຫໍສະໝຸດ 挤工艺反应注 射拉挤
工艺
原位拉 挤工艺
图 1 2 种不同的热塑性塑料拉挤工艺框图
4.2.1 非反应型拉挤工艺 4.2.1.1 熔体浸渍
浸渍方法一般是让均匀分散、预加张力的连续纤维束通过一连串轮系,使纤 维在熔融树脂中充分浸渍。为提高浸透性,还通常加一定的压力,或混入低相对 分子质量同种类的改性组份(或增塑剂)等。该工艺目前已比较成熟,具有浸渍时 纤维不易缠绕,且能加工一切可以熔融流动的塑料材料的优点。
4.2.1.3 粉末浸渍 粉末浸渍制备技术是在硫化床中,通过静电作用将树脂细粉吸附于纤维束中
纤维单丝的表面,然后加热使粉末熔结在纤维的表面,最后在成型过程中使纤维 得以浸润。加工过程不受基体黏性的限制,高相对分子质量的聚合体可分布到纤 维中。这种工艺纤维损伤少,聚合物无降解,具有成本低的潜在优势。适合于这
Mold Wiz PS-125
用于乙烯基酯树脂、不饱和聚 酯树脂
Mold Wiz INT-54
用于乙烯基酯树脂、不饱和聚
INT-EQ-6 MW INT-1847
酯树脂
Mold Wiz INT-33P/A
Axel Plastics Research Lab
高分子缩聚产品,用于乙烯基 酯树脂
Mold Wiz INT-EQ-6
3 拉挤成型所需的材料
拉挤成型工艺中使用的材料包括树脂、增强材料、辅助材料等。 3.1 拉挤成型工艺所用树脂
拉挤成型工艺要求所用的树脂黏度低,主要使用不饱和聚酯树脂和环氧树脂 或改性环氧树脂。
不饱和聚酯树脂用作拉挤的基本上是邻苯和间苯型。间苯型树脂有较好的力
复合材料拉挤+编织成型工艺介绍
复合材料拉挤+编织成型工艺介绍一、工艺简介复合材料拉挤+编织成型工艺是一种先进的复合材料制造技术,结合了拉挤工艺和编织工艺的优点,能够生产出高性能、高强度、高刚度的复合材料制品。
这种工艺可以广泛应用于航空航天、建筑、汽车、体育器材等领域。
二、工艺流程1. 准备材料:根据制品要求选择合适的增强纤维、树脂以及其他辅助材料。
2. 纤维编织:将增强纤维编织成预设的形状和尺寸,形成编织预制件。
3. 树脂注入:将树脂注入到编织预制件中,使纤维完全浸渍在树脂中。
4. 预固化:在一定温度和压力下进行预固化,使树脂初步固化。
5. 拉挤成型:将预固化的编织预制件通过拉挤模具进行拉挤成型,进一步压缩和排除多余的树脂。
6. 加热固化:在高温下进行加热固化,使树脂完全固化,形成最终的复合材料制品。
7. 冷却和后处理:将制品冷却至室温,并进行必要的后处理,如切割、打磨等。
三、优点和特点1. 高性能:复合材料拉挤+编织成型工艺可以生产出高性能的复合材料制品,具有高强度、高刚度、耐腐蚀等优点。
2. 结构紧凑:这种工艺可以生产出结构紧凑、轻量化的复合材料制品,适用于对重量有较高要求的领域。
3. 可设计性强:可以根据实际需求定制不同的编织预制件和制品尺寸,具有较强的可设计性。
4. 加工效率高:整个工艺流程自动化程度高,加工效率高,可大幅缩短制品生产周期。
5. 环保可持续:该工艺使用的材料多为环保型材料,废弃物可回收再利用,有利于环保和可持续发展。
四、应用领域1. 航空航天领域:复合材料拉挤+编织成型工艺可以用于制造飞机结构件、航天器部件等高性能复合材料制品。
2. 建筑领域:可以用于制造桥梁、建筑支撑结构等高性能复合材料制品,提高建筑物的安全性和耐久性。
3. 汽车领域:可以用于制造汽车车身面板、车架等部件,提高汽车轻量化水平和燃油经济性。
4. 体育器材领域:可以用于制造高尔夫球杆、滑雪板等高性能体育器材,提高运动员竞技水平和运动体验。
拉挤成型主要工序、工艺原理及常见缺陷原因分析ppt课件
拉挤成型的环氧树脂配方
• 基本配方: • 环氧树脂 E-55 • 脱模剂(硬脂酸锌) • 固化剂 (590#) • 增韧剂 • 稀释剂
100份 3~5份 15~20份 10~15份 适量
拉挤成型主要工序、工艺原理及常见缺陷原因分析
(2)增强材料
• 拉挤成型所用的增强材料绝大部分是玻璃 纤维,其次是聚酯纤维。碳纤维等高强度纤 维 主要用于宇航、体育器材等。玻璃纤维 中,用得最多的是无捻粗纱。所用玻纤都采 用增强型浸润剂。
• 在预成型模中,材料被逐渐地成型到所要求的 形状,使增强材料在制品断面的分布符合设计 要求。
拉挤成型主要工序、工艺原理及常见缺陷原因分析
2)成型模具
• 成型模具一般为钢模,成型的内表面应加工的十 分光滑并镀铬以降低表面摩擦力,降低牵引力, 延长模具使用寿命,使制品易脱模。
• 模具长度由固化时间和牵引速度来决定. • 芯模尾部大约200~300mm处应加工成 1/200~
拉挤成型主要工序、工艺原理及常见缺陷原因分析
(2) 浸胶装置
• 浸胶装置一般包括导向辊、树脂槽、压辊、分 纱栅板、挤胶辊等。由纱架引出的玻璃纤维粗纱, 在浸胶槽中浸渍树脂,并通过挤胶辊的加紧来控 制树脂含量。胶槽长度根据浸胶时间长短和玻璃 纤维运行速度而定。胶槽中的胶液应连续不断地 循环更新,以防止因胶液中溶剂挥发造成树脂粘 度加大,胶槽一般采用夹层结构,通过调控夹套 中的水温来保持胶液的温度。挤胶辊的作用是使 树脂进一步浸渍增强材料,同时起到控制含胶量 和排气的作用。分栅板的作用是将浸渍树脂后的 玻璃纤维无捻粗纱分开。确保按设计的要求合理 分布,
• 设计时除考虑固化炉结构、加热方式外,还要 便于拉挤操作。根据工艺要求,炉中温度分段 控制,炉体适当保温,并设有观察孔、控温装 置和排风装置的安装固定部位等。固化炉的加 热方法通常有电阻加热或远红外加热。
拉挤成型工艺及应用
一、概述和发展历史拉挤成型工艺是将浸渍树脂胶液的连续玻璃纤维束、带或布等,在牵引力的作用下,通过挤压模具成型、固化,连续不断地生产长度不限的玻璃钢型材。
这种工艺最适于生产各种断面形状的玻璃钢型材,如棒、管、实体型材(工字形、槽形、方形型材)和空腹型材(门窗型材、叶片等)等。
拉挤成型技术是一种以连续纤维及其织物或毡类材料增强型材的工艺方法。
基本工艺过程,增强材料在外力的牵引下,经浸胶、预成型、热模固化、在连续出模下经定长切割或一定的后加工,得到型材制品。
第一个拉挤成型工艺技术专利于1951年在美国注册。
直到60年代,其应用也十分有限,主要制作实芯的钓鱼杆和电器绝缘材料等。
60年代中期,由于化学工业对轻质高强、耐腐蚀和低成本的迫切需要,促进了拉挤工业的发展,特别是连续纤维毡的问世,解决了拉挤型材横向强度问题。
70年代起,拉挤制品开始步入结构材料领域,并以每年20%左右的速度增长,成为美国复合材料工业十分重要的一种成型技术。
从此,拉挤成型工艺也随之进入了一个高速发展和广泛应用的阶段。
与此同时,国内也开始关注起拉挤成型工艺这一新型技术。
随着拉挤产品应用领域的不断拓展,人们对拉挤工艺有了全新的认识,从80年代起,秦皇岛玻璃钢厂、西安绝缘材料厂、哈尔滨玻璃钢研究所、北京玻璃钢研究设计院,武汉工业大学先后从英国PUITREX公司,美国PTI公司引进拉挤成型工艺设备。
此外河北冀县中意玻璃钢有限公司从意大利TOP Glass公司引进5条拉挤生产线,其中有一条是我国首家引进的光缆增强芯拉挤设备,其拉挤速度可达15-35 m/min。
在借鉴和消化国外先进技术的基础上,业内人员不断研究新工艺,开发新产品,从而有力地推动了国内拉挤成型工业,目前这一技术正在向高速度、大直径、高厚度、复杂截面及复合成型的工艺方向发展。
二、拉挤工艺过程1 拉挤工艺拉挤成型工艺是指将浸溃了树脂的连续纤维粗纱经加热模拉出形成预定截面型材的过程。
在拉挤成型工艺的发展中,有三种同时发展起来的工艺:(1)隧道炉拉挤工艺该工艺是把玻纤粗纱或类似的增强材料牵引穿过树脂浴后,经过整形套管除去包藏的空气和多余的树脂达到预定的直径,然后牵引穿过隧道炉并悬空连续固化得到最终产品。
拉挤成型工艺流程
拉挤工艺是一种连续生产复合材料型材的方法,它是将纱架上的无捻玻璃纤维粗纱和其他连续增强材料、聚脂表面毡等进行树脂浸渍,然后通过保持一定截面形状的成型模具,并使其在模内固化成型后连续出模,由此形成拉挤制品的一种自动化生产工艺。
利用拉挤工艺生产的产品其拉伸强度高于普通钢材。
表面的富树脂层又使其具有良好的防腐性,故在具有腐蚀性的环境的工程中是取代钢材的最佳产品,广泛应用于交通运输、电工、电气、电气绝缘、化工、矿山、海洋、船艇、腐蚀性环境及生活、民用各个领域。
拉挤成型工艺流程拉挤成型工艺形式很多,分类方法也很多。
如间歇式和连续式,立式和卧式,湿法和干法,履带式牵引和夹持式牵引,模内固化和模内凝胶模外固化,加热方式有电加热、红外加热、高频加热、微波加热或组合式加热等。
拉挤成型典型工艺流程为:玻璃纤维粗纱排布——浸胶——预成型——挤压模塑及固化——牵引——切割——制品拉挤成型设备组成:1、增强材料传送系统:如纱架、毡铺展装置、纱孔等。
2、树脂浸渍:直槽浸渍法最常用,在整个浸渍过程中,纤维和毡排列应十分整齐。
3、预成型:浸渍过的增强材料穿过预成型装置,以连续方式谨慎地传递,以便确保它们的相对位置,逐渐接近制品的最终形状,并挤出多余的树脂,然后再进入模具,进行成型固化。
4、模具:模具是在系统确定的条件下进行设计的。
根据树脂固化放热曲线及物料与模具的摩擦性能,将模具分成三个不同的加热区,其温度由树脂系统的性能确定。
模具是拉挤成型工艺中最关键的部分,典型模具的长度范围在0.6~1.2m之间。
5、牵引装置:牵引装置本身可以是一个履带型拉出器或两个往复运动的夹持装置,以便确保连续运动。
6、切割装置:型材由一个自动同步移动的切割锯按需要的长度切割。
成型模具的作用是实现坯料的压实、成型和固化。
模具截面尺寸应考虑树脂的成型收缩率。
模具长度与固化速度、模具温度、制品尺寸、拉挤速度、增强材料性质等有关,一般为600~1200mm。
拉挤成型(1)
拔浸胶玻璃钢纤维或织物,挤压通过加热模具
成型、固化形成玻璃钢线型材, 用于生产断面 形状固定不变的玻璃钢制品。
高分子材料成型新技术及模具CAD/CAE/KBE研究室
玻璃纤维粗纱排布→浸胶→预成型→拉挤模塑及固化→牵引→ 切割→制品→包装
图1 复合材料拉挤成型工艺过程示意图
高分子材料成型新技术及模具CAD/CAE/KBE研究室
(2)树脂浸渍 将排布整齐的增强纤维均匀浸渍上已配制好的不饱
和树脂的过程,一般是采用将纤维通过装有树脂胶
槽时进行的。 方法: 压纱浸渍
直槽浸渍
滚筒浸渍 压纱和直槽浸渍法最为常用,在整个浸渍过程中,必 须保证纤维和毡排列十分整齐。
高分子材料成型新技术及模具CAD/CAE/KBE研究室
高分子材料成型新技术及模具CAD/CAE/KBE研究室
证制品断面含纱量均匀。
高分子材料成型新技术及模具CAD/CAE/KBE研究室
作用:是将浸透了树脂的增强材料进一步均匀并除去
多余的树脂和排除气泡,使其形状逐渐形成成型模的
进口形状。 形状:如拉挤成型管材时,一般使用圆环状预成型模;
制造空心型材时,通常使用带有芯模的预成型模;生
产异型材时,大都使用形状与型材截面形状接近的金 属预成型模具。 原理:在预成型模中,材料被逐渐地成型到所要求的 形状,使增强材料在制品断面的分布符合设计要求。
固化程度。
一般采用钢镀铬,模腔表面要求光洁,耐磨,借 以减少拉挤成型是的摩擦阻力和提高模具的使用 寿命。
高分子材料成型新技术及模具CAD/CAE/KBE研究室
成型模具按结构形式可分为:整体式和组合式成型 模两类。 整体模具是由整体钢材加工而成,一般适用于棒材 和管材。组合成型模具有上、下模对合而成。这种 类型的模具易于加工,可生产各种类型的型材,但 制品表面有分型线痕迹。 空腹制品采用芯模。芯模一端固定,另一端悬臂伸 入上、下模所形成的空间,与上、下模一起构成产 品所需的截面形状。为减少脱模时芯模产生的阻力, 芯模尾部加工成 1/300~1/200 的锥度,较大的芯模应 考虑采用模心加热装置。
拉挤成型主要工序工艺原理及常见缺陷原因分析
拉挤成型主要工序工艺原理及常见缺陷原因分析拉挤成型是一种常用的塑料加工方法,它通过将塑料材料在一定温度下加热熔化,然后通过挤出机的加压作用,将熔融的塑料材料挤出成所需的形状。
拉挤成型主要分为以下几个工序:预热加料、熔融挤出、冷却定型、切割裁切和收卷。
首先是预热加料工序。
在这个工序中,工人需要将塑料颗粒放入料斗中,通过螺旋输送器将塑料颗粒送入挤出机中。
同时,恒温装置会对挤出机进行加热,将塑料颗粒熔化。
接下来是熔融挤出工序。
在这个工序中,塑料颗粒被熔融并通过螺旋挤出机强制挤出机芯。
螺旋挤出机由螺旋胚轴和其外围套管组成,当螺旋转动时,塑料颗粒会受到挤出机芯的加压,使其熔融并呈现出一定的流动性。
然后是冷却定型工序。
在挤出机出口处,塑料会进一步冷却并定形。
这通常是通过水浴或风冷冷却方式实现的。
水浴冷却是将挤出的塑料通过水浸泡,使其迅速冷却定型。
而风冷则是通过将冷空气对挤出的塑料进行吹扫,加快冷却速度。
接下来是切割裁切工序。
经过冷却定型的塑料通过切刀进行切断,使其成为一定长度的产品。
切刀可根据需要进行调整,使切割精度达到要求。
最后是收卷工序。
切割好的产品会被收卷机收集起来,成为卷筒状或者袋状的产成品,方便后续包装和储存。
拉挤成型的工艺原理主要是通过挤出机的挤压力和温度控制,将塑料颗粒熔融成流体,然后通过加压将其挤出形成所需的形状。
拉挤成型的优点是能够生产出连续的、尺寸稳定的长型产品,生产效率高。
然而,拉挤成型过程中也存在一些常见的缺陷原因。
首先是表面光滑度差。
这可能是由于挤出机温度不够稳定,或者切割刀不够锋利,导致切割面不平整。
其次是尺寸精度不高。
这可能是由于挤出机的温度或压力控制不准确,导致成型产品尺寸不稳定。
还有一种常见的缺陷是拉丝。
这可能是由于挤出机出料速度过快,或者挤压力不稳定,导致拉丝现象的发生。
为了解决这些缺陷,可以采取以下措施。
首先,对挤出机进行定期维护和保养,确保温度和压力控制的准确性。
其次,选择合适的切割刀,并定期进行磨刀,以保持切割面的平整度。
我国玻璃钢拉挤成型工艺、产品应用与现状
我国玻璃钢拉挤成型工艺、产品应用与现状我国玻璃钢(也称为玻璃纤维增强塑料)拉挤成型工艺是一种常用的塑料加工技术,在各个领域得到广泛应用。
这种工艺的基本原理是将玻璃纤维与树脂混合,并通过拉挤成型机将混合物挤出成型。
玻璃钢拉挤成型工艺的主要步骤包括:原材料准备、玻璃纤维切短、树脂与固化剂混合、充填模具、拉挤成型和固化。
在这个过程中,玻璃纤维的长度和分布对成型性能有很大影响。
拉挤成型机通过高温熔融树脂,将其挤出模具形成所需形状的产品,经过固化和后处理后,即可得到强度高、耐腐蚀、耐磨损的玻璃钢制品。
玻璃钢拉挤成型工艺的应用范围广泛,可以用于制造船舶、高速列车、飞机、汽车、建筑材料、储罐等各种结构件。
由于玻璃钢具有优异的耐腐蚀性、重量轻、机械强度高等特点,被广泛应用于化工、石油、电力、水处理等领域。
例如,玻璃钢储罐被广泛用于储存腐蚀性物质,玻璃钢管道在化工工业中用于输送腐蚀性介质。
目前,我国的玻璃钢拉挤成型工艺已经取得了一定的发展。
国内玻璃钢制品生产企业数量增多,产品质量和技术水平也有了大幅提升。
同时,我国政府也加大了对玻璃钢产业的支持力度,推动玻璃钢在各个领域的应用。
然而,与发达国家相比,我国的玻璃钢拉挤成型工艺仍存在一些问题和挑战。
一方面,技术水平有待提高,特别是在产品设计、模具制造和质量控制等方面仍存在一定差距。
另一方面,我国的玻璃钢市场仍处于初级阶段,市场需求相对较小,产品创新和应用推广仍有待进一步加强。
综上所述,我国玻璃钢拉挤成型工艺在应用和技术水平上取得了一定的发展,应用领域广泛,但仍面临一些挑战。
未来,我们需要加大研发力度,提高技术水平,进一步推动玻璃钢产业的发展,以满足市场需求,并不断创新,拓宽其应用领域。
我国玻璃钢拉挤成型工艺在应用和技术水平上取得了一定的发展,成为我国塑料加工领域的重要技术之一。
随着科技的进步和市场需求的不断增长,玻璃钢制品在航空航天、汽车工业、轨道交通、建筑材料、化工、环保等领域得到了广泛应用。
拉挤成型主要工序工艺原理及常见缺陷原因分析解读
拉挤成型主要工序工艺原理及常见缺陷原因分析解读拉挤成型是一种常用的塑料加工工艺,其工序主要包括:原料预处理、熔融和加压、挤出、冷却和固化、切割与定尺、检验与包装等。
首先,原料预处理是将塑料颗粒或粉末进行干燥和筛分,以消除水分和杂质等对成型过程和成品质量的不良影响。
接着,熔融和加压是将预处理好的塑料原料加热融化,形成可塑性物质,并施加一定的压力,将熔融的塑料通过模具向外挤出。
这一工序中,熔融的塑料会因为温度升高而变得流动性强,而施加的压力则有助于将其顺利挤出模具。
然后,挤出是塑料从挤出机的喂料装置中送入挤出机筒中,通过螺杆的旋转,塑料在加热和复杂的熔融过程中转化为高分子熔体,并在挤出机头通过模具的喷嘴挤压出来。
挤出机头的螺杆速度和背压的控制能够影响挤出成型的速度、塑料的质量等。
此外,挤出力和温度的控制也是保证良好挤出效果的关键。
冷却和固化阶段是将挤出的塑料进行冷却、固化和收缩,使其形成所需的形状和尺寸。
通常是通过水冷方式实现的,通过冷却水的流动和散热器的作用,使熔融塑料迅速冷却固化。
切割与定尺是将冷却固化的挤出物进行切割和定尺加工,获得符合要求的成品。
通常是通过自动切割机实现的,根据设定好的尺寸和长度进行自动定尺切割。
最后,检验与包装是对切割定尺完成的产品进行质量检验,确保产品达到预期要求,并进行包装,以便储运和销售。
拉挤成型的工艺原理是利用挤出机中的螺杆将塑料原料加热融化,形成可塑性物质,然后通过模具挤出形成所需的形状和尺寸。
在整个过程中,塑料通过熔融、挤压、冷却和固化等过程,从而实现塑料的连续性生产。
在拉挤成型过程中常见的缺陷原因可以归结为以下几点:1.模具问题:模具的设计、制造和使用是否符合要求,对拉挤成型产品的质量影响较大。
比如,模具的尺寸和结构设计不合理,会导致产品的尺寸和形状不准确;模具的使用寿命较短,容易导致产品表面质量不佳等。
2.挤出机问题:挤出机的调节和操作是否合理,对拉挤成型的质量也有很大影响。
碳纤维拉挤成型工艺
碳纤维拉挤成型工艺
碳纤维拉挤成型是一种目前常用的工艺,用于制造高强度、低重量的碳纤维复合材料构件。
1. 原材料准备:首先,将碳纤维单丝进行预处理,包括去除杂质、涂覆树脂等。
然后,将经过处理的碳纤维单丝编织成纱线或拧成纱,用于后续的拉挤成型。
2. 拉挤成型:在拉挤机中,将碳纤维纱线或纱束引入机器,经过一系列的装置进行塑化加热,并通过模具将其拉伸、挤出。
模具的形状决定了最终构件的形状和尺寸。
同时,可以通过真空封闭模具和注射树脂等方式,确保碳纤维的密实度和表面质量。
3. 固化:拉挤出的构件会进入固化炉,经过一定的时间和温度条件下进行热固化。
在此过程中,树脂会固化,将碳纤维牢固地粘结在一起,并形成坚硬而轻量的复合材料。
4. 后续加工:经过拉挤成型和固化的构件还需要进行后续的加工和整理。
包括去除模具残留物、修整表面、加工孔洞等步骤,以确保构件的精度和质量。
碳纤维拉挤成型工艺具有生产效率高、造型灵活、可实现大批量生产等优点。
在航空航天、汽车、船舶等行业中得到广泛应用,为实现轻量化、高强度的产品设计提供了有效的解决方案。
拉挤成型原理及其制造工艺课件
拉挤成型缺陷防治措施
材料选择
选择符合要求的材料,确保质量 过关。
工艺优化
根据制品要求,调整工艺参数,如 温度、压力等,确保制品质量。
设备维护
定期检查设备运行状况,及时维修 和调整设备,确保设备正常运行。
拉挤成型质量检验标准
外观质量
制品表面应光滑、无气泡、无变 形等缺陷。
尺寸精度
制品尺寸应符合设计要求,误差 在允许范围内。
物理性能
制品应具有足够的强度、硬度等 物理性能,满足使用要求。
06
拉挤成型应用与发展趋势
拉挤成型的应用范围
航空航天领域
拉挤成型技术可用于制造飞机零部件、卫星 支架等高性能产品。
汽车工业
拉挤成型可生产汽车车身结构件、车轮轮毂 等,提高汽车轻量化水平。
建筑行业
拉挤成型可生产玻璃纤维增强复合材料,用 于建筑模板、桥梁等结构件。
压力
挤压过程中的压力会影响制品的密度和强度。
材料
树脂、纤维和辅助材料的选择会影响制品的 性能和成本。
03
拉挤成型材料
拉挤成型材料要求
材料强度 拉挤成型材料应具有较高的强度和刚 度,以确保制品的稳定性和耐用性。
耐腐蚀性
拉挤成型材料应具有良好的耐腐蚀性, 以适应各种环境条件。
加工性能
拉挤成型材料应易于加工,可进行锯、 刨、钻、钉等机械加工操作。
拉挤成型的特点
01
02
03
04
连续生产
拉挤成型是一种连续生产工艺, 生产效率高,适合大规模生产。
自动化程度高
拉挤成型工艺采用自动化设备 和技术,减少了人工操作和干 预,提高了生产质量和效率。
可定制性强
拉挤成型工艺可以根据客户需 求生产各种不同形状、尺寸和
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
54 工程塑料应用1的7年,第25卷,第3期© 1994-2012 China Academic Journal Electronic Publishing House. All rights reserved, 展-囝1为现今的拉挤成型工艺流程示意图。
拉挤成型工艺及应用黄克均张建伟(第五三研究所.济南250031)内容提要概述拉挤成型工艺及其应用前景,通过对拉挤成«工艺与其它复合材料加工工艺的 比较,阐述了拉挤戋型工艺的特点和这种新的复合材料加工工艺在航空、躭天、交通、电气、化工和建 筑等领域的发展潜力。
关键词拉挤成5!复合杈枰树脂材料工艺应明1前言拉挤成型工艺是复合材料的主要成型工艺方法 之一。
用拉挤成型工艺可以全自动地生产不变截面 的棒、板,如c 型槽(板)、丨型梁、圆柱棒、j 型棒等。
最初的拉挤制品是钓鱼竿和电机檜楔等。
自70年代 以来,拉挤成型工艺不断完善,拉挤成型制品应用范 围已遍及航天,航空、交通、建筑、化工和电气等各个 领域,甚至用来制造桥梁结构架、汽车和轮船传动轴 等主承力结构件。
90年代初拉挤制品的世界年产量 为复合材料总年产量的3%〜5%,达9万〜15万t, 其中美国占一半左右。
拉挤制品的年增长率达到 10%〜15%,是复合材料制品中增长最快的- 种[卜2拉挤工艺过程2- 1 拉挤工艺拉挤成型工艺是指将浸溃了树脂的连续纤维粗 纱经加热模拉出形成预定截面型材的过程。
在拉挤 成型工艺的发展中,有三种同时发展起来的工艺:(1) 隧道炉拉挤工艺该工艺是把玻纤粗纱或 类似的增强材料牵引穿过树脂浴后,经过整形套管 除去包藏的空气和多余的树脂达到预定的直径,然 后牵引穿过隧道炉并悬空连续固化得到最终产品。
(2>间歜成型拉挤工艺该工艺是把增强纤维 牵引穿过树脂浸溃槽并进入对分式阴模,在脖止状 态下由模外加热固化。
通常模具的进入端要冷却以 防树脂固化.当一段增强纤维上的浸溃树脂完全固 化后,打开模具再把下一段牵引到模中。
(3)高频或微波加热拉挤工艺该工艺与上述 两种方法类似,但采用高銕或微波加热,这种方法树 脂固化速度快,在模内即可固化。
由于70年代初连续纤维毡的问世解决了拉挤 型材的横向强度问题,使拉挤成型工艺获得高速发1 一纱团架>2 —纤维控制系统,3 —树脂浸溃槽;4 —加热的模具,5 —牵引机,6 —切割锯 图1拉挤成型工艺流程图 通常拉挤过程包括纤维粗纱自纱团架经纤维控 制系统向前牵引,在浸溃槽中用适宜的浸溃树脂浸 润并整理,将合在一起的浸溃过树脂的纤维束穿过 成型模.使已成型的浸溃了树脂的预浸件穿过拉挤 模等过程=2- 2 材料拉挤成型工艺中使用的材料包括树脂、增强材 料、无机填料和内脱模剂等[14〕。
拉挤成型工艺使用的树脂与其它复合材料成型 工艺使用的树脂不同。
国外已推出的可用于拉挤工 艺的树脂如表1所示。
拉挤成型工艺使用的增强材料有玻璃纤维.石 墨纤维、芳纶纤维、硼纾维和混杂纤维等。
国外使用 的增强材料见表2。
在拉挤工艺中适当加入填料可提高树腊基体的 酎热性,降低树腊收缩率,改善拉挤制品表面性能和 降低成本。
还可賦予拉挤制品阻燃、耐化学腐蚀或电 绝缘等功能。
对拉挤工艺使用的无机填料的要求是填料的化 学成分稳定、杂质含量少、吸水率低于0. 5 %、帄均收稹日期:I996-U-15黄克均等:拉挤成型工艺及应用55© 1994-2012 China Academic Journal Electronic Publishing House. All rights reserved,粒径5〜10 Mm 。
填料加入量一般为15%〜40%,拉 挤工艺中常用的填料见表3。
拉挤工艺常W 的脱模方法有下列4种: (1>在模具内成型料的表面放置脱模板; (2)在横具内壁涂脱模剂; (3)使用聚四氟乙烯等非粘材料制作模具;(4) 在成型料中预先加入脱模性好的内脱模糾。
实践证明方法(1)、(2)、(3)不能达到满意的脱 模效果。
国外现已推出的拉挤成型工艺用脱模剂见 表4。
2. 3 模具 拉挤成型工艺使用的模具是用工具钢制成的。
为了将浸溃了树脂的增强纤维牵引通过加热的模 具,制成外观光洁美观的拉挤制品,在模具的设计与 加工中,一方面要提高加工精度,另方面要尽量提高 模腔内表面的粗糙度等级(通常采用镀铬或渗钽 法)。
模腔内表面粗糙度等级高,既利于脱模又可咸56工程塑料应用1997年,第25卷,第3期© 1994-2012 China Academic Journal Electronic Publishing House. All rights reserved,少摩擦阻力,延长模具的使用寿命⑴。
2.4 拉挤成型用树脂纪方因增强纤维浸润的好坏•树脂凝胶速度的快慢. 以及树脂在模具内的固化速率和脱模的难易,均取 决于树脂体系,所以树脂体系的选择是非常重要的。
常见的树脂配方见表5 4_。
2. 5 成型工艺条件拉挤成型工艺必须选择合适的模内温度设置 点,设定合适的顸热温度和牵引速度。
图2为拉挤装 置的加热部分和模具的示意图。
图2中,拉挤模具分 为三个区,在第•区内,树脂与增强材料的混合物进 入预热模具,混合物被加热后,模腔内液压提高。
在 第二区内,树脂幵始反应,从粘稠液态固化为凝胶 状,再变为橡胶状材料。
当树脂固化为固态产品时, 体积收缩使压力下降,产品从模具表面脱离下来。
在 第三区内,部分固化的复合材料继续固化完全,常用 拉挤工艺条件见表6[3]。
3拉挤成型工艺特点、应用与发展「2工5〜8]拉挤成型工艺作为一种自动化连续生产的复合 材料成型工艺方法,类似于金属的挤出工艺,其主要 优点是制造速度快,拉挤成型材料的利用率为95% C 手糊成型材料的利用率仅为75%)。
用拉挤成型方 法制成的拉挤制品具有高强、轻量(钢的20% •钔的 60%)、较少或不需维修、耐化学腐蚀、酎老化、耐紫外线降解、尺寸稳定、表面光滑、易着色、无磁性、电 磁透过性好、易于加工、可机械连接或胶接等特性 拉挤制品与其它成型方法成型制品的不同之处主要 是,可大批量生产;生产率高,成本低;制品纤维含鼋 高.强度和刚度高,•制品可复制性好;产品为直线型 柱体。
拉挤制品在工业发达国家已广泛应用于电气、 建筑、交通及航天航空等领域。
表7为一些工业发达 国家使用拉挤制品的例子。
随着拉挤成型工艺的不断发展,人们已能制作 1.6 m宽的拉挤型材。
近期又相继发展了拉挤缠绕1 一摸具:2—复合材料;3_绝热层金属帄板 5 —第一加热区;6—第二加热区:7—苇三加热区 图2拉挤装置的加热部分与模黄克均等:拉挤成型工艺及应用57© 1994-2012 China Academic Journal Electronic Publishing House. All rights reserved, 3 equation was built up and analysis So provide the basis for the design组合工艺(用于制造管形结构产品)和曲面拉挤工艺(PuUonniiig ,用于制造汽车板簧、工具手柄等)。
新 近开发的具有大功率、大截面拉挤能力的Pulmaster18-36-0型拉挤机,最大牵引力为10 t ,产品截面 积可达450 mmX 900 mm 以上。
我国哈尔滨玻璃钢研究所80年代中期就引进了拉挤设备,并对拉挤设备、拉挤模具、拉挤材料、拉 挤工艺全方位地开展了较深入的研究,取得了一定 的成果,其拉挤成型技术在国内居领先地位。
现在国 内已先后引进了二十多条拉挤生产线。
对于拉挤成 型,有关专家指出,目前国内尚存在原材料不配套, 大部分靠进口,模具制造技术水帄较低,对拉挤工艺 科学研究不够深入等问题,今后应紧紧抓住拉挤市 场开发的机遇,发挥这些先进拉挤设备的作用,促进 拉挤成型工艺在我国的发展。
参考文献1 Schwarts M M. Composite Materials Handbook. Mc- Graw — Hill Book Company, 1983. 462 2孔庆宝.纤维复合材料,1993(2) :1Chachad Y R,et aL J Reinforced Plastics and Compos- ites. 1995(5):495 4蔡金刚•纤维复合材料,1993(4) :15 何东晓.纤维复合材料,1994(4) :376 Gorthal R ,et al. J Reinforced Plastics and Composites* 1994(4):2887 Lackey E ,e t al. J Reinforced Plastics and Composites♦ 1994(3):1888方璀昌•纤维复合材料,1993(2) :54PULTRUSION TECHNOLOGY AND ITS APPLICATIONHuang Kejun, Zhang Jianwei (Institute 53 ♦ Jinan250031)SYNOPSIS The pultrusion technology and the prospects of application are briefly introduced - It will be clearlyrecognized that the products of pultrusion possess their characteristics and that pultrusion ,as a new process technology for composites , has the developing potential in the fields including aviation ♦ space,communication ♦electric,chemistry ,construction industries and so on, by comparing the pultrusion with other process technologies for the composites.KEYWORDS pultrusion, composite , resin ♦ reinforcement ♦ characteristic ,operation control, applica-(上接第51页)的任何部位都能达到所要求的尽可能相同的 温度。
借助于本文对机头的热帄衡分析、热帄 衡方程以及各个热通量的计算公式,可对机头温度控制装置的设计提供依据a参考文献1 章熙民等.传热学.北京:中国建筑工业出版社,1985. 214THERMAL EQUILIBRIUM ANALYSIS AND CALCULATION FOR EXTRUDER DIELi Zhihua(Qingdao Institute of Chemical Technology 266042)SYNOPSIS The thermal equilibrium the calculating equation for each heat flux, system of the extruder die-KEYWORDS extruder die ♦ thermalequilibrium ♦ heat flux and discuss were made. Listed of the temperature controlling表7拉挤制品在工业发达国家的用途。