随机变量及其分布列与独立性检验练习题附答案.
随机变量及其分布列习题(含解析)
一.解答题(共8小题)1.(1)100件产品中有10件次品,从中有放回地任取5件,求其中次品数ξ的分布列;(2)某批数量较大的商品的次品率为10%,从中任意地连续抽取5件,求其中次品数η的分布列.2.为创建国家级文明城市,某城市号召出租车司机在高考期间至少进行一次“爱心送考”,该城市某出租车公司共200名司机,他们进行“爱心送考”的次数统计如图所示.(1)求该出租车公司的司机进行“爱心送考”的人均次数;(2)从这200名司机中任选2人,设这2人进行送考次数之差的绝对值为随机变量X,求X的概率分布.3.从6名男生和4名女生中随机选出3名同学参加一项竞技测试.(1)求选出的3名同学中至少有1名女生的概率;(2)设ξ表示选出的3名同学中男生的人数,求ξ的分布列.4.甲袋中有2个黑球,4个白球,乙袋中有3个黑球,3个白球,从两袋中各取一球.(Ⅰ)求“两球颜色相同”的概率;(Ⅱ)设ξ表示所取白球的个数,求ξ的概率分布列.5.设X是一个离散型随机变量,其分布列为:X−101P1﹣2q q2(1)求q的值;(2)求P(X<0),P(X<1).6.某射手进行射击训练,假设每次射击击中目标的概率为,且每次射击的结果互不影响.(1)求射手在3次射击中,至少有两次连续击中目标的概率(用数字作答);(2)求射手第3次击中目标时,恰好射击了4次的概率(用数字作答);(3)设随机变量ξ表示射手第3次击中目标时已射击的次数,求ξ的分布列.7.袋中有3个红球,4个黑球,从袋中任取4个球.(1)求红球个数X的分布列;(2)若取到一个红球得2分,取到一个黑球得1分,求得分不小于6分的概率.8.从5名男生和3名女生中任选2人去参加学校组织的“低碳杯”知识抢答赛,用ξ表示选出的女生的人数.(1)求随机变量ξ的分布列;(2)求事件“选出的2学生至少有一女生”的概率.参考答案与试题解析一.解答题(共8小题)1.(1)100件产品中有10件次品,从中有放回地任取5件,求其中次品数ξ的分布列;(2)某批数量较大的商品的次品率为10%,从中任意地连续抽取5件,求其中次品数η的分布列.【解答】解:(1)由题意知ξ的可能取值为0,1,2,3,4,5,每次取出次品的概率为:,相当于5次独立重复实验,ξ~B(5,),P(ξ=0)==0.59059,P(ξ=1)==0.32805,P(ξ=2)==0.07329,P(ξ=3)==0.0081,P(ξ=4)==0.00045,P(ξ=5)==0.00001,∴ξ的分布列为:ξ012345P0.590590.328050.07290.00810.000450.00001(2)由题意知η的可能取值为0,1,2,3,4,5,且η~B(5,0.1),∴η的分布列为:η012345P0.590590.328050.07290.00810.000450.000012.为创建国家级文明城市,某城市号召出租车司机在高考期间至少进行一次“爱心送考”,该城市某出租车公司共200名司机,他们进行“爱心送考”的次数统计如图所示.(1)求该出租车公司的司机进行“爱心送考”的人均次数;(2)从这200名司机中任选2人,设这2人进行送考次数之差的绝对值为随机变量X,求X的概率分布.【解答】解:(1)由统计图得200名司机中送考1次的有20人,送考2次的有100人,送考3次的有80人,∴该出租车公司的司机进行“爱心送考”的人均次数为;(2)从该公司任选两名司机,记“这两人中﹣人送考1次,另一人送考2次”为事件A,“这两人中一人送考2次,另一人送考3次“为事件B,“这两人中﹣人送考1次,另一人送考3次”为事件C,“这两人送考次数相同”为事件D,由题意知X的所有可能取值为0,1,2,,,,所以X的分布列为:X012P3.从6名男生和4名女生中随机选出3名同学参加一项竞技测试.(1)求选出的3名同学中至少有1名女生的概率;(2)设ξ表示选出的3名同学中男生的人数,求ξ的分布列.【解答】解:(1)由意可知,选出的3名同学全是男生的概率为=,∴选出的3名同学中至少有1名女生的概率为P=1﹣=.(2)根据题意,ξ的可能取值为0,1,2,3,P(ξ=0)==,P(ξ=1)==,P(ξ=2)==,P(ξ=3)==,∴ξ的分布列为:ξ0123P4.甲袋中有2个黑球,4个白球,乙袋中有3个黑球,3个白球,从两袋中各取一球.(Ⅰ)求“两球颜色相同”的概率;(Ⅱ)设ξ表示所取白球的个数,求ξ的概率分布列.【解答】解:(I)从甲中取出黑球的概率为,取出白球的概率为,从乙中取出黑球的概率为,取出白球的概率为,故“两球颜色相同”的概率P=.(II)由题意可得,ξ所有可能取值为0,1,2,P(ξ=0)==,P(ξ=1)=,P(ξ=2)=,故ξ的分布列为:ξ012P5.设X是一个离散型随机变量,其分布列为:X−101P1﹣2q q2(1)求q的值;(2)求P(X<0),P(X<1).【解答】解:(1)依题意,得,解得或(舍去),所以.(2)由(1)得,,所以,.6.某射手进行射击训练,假设每次射击击中目标的概率为,且每次射击的结果互不影响.(1)求射手在3次射击中,至少有两次连续击中目标的概率(用数字作答);(2)求射手第3次击中目标时,恰好射击了4次的概率(用数字作答);(3)设随机变量ξ表示射手第3次击中目标时已射击的次数,求ξ的分布列.【解答】解:(1)设事件该射手第i次射击,击中目标为A i,i=1,2,3,则,所以,事件射手在3次射击中,至少有两次连续击中目标可表示为,因为事件,,A1A2A3互斥,所以又事件A1,A2,A3相互独立,所以==;(2)事件射手第3次击中目标时,恰好射击了4次等于事件前3次中恰好击中两次目标且第四次击中目标,又各次击中目标的概率为,所以前3次中恰有两次击中目标的概率为,第四次击中目标的概率为,所以事件射手第3次击中目标时,恰好射击了4次的概率;(3)由已知ξ的取值有3,4,5,⋅⋅⋅,n,⋅⋅⋅,又,,,⋅⋅⋅,,所以随机变量ξ的分布列为:ξ345…n…P……7.袋中有3个红球,4个黑球,从袋中任取4个球.(1)求红球个数X的分布列;(2)若取到一个红球得2分,取到一个黑球得1分,求得分不小于6分的概率.【解答】解:(1)由题意可得,X可能取值为0,1,2,3,P(X=0)=,P(X=1)=,P(X=2)=,P(X=3)=,故X的分布列为:X0123P(2)设得分为Y,则得分Y可以取4,5,6,7,分别对应4个黑球,3黑1红,2黑2红,1黑3红四种情况,P(Y≥6)=P(Y=6)+P(Y=7)=,故得分不小于6分的概率为.8.从5名男生和3名女生中任选2人去参加学校组织的“低碳杯”知识抢答赛,用ξ表示选出的女生的人数.(1)求随机变量ξ的分布列;(2)求事件“选出的2学生至少有一女生”的概率.【解答】解:(1)由题意得ξ的可能取值为0,1,2,P(ξ=0)==,P(ξ=1)==,P(ξ=2)==,∴随机变量ξ的分布列为:ξ012P(2)事件“选出的2学生至少有一女生”的概率为:P=P(ξ=1)+P(ξ=2)==.。
(必考题)高中数学选修三第二单元《随机变量及其分布》测试(有答案解析)
一、选择题1.现有一条零件生产线,每个零件达到优等品的概率都为p .某检验员从该生产线上随机抽检50个零件,设其中优等品零件的个数为X .若()8D X =,(20)P X =(30)P X <=,则p =( ) A .0.16B .0.2C .0.8D .0.842.已知随机变量X 的分布列则对于任意01a b c <<<<,()E X 的取值范围是( )A .10,3⎛⎫ ⎪⎝⎭B .1,13⎛⎫ ⎪⎝⎭C .()0,1D .1,3⎛+∞⎫ ⎪⎝⎭3.假定男女出生率相等,某个家庭有两个小孩,已知该家庭至少有一个女孩,则两个小孩都是女孩的概率是( ) A .12B .13C .14D .164.随机变量ξ的分布列如表所示,若1()3E X =-,则(31)D X +=( )A .4B .5C .6D .75.设01p <<,随机变量ξ的分布列是则当p 在()0,1内增大时( )A .()E ξ减小,()D ξ减小B .()E ξ减小,()D ξ增大C .()E ξ增大,()D ξ减小D .()E ξ增大,()D ξ增大6.从1,2,3,4,5,6,7,8,9中不放回地依次取2个数,事件A 为“第一次取到的是奇数”,B 为“第二次取到的是3的整数倍”,则(|)P B A =( ) A .38B .1340C .1345D .347.已知随机变量~X N ()22,σ,(0)0.84P X=,则(04)P X <<=( )A .0.16B .0.32C .0.66D .0.688.袋中有大小完全相同的2个红球和2个黑球,不放回地依次摸出两球,设“第一次摸得黑球”为事件A ,“摸得的两球不同色”为事件B ,则概率()|P B A 为( ) A .14B .23C .13D .129.随机变量X 服从正态分布()()()210,12810X N P X m P X n σ->==,,≤≤,则12m n+的最小值为( )A .3+B .6+C .3+D .6+10.甲、乙、丙、丁四名同学报名参加假期社区服务活动,社区服务活动共有关怀老人、环境监测、教育咨询、交通宣传等四个项目,每人限报其中一项,记事件A 为4名同学所报项目各不相同”,事件B 为“只有甲同学一人报关怀老人项目”,则(|)P B A =( ) A .14B .34C .29D .5911.某班组织由甲、乙、丙等5名同学参加的演讲比赛,现采用抽签法决定演讲顺序,在“学生甲不是第一个出场,学生乙不是最后一个出场”的前提下,学生丙第一个出场的概率为( ) A .313B .413C .14D .1512.10张奖券中有3张是有奖的,某人从中依次抽取两张.则在第一次抽到中奖券的条件下,第二次也抽到中奖券的概率是( ) A .27B .29C .310D .15二、填空题13.游乐场某游戏设备是一个圆盘,圆盘被分成红色和绿色两个区域,圆盘上有一个可以绕中心旋转的指针,且指针受电子程序控制,前后两次停在相同区域的概率为14,停在不同区域的概率为34,某游客连续转动指针三次,记指针停在绿色区域的次数为X ,若开始时指针停在红色区域,则()E X =______.14.由“0,1,2”组成的三位数密码中,若用A 表示“第二位数字是2”的事件,用B 表示“第一位数字是2”的事件,则(|)P A B =__________.15.一个家庭有两个小孩,假设生男生女是等可能的,已知这个家庭有一个是女孩的条件下,这时另一个也是女孩的概率是________. 16.下列说法中,正确的有_______.①回归直线ˆˆˆy bx a =+恒过点(),x y ,且至少过一个样本点;②根据22⨯列列联表中的数据计算得出2 6.635K ≥,而()26.6350.01P K ≥≈,则有99%的把握认为两个分类变量有关系;③2K 是用来判断两个分类变量是否相关的随机变量,当2K 的值很小时可以推断两个变量不相关;④某项测量结果ξ服从正态分布()21,N a,则(5)0.81P ξ≤=,则(3)0.19P ξ≤-=.17.已知某随机变量X 的分布列如下(,p q R ∈):且X 的数学期望()12E X =,那么X 的方差()D X =__________. 18.(1)10件产品,其中3件是次品,任取2件,若ξ表示取到次品的个数,则()E ξ=_______;(2)设随机变量ξ的分布列为()P k ξ==21C ()()33k k n kn -,k =0,1,2,…,n ,且()24E ξ=,则()D ξ= _______;(3)设袋中有两个红球一个黑球,除颜色不同,其他均相同,现有放回地抽取,每次抽取一个,记下颜色后放回袋中,连续摸三次,X 表示三次中红球被摸中的次数(每个小球被抽取的概率相同,每次抽取相互独立),则方差()D X =______.三、解答题19.已知某射手射中固定靶的概率为34,射中移动靶的概率为23,每次射中固定靶、移动靶分别得1分、2分,脱靶均得0分,每次射击的结果相互独立,该射手进行3次打靶射击:向固定靶射击1次,向移动靶射击2次.(1)求“该射手射中固定靶且恰好射中移动靶1次”的概率; (2)求该射手的总得分X 的分布列和数学期望.20.某校拟举办“成语大赛”,高一(1)班的甲、乙两名同学在本班参加“成语大赛”选拔测试,在相同的测试条件下,两人5次测试的成绩(单位:分)的茎叶图如图所示.(1)你认为选派谁参赛更好?并说明理由;(2)若从甲、乙两人5次的成绩中各随机抽取1次进行分析,设抽到的2次成绩中,90分以上的次数为X ,求随机变量X 的分布列和数学期望()E X .21.在某校举行的数学竞赛中,全体参赛学生的竞赛成绩ξ近似服从正态分布()70,100N .已知成绩在90分以上(含90分)的学生有12名.(1)此次参赛的学生总数约为多少人?(2)若该校计划奖励竞赛成绩排在前50名的学生,则设奖的分数线约为多少分? 说明:对任何一个正态分布()2~,X Nμσ来说,通过1X Z μσ-=转化为标准正态分布()~0,1Z N ,从而查标准正态分布表得到()()1P X X Z <=Φ. 参考数据:可供查阅的(部分)标准正态分布表()Z Φ Z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 1.2 0.8849 0.869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015 1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177 1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319 1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9762 0.9767 2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817 2.10.98210.98260.98300.98340.98380.98420.98460.98500.98540.985722.为了解学生寒假期间学习情况,学校对某班男、女学生学习时间进行调查,学习时间按整小时统计,调查结果绘制成折线图如下:(1)已知该校有400名学生,试估计全校学生中,每天学习不足4小时的人数; (2)若从学习时间不少于4小时的学生中选取4人,设选取的男生人数为X ,求随机变量X 的分布列及均值E (X );(3)试比较男生学习时间的方差21s 与女生学习时间的方差22s 的大小.(只需写出结论) 23.为检测某种抗病毒疫苗的免疫效果,某药物研究所科研人员随机选取100只小白鼠,并将该疫苗首次注射到这些小白鼠体内.独立环境下试验一段时间后检测这些小白鼠的某项医学指标值并制成如下的频率分布直方图(以小白鼠医学指标值在各个区间上的频率代替其概率):(1)根据频率分布直方图,估计100只小白鼠该项医学指标平均值x (同一组数据用该组数据区间的中点值表示);(2)若认为小白鼠的该项医学指标值X 服从正态分布()2,N μσ,且首次注射疫苗的小白鼠该项医学指标值不低于14.77时,则认定其体内已经产生抗体;进一步研究还发现,对第一次注射疫苗的100只小白鼠中没有产生抗体的那一部分群体进行第二次注射疫苗,约有10只小白鼠又产生了抗体.这里μ近似为小白鼠医学指标平均值x ,2σ近似为样本方差2s .经计算得2 6.92s =,假设两次注射疫苗相互独立,求一只小白鼠注射疫苗后产生抗体的概率p (精确到0.01). 附:参考数据与公式6.92 2.63≈,若()2~,X N μσ,则①()0.6827P X μσμσ-<≤+=;②()220.9545P X μσμσ-<≤+=;③()330.9973P X μσμσ-<≤+=. 24.甲、乙两人进行乒乓球比赛,规定比赛进行到有一人比对方多赢2局或打满6局时比赛结束.设甲、乙在每局比赛中获胜的概率均为12,各局比赛相互独立,用X 表示比赛结束时的比赛局数(1)求比赛结束时甲只获胜一局的概率; (2)求X 的分布列和数学期望.25.现有编号为1,2,3的三只小球和编号为1,2,3的三个盒子,将三只小球逐个随机地放入三个盒子中,每只球的放置相互独立. (1)求恰有一个空盒的概率;(2)求三只小球在三个不同盒子中,且每只球编号与所在盒子编号不同的概率; (3)记录所有至少有一只球的盒子,以X 表示这些盒子编号的最小值,求()E X . 26.某学校为了了解学生暑假期间学习数学的情况,抽取了人数相等的甲、乙两班进行调查,甲班同学每天学习数学的平均时间的频率分布直方图(将时间分成[0,1),[1,2),[2,3),[3,4),[4,5),[5,6]共6组)和乙班同学每天学习数学的平均时间的频数分布表如图所示(单位:小时).(1)从甲班每天学习数学的平均时间在[0,2)的人中随机选出3人,求3人中恰有1人学习数学的平均时间在[0,1)范围内的概率;(2)从甲、乙两个班每天学习数学平均时间不小于5个小时的学生中随机抽取4人进一步了解其他情况,设4人中乙班学生的人数为ξ,求ξ的分布列和数学期望.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由(20)(30)p X P X =<=求出的范围,再由方差公式求出值.【详解】∵(20)(30)p X P X =<=,∴2020303030205050(1)(1)C p p C p p -<-,化简得1p p -<,即12p >,又()850(1)D X p p ==-,解得0.2p =或0.8p =,∴0.8p =,故选C . 【点睛】 本题考查概率公式与方差公式,掌握这两个公式是解题的关键,本题属于基础题.2.B解析:B 【分析】由题易得222()E X a b c =++,结合题中条件再由基本不等式可得2222()133a b c a b c ++++>=,即1()3E X >;再由2222()2()12()1a b c a b c ab bc ca ab bc ca ++=++-++=-++<,即()1E X <,最后得出()E X 的取值范围. 【详解】由随机变量的期望定义可得出222()E X a b c =++, 因为01a b c <<<<,且1a b c ++=,所以222222222a b aba c acbc bc ⎧+>⎪+>⎨⎪+>⎩,三式相加并化简可得222a b c ab bc ac ++>++,故2222222222()2222()3()a b c a b c ac bc ab a b c ac bc ab a b c ++=+++++=+++++<++,即2222()133a b c a b c ++++>=,所以2()1()33a b c E X ++>=,又因为2()()2()12()1E X a b c ab bc ca ab bc ca =++-++=-++<,所以1()13E X <<. 故选:B . 【点睛】本题考查随机变量的期望,考查基本不等式的应用,考查逻辑思维能力和运算求解能力,属于常考题.3.B解析:B 【分析】记事件A 为“至少有一个女孩”,事件B 为“另一个也是女孩”,分别求出A 、B 的结果个数,问题是求在事件A 发生的情况下,事件B 发生的概率,即求(|)P B A ,由条件概率公式求解即可. 【详解】解:一个家庭中有两个小孩只有4种可能:{男,男},{男,女},{女,男},{女,女}.记事件A 为“至少有一个女孩”,事件B 为“另一个也是女孩”,则{A =(男,女),(女,男),(女,女)},{B =(男,女),(女,男),(女,女)},{AB =(女,女)}.于是可知3()4P A =,1()4P AB =. 问题是求在事件A 发生的情况下,事件B 发生的概率,即求(|)P B A ,由条件概率公式,得()114334P B A ==.故选:B . 【点睛】本题的考点是条件概率与独立事件,主要考查条件概率的计算公式:()()()P AB P B A P A =,等可能事件的概率的求解公式:()mP M n=(其中n 为试验的所有结果,m 为基本事件的结果).4.B解析:B 【分析】 由于()13E X =-,利用随机变量的分布列列式,求出a 和b ,由此可求出()D X ,再由()(319)X D D X +=,即可求出结果.根据题意,可知:112a b ++=,则12a b +=, ()13E X =-,即:1123b -+=-,解得:16b =,13a ∴=,()22211111151013233369X D ⎛⎫⎛⎫⎛⎫∴=-+⨯++⨯++⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则()59959(31)D D X X ==⨯+=, ∴5(31)D X +=.故选:B. 【点睛】本题考查离散型随机变量的方差的求法,以及离散型随机变量的分布列、数学期望等知识,考查运算求解能力.5.B解析:B 【分析】根据题意计算随机变量ξ的分布列和方差,再判断p 在(0,1)内增大时,()E ξ、()D ξ的单调性即可. 【详解】解:设01p <<,随机变量ξ的分布列是1131()01222222p p E p ξ-=⨯+⨯+⨯=-, 方差是22231311311()(0)(1)(2)222222222p p D p p p ξ-=-+⨯+-+⨯+-+⨯ 21144p p =-++ 215(2)44p =--+,当p 在(0,1)内增大时,()E ξ减小,()D ξ增大.故选:B . 【点睛】本题考查了离散型随机变量的数学期望与方差的计算问题,也考查了运算求解能力.6.B【分析】由条件概率的定义()(|)()P A B P B A P A =,分别计算(),()P A B P A 即得解.【详解】 由题意5()9P A = 事件AB 为“第一次取到的是奇数且第二次取到的是3的整数倍”:若第一次取到的为3或9,第二次有2种情况;若第一次取到的为1,5,7,第二次有3种情况,故共有223313⨯+⨯=个事件1313()9872P A B ==⨯由条件概率的定义:()13(|)()40P A B P B A P A ==故选:B 【点睛】本题考查了条件概率的计算,考查了学生概念理解,分类讨论,数学运算的能力,属于中档题.7.D解析:D 【分析】先由对称性求出(X 4)P ≥,再利用(04)12(4)P X P X <<=-≥即得解. 【详解】由于随机变量~X N ()22,σ,关于2X =对称,故(4)(0)1(0)10.840.16P X P X P X ≥=≤=-≥=-= (04)12(4)10.320.68P X P X ∴<<=-≥=-=故选:D 【点睛】本题考查了正态分布在给定区间的概率,考查了学生概念理解,数形结合,数学运算的能力,属于基础题.8.B解析:B 【分析】根据题目可知,求出事件A 的概率,事件AB 同时发生的概率,利用条件概率公式求得()|P B A ,即可求解出答案.【详解】依题意,()1214C 1C 2P A ==,()11221143C C 1C C 3P AB ==,则条件概率()()()123|132P AB P B A P A ===.故答案选B . 【点睛】本题主要考查了利用条件概率的公式计算事件的概率,解题时要理清思路,注意()P AB 的求解.9.D解析:D 【分析】利用正态密度曲线的对称性得出12m n +=,再将代数式22m n +与12m n +相乘,展开后可利用基本不等式求出12m n+的最小值. 【详解】 由于()210,XN σ,由正态密度曲线的对称性可知,()()128P X P X m >=<=,所以,()()188102P X P X <+≤≤=,即12m n +=,221m n ∴+=, 由基本不等式可得()1212422266m n m n m n m n n m ⎛⎫+=++=++≥ ⎪⎝⎭6=, 当且仅当()420,0m n m n n m=>>,即当n =时,等号成立, 因此,12m n +的最小值为6+,故选D. 【点睛】本题考查正态密度概率以及利用基本不等式求最值,解题关键在于利用正态密度曲线的对称性得出定值,以及对所求代数式进行配凑,以便利用基本不等式求最值,考查计算能力,属于中等题.10.A解析:A 【分析】确定事件AB ,利用古典概型的概率公式计算出()P AB 和()P A ,再利用条件概型的概率公式可计算出()P B A 的值. 【详解】事件AB 为“4名同学所报项目各不相同且只有甲同学一人报关怀老人项目”,则()3344A P AB =,()4444A P A =,()()()3434444144P AB A P B A P A A ∴==⋅=,故选A. 【点睛】本题考查条件概型概率的计算,考查条件概率公式的理解和应用,考查运算能力,属于中等题.11.A解析:A 【分析】根据条件概率的计算公式,分别求解公式各个部分的概率,从而求得结果. 【详解】设事件A 为“学生甲不是第一个出场,学生乙不是最后一个出场”;事件B 为“学生丙第一个出场”则()41134333555578A C C A P A A A +==,()1333555518C A P AB A A == 则()()()1837813P AB P B A P A === 本题正确选项:A 【点睛】本题考查条件概率的求解,关键是能够利用排列组合的知识求解出公式各个构成部分的概率.12.B解析:B 【分析】根据第一次抽完的情况下重新计算总共样本数和满足条件样本数,再由古典概型求得概率. 【详解】在第一次抽中奖后,剩下9张奖券,且只有2张是有奖的,所以根据古典概型可知,第二次中奖的概率为29P =.选B. 【点睛】事件A 发生的条件下,事件B 发生的概率称为“事件A 发生的条件下,事件B 发生的条件概率”,记为(|)P B A ;条件概率常有两种处理方法: (1)条件概率公式:()(|)()P AB P B A P A =. (2)缩小样本空间,即在事件A 发生后的己知事实情况下,用新的样本空间的样本总数和满足特征的样本总数来计算事件B 发生的概率.二、填空题13.【分析】依题意画出数形图即可求出的分布列即可求出数学期望;【详解】解:该游客转动指针三次的结果的树形图如下:则的分布列如下:0 1 2 3 故故答案为:【点睛】本题考查概率的计算随机解析:27 16【分析】依题意画出数形图,即可求出X的分布列,即可求出数学期望;【详解】解:该游客转动指针三次的结果的树形图如下:则X的分布列如下:X0123P 16421643964364故()01236464646416 E X=⨯+⨯+⨯+⨯=.故答案为:27 16【点睛】本题考查概率的计算,随机变量的分布列和数学期望,解答的关键是画出树形图. 14.【分析】利用古典摡型的概率计算公式分别求得结合条件概率的计算公式即可求解【详解】由012组成的三位数密码共有个基本事件又由用A表示第二位数字是2的事件用B表示第一位数字是2的事件可得所以故答案为:【解析:1 3【分析】利用古典摡型的概率计算公式,分别求得(),()P B P A B,结合条件概率的计算公式,即【详解】由“0,1,2”组成的三位数密码,共有33327⨯⨯=个基本事件,又由用A表示“第二位数字是2”的事件,用B表示“第一位数字是2”的事件,可得33131 (),()273279P B P A B⨯====,所以1()19 (|)1()33P A BP A BP B===.故答案为:1 3 .【点睛】本题主要考查了条件概率的计算与求解,其中解答中熟记条件概率的计算公式,准确运算时解答得关键,属于基础题.15.【分析】利用列举法求出已知这个家庭有一个是女孩的条件下基本事件总数n=3这时另一个也是女孩包含的基本事件个数m=1由此能求出已知这个家庭有一个是女孩的条件下这时另一个也是女孩的概率【详解】一个家庭有解析:1 3【分析】利用列举法求出已知这个家庭有一个是女孩的条件下,基本事件总数n=3,这时另一个也是女孩包含的基本事件个数m=1,由此能求出已知这个家庭有一个是女孩的条件下,这时另一个也是女孩的概率.【详解】一个家庭有两个小孩,假设生男生女是等可能的,基本事件有: {男,男},{男,女},{女,男},{女,女},已知这个家庭有一个女孩的条件下,基本事件总数n=3 ,这时另一个也是女孩包含的基本事件个数m=1,∴已知这个家庭有一个女孩的条件下,这时另一个也是女孩的概率是13mpn==,故答案为:1 3【点睛】本题主要考查了条件概率,可以列举在某条件发生的情况下,所有事件的个数及所研究事件的个数,利用古典概型求解,属于中档题.16.②④【分析】由回归直线的性质判断①;由独立性检验的性质判断②③;由正态分布的特点判断④【详解】回归直线恒过点但不一定要过样本点故①错误;由得有99的把握认为两个分类变量有关系故②正确;的值很小解析:②④ 【分析】由回归直线的性质判断①;由独立性检验的性质判断②③;由正态分布的特点判断④. 【详解】回归直线ˆˆˆybx a =+恒过点(),x y ,但不一定要过样本点,故①错误; 由2 6.635K ≥,得有99%的把握认为两个分类变量有关系,故②正确;2K 的值很小时,只能说两个变量的相关程度低,不能说明两个变量不相关,故③错误;(5)0.81P ξ≤=,(5)(3)10.810.19P P ξξ∴>=<-=-=,故④正确;故答案为:②④ 【点睛】本题主要考查了正态分布求指定区间的概率等,属于中等题.17.【解析】根据题意可得解得故的方差解析:34【解析】根据题意可得112p q p q +=⎧⎪⎨-=⎪⎩,解得34p =,14q =,故X 的方差()22131131124244D X ⎛⎫⎛⎫=-⨯+--⨯= ⎪ ⎪⎝⎭⎝⎭.18.8【解析】(1)由题意得随机变量的可能取值为012所以(2)由题意可知所以解得所以(3)每次取球时取到红球的概率为黑球的概率为所以服从二项分布即所以解析:358 23 【解析】(1)由题意得,随机变量ξ的可能取值为0,1,2,()27210C 70C 15P ξ===,()1P ξ=1173210C C 7C 15==, ()23210C 12C 15P ξ===,所以()77130121515155E ξ=⨯+⨯+⨯=. (2)由题意可知2,3B n ξ⎛⎫ ⎪⎝⎭~,所以()2243n E ξ==,解得36n =,所以()D ξ= 22361833⎛⎫⨯⨯-= ⎪⎝⎭.(3)每次取球时,取到红球的概率为23、黑球的概率为13,所以X 服从二项分布,即23,3X B ⎛⎫~ ⎪⎝⎭,所以()22231333D X ⎛⎫=⨯⨯-= ⎪⎝⎭.三、解答题19.(1)13;(2)分布列答案见解析,数学期望:4112. 【分析】(1)记“该射手射中固定靶且恰好射中移动靶1次”为事件D ,得到D ABC BC A =+,结合互斥事件和相互独立事件的概率计算公式,即可求解;(2)随机变量X 的可能取值为0,1,2,3,4,5,根据互斥事件和相互独立事件的概率计算公式,求得相应的概率,得出分布列,利用期望的公式,即可求解. 【详解】(1)记“该射手射中固定靶且恰好射中移动靶1次”为事件D , 则()34P A =,()()23P B P C ==, D ABC BC A =+,其中ABC C AB +互斥,,,,,A B C B C 相互独立,从而()()()()322114336P ABC P A P B P C ⎛⎫==⨯-= ⎪⎝⎭, 则()()()()13P D P ABC ABC P ABC P ABC =+=+=, 所以该射手射中固定靶且恰好射中移动靶1次的概率为13. (2)随机变量X 的可能取值为0,1,2,3,4,5, 则()()()()()3221011143336P X P ABC P A P B P C ⎛⎫⎛⎫⎛⎫====---=⎪⎪⎪⎝⎭⎝⎭⎝⎭, ()()()()()3111143312P X P ABC P A P B P C ====⨯⨯=,1211121(2)()()()()()()()4334339P X P ABC ABC P A P B P C P A P B P C ==+=+=⨯⨯+⨯⨯=,()()()()()()()()321312134334333P X P ABC ABC P A P B P C P A P B P C ==+=+=⨯⨯+⨯⨯=()()()()()122144339P X P ABC P A P B P C ====⨯⨯=,3221(5)()()()()4333P X P ABC P A P B P C ====⨯⨯=,该射手的总得分X 的分布列为随机变量X 的数学期望()012345.3612939312E X =⨯+⨯+⨯+⨯+⨯+⨯= 【点睛】求随机变量X 的期望与方差的方法及步骤: 理解随机变量X 的意义,写出X 可能的全部值; 求X 取每个值对应的概率,写出随机变量的分布列; 由期望和方差的计算公式,求得数学期望()(),E X D X ;若随机变量X 的分布列为特殊分布列(如:两点分布、二项分布、超几何分布),可利用特殊分布列的期望和方差的公式求解.20.(1)选派乙参赛更好,理由见解析;(2)分布列见解析,()25E X =. 【分析】(1)计算出甲、乙两人5次测试的成绩的平均分与方差,由此可得出结论;(2)由题意可知,随机变量X 的取值有0、1、2,计算出随机变量X 在不同取值下的概率,可得出随机变量X 的分布列,进而可计算得出()E X . 【详解】(1)甲5次测试成绩的平均分为555876889236955x ++++==甲,方差为22222213693693693693695704555876889255555525s ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-+-=⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦甲,乙5次测试成绩的平均分为658287859541455x ++++==乙,方差为22222214144144144144142444658285879555555525s ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-+-=⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦乙,所以,x x <甲乙,22s s >甲乙,因此,选派乙参赛更好;(2)由题意可知,随机变量X 的可能取值有0、1、2,()24160525P X ⎛⎫=== ⎪⎝⎭,()148125525P X ==⨯⨯=,()2112525P X ⎛⎫=== ⎪⎝⎭, 所以,随机变量X 的分布列如下表所示:因此,()0122525255E X =⨯+⨯+⨯=. 【点睛】思路点睛:求解随机变量分布列的基本步骤如下:(1)明确随机变量的可能取值,并确定随机变量服从何种概率分布; (2)求出每一个随机变量取值的概率;(3)列成表格,对于抽样问题,要特别注意放回与不放回的区别,一般地,不放回抽样由排列、组合数公式求随机变量在不同取值下的概率,放回抽样由分步乘法计数原理求随机变量在不同取值下的概率. 21.(1)526(人);(2)83分. 【分析】(1)由题意知9070(90)(2)10P ξ-⎛⎫<=Φ=Φ ⎪⎝⎭,则(90)1(90)P P ξξ=-<可求,结合对应人数可得总人数;(2)假定设奖的分数线为x 分,由题意知7050()10.095110526x P x ξ-⎛⎫=-Φ== ⎪⎝⎭,查表得x 值.【详解】 (1)由题意知9070(90)1(90)11(2)10.97720.022810P P ξξ-⎛⎫=-<=-Φ=-Φ=-= ⎪⎝⎭,故此次参赛的学生总数约为125260.0228≈(人).(2)假定设奖的分数线为x 分,由题意知7050()1()10.095110526x P x P x ξξ-⎛⎫=-<=-Φ== ⎪⎝⎭, 即700.904910x -⎛⎫Φ=⎪⎝⎭,查表得70 1.3110x -=, 解得83.1x =,故设奖的分数线约为83分.【点睛】本题关键在于正确理解正态分布概率计算公式及运用. 22.(1)240人;(2)分布列见解析,2;(3)2212s s >. 【分析】(1)由折线图分析可得20名学生中有12名学生每天学习不足4小时,把频率当概率可以估计校400名学生中天学习不足4小时的人数;(2)学习时间不少于4本的学生共8人,其中男学生人数为4人,故X 的取值为0,1,2,3,4;利用组合知识,由古典概型公式计算可得X =0,1,2,3,4的概率,进而可得随机变量X 的分布列;(3)根据折线图,看出男生、女生的学习时间的集中与分散程度,根据方差的实际意义可得答案. 【详解】(1)由折线图可得共抽取了20人,其中男生中学习时间不足4小时的有8人,女生中学习时间不足4小时的有4人.故可估计全校学生中每天学习时间不足4小时的人数为400×1220=240. (2)学习时间不少于4小时的学生共8人,其中男生人数为4, 故X 的所有可能取值为0,1,2,3,4. 由题意可得P (X=0)=4448170C C =,P (X=1)=1344481687035C C C ==, P (X=2)=22444836187035C C C ==, P (X=3)=3144481687035C C C ==, P (X=4)=4448170C C =.∴均值E (X )=0×170+1×835+2×1835+3×835+4×170=2.(3)由折线图可得2212s s >. 【点睛】方法点睛:本题考查了折线统计图和超几何分布,考查了离散型随机变量分布列和数学期望的计算,求解离散型随机变量分布列的步骤是: 首先确定随机变量X 的所有可能取值;计算X 取得每一个值的概率,可通过所有概率和为1来检验是否正确; 进行列表,画出分布列的表格;最后扣题,根据题意求数学期望或者其它. 23.(1)17.4;(2)0.94. 【分析】(1)利用每一个小矩形的面积乘以对应的底边中点的横坐标之和即为x ;(2)先计算第一次注射疫苗后产生抗体的概率()()14.77P x P x μσ≥=≥-,即可计算第一次注射疫苗后100只小白鼠中产生抗体的数量,加上第二次注射疫苗10只小白鼠又产生了抗体,可以得出两次注射疫苗产生抗体的总数,即可求概率. 【详解】(1)0.021220.061420.141620.181820.05202x =⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯0.032220.0224217.4+⨯⨯+⨯⨯= (2)17.40 2.6314.77μσ-=-=∴()10.68270.68270.84142P x μσ-≥-=+= 记事件A 表示首先注射疫苗后产生抗体,则()()()14.770.8414P A P x P x μσ=≥=≥-=,因此100只小鼠首先注射疫苗后有1000.841484⨯≈只产生抗体,有1008416-=只没有产生抗体.故注射疫苗后产生抗体的概率84100.94100P +==. 【点睛】 结论点睛:频率分布直方图的相关公式以及数字特征的计算, ①直方图中各个小长方形的面积之和为1; ②直方图中每组样本的频数为频率乘以总数; ③最高的小矩形底边中点横坐标即是众数; ④中位数的左边和右边小长方形面积之和相等;⑤平均数是频率分布直方图的重心,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和. 24.(1)18;(2)分布列见解析,()72E X =.【分析】(1)先分析出甲只获胜一局的所有情况,然后根据对应的情况去计算概率;(2)先分析X 的可能取值,然后根据取值列出对应的比赛获胜情况,由此计算出对应的概率,可得X 的分布列,根据分布列可计算出数学期望.【详解】(1)因为比赛结束时甲只获胜一局,所以一共比赛了4局,且甲在第1局或第2局赢了,当甲在第1局赢了,则乙在后面3局都赢了,此事件的概率为:31112216⎛⎫⋅= ⎪⎝⎭,当甲在第2局赢了,则乙在第1,3,4局赢了,此事件的概率为:2111122216⎛⎫⋅⋅= ⎪⎝⎭,记“比赛结束时甲只获胜一局”为事件A ,则()112168P A =⨯=; (2)根据条件可知:X 可取2,4,6,当2X =时,包含甲或乙前2局连胜,此时2种情况:{甲,甲},{乙,乙};当4X =时,包含甲或乙前2局赢了1局,后2局都没赢,此时4种情况:{甲,乙,乙,乙},{乙,甲,乙,乙},{乙,甲,甲,甲},{甲,乙,甲,甲}(大括号中,按顺序为各局的获胜者);()2112222P X ⎛⎫==⋅= ⎪⎝⎭,()4114424P X ⎛⎫==⋅= ⎪⎝⎭,()()()161244P X P X P X ==-=-==, 所以X 的分布列为:所以()2462442E X =⨯+⨯+⨯=. 【点睛】思路点睛:求离散型随机变量X 的数学期望的一般步骤: (1)先分析X 的可取值,根据可取值求解出对应的概率; (2)根据(1)中概率值,得到X 的分布列;(3)结合(2)中分布列,根据期望的计算公式求解出X 的数学期望. 25.(1)23;(2)227;(3)43. 【分析】(1)方法一:将三个小球放在盒子的基本事件全部写出来,写出满足条件的基本事件,用满足条件的个数除以总的个数计算其概率; 方法二:用排列组合数表示;(2)方法一:将三个小球放在盒子的基本事件全部写出来,写出满足条件的基本事件,用满足条件的个数除以总的个数计算其概率;方法二:用排列组合数表示;(3)方法一:将三个小球放在盒子的基本事件全部写出来,写出满足条件的基本事件,用满足条件的个数除以总的个数计算其概率;方法二:用排列组合数表示;【详解】解:方法一:记三个球分别为①,②,③,试验的全部基本事件如下表:共27种.根据古典概型公式()182 273P A==.(2)记“三只小球在三个不同盒子中,且每只球的编号与所在盒子编号不同”为事件B,事件B包含的基本事件数有2种.根据古典概型公式2 ()27 P B=.(3)X的可能取值为1,2,3.。
高二数学随机变量的分布列试题答案及解析
高二数学随机变量的分布列试题答案及解析1.设随机变量ξ的概率分布列为(k=0,1,2,3),则.【答案】【解析】随机变量ξ的概率分布列为(k=0,1,2,3),且,,即.【考点】随机变量的分布列.2.若随机变量X~B(n,0.6),且E(X)=3,则P(X=1)的值是________.【答案】3×0.44【解析】E(X)=n×0.6=3,∴n=5,∴P(X=1)=C1(0.6)1×0.44=3×0.44.53.为了解某校高三毕业班报考体育专业学生的体重(单位:千克)情况,将从该市某学校抽取的样本数据整理后得到如下频率分布直方图.已知图中从左至右前3个小组的频率之比为1:2:3,其中第2小组的频数为12.(Ⅰ)求该校报考体育专业学生的总人数n;(Ⅱ)若用这所学校的样本数据来估计该市的总体情况,现从该市报考体育专业的学生中任选3人,设表示体重超过60千克的学生人数,求的分布列和数学期望.【答案】(Ⅰ).(Ⅱ)0123(或).【解析】(Ⅰ)设从左至右前3小组的频率分别为由题意得 3分∴ 5分∴ 6分(Ⅱ)由(Ⅰ)得一个报考体育专业学生的体重超过60公斤的概率为8分由题意可知∴, 10分即∴(或) 12分【考点】频率分布直方图,随机变量的分布列及数学期望。
点评:中档题,作为数学应用问题,实际背景学生熟悉,易于理解题意,关键是细心计算。
4.甲、乙两人玩猜数字游戏,规则如下:①连续竞猜次,每次相互独立;②每次竟猜时,先由甲写出一个数字,记为,再由乙猜测甲写的数字,记为,已知,若,则本次竞猜成功;③在次竞猜中,至少有次竞猜成功,则两人获奖.(Ⅰ) 求甲乙两人玩此游戏获奖的概率;(Ⅱ)现从人组成的代表队中选人参加此游戏,这人中有且仅有对双胞胎,记选出的人中含有双胞胎的对数为,求的分布列和期望.【答案】(1)(2)分布列为∴【解析】解:(Ⅰ)记事件为甲乙两人一次竞猜成功,则则甲乙两人获奖的概率为(Ⅱ)由题意可知6人中选取4人,双胞胎的对数取值为0,1,2则,∴分布列为∴【考点】古典概型概率和分布列点评:主要是考查了古典概型概率和分布列的求解,属于基础题。
高考必备——独立性检验-独立性检验
k0
0.455
0.708
1.323
2.072
2.706
3.841
5.024
6.635
7.879
10.82
P( K 2 k0 )
0.50
0.40
0.25
0.15
0.10
0.05
0.025
0.010
0.005
0.001
例 1:研究吸烟与患肺癌的关系. 1.确定研究对象:吸烟与患肺癌的关系. 2.采集数据——列联表: 不患肺癌 不吸烟 吸烟 总计 7775 2099 9874 患肺癌 42 49 91 总计 7817 2148 9965
不吸烟不患肺癌 吸烟不患肺癌 a c .即“ ” ab cd 不吸烟总数 吸烟总数
得 ad bc 0 ,所以 | ad bc | 越小,说明吸烟与患肺癌关系越弱,反之越强. (2)构造随机变量 K 2
n(ad bc) 2 (其中 n a b c d ) (a b)(c d )(a c)(b d )
2 2
0.15 2.072
0.10 2.706
0.05 3.841
0.025 5.024
0.010 6.635
0.005 7.879
0.001 10.828
,其中 n=a+b+c+d)
5.某校在规划课程设置方案的调研中, 随机抽取 160 名理科学生, 想调查男生、 女生对 “坐标系与参数方程” 与“不等式选讲”这两道题的选择倾向性,调研中发现选择“坐标系与参数方程”的男生人数与选择“不等 式选讲”的总人数相等,且选择“坐标系与参数方程”的女生人数比选择“不等式选讲”的女生人数多 25 人,根据调研情况制成如下图所示的列联表: 选择坐标系与参数方程 男生 女生 合计 160 60 选择不等式选讲 合计
第2章_随机变量及其分布练习题及答案
第2章 随机变量及其分布(练习、复习题及答案)一、填空题:1.随机变量ξ的分布列为P(ξ=k )=a /N ,(k =1,2,…,N),则a = 1 .2.射手每次射击击中目标的概率为p ,连续向同一目标射击,直到某一次击中目标为止,则射击次数ξ的分布列为 P(ξ=k )=p (1-p )k -1,k =1,2,….3.随机变量ξ服从参数为(2,p )的二项分布,随机变量η服从参数为(4,p )的二项分布,若P(ξ<1)=4/9,则P(η≥1)=_ 65/81_.4.离散型随机变量ξ的概率分布P(ξ=0)=0.2,P(ξ=1)=0.3,P(ξ=2)=0.5,则P(ξ≤1.5)=__0.5__.5.随机变量ξ的分布列为P(ξ=k )=!k Ckλ,k =0,1,2,…(λ>0),则C = e -λ. *λλλλe =++++!3!2!11326.随机变量ξ的分布列为P(ξ=k )=k a -λ,k =1,2,…,其中λ>1,则a = λ-1 .7.一实习生用同一台机器接连独立地制造三个同种零件,第i 个零件是不合格品的概率3,2,1,11=+=i i p i ,以ξ表示三个零件中合格品的个数,则P{ξ=2}= 11/24 .8.随机变量ξ的分布函数为F(x ),则概率P(ξ≥a )用F(x )表示为__ 1-F(a )__. 9.随机变量ξ的分布函数为F(x )=⎪⎩⎪⎨⎧<≥+--0 0 0)1(1x x ex x ,,,则P(ξ≤1)=_1-2e -1_. 10.随机变量ξ的概率密度函数为f (x )=⎪⎩⎪⎨⎧<-其他,), 0 2A(2x x ,则A=__1/4__.11.连续型随机变量ξ的分布函数为⎪⎪⎩⎪⎪⎨⎧≥<≤<=1, 110,0,0)(F 2x x x x x ,则ξ的概率密度f (x )=⎩⎨⎧<<其他, 1 10,2x x .12.连续型随机变量ξ的分布函数为)0(00,0B A )(F >⎪⎩⎪⎨⎧≤>+=-λλx x ex x ,, ,则常数A =_1 ,B =_-1;P{-1<ξ<1}= 1-e -λ.13.随机变量ξ的分布函数为⎪⎩⎪⎨⎧<≥+-=-0, 00,)1(1)(x x ex x F x ,则相应的概率密度是⎪⎩⎪⎨⎧<≥=-0, 00,)(x x xex f x .14.随机变量ξ在[1,4]上服从均匀分布,现在对进行3次独立试验,则至少有2次观察值大于2的概率为_20/27_.15.随机变量ξ ~N(70,102),则P(60<ξ<80)=_0.6826_.(已知Φ(1)=0.8413)16.随机变量ξ服从正态分布N(2,σ2),且P(2<ξ<4)=0.3,则P(ξ<0)=_0.2_.17.随机变量服从正态分布N(μ,σ2),已知P(ξ<9)=0.975,P(ξ<2)=0.062,则P(ξ>6)=_0.3228_. 18.若ξ~N(0,1),则η=ξ3的密度函数为+∞<<-∞--y e yy,231322132π.19.统考成绩服从正态分布N(70,102),在参加统考的人中,及格者100人(及格分数为60分),则不及格人数约为_19_.二、选择题1.在下列结果中,构成概率分布的是( D ).{}{}{}{}),,(D.P ),,,(C.P ),,(B.P ),,,(A.P 2 132 2 1 032 2 131 2 1 031============k k ξk k ξk k ξk k ξkkkk2.随机变量ξ的概率分布为P(ξ=k )=b λk (k =1,2,…), b >0,则( C ). A.λ为任意正实数 B.λ=b +1 C.b+=11λ D.11-=b λ3.常数b =( B )时,),,( 2 1)1(=+=k k k b p k 为离散型随机变量的概率分布.A.2B.1C.0.5D.34.设ξ是一个离散型随机变量,则( D )可以成为ξ的分布列.{}{}, , , n n en ξn n en ξx x x x x R p p p nn210!32 1!30.22.0 .303.0 .10 ,1 0 1 3354321======⎪⎪⎭⎫⎝⎛∈⎪⎪⎭⎫⎝⎛---.D.P,,.C.P B.A.5.随机变量ξ~N(0,1),ξ的分布函数为Φ(x ),则P(⎢ξ⎪<1)的值为( B ).A.2[1-Φ(1)]B.2Φ(1)-1C.1-Φ(1)D.1-2Φ(1)6.随机变量ξ~N(0,1),ξ的分布函数为Φ(x ),则P(⎢ξ⎪>2)的值为( A ). A.2[1-Φ(2)] B.2Φ(2)-1 C.2-Φ(2) D.1-2Φ(2)7.设随机变量ξ的分布函数为F (x ),在下列概率中可表示为F (a +0) - F (a )的是( C ). A.P{ξ≤a } B. P{ξ>a } C. P{ξ=a } D. P{ξ≥a }8.下列函数可以作为某一随机变量ξ的密度函数的是( D ).⎪⎩⎪⎨⎧∈=⎪⎩⎪⎨⎧-∈=⎪⎩⎪⎨⎧∈=⎩⎨⎧∈=其他D. 其他C. 其他B.其他A., 0 ]2,0[,sin )(, 0 ]2,2[,sin )(, 0 ]23,0[,sin )( , 0 ],0[,sin )(πππππx x x f x x x f x x x f x x x f9.设ξ的概率密度为⎪⎩⎪⎨⎧≤>+=0 0 0)(1A )(4x x x x x f ,,,则A=( B ).A.3B.6C.2.5D.4 10.设随机变量ξ的密度函数为f (x )=)(21+∞<<-∞-x ex,则其分布函数的是( B ).⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤-<=⎪⎩⎪⎨⎧≥<-=⎪⎪⎩⎪⎪⎨⎧≥-<=⎪⎩⎪⎨⎧≥<=---1, 1 10,2110, 21 )(0, 1 0,211)(0,2110, 21 )( 0, 0 0,21)(x x e x e x F x x e x F x e x e x F x x e x F x xx x xx D. C. B.A.11.设f (x )是一连续型随机变量ξ的密度函数,其表达式为分段函数,则当x ∈( A )时,f (x )=cos x ,其余f (x )=0.]47,23[],0[],2[]2,0[ππππππ D. C. B.A.12.设随机变量ξ服从[0,5]上的均匀分布,则关于t 的方程4t 2+4ξt+ξ+2=0有实根的概率是( B ).A.0.4B.0.6C.1D.1/313.设随机变量ξ~N(μ, 62),η~ N(μ, 82),记p 1=P{ξ≤μ-6},p 2=P{η≥μ+8},则( A ).A. p 1=p 2B. p 1>p 2C. p 1<p 2D. p 1≤p 2 三、解答题:1.下列表格是概率分布吗?为什么?(1) ξ 1 2 3 4 不是 (2) ξ -1 0 1 4 是 P 0.2 0.3 0.3 0.4 P 0.1 0.2 0.3 0.4 2.求常数C ,使下列函数成为概率分布:P(ξ=k )=Ck ,k =1,2,…, n ; )1(2+=n n C3.随机变量ξ~b (n , p ),已知P(ξ=1)=P(ξ=n -1),试求 p 与P(ξ=2)的值.p =0.5,P(ξ=2)=122)1(21+-=⎪⎭⎫ ⎝⎛n nnn n C4.随机试验中事件A 发生的概率为p ,把这个试验独立重复地做两次。
最新人教版高中数学选修三第二单元《随机变量及其分布》检测题(有答案解析)
一、选择题1.长春气象台统计,7月15日净月区下雨的概率为415,刮风的概率为215,既刮风又下雨的概率为110,设事件A 为下雨,事件B 为刮风,那么()|P A B =( ) A .12B .34C .25D .382.赵先生朝九晚五上班,上班通常乘坐公交加步行或乘坐地铁加步行.赵先生从家到公交站或地铁站都要步行5分钟.公交车多且路程近一些,但乘坐公交路上经常拥堵,所需时间(单位:分钟)服从正态分布(33N ,24),下车后从公交站步行到单位要12分钟;乘坐地铁畅通,但路线长且乘客多,所需时间(单位:分钟)服从正态分布(44N ,22),下地铁后从地铁站步行到单位要5分钟.给出下列说法:从统计的角度认为所有合理的说法的序号是( )(1)若8:00出门,则乘坐公交上班不会迟到;(2)若8:02出门,则乘坐地铁上班不迟到的可能性更大; (3)若8:06出门,则乘坐公交上班不迟到的可能性更大; (4)若8:12出门.则乘坐地铁上班几乎不可能不迟到.参考数据:2~(,)Z N μσ,则()0.6827P Z μσμσ-<+≈,(22)0.9545P Z μσμσ-<+≈,(33)0.9973P Z μσμσ-<+≈A .(1)(2)(3)(4)B .(2)(4)C .(3)(4)D .(4)3.《山东省高考改革试点方案》规定:2020年高考总成绩由语文、数学、外语三门统考科目和思想政治、历史、地理、物理、化学、生物六门选考科目组成,将每门选考科目的考生原始成绩从高到低划分为A 、B +,B 、C +、C 、D +、D 、E 共8个等级,参照正态分布原则,确定各等级人数所占比例分别为3%,7%,16%,24%,24%、16%、7%、3%,选考科目成绩计入考生总成绩时,将A 至E 等级内的考生原始成绩,依照等比例转换法则,分别转换到[]91,100,[81,90],[]71,80、[]61,70、[]51,60、[]41,50、[]31,40、[]21,30、八个分数区间,得到考生的等级成绩,如果山东省某次高考模拟考试物理科目的原始成绩X ~()50,256N ,那么D 等级的原始分最高大约为( )附:①若X ~()2,Nμσ,X Y μσ-=,则Y ~()0,1N ;②当Y ~()0,1N 时,()1.30.9P Y ≤≈.A .23B .29C .36D .434.从1,2,3,4,5,6,7,8,9中不放回地依次取2个数,事件A 为“第一次取到的是奇数”,B 为“第二次取到的是3的整数倍”,则(|)P B A =( )A .38B .1340C .1345D .345.先后抛掷骰子两次,落在水平桌面后,记正面朝上的点数分别为x ,y ,设事件A 为4x y +>,事件B 为x y ≠,则概率()|P B A =( )A .45B .56C .1315D .2156.条件:p 将1,2,3,4四个数字随机填入如图四个方格中,每个方格填一个数字,但数字可以重复使用.记方格A 中的数字为1x ,方格B 中的数字为2x ;命题1若p ,则()()1122E x E x =,且()()()1212E x x E x E x +=+;命题2若P ,则()()1124D x D x =,且()()()1212D x x D x D x +=+( )A .命题1是真命题,命题2是假命题B .命题1和命题2都是假命题C .命题1是假命题,命题2是真命题D .命题1和命题2都是真命题7.已知随机变量ξ,η的分布列如下表所示,则( )ξ1 2 3P131216η1 2 3P161213A .E E ξη<,D D ξη<B .E E ξη<,D D ξη>C .E E ξη<,D D ξη=D .E E ξη=,D D ξη=8.抛掷甲、乙两颗骰子,若事件A :“甲骰子的点数大于3”;事件B :“甲、乙两骰子的点数之和等于7”,则P (B /A )的值等于( ) A .118B .19C .16D .139.已知随机变量i X 满足()1i i P X p ==,()01,1,2i i P X p i ==-=,若21211p p <<<,则( ) A .()()12E X E X < , ()()12D X D X < B .()()12E X E X > , ()()12D X D X < C .()()12E X E X < , ()()12D X D X > D .()()12E X E X > , ()()12D X D X >10.某市一次高三年级数学统测,经抽样分析,成绩X 近似服从正态分布2(84,)N σ,且(7884)0.3P X <≤=.该市某校有400人参加此次统测,估计该校数学成绩不低于90分的人数为( ) A .60 B .80 C .100D .12011.如图所示,EFGH 是以O 为圆心,半径为1的圆的内接正方形,将一颗豆子随机地扔到该圆内,事件A 表示“豆子落在正方形EFGH 内”,事件B 表示“豆子落在扇形OHE(阴影部分)内”,则P(B|A)等于( )A .18B .14C .12D .3812.若随机变量()100,,X B p X ~的数学期望()24E X =,则p 的值是( ) A .25B .35C .625D .1925二、填空题13.有五瓶墨水,其中红色一瓶,蓝色、黑色各两瓶,某同学从中随机任取两瓶,若取的两瓶中有一瓶是蓝色,则另一瓶是红色或黑色的概率为____________.14.由“0,1,2”组成的三位数密码中,若用A 表示“第二位数字是2”的事件,用B 表示“第一位数字是2”的事件,则(|)P A B =__________.15.一个家庭有两个小孩,假设生男生女是等可能的,已知这个家庭有一个是女孩的条件下,这时另一个也是女孩的概率是________.16.一批产品的一等品率为0.9,从这批产品中每次随机取一件,有放回地抽取100次,X 表示抽到的一等品件数,则D()X =__________。
新人教版高中数学选修三第二单元《随机变量及其分布》检测题(包含答案解析)(1)
一、选择题1.已知随机变量ξ的分布列如下表,若()2E ξ=,则()D ξ的最小值等于( )A .0B .2C .1D .122.某种疾病的患病率为0.5%,已知在患该种疾病的条件下血检呈阳性的概率为99%,则患该种疾病且血检呈阳性的概率为( ) A .0.495%B .0.940 5%C .0.999 5%D .0.99%3.已知随机变量X 的取值为1,2,3,若()136P X ==,()53E X =,则()D X =( ) A .19B .39C .59D .794.已知随机变量ξ的取值为()0,1,2i i =.若()105P ξ==,()1E ξ=,则( ) A .()()1P D ξξ=< B .()()1P D ξξ== C .()()1P D ξξ=>D .()()115P D ξξ==5.高三毕业时,甲,乙,丙等五位同学站成一排合影留念,在甲和乙相邻的条件下,丙和乙也相邻的概率为( ) A .110B .14C .310D .256.随机变量X 服从正态分布()()()210,12810X N P X m P X n σ->==,,≤≤,则12m n+的最小值为( )A .3+B .6+C .3+D .6+7.甲、乙、丙、丁四名同学报名参加假期社区服务活动,社区服务活动共有关怀老人、环境监测、教育咨询、交通宣传等四个项目,每人限报其中一项,记事件A 为4名同学所报项目各不相同”,事件B 为“只有甲同学一人报关怀老人项目”,则(|)P B A =( ) A .14B .34C .29D .598.若某校研究性学习小组共6人,计划同时参观科普展,该科普展共有甲,乙,丙三个展厅,6人各自随机地确定参观顺序,在每个展厅参观一小时后去其他展厅,所有展厅参观结束后集合返回,设事件A为:在参观的第一小时时间内,甲,乙,丙三个展厅恰好分别有该小组的2个人;事件B为:在参观的第二个小时时间内,该小组在甲展厅人数恰好为2人,则(|)P B A=().A.38B .18C.316D.1169.已知三个正态分布密度函数()()2221e2iixiixμσϕπσ--=(, 1,2,3i=)的图象如图所示则()A.123123==μμμσσσ<>,B.123123==μμμσσσ><,C.123123μμμσσσ=<<=,D.123123==μμμσσσ<<,10.已知随机变量X的分布列如下表所示则(25)E X-的值等于A.1 B.2 C.3 D.411.随机变量()~1,4X N,若()20.2p x≥=,则()01p x≤≤为()A.0.2 B.0.3 C.0.4 D.0.612.甲、乙两人独立地对同一目标各射击一次,其命中率分别为0.8,0.5,现已知目标被击中,则它是被甲击中的概率是()A.0.8B.0.9C.58D.89二、填空题13.一个口袋中有7个大小相同的球,其中红球3个,黄球2个,绿球2个.现从该口袋中任取3个球,设取出红球的个数为ξ,则()E ξ=______.14.一个盒子里有1个红1个绿2个黄四个相同的球,每次拿一个,不放回,拿出红球即停,设拿出黄球的个数为ξ,则(0)ξ==P _______;()E ξ=______. 15.记A,B 为两个事件,若事件A 和B 同时发生的概率为310,在事件A 发生的条件下,事件B 发生的概率为12,则事件A 发生的概率为_____. 16.已知随机变量2(1,)XN σ,若(01)0.3P X <<=,则(2)P X >=__________.17.已知随机变量X 的分布列如下,若E(X)=3,则D(X)=____.18.有10张纸币,其中有4张假币,从中取出两张,已知其中一张是假币,则另一张也是假币的概率为____.三、解答题19.2020年某市教育主管部门为了解近期举行的数学竞赛的情况,随机抽取500名参赛考生的数学竞赛成绩进行分析,并制成如下的频率分布直方图:(1)求这500名考生的本次数学竞赛的平均成绩x (精确到整数); (2)由频率分布直方图可认为:这次竞赛成绩X 服从正态分布()2,N μσ,其中μ近似等于样本的平均数x ,σ近似等于样本的标准差s ,并已求得18s ≈.用该样本的频率估计总体的概率,现从该市所有考生中随机抽取10名学生,记这次数学竞赛成绩在(86,140]之外的人数为Y ,求(2)P Y =的值(精确到0.001). 附:(1)当()2,XN μσ时,()0.6827,(22)0.9545P X P X μσμσμσμσ-<+=-<+=;(2)820.81860.18140.0066⨯≈.20.甲、乙两家外卖公司,其送餐员的日工资方案如下:甲公司的底薪80元,每单抽成4元;乙公司无底薪,40单以内(含40单)的部分每单抽成6元,超出40单的部分每单抽成7元,假设同一公司送餐员一天的送餐单数相同,现从两家公司各随机抽取一名送餐员,并分别记录其50天的送餐单数,得到如下频数表: 甲公司送餐员送餐单数频数表: 送餐单数 38 39 40 41 42 天数101510105送餐单数 38 39 40 41 42 天数51010205(1)记乙公司送餐员日工资为X (单位:元),求X 的分布列和数学期望;(2)小王打算到甲、乙两家公司中的一家应聘送餐员,如果仅从日工资的角度考虑,请利用所学的统计学知识为小王作出选择,并说明理由.21.教育是阻断贫困代际传递的根本之策.补齐贫困地区义务教育发展的短板,让贫困家庭子女都能接受公平而有质量的教育,是夯实脱贫攻坚根基之所在.治贫先治愚﹐扶贫先扶智.为了解决某贫困地区教师资源匮乏的问题,郑州市教育局拟从5名优秀教师中抽选人员分批次参与支教活动.支教活动共3分批次进行,每次支教需要同时派送2名教师,且每次派送人员均从5人中随机抽选.已知这5名优秀教师中,2人有支教经验,3人没有支教经验. (1)求5名优秀教师中的“甲”,在这3批次活动中有且只有一次被抽选到的概率﹔ (2)求第二次抽选时,选到没有支教经验的教师的人数最有可能是几人﹖请说明理由; (3)现在需要2名支教教师完成某项特殊教学任务,每次只能派一个人,且每个人只派一次,如果前一位教师一定时间内不能完成教学任务,则再派另一位教师.若有A B 、两个教师可派,他们各自完成任务的概率分别为12p p 、,假设121p p >>,且假定各人能否完成任务的事件相互独立.若按某种指定顺序派人,这两个人各自能完成任务的概率依次为12,q q ,其中12,q q 是12p p 、的一个排列,试分析以怎样的顺序派出教师,可使所需派出教师的人员数目的数学期望达到最小.22.某高三毕业班甲、乙两名同学在连续的8次数学周练中,统计解答题失分的茎叶图如图:(1)比较这两名同学8次周练解答题失分的平均数和方差的大小,并判断哪位同学做解答题相对稳定些;(2)以上述数据统计甲、乙两名同学失分超过15分的频率作为概率,假设甲、乙两名同学在同一次周练中失分多少互不影响,预测在接下来的2次周练中,甲、乙两名同学失分均超过15分的次数X 的分布列和均值.23.时值金秋十月,秋高气爽,我校一年一度的运动会拉开了序幕.为了增加运动会的趣味性,大会组委会决定增加一项射击比赛,比赛规则如下:向甲、乙两个靶进行射击,先向甲靶射击一次,命中得2分,没有命中得0分;再向乙靶射击两次,如果连续命中两次得3分,只命中一次得1分,一次也没有命中得0分.小华同学准备参赛,目前的水平是:向甲靶射击,命中的概率是35;向乙靶射击,命中的概率为23.假设小华同学每次射击的结果相互独立.(1)求小华同学恰好命中两次的概率;(2)求小华同学获得总分X的分布列及数学期望.24.近年来,我国肥胖人群的规模不断扩大,肥胖人群有很大的心血管安全隐患,目前,国际上常用身体质量指数(Bodv Mass Index,缩写BMI)来衡量人体胖瘦程度以及是否健康,其计算公式是BMI=体重(单位:千克)÷身高2(单位:2m),中国成人的BMI数值标准为:BMI<18.5为偏瘦;18.5≤BMI<24为正常;24≤BMI<28为偏胖;BMI≥28为肥胖.某单位随机调查了100名员工,测量身高、体重并计算出BMI值.(1)根据调查结果制作了如下2×2列联表,请将2×2列联表补充完整,并判断是否有99%的把握认为肥胖与不经常运动有关;人中“经常运动且不肥胖”的人数为X,求随机变量X的分布列和数学期望.附:22()()()()()n ad bcKa b c d a c b d-=++++,n a b c d=+++.25.A口袋中有大小相同编号不同的4个黄色乒乓球和2个白色乒乓球,B口袋中有大小相同编号不同的3个黄色乒乓球和3个白色乒乓球,现从A、B两个口袋中各摸出2个球(1)求摸出的4个球中有3个黄色兵乓球和1个白色乒乓球的概率;(2)求摸出的4个球中黄球个数ξ的数学期望.26.出于“健康、养生”的生活理念.某地的M炊具有限公司的传统手工泥模工艺铸造的平底铁锅一直受到全国各地消费者的青睐.M炊具有限公司下辖甲、乙两个车间,甲车间利用传统手工泥模工艺铸造T型双耳平底锅,乙车间利用传统手工泥模工艺铸造L型双耳平底锅,每一口双耳平底锅按照综合质量指标值(取值范围为[50,100])划分为:综合质量指标值不低于70为合格品,低于70为不合格品.质检部门随机抽取这两种平底锅各100口,对它们的综合质量指标值进行测量,由测量结果得到如下的频率分布直方图:将此样本的频率估计为总体的概率.生产一口T 型双耳平底锅,若是合格品可盈利40元,若是不合格品则亏损10元;生产一口L 型双耳平底锅,若是合格品可盈利50元,若是不合格品则亏损20元.(1)记X 为生产一口T 型双耳平底锅和一口L 型双耳平底锅所得的总利润,求随机变量X 的数学期望;(2)M 炊具有限公司生产的T 和L 型双耳平底锅共计1000口,并且两种型号获得的利润相等,若将两种型号的合格品再按质量综合指标值分成3个等级,其中[70,80)为三级品,[80,90)为二级品,[90,100]为一级品,试判断生产的这1000口两种型号的双耳平底锅中哪种型号的一级品多?请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据分布列的性质可得23a =,由()2E ξ=可得出62m n =-,再由二次函数的基本性质可求得()D ξ的最小值. 【详解】由分布列的性质可得23a =,()12233E m n ξ=+=,所以,26m n +=,则62m n =-,()()()()()()222221212224222203333D m n n n n ξ=-+-=-+-=-≥, 因此,()D ξ的最小值为0. 故选:A.本题考查利用随机分布列的性质解题,同时也考查了方差最值的计算,考查计算能力,属于中等题.2.A解析:A 【分析】设事件A =“血检呈阳性”,B =“患该种疾病”,由题得P (B )=0.005,P (A |B )=0.99, 由条件概率得P (AB )=P (B )P (A |B ),计算即得解. 【详解】设事件A =“血检呈阳性”,B =“患该种疾病”. 依题意知P (B )=0.005,P (A |B )=0.99, 由条件概率公式P (A |B )=()()P AB P B , 得P (AB )=P (B )P (A |B )=0.005×0.99=0.00495, 故选:A. 【点睛】本题主要考查条件概率的计算和应用,意在考查学生对这些知识的理解掌握水平.3.C解析:C 【分析】设(1)P X p ==,(2)P X q ==,则由1(3)6P X ==,5()3E X =,列出方程组,求出p ,q ,即可求得()D X .【详解】设(1)P X p ==,(2)P X q ==,1563()23E X p q =++⨯=——①,又161p q ++=——② 由①②得,12p =,13q =,222111()(1)(25555333(9))2336D X ∴=-+-+-=故选:C. 【点睛】本题考查离散型随机变量的方差的求法,考查离散型随机变量的分布列、数学期望的求法等基础知识,考查推理论证能力、运算求解能力,考查函数与方程思想,是中档题.4.C【分析】设()1P x ξ==,根据()f x ,()1E ξ=列方程求出x ,进而求出()D ξ,即可比较大小. 【详解】 设()1P x ξ==, 则()425P x ξ==-,则()1480121555x x E x ξ⎛⎫=⨯+⨯+-⨯=-= ⎪⎝⎭,解得()315P ξ==,()125P ξ==, 则()()()()22213120111215555D ξ=⨯-+⨯-+⨯-=, 故()()1P D ξξ=>, 故选:C. 【点睛】本题考查离散型随机变量的分布列、数学期望、方差的性质等基础知识,考查运算求解能力,是中档题.5.B解析:B 【分析】记事件:A 甲乙相邻,事件:B 乙丙相邻,利用排列组合思想以及古典概型的概率公式计算出()P A 和()P AB ,再利用条件概率公式可计算出所求事件的概率. 【详解】记事件:A 甲乙相邻,事件:B 乙丙相邻,则事件:AB 乙和甲丙都相邻,所求事件为B A ,甲乙相邻,则将甲乙两人捆绑,与其他三位同学形成四个元素,排法种数为424248A A =,由古典概型的概率公式可得()554825P A A ==. 乙和甲丙都相邻,则将甲乙丙三人捆绑,且乙位置正中间,与其他两位同学形成三个元素,排法种数为323212A A =,由古典概型的概率公式可得()5512110P AB A ==, 由条件概率公式可得()()()1511024P AB P B A P A ==⨯=,故选B. 【点睛】本题考查条件概率的计算,解这类问题时,要弄清各事件事件的关系,利用排列组合思想以及古典概型的概率公式计算相应事件的概率,并灵活利用条件概率公式计算出所求事件的概率,考查计算能力,属于中等题.6.D【分析】利用正态密度曲线的对称性得出12m n +=,再将代数式22m n +与12m n +相乘,展开后可利用基本不等式求出12m n+的最小值. 【详解】 由于()210,XN σ,由正态密度曲线的对称性可知,()()128P X P X m >=<=,所以,()()188102P X P X <+≤≤=,即12m n +=,221m n ∴+=, 由基本不等式可得()1212422266m n m n m n m n n m ⎛⎫+=++=++≥ ⎪⎝⎭6=, 当且仅当()420,0m n m n n m=>>,即当n =时,等号成立, 因此,12m n +的最小值为6+,故选D. 【点睛】本题考查正态密度概率以及利用基本不等式求最值,解题关键在于利用正态密度曲线的对称性得出定值,以及对所求代数式进行配凑,以便利用基本不等式求最值,考查计算能力,属于中等题.7.A解析:A 【分析】确定事件AB ,利用古典概型的概率公式计算出()P AB 和()P A ,再利用条件概型的概率公式可计算出()P B A 的值. 【详解】事件AB 为“4名同学所报项目各不相同且只有甲同学一人报关怀老人项目”,则()3344A P AB =,()4444A P A =,()()()3434444144P AB A P B A P A A ∴==⋅=,故选A. 【点睛】本题考查条件概型概率的计算,考查条件概率公式的理解和应用,考查运算能力,属于中等题.8.A解析:A 【分析】先求事件A 包含的基本事件,再求事件AB 包含的基本事件,利用公式可得.由于6人各自随机地确定参观顺序,在参观的第一小时时间内,总的基本事件有63个;事件A 包含的基本事件有222642C C C 个;在事件A 发生的条件下,在参观的第二个小时时间内,该小组在甲展厅人数恰好为2人的基本事件为244C ⨯个,而总的基本事件为62,故所求概率为24643(/)28C P B A ⨯==,故选A. 【点睛】本题主要考查条件概率的求解,注意使用缩小事件空间的方法求解.9.D解析:D 【分析】正态曲线关于x =μ对称,且μ越大图象越靠近右边,第一个曲线的均值比第二和第三和图象的均值小,且二,三两个的均值相等,又有σ越小图象越瘦长,得到正确的结果. 【详解】根据课本中对正太分布密度函数的介绍知道:当正态分布密度函数为()()2221ei i x i ix μσϕ--=,则对应的函数的图像的对称轴为:i μ,∵正态曲线关于x =μ对称,且μ越大图象越靠近右边,∴第一个曲线的均值比第二和第三和图象的均值小,且二,三两个的均值相等,只能从A ,D 两个答案中选一个, ∵σ越小图象越瘦长,得到第二个图象的σ比第三个的σ要小,第一个和第二个的σ相等 故选D . 【点睛】本题考查正态分布曲线的特点及曲线所表示的意义,考查密度函数中两个特征数均值和标准差对曲线的位置和形状的影响,是一个基础题.10.A解析:A 【分析】先求出b 的值,再利用期望公式求出E(X),再利用公式求出()25E X -. 【详解】由题得0.1+0.2+0,20.11,0.4,b b ++=∴=,所以()10.120.230.440.250.13E X =⨯+⨯+⨯+⨯+⨯= 所以(25)2()52351E X E X -=-=⨯-=. 故答案为A 【点睛】(1)本题主要考查分布列的性质和期望的计算,意在考查学生对这些知识的掌握水平和分析推理能力.(2) 若a b ηξ=+(a 、b 是常数),ξ是随机变量,则η也是随机变量,E η=()E a b aE b ξξ+=+,2()D a b a D ξξ+=.11.B解析:B 【解析】分析:根据正态分布的整体对称性计算即可得结果. 详解:(0)(2)0.2,P X P X ≤=≥=10.22(01)0.3,2P X -⨯∴≤≤== 故选B.点睛:该题考查的是有关正态分布的问题,在解题的过程中,涉及到的知识点有正态分布曲线的对称性,从而求得结果.12.D解析:D 【解析】分析:根据题意,记甲击中目标为事件A ,乙击中目标为事件B ,目标被击中为事件C ,由相互独立事件的概率公式,计算可得目标被击中的概率,进而由条件概率的公式,计算可得答案.详解:根据题意,记甲击中目标为事件A ,乙击中目标为事件B ,目标被击中为事件C , 则P (C )=1﹣P (A )P (B )=1﹣(1﹣0.8)(1﹣0.5)=0.9; 则目标是被甲击中的概率为P=0.880.99=. 故答案为D.点睛:(1)本题主要考查独立事件的概率和条件概率,意在考查学生对这些知识的掌握水平和分析推理能力.(2) 条件概率的公式:()(|)()P AB P B A P A =,(|)P B A =()()n AB n A .条件概率一般有“在A 已发生的条件下”这样的关键词,表明这个条件已经发生, 发生了才能称为条件概率.但是有时也没有,要靠自己利用条件概率的定义识别.二、填空题13.【分析】先确定随机变量的取值再分别计算对应的概率最后利用期望的计算公式即得结果【详解】依题意设取出红球的个数为则而口袋中有红球3个其他球4个故故故答案为:【点睛】方法点睛:求离散型随机变量的期望的步解析:97【分析】先确定随机变量的取值0,1,2,3ξ=,再分别计算对应的概率,最后利用期望的计算公式即得结果. 【详解】依题意,设取出红球的个数为ξ,则0,1,2,3ξ=,而口袋中有红球3个,其他球4个,故()34374035C P C ξ===,()12343718135C C P C ξ===,()21343712235C C P C ξ===,()33375313C C P ξ===,故()418121459012335353535357E ξ=⨯+⨯+⨯+⨯==. 故答案为:97. 【点睛】 方法点睛:求离散型随机变量的期望的步骤:(1)先确定随机变量的取值12,,...,n x x x ξ=;(2)再计算每个变量所对应的概率(),1,2,3,...,i i P x p i n ξ===; (3)利用公式()112233...n n E x p x p x p x p ξ=++++,计算得到期望即可.14.1【分析】先计算出的分布列再利用公式可求【详解】随机变量对应事件为第一次拿红球或第一次拿绿球第二次拿红球所以对应事件为第一次拿黄球第二次拿红球或第一次拿黄球第二次拿绿球第三次拿红球或第一次拿绿球第二解析:131 【分析】先计算出ξ的分布列,再利用公式可求()E ξ.【详解】随机变量0,1,2ξ=,0ξ=对应事件为第一次拿红球或第一次拿绿球,第二次拿红球,所以1111(0)4433P ξ==+⨯=, 1ξ=对应事件为第一次拿黄球,第二次拿红球,或第一次拿黄球,第二次拿绿球,第三次拿红球,或第一次拿绿球,第二次拿黄球,第三次拿红球, 故212111211(1)434324323P ξ==⨯+⨯⨯+⨯⨯=, 故111(2)1333P ξ==--=,所以111()0121333E ξ=⨯+⨯+⨯=. 故答案为:1;13. 【点睛】关键点点睛:计算离散型随机变量的分布列,注意随机变量取值时对应的含义,从而正确计算对应的概率,另外注意利用对立事件计算概率.15.【分析】由题意可得且由此求得事件发生的概率的值【详解】设事件发生的概率为事件发生的概率为则由题意可得且解得故答案为【点睛】本题主要考查相互独立事件的概率乘法公式条件概率公式属于中档题解析:35【分析】由题意可得()()()310P AB P A P B ==,且()1/2P B A =,由此求得事件A 发生的概率()P A 的值.【详解】设事件A 发生的概率为()P A ,事件B 发生的概率为()P B ,则由题意可得()()()310P AB P A P B ==,且()()()()3110/=2P AB P B A P A P A ==, 解得()35P A =,故答案为35. 【点睛】本题主要考查相互独立事件的概率乘法公式、条件概率公式,属于中档题.16.02【分析】随机变量得到曲线关于称根据曲线的对称性得到根据概率的性质得到结果【详解】随机变量∴曲线关于对称∴故答案为02【点睛】本题主要考查正态分布曲线的特点及曲线所表示的意义函数图象对称性的应用等解析:0.2 【分析】随机变量()21,X N σ~,得到曲线关于1x =称,根据曲线的对称性得到200.501P X P X P X >=<=-<<()()(),根据概率的性质得到结果. 【详解】随机变量()21,X N σ~,∴曲线关于1x =对称,∴200.5010.2P X P X P X >=<=-<<=()()(),故答案为0.2. 【点睛】本题主要考查正态分布曲线的特点及曲线所表示的意义、函数图象对称性的应用等基础知识,属于基础题17.1【分析】由题意根据和分布列的性质求得的值再利用方差的公式即可求解【详解】根据题意得解得∴D(X)=(1-3)2×01+(2-3)2×02+(3-3)2×03+(4-3)2×04=1【点睛】本题主要解析:1 【分析】由题意,根据()3E X =和分布列的性质,求得,m n 的值,再利用方差的公式,即可求解. 【详解】 根据题意,得解得∴D(X)=(1-3)2×0.1+(2-3)2×0.2+(3-3)2×0.3+(4-3)2×0.4=1. 【点睛】本题主要考查了分布列的性质和期望与方差的计算,其中明确分布列的性质和相应的数学期望和方差的计算公式,准确计算是解答的关键,着重考查了推理与运算能力.18.【解析】分析:记抽出的两张有一张是假币为事件A 抽出的两张都是假币为事件B 利用条件概率计算公式能求出其中1张放到验钞机上检验发现是假钞则另一张也是假钞的概率详解:记抽出的两张有一张是假币为事件A 抽出的解析:15【解析】分析:记“抽出的两张有一张是假币”为事件A ,“抽出的两张都是假币”为事件B ,利用条件概率计算公式能求出其中1张放到验钞机上检验发现是假钞,则另一张也是假钞的概率. 详解:记“抽出的两张有一张是假币”为事件A ,“抽出的两张都是假币”为事件B , 则将其中1张放到验钞机上检验发现是假钞,则另一张也是假钞的概率为:24210211446210()1(|)()5C C P AB P B A C C C P A C ===+. 点睛:本题主要考查了条件的求解以及组合数的应用,正确理解条件概率的计算公式是解答的关键,着重考查了推理与论证能力,以及转化与化归思想的应用,试题比较基础,属于基础题.三、解答题19.(1)104(分);(2)0.298. 【分析】(1)根据频率分布直方图,利用平均数公式求解.(2)由104,18μσ==,求得(86140)(2)P X P X μσμσ<=-<+,进而得到(P X μσ-或2)X μσ>+,然后由()10,0.1814Y B ~求解.【详解】(1)10(650.0028750.01850.01950.0181050.02x =⨯+⨯+⨯+⨯+⨯,1150.0181250.0121350.008+⨯+⨯+⨯1450.0012)+⨯1010.416104.16104(=⨯=≈分).(2)由题意知()2,,X Nμσ~且104,18μσ==,所以8610418,1401041822μσμσ=-=-=+⨯=+, 所以0.68270.9545(86140)(2)0.81862P X P X μσμσ+<=-<+==,所以(P X μσ-或2)10.81860.1814X μσ>+=-=, 所以()10,0.1814Y B ~,所以()228102C 0.18140.8186450.006630.298P Y ==⨯⨯≈⨯≈.【点睛】结论点睛:(1)若X 服从正态分布,即X ~N (μ,σ2),要充分利用正态曲线的关于直线X =μ对称和曲线与x 轴之间的面积为1.(2)二项分布是概率论中最重要的几种分布之一,在实际应用和理论分析中都有重要的地位.①判断一个随机变量是否服从二项分布,关键有二:其一是独立性,即一次试验中,事件发生与不发生二者必居其一;其二是重复性,即试验是独立重复地进行了n 次. ②对于二项分布,如果在一次试验中某事件发生的概率是p ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是P (X =k )=kk n kn p q C -.其中k =0,1,…,n ,q =1-p .20.(1)详见解析;(2)推荐小王去乙公司应聘,理由见解析. 【分析】(1)本题首先可以设乙公司送餐员送餐单数为a ,然后依次求出38a =、39a =、40a =、41a =、42a =时的工资X 以及概率p ,即可列出X 的分布列并求出数学期望;(2)本题可求出甲公司送餐员日平均工资,然后与乙公司送餐员日平均工资进行对比,即可得出结果. 【详解】(1)设乙公司送餐员送餐单数为a , 当38a =时,386228X =⨯=,515010p ; 当39a =时,396234X =⨯=,101505p ; 当40a =时,406240X =⨯=,101505p; 当41a =时,40617247X =⨯+⨯=,202505p ; 当42a=时,40627254X =⨯+⨯=,515010p,故X 的所有可能取值为228、234、240、247、254, 故X 的分布列为:故()228234240247254241.81055510E X =⨯+⨯+⨯+⨯+⨯=. (2)甲公司送餐员日平均送餐单数为:380.2390.3400.2410.2420.139.7⨯+⨯+⨯+⨯+⨯=,则甲公司送餐员日平均工资为80439.7238.8+⨯=元, 因为乙公司送餐员日平均工资为241.8元,238.8241.8<, 所以推荐小王去乙公司应聘. 【点睛】 关键点点睛:(1)求分布列的关键是根据题意确定随机变量的所有可能取值和取每一个值时的概率,然后列成表格的形式后即可,(2)根据统计数据做出决策时,可根据实际情况从平均数、方差等的大小关系作出比较后得到结论.21.(1)54125;(2)第二次抽取到的无支教经验的教师人数最有可能是1人,理由见解析;(3)按照先A 后B 的顺序所需人数期望最小. 【分析】(1)在每轮抽取中,甲被抽中的概率为25,则三次抽取中,“甲”恰有一次被抽取到的概率为2132355P C ⎛⎫= ⎪⎝⎭(2)设ξ表示第二次抽取到的无支教经验的教师人数,可能的取值有0,1,2,分别求出各种情况的概率,从而得出答案.(3)设X 表示先A 后B 完成任务所需人员数目,求出的X 期望,设Y 表示B 先后A 完成任务所需人员数目,求出的Y 期望,从而得出结论. 【详解】(1)5名优秀教师中的“甲”在每轮抽取中,被抽取到概率为142525C C =,则三次抽取中,“甲”恰有一次被抽取到的概率为2132********P C ⎛⎫== ⎪⎝⎭ (2)第二次抽取到的没有支教经验的教师人数最有可能是1人.设ξ表示第二次抽取到的无支教经验的教师人数,可能的取值有0,1,2,则有:()11222222332222222222555555370,100C C C C C C C P C C C C C C ξ==⋅+⋅+⋅=()11111122112323233241222222555555541,100C C C C C C C C C C P C C C C C C ξ==⋅+⋅+⋅=()2112223233322222255555920,100C C C C C C P C C C C C ξ==⋅+⋅+⋅=因为()()()102P P P ξξξ=>=>=,故第二次抽取到的无支教经验的教师人数最有可能是1人. (3)按照先A 后B 的顺序所需人数期望最小. 设X 表示先A 后B 完成任务所需人员数目,则111212E X p p p =+-=-设Y 表示B 先后A 完成任务所需人员数目,则22212212,0()E Y p p p E Y E X p p =+-=-=->-.故按照先A 后B 的顺序所需人数期望最小. 【点睛】关键点睛:本题考查求概率和求离散型随机变量的数学期望,解答本题的关键是设X 表示先A 后B 完成任务所需人员数目,得出()()111212E X p p p =+-=-,设Y 表示B 先后A 完成任务所需人员数目,则()()111212E X p p p =+-=-,相减得出大小,属于中档题.22.(1)甲、乙两名同学解答题失分的平均数相等;甲同学解答题失分的方差比乙同学解答题失分的方差大,乙同学做解答题相对稳定些;(2)分布列见解析,38.【分析】(1)根据平均数公式和方差公式计算结果,并根据平均数和方差的意义,得到结论;(2)甲和乙失分超过15分的概率分别为P 1=38,P 2=12,并计算123138216PP =⨯=,由条件可知32,16X B ⎛⎫⎪⎝⎭,根据二项分布计算分布列和均值. 【详解】(1) 1=8x 甲(7+9+11+13+13+16+23+28)=15, 1=8x 乙(7+8+10+15+17+19+21+23)=15,21=8s 甲 [(-8)2+(-6)2+(-4)2+(-2)2+(-2)2+12+82+132]=44.75,21=8s 乙[(-8)2+(-7)2+(-5)2+02+22+42+62+82]=32.25.甲、乙两名同学解答题失分的平均数相等;甲同学解答题失分的方差比乙同学解答题失分的方差大.所以乙同学做解答题相对稳定些.(2)根据统计结果,在一次周练中,甲和乙失分超过15分的概率分别为P 1=38,P 2=12, 两人失分均超过15分的概率为P 1P 2=316, X 的所有可能取值为0,1,2.依题意,32,16XB ⎛⎫ ⎪⎝⎭, ()22313,0,1,21616k kk P X k C k -⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭则X 的分布列为X 的均值E (X )=2168⨯=.【点睛】关键点点睛:本题第二问的关键是判断X 服从二项分布,并计算在每次周练两人失分均超过15分的概率,这样就容易写错分布列. 23.(1)49;(2)分布列答案见解析,数学期望:13445. 【分析】(1)记:“小华恰好命中两次”为事件A ,“小华射击甲靶命中”为事件B , “小华第一次射击乙靶命中”为事件C ,“小华第二次射击乙靶命中”为事件D , 则有A BCD BCD BCD =++,由互斥事件与独立事件的概率公式可得;(2)随机变量X 的取值可能为0,1,2,3,5,求出它们的概率可得分布列,由期望公式可计算出期望. 【详解】解:(1)记:“小华恰好命中两次”为事件A ,“小华射击甲靶命中”为事件B , “小华第一次射击乙靶命中”为事件C ,“小华第二次射击乙靶命中”为事件D , 由题意可知3()5P B =,2()()3P C P D ==,由于A BCD BCD BCD =++, ∴3213122224()()5335335339P A P BCD BCD BCD =++=⨯⨯+⨯⨯+⨯⨯=, 故甲同学恰好命中一次的概率为49. (2)X =0,1,2,3,5.2212(0)5345P X ⎛⎫==⨯=⎪⎝⎭,122218(1)53345P X C ==⨯⨯⨯=, 2311(2)5315P X ⎛⎫==⨯= ⎪⎝⎭,123212224(3)5335339P X C ==⨯⨯⨯+⨯⨯=,2324(5)5315P X ⎛⎫==⨯= ⎪⎝⎭,()0123545451591545E X =⨯+⨯+⨯+⨯+⨯=. 【点睛】本题考查互斥事件与相互独立事件的概率公式,考查随机变量的概率分布列和数学期望,解题关键是把事件“小华恰好命中两次”拆成一些互斥事件的和,确定随机变量的可能值并计算出概率.。
高中试卷-专题8.3 列联表与独立性检验(含答案)
专题8.3 列联表与独立性检验姓名:班级:重点分类变量与列联表难点独立性检验例1-1.在一次独立性检验中,其把握性超过了%99,则随机变量2K 的可能值为( )。
A 、841.3B 、024.5C 、635.6D 、897.7【答案】D【解析】∵在一次独立性检验中,其把握性超过了%99,对应的临界值表中数值为小于01.0,查表可得01.0)635.6(2=≥K P ,故635.62>K ,故选D 。
例1-2.把两个分类变量的频数列出,称为( )。
A 、三维柱形图B 、二维条形图C 、列联表D 、独立性检验【答案】C【解析】选项A 、B 是粗略地判断两个分类变量是否相关的方法,错,选项C 用两个分类变量的频数列表,对,选项D 是通过列联表计算得到两变量是否相关的方法,错,故选C 。
例1-3.通过随机询问200名性别不同的大学生是否爱好踢毽子运动,计算得到统计量2K 的观测值892.4≈k ,参照附表,得到的正确结论是( )。
)(02k K P ≥100.0050.0025.00k 706.2841.3024.5A 、有%5.97以上的把握认为“爱好该项运动与性别有关”B 、有%5.97以上的把握认为“爱好该项运动与性别无关”C 、在犯错误的概率不超过%5的前提下,认为“爱好该项运动与性别有关”D 、在犯错误的概率不超过%5的前提下,认为“爱好该项运动与性别无关”【答案】C【解析】∵计算得到统计量值2K 的观测值841.3892.4>≈k ,参照题目中的数值表,得到正确的结论是:在犯错误的概率不超过%5的前提下,认为“爱好该运动与性别有关”,故选C 。
例1-4.某22⨯列联表:1y 2y 总计1x 431622052x 13121134总计56283339则随机变量2K 的值为 。
【答案】469.7【解析】469.728356134205)1621312143(33922=⨯⨯⨯⨯-⨯⨯=K 。
高中数学选修2-3随机变量及其分布(分布列)精选题目(附答案)
高中数学选修2-3随机变量及其分布(分布列)精选题目(附答案)一、条件概率1.在区间(0,1)内随机取一个数x ,若A =⎩⎨⎧⎭⎬⎫x 0<x <12,B =⎩⎨⎧⎭⎬⎫x 14<x <34,则P (B |A )等于( )A.12B.14 C.13 D.34解析:选A P (A )=121=12,∵A ∩B =⎩⎨⎧⎭⎬⎫x 14<x <12, ∴P (AB )=141=14, ∴P (B |A )=P (AB )P (A )=1412=12.2.有20件产品,其中5件是次品,其余都是合格品,现不放回地从中依次抽取2件,求:(1)第一次抽到次品的概率;(2)第一次和第二次都抽到次品的概率;(3)在第一次抽到次品的条件下,第二次抽到次品的概率.解:记第一次抽到次品为事件A,第二次抽到次品为事件B.(1)第一次抽到次品的概率为P(A)=520=14.(2)第一次和第二次都抽到次品的概率为P(AB)=P(A)P(B)=1 19.(3)在第一次抽到次品的条件下,第二次抽到次品的概率为P(B|A)=119÷14=419.3.抛掷5枚硬币,在已知至少出现了2枚正面朝上的情况下,问:正面朝上数恰好是3枚的条件概率是多少?解:法一:记至少出现2枚正面朝上为事件A,恰好出现3枚正面朝上为事件B,所求概率为P(B|A),事件A包含的基本事件的个数为n(A)=C25+C35+C45+C55=26,事件B包含的基本事件的个数为n(B)=C35=10,P(B|A)=n(AB)n(A)=n(B)n(A)=1026=5 13.法二:事件A,B同上,则P(A)=C25+C35+C45+C5525=2632,P(AB)=P(B)=C3525=1032,所以P(B|A)=P(AB)P(A)=P(B)P(A)=513.4.已知甲、乙两人独立地对同一目标各射击一次,其命中率分别为0.6,0.5,若目标被击中,则它是被甲击中的概率是________.解析:令事件A,B分别表示甲、乙两人各射击一次击中目标,由题意可知P(A)=0.6,P(B)=0.5,令事件C表示目标被击中,则C=A∪B,则P(C)=1-P(A)P(B)=1-0.4×0.5=0.8,所以P(A|C)=P(AC)P(C)=0.60.8=0.75.答案:0.755.一袋中有大小相同的4个红球和2个白球,给出下列结论: ①从中任取3球,恰有一个白球的概率是35;②从中有放回地取球6次,每次任取一球,则取到红球次数的方差为43; ③现从中不放回地取球2次,每次任取1球,则在第一次取到红球后,第二次再次取到红球的概率为25;④从中有放回地取球3次,每次任取一球,则至少有一次取到红球的概率为2627.其中所有正确结论的序号是________.解析:①恰有一个白球的概率P =C 12C 24C 36=35,故①正确;②每次任取一球,取到红球次数X ~B ⎝ ⎛⎭⎪⎫6,23,其方差为6×23×⎝ ⎛⎭⎪⎫1-23=43,故②正确;③设A ={第一次取到红球},B ={第二次取到红球},则P (A )=23,P (AB )=4×36×5=25,所以P (B |A )=P (AB )P (A )=35,故③错;④每次取到红球的概率P =23,所以至少有一次取到红球的概率为1-⎝ ⎛⎭⎪⎫1-233=2627,故④正确. 答案:①②④二、相互独立事件的概率1.A ,B ,C 三名乒乓球选手间的胜负情况如下:A 胜B 的概率为0.4,B 胜C 的概率为0.5,C 胜A 的概率为0.6,本次竞赛按以下顺序进行:第一轮:A 与B ;第二轮:第一轮的胜者与C ;第三轮:第二轮的胜者与第一轮的败者;第四轮:第三轮的胜者与第二轮的败者.求:(1)B 连胜四轮的概率;(2)C 连胜三轮的概率.解:(1)要B 连胜四轮,以下这些相互独立事件须发生:第一轮B 胜A ,第二轮B 胜C ,第三轮B 再胜A ,第四轮B 再胜C .根据相互独立事件同时发生的概率公式,得所求概率为P =(1-0.4)×0.5×(1-0.4)×0.5=0.09.故B连胜四轮的概率为0.09.(2)C连胜三轮应分两种情况:①第一轮A胜B,则第二轮C胜A,第三轮C 胜B,第四轮C胜A,得C连胜三轮的概率为P1=0.4×0.6×(1-0.5)×0.6=0.072;②第一轮B胜A,则第二轮C胜B,第三轮C胜A,第四轮C胜B,得C 连胜三轮的概率为P2=(1-0.4)×(1-0.5)×0.6×(1-0.5)=0.09.由于①②两种情况是两个互斥事件,所以所求概率为P=P1+P2=0.072+0.09=0.162.故C连胜三轮的概率为0.162.2.红队队员甲、乙、丙与蓝队队员A,B,C进行围棋比赛,甲对A、乙对B、丙对C各一盘.已知甲胜A、乙胜B、丙胜C的概率分别为0.6,0.5,0.5.假设各盘比赛结果相互独立.(1)求红队至少两名队员获胜的概率;(2)用ξ表示红队队员获胜的总盘数,求P(ξ≤1).解:(1)设“甲胜A”为事件D,“乙胜B”为事件E,“丙胜C”为事件F,则D,E,F分别表示甲不胜A、乙不胜B、丙不胜C的事件.因为P(D)=0.6,P(E)=0.5,P(F)=0.5,由对立事件的概率公式,知P(D)=0.4,P(E)=0.5,P(F)=0.5.红队至少两人获胜的事件有DE F,D E F,D EF,DEF.由于以上四个事件两两互斥且各盘比赛的结果相互独立,因此红队至少两人获胜的概率为P=P(DE F)+P(D E F)+P(D EF)+P(DEF)=0.6×0.5×0.5+0.6×0.5×0.5+0.4×0.5×0.5+0.6×0.5×0.5=0.55.(2)由题意,知ξ的可能取值为0,1,2,3.P(ξ=0)=P(D E F)=0.4×0.5×0.5=0.1,P(ξ=1)=P(D E F)+P(D E F)+P(D E F)=0.4×0.5×0.5+0.4×0.5×0.5+0.6×0.5×0.5=0.35,所以P(ξ≤1)=P(ξ=0)+P(ξ=1)=0.45.三、离散型随机变量的分布列及均值、方差求离散型随机变量X的均值与方差的步骤:(1)理解X的意义,写出X可能的全部取值;(2)求X取每个值的概率或求出函数P(X=k);(3)写出X的分布列;(4)由分布列和均值的定义求出E(X);(5)由方差的定义,求D(X).1.设离散型随机变量ξ的概率分布列如下:则p的值为()A.12 B.16C.13 D.14解析:选A因为15+15+110+p=1,所以p=12,故选A.2.10张奖劵中只有3张有奖,若5个人购买,每人1张,则至少有1个人中奖的概率为()A.310 B.112C.12 D.1112解析:选D设事件A为“无人中奖”,则P(A)=C57C510=112,则至少有1个人中奖的概率P=1-P(A)=1-112=1112.3.设随机变量X等可能地取值1,2,3,…,10.又设随机变量Y=2X-1,则P(Y<6)的值为()A.0.3 B.0.5C.0.1 D.0.2解析:选A由Y=2X-1<6,得X<3.5,∴P(Y<6)=P(X<3.5)=P(X=1)+P(X=2)+P(X=3)=0.3.4.若离散型随机变量X的分布列为则X 的数学期望E (X )=( ) A.32 B .2 C.52 D .3解析:选A 由数学期望的公式可得:E (X )=1×35+2×310+3×110=32.5.甲、乙两歼击机的飞行员向同一架敌机射击,设击中的概率分别为0.4,0.5,且两人是否击中相互不受影响,则恰有一人击中敌机的概率为( )A .0.9B .0.2C .0.7D .0.5解析:选D 设事件A ,B 分别表示甲、乙飞行员击中敌机,则P (A )=0.4,P (B )=0.5,且A 与B 互相独立,则事件恰有一人击中敌机的概率为P (A B +A B )=P (A )[1-P (B )]+[1-P (A )]P (B )=0.5,故选D.6.甲、乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束,除第五局甲队获胜的概率是12外,其余每局比赛甲队获胜的概率都是23,假设各局比赛结果相互独立.(1)分别求甲队以3∶0,3∶1,3∶2胜利的概率;(2)若比赛结果为3∶0或3∶1,则胜利方得3分,对方得0分;若比赛结果为3∶2,则胜利方是2分,对方得1分.求乙队得分X 的分布列及均值.解:(1)记“甲队以3∶0胜利”为事件A 1,“甲队以3∶1胜利”为事件A 2,“甲队以3∶2胜利”为事件A 3,由题意知各局比赛结果相互独立,故P (A 1)=⎝ ⎛⎭⎪⎫233=827,P (A 2)=C 23⎝ ⎛⎭⎪⎫232⎝⎛⎭⎪⎫1-23×23=827,P (A 3)=C 24⎝ ⎛⎭⎪⎫232⎝⎛⎭⎪⎫1-232×12=427. 所以,甲队以3∶0,3∶1,3∶2胜利的概率分别是827,827,427.(2)设“乙队以3∶2胜利”为事件A 4,由题意知各局比赛结果相互独立,所以P (A 4)=C 24⎝⎛⎭⎪⎫1-232⎝ ⎛⎭⎪⎫232×⎝ ⎛⎭⎪⎫1-12=427. 由题意知随机变量X 的所有可能取值为0,1,2,3,根据事件的互斥性得 P (X =0)=P (A 1∪A 2)=P (A 1)+P (A 2)=1627, P (X =1)=P (A 3)=427, P (X =2)=P (A 4)=427,P (X =3)=1-P (X =0)-P (X =1)-P (X =2)=327. 故X 的分布列为所以E (X )=0×1627+1×427+2×427+3×327=79.7.小波以游戏方式决定是参加学校合唱团还是参加学校排球队.游戏规则为:以O 为起点,再从A 1,A 2,A 3,A 4,A 5,A 6,A 7,A 8(如图)这8个点中任取两点分别为终点得到两个向量,记这两个向量的数量积为X .若X =0就参加学校合唱团,否则就参加学校排球队.(1)求小波参加学校合唱团的概率; (2)求X 的分布列、均值及方差.解:(1)从8个点中任取两点为向量终点的不同取法共有C 28=28种,当X =0时,两向量夹角为直角,共有8种情形,所以小波参加学校合唱团的概率为P (X =0)=828=27.(2)两向量数量积X 的所有可能取值为-2,-1,0,1.X =-2时,有2种情形;X =1时,有8种情形;X =-1时,有10种情形.所以X 的分布列为E (X )=(-2)×114+(-1)×514+0×27+1×27=-314.D (X )=⎝ ⎛⎭⎪⎫-2+3142×114+⎝ ⎛⎭⎪⎫-1+3142×514+⎝ ⎛⎭⎪⎫3142×27+⎝ ⎛⎭⎪⎫1+3142×27≈0.88. 8.一台机器生产某种产品,如果生产出一件甲等品可获得50元,生产出一件乙等品可获得30元,生产出一件次品,要赔20元.已知这台机器生产出甲等品、乙等品和次等品的概率分别为0.6,0.3和0.1,则这台机器每生产一件产品平均预期可获利________元.解析:设生产一件该产品可获利X 元,则随机变量X 的取值可以是-20,30,50.依题意,得X 的分布列为故E (X )=-20×0.1+30×0.3+50×0.6=37.9.(本小题满分10分)某迷宫有三个通道,进入迷宫的每个人都要经过一扇智能门.首次到达此门,系统会随机(即等可能)为你打开一个通道.若是1号通道,则需要1小时走出迷宫;若是2号、3号通道,则分别需要2小时、3小时返回智能门,再次到达智能门时,系统会随机打开一个你未到过的通道,直至走出迷宫为止.令X 表示走出迷宫所需的时间.(1)求X 的分布列; (2)求X 的均值.解:(1)X 的所有可能取值为1,3,4,6.P (X =1)=13,P (X =3)=16,P (X =4)=16,P (X =6)=13,所以X 的分布列为(2)E (X )=1×13+3×16+4×16+6×13=72.10.(本小题满分12分)已知某高中共派出足球、排球、篮球三个球队参加市学校运动会,他们获得冠军的概率分别为12,13,23.(1)求该高中获得冠军个数X 的分布列;(2)若球队获得冠军,则给其所在学校加5分,否则加2分,求该高中得分Y 的分布列.解:(1)∵X 的可能取值为0,1,2,3,取相应值的概率分别为 P (X =0)=⎝ ⎛⎭⎪⎫1-12×⎝ ⎛⎭⎪⎫1-13×⎝ ⎛⎭⎪⎫1-23=19, P (X =1)=12×⎝ ⎛⎭⎪⎫1-13×⎝ ⎛⎭⎪⎫1-23+⎝ ⎛⎭⎪⎫1-12×13×⎝ ⎛⎭⎪⎫1-23+⎝ ⎛⎭⎪⎫1-12×⎝ ⎛⎭⎪⎫1-13×23=718,P (X =2)=12×13×⎝ ⎛⎭⎪⎫1-23+⎝ ⎛⎭⎪⎫1-12×13×23+12×⎝ ⎛⎭⎪⎫1-13×23=718,P (X =3)=12×13×23=19, ∴随机变量X 的分布列为(2)根据题意知得分Y =5X +2(3-X )=6+3X , ∵X 的可能取值为0,1,2,3.∴Y 的可能取值为6,9,12,15,取相应值的概率分别为 P (Y =6)=P (X =0)=19,P (Y =9)=P (X =1)=718, P (Y =12)=P (X =2)=718,P (Y =15)=P (X =3)=19. ∴随机变量Y 的分布列为11.(本小题满分12分)北京市政府为做好APEC 会议接待服务工作,对可能遭受污染的某海产品在进入餐饮区前必须进行两轮检测,只有两轮都合格才能进行销售,否则不能销售.已知该海产品第一轮检测不合格的概率为16,第二轮检测不合格的概率为110,两轮检测是否合格相互没有影响.(1)求该海产品不能销售的概率;(2)如果该海产品可以销售,则每件产品可获利40元;如果该海产品不能销售,则每件产品亏损80元(即获利—80元).已知一箱中有该海产品4件,记一箱该海产品获利ξ元,求ξ的分布列,并求出均值E (ξ).解:(1)设“该海产品不能销售”为事件A , 则P (A )=1-⎝ ⎛⎭⎪⎫1-16×⎝ ⎛⎭⎪⎫1-110=14.所以,该海产品不能销售的概率为14.(2)由已知,可知ξ的可能取值为-320,-200,-80,40,160. P (ξ=-320)=⎝ ⎛⎭⎪⎫144=1256,P (ξ=-200)=C 14×⎝ ⎛⎭⎪⎫143×34=364,P (ξ=-80)=C 24×⎝ ⎛⎭⎪⎫142×⎝ ⎛⎭⎪⎫342=27128,P (ξ=40)=C 34×14×⎝ ⎛⎭⎪⎫343=2764,P (ξ=160)=⎝ ⎛⎭⎪⎫344=81256.所以ξ的分布列为E (ξ)=-320×1256-200×364-80×27128+40×2764+160×81256=40.四、二项分布在n 次独立重复试验中,事件A 发生的次数为X ,在每次试验中事件A 发生的概率为p ,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率为P (X =k )=C k n p k (1-p )n -k ,k =0,1,2,…,n .这时称X 服从二项分布,记为X ~B (n ,p ).当X ~B (n ,p )时,E (X )=np ,D (X )=np (1-p ).1. 某单位选派甲、乙、丙三人组队参加知识竞赛,甲、乙、丙三人在同时回答一道问题时,已知甲答对的概率是34,甲、丙两人都答错的概率是112,乙、丙两人都答对的概率是14,规定每队只要有一人答对此题则该队答对此题.(1)求该单位代表队答对此题的概率;(2)此次竞赛规定每队都要回答10道必答题,每道题答对得20分,答错得-10分.若该单位代表队答对每道题的概率相等且回答任一道题的对错对回答其他题没有影响,求该单位代表队必答题得分的均值(精确到1分).解:(1)记甲、乙、丙分别答对此题为事件A ,B ,C ,由已知,得P (A )=34,[1-P (A )][1-P (C )]=112,∴P (C )=23.又P (B )P (C )=14,∴P (B )=38. ∴该单位代表队答对此题的概率 P =1-⎝ ⎛⎭⎪⎫1-34×⎝ ⎛⎭⎪⎫1-38×⎝ ⎛⎭⎪⎫1-23=9196. (2)记X 为该单位代表队必答题答对的道数,Y 为必答题的得分,则X ~B ⎝ ⎛⎭⎪⎫10,9196, ∴E (X )=10×9196=45548.而Y =20X -10×(10-X )=30X -100, ∴E (Y )=30E (X )-100=1 4758≈184. 2.某运动员投篮命中率为p =0.6. (1)求投篮1次时命中次数X 的均值; (2)求重复5次投篮时,命中次数Y 的均值. 解:(1)投篮1次,命中次数X 的分布列如表:则E (X )=p =0.6.(2)由题意,重复5次投篮,命中的次数Y 服从二项分布, 即Y ~B (5,0.6).则E (Y )=np =5×0.6=3.3.(本小题满分12分)某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为23,中奖可以获得2分;方案乙的中奖率为25,中奖可以获得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,晚会结束后凭分数兑换奖品.(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为X ,求X ≤3的概率;(2)若小明、小红两人都选择方案甲或都选择方案乙进行抽奖,问:他们选择何种方案抽奖,累计得分的均值较大?解:法一:(1)由已知得,小明中奖的概率为23,小红中奖的概率为25,且两人中奖与否互不影响.记“这两人的累计得分X ≤3”的事件为A , 则事件A 的对立事件为“X =5”. 因为P (X =5)=23×25=415,所以P (A )=1-P (X =5)=1-415=1115, 即这两人的累计得分X ≤3的概率为1115.(2)设小明、小红都选择方案甲抽奖中奖次数为X 1,都选择方案乙抽奖中奖次数为X 2,则这两人选择方案甲抽奖累计得分的均值为E (2X 1),选择方案乙抽奖累计得分的均值E (3X 2).由已知可得,X 1~B ⎝ ⎛⎭⎪⎫2,23,X 2~B ⎝ ⎛⎭⎪⎫2,25, 所以E (X 1)=2×23=43,E (X 2)=2×25=45, 从而E (2X 1)=2E (X 1)=83,E (3X 2)=3E (X 2)=125. 因为E (2X 1)>E (3X 2),所以他们都选择方案甲进行抽奖时,累计得分的均值较大.法二:(1)由已知得,小明中奖的概率为23,小红中奖的概率为25,且两人中奖与否互不影响.记“这两人的累计得分X ≤3”的事件为A ,则事件A 包含“X =0”“X =2”“X =3”三个两两互斥的事件. 因为P (X =0)=⎝ ⎛⎭⎪⎫1-23×⎝ ⎛⎭⎪⎫1-25=15,P (X =2)=23×⎝ ⎛⎭⎪⎫1-25=25,P (X =3)=⎝⎛⎭⎪⎫1-23×25=215,所以P (A )=P (X =0)+P (X =2)+P (X =3)=1115,即这两人的累计得分X ≤3的概率为1115.(2)设小明、小红都选择方案甲所获得的累计得分为X1,都选择方案乙所获得的累计得分为X2,则X1,X2的分布列如下:所以E(X1)=0×19+2×49+4×49=83,E(X2)=0×925+3×1225+6×425=125.因为E(X1)>E(X2),所以他们都选择方案甲进行抽奖时,累计得分的均值较大.五、正态分布1.正态分布N1(μ1,σ21),N2(μ2,σ22),N3(μ3,σ23)(其中σ1,σ2,σ3均大于0)所对应的密度函数图象如图所示,则下列说法正确的是()A.μ1最大,σ1最大B.μ3最大,σ3最大C.μ1最大,σ3最大D.μ3最大,σ1最大解析:选D在正态曲线N(μ,σ2)中,x=μ为正态曲线的对称轴,结合图象可知,μ3最大;又参数σ确定了曲线的形式:σ越大,曲线越“矮胖”,σ越小,曲线越“瘦高”.故由图象知σ1最大.故选D.2. (1)已知随机变量X 服从正态分布N (2,σ2),P (0<X <4)=0.8,则P (X >4)的值为( )A .0.1B .0.2C .0.4D .0.6(2)2018年1月某校高三年级1 600名学生参加了教育局组织的期末统考,已知数学考试成绩X ~N (100,σ2)(试卷满分为150分).统计结果显示数学考试成绩在80分到120分之间的人数约为总人数的34,则此次统考中数学成绩不低于120分的学生人数约为( )A .80B .100C .120D .200(3)若随机变量ξ~N (2,σ2),且P (ξ>3)=0.158 7,则P (ξ>1)=________. 解析:(1)∵随机变量X 服从正态分布N (2,σ2),∴正态曲线的对称轴是x =2,∵P (0<X <4)=0.8,∴P (X >4)=12×(1-0.8)=0.1,故选A.(2)∵X ~N (100,σ2),∴其正态曲线关于直线x =100对称,又∵数学成绩在80分到120分之间的人数约占总人数的34,∴由对称性知,数学成绩不低于120分的学生人数约为总人数的12×⎝ ⎛⎭⎪⎫1-34=18,∴此次考试中数学成绩不低于120分的学生人数约为18×1 600=200.故选D.(3)∵随机变量ξ~N (2,σ2),∴正态曲线关于x =2对称,∵P (ξ>3)=0.158 7,∴P (ξ>1)=P (ξ<3)=1-0.158 7=0.841 3.答案:(1)A (2)D (3)0.841 33.某市去年高考考生成绩服从正态分布N (500,502),现有25 000名考生,试确定考生成绩在550~600分的人数.解:因为考生成绩X ~N (500,502), 所以μ=500,σ=50,所以P=(550<x≤600)=12[P(500-2×50<x≤500+2×50)-P(500-50<x≤500+50)]=12(0.954 4-0.682 6)=0.135 9.故考生成绩在550~600分的人数为25 000×0.135 9≈3 398人.4.(本小题满分12分)在某校举行的数学竞赛中,全体参赛学生的竞赛成绩近似地服从正态分布N(70,100),已知成绩在90分以上(含90分)的学生有12人.(1)试问此次参赛学生的总数约为多少人?(2)若成绩在80分以上(含80分)为优,试问此次竞赛成绩为优的学生约为多少人?解:(1)设参赛学生的成绩为X,因为X~N(70,100),所以μ=70,σ=10.则P(X≥90)=P(X≤50)=12[1-P(50<X<90)]=12[1-P(μ-2σ<X<μ+2σ)]=12×(1-0.954 4)=0.022 8,120.022 8≈526.因此,此次参赛学生的总数约为526人.(2)由P(X≥80)=P(X≤60)=12[1-P(60<X<80)]=12[1-P(μ-σ<X<μ+σ)]=12×(1-0.682 6)=0.158 7,得526×0.158 7≈83.因此,此次竞赛成绩为优的学生约为83人.六、茎叶图为了搞好世界大学生夏季运动会的接待工作,组委会在某学院招募了12名男志愿者和18名女志愿者,将这30名志愿者的身高绘成如图所示的茎叶图(单位:cm).若身高在175 cm 以上(包括175 cm)定义为“高个子”,身高在175 cm 以下定义为“非高个子”,且只有“女高个子”才能担任“礼仪小姐”.(1)如果用分层抽样的方法从“高个子”和“非高个子”中抽取5人,再从这5人中选2人,那么至少有1人是“高个子”的概率是多少?(2)若从所有“高个子”中选3名志愿者,用ξ表示所选志愿者中能担任“礼仪小姐”的人数,试写出ξ的分布列.解: (1)根据茎叶图知,“高个子”有12人,“非高个子”有18人.用分层抽样的方法,每个人被抽中的概率是530=16,所以选中的“高个子”有12×16=2(人),“非高个子”有18×16=3(人).用事件A 表示“至少有1名‘高个子’被选中”,则它的对立事件A -表示“没有‘高个子’被选中”,则P (A )=1-C 23C 25=1-310=710.因此,至少有1人是“高个子”的概率是710.(2)由茎叶图知,“女高个子”有4人,“男高个子”有8人.依题意,ξ的可能取值为0,1,2,3,则P (ξ=0)=C 38C 312=1455,P (ξ=1)=C 14C 28C 312=2855,p (ξ=2)=C 24C 18C 312=1255,P (ξ=3)=C 34C 312=155.因此,ξ的分布列为。
随机变量分布列(有答案)
随机变量分布列:26.设0a b <≤,随机变量X 的分布列是则()EX 的取值范围是( )A .1,12⎛⎫ ⎪⎝⎭B .51,4⎛⎤ ⎥⎝⎦C .31,2⎛⎫⎪⎝⎭D .53,42⎡⎫⎪⎢⎣⎭27.已知实数a ,b ,c 成等差数列,随机变量X 的分布列是:当a 增大时( ) A .()E X 增大 B .()E X 减小C .()E X 先增大后减小D .()E X 先减小后增大28.随机变量ξ的分布列如下:其中a ,b ,c 成等差数列,则D ξ的最大值为( )A .23 B .59C .29D .3429.下表是离散型随机变量X 的分布列,则常数a 的值是( )A .6B .12 C .9D .1230.已知随机变量X 的分布列是则()2E X a +=( ) A .53B .73C .72D .23631.设随机变量X 的概率分布列为则()31P X -==( )A .712B .16C .14D .51232.设a ,b ,()0,1c ∈.随机变量ξ的分布列如图所示.则( )A .()()E E ξξ<,()()D D ξξ<B .()()E E ξξ<,()()D D ξξ>C .()()E E ξξ>,()()D D ξξ<D .()()E Eξξ>,()()D D ξξ>33.设10a <<,则随机变量ξ的分布列为:设()y E ξξ=-,则当10,2a ⎛⎫∈ ⎪⎝⎭内增大时:( )A .()E ξ递减,()2E y 递增B .()E ξ递减,()2E y递减C .()E ξ递增,()2E y先递减再递增D .()E ξ递减,()2E y先递增再递减34.已知离散型随机变量X 的分布列为:若()2E X =,则()31D X -=( ). A .3B .9C .12D .3635.随机变量X 的分布列如下表,已知()122P x ≤=,则当b 在10,2⎛⎫⎪⎝⎭内增大时( )A .()E X 递减,()D X 递减B .()E X 递增,()D X 递减C .()E X 递减,()D X 递增 D .()E X 递增,()D X 递增26.C【来源】浙江省“数海漫游”2020-2021学年高三上学期8月线上模拟考试数学试题27.B【来源】专题16 离散型随机变量及其分布列、均值与方差-2020年高考数学母题题源全揭秘(浙江专版)28.A【来源】2020届浙江省杭州市第二中学高三下学期3月月考数学试题29.C【来源】专题10.5 离散型随机变量及其分布列(讲)-浙江版《2020年高考一轮复习讲练测》30.C【来源】2019届浙江省高三下学期4月高考模拟测试数学试题31.D【来源】专题10.5 离散型随机变量及其分布列(讲)-浙江版《2020年高考一轮复习讲练测》32.A【来源】专题16 离散型随机变量及其分布列、均值与方差-2020年高考数学母题题源全揭秘(浙江专版)33.B【来源】浙江省超级全能生2020届高三下学期3月联考数学试题(C卷)34.D【来源】浙江省超级全能生2019-2020学年高三上学期9月联考数学试题(B卷)35.B【来源】浙江省“山水联盟”2020届高三下学期高考模拟数学试题。
随机变量及其分布方法总结经典习题及解答
随机变量及其分布方法总结经典习题及解答一、离散型随机变量及其分布列1、离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量。
常用大写英文字母X、Y等或希腊字母ξ、η等表示。
2、分布列:设离散型随机变量ξ可能取得值为:x1,x2,…,x3,…,ξ取每一个值xi(i=1,2,…)的概率为,则称表ξx1x2…xi…PP1P2…Pi…为随机变量ξ的分布列3、分布列的两个性质:⑴Pi≥0,i=1,2,… ⑵P1+P2+…=1、常用性质来判断所求随机变量的分布列是否正确!二、热点考点题型考点一: 离散型随机变量分布列的性质1、随机变量ξ的概率分布规律为P(ξ=n)=(n=1,2,3,4),其中a是常数,则P(<ξ<)的值为A、B、C、D、答案:D考点二:离散型随机变量及其分布列的计算2、有六节电池,其中有2只没电,4只有电,每次随机抽取一个测试,不放回,直至分清楚有电没电为止,所要测试的次数为随机变量,求的分布列。
解:由题知2,3,4,5∵ 表示前2只测试均为没电,∴ ∵ 表示前两次中一好一坏,第三次为坏,∴ ∵ 表示前四只均为好,或前三只中一坏二好,第四个为坏,∴ ∵ 表示前四只三好一坏,第五只为坏或前四只三好一坏第五只为好∴ ∴ 分布列为2345P三、条件概率、事件的独立性、独立重复试验、二项分布与超几何分布1、条件概率:称为在事件A发生的条件下,事件B发生的概率。
2、相互独立事件:如果事件A(或B)是否发生对事件B (或A)发生的概率没有影响,这样的两个事件叫做相互独立事件。
①如果事件A、B是相互独立事件,那么,A与、与B、与都是相互独立事件②两个相互独立事件同时发生的概率,等于每个事件发生的概率的积。
我们把两个事件A、B同时发生记作AB,则有P(AB)= P(A)P(B)推广:如果事件A1,A2,…An相互独立,那么这n个事件同时发生的概率,等于每个事件发生的概率的积。
二、随机变量及其分布(答案)
概率论与数理统计练习题系第二章专业班姓名随机变量及其分布(一)学号一.选择题:1 .设X是失散型随机变量,以下可以作为X的概率分布是[B]X x1x2x3x4X x1x2x3x4( A)1111(B)1111 p p248162488X x1x2x3x4(D)X x1x2x3x4( C)1111p1111 p23412234122 .设随机变量ξ的分布列为X0123C ] p0.10.30.4F ( x) 为其分布函数,则 F ( 2) = [0.2( A)(B)( C)(D)1二、填空题:1 .设随机变量X的概率分布为X012,则 a = p a0.20.52 .某产品 15 件,其中有次品 2 件。
现从中任取3 件,则抽得次品数X 的概率分布为P(X 0)C13366, P( x1)C21 C13236, P( xC22 C1313 C153105C1531052)105C1533 .设射手每次击中目标的概率为, 连续射击10 次,则击中目标次数X 的概率分布为P( X k ) C10k(0.7)k (0.3)10 k(k0,1, 2,L ,10)三、计算题:1 .同时掷两颗骰子,设随机变量X为“两颗骰子点数之和”求:( 1)X的概率分布;(2)P( X3) ;(3)P( X12)解:(1)P( X2)1P( X3)2P( X4)3P(X 5)4,,,,36363636P( X6)5,P( X7) 6 , P( X5 436 8), P(X 9)363636P( X10)3 ,P( X11)2 ,P( X 1363612)36所以 X 的概率分布列:X 2 34 5 6 7 89 10 11 12P12 34 5 6 5 4 3 2 1363636363636 3636363636(2) P(X3) 336( 3) P(X>12)=02 .产品有一、 二、三等品及废品四种, 其中一、 二、三等品及废品率分别为 60%,10%,20%及 10%,任取一个产品检查其质量,试用随机变量X 描述检查结果。
最新人教版高中数学选修三第二单元《随机变量及其分布》检测题(包含答案解析)(1)
一、选择题1.已知随机变量ξ的分布列如下表,若()2E ξ=,则()D ξ的最小值等于( )A .0B .2C .1D .122.现有一条零件生产线,每个零件达到优等品的概率都为p .某检验员从该生产线上随机抽检50个零件,设其中优等品零件的个数为X .若()8D X =,(20)P X =(30)P X <=,则p =( ) A .0.16B .0.2C .0.8D .0.843.假定男女出生率相等,某个家庭有两个小孩,已知该家庭至少有一个女孩,则两个小孩都是女孩的概率是( ) A .12B .13C .14D .164.随机变量X 的概率分布为()()()1,2,31aP X n n n n ===+,其中a 是常数,则()E aX =( )A .3881B .139C .152243D .52275.从一个装有3个白球,3个红球和3个蓝球的袋中随机抓取3个球,记事件A 为“抓取的球中存在两个球同色”,事件B 为“抓取的球中有红色但不全是红色”,则在事件A 发生的条件下,事件B 发生的概率()|P B A =( ) A .37B .1237C .1219D .16216.设01p <<,随机变量ξ的分布列是则当p 在()0,1内变化时,( ) A .()D ξ增大B .()D ξ减小C .()D ξ先增大后减小 D .()D ξ先减小后增大7.甲、乙、丙三人每人准备在3个旅游景点中各选一处去游玩,则在“至少有1个景点未被选择”的条件下,恰有2个景点未被选择的概率是( ) A .17B .18C .114D .3148.某班组织由甲、乙、丙等5名同学参加的演讲比赛,现采用抽签法决定演讲顺序,在“学生甲不是第一个出场,学生乙不是最后一个出场”的前提下,学生丙第一个出场的概率为( ) A .313B .413C .14D .159.一个袋中放有大小、形状均相同的小球,其中红球1个、黑球2个,现随机等可能取出小球,当有放回依次取出两个小球时,记取出的红球数为1ξ;当无放回依次取出两个小球时,记取出的红球数为2ξ,则( ) A .12E E ξξ<,12D D ξξ< B .12E E ξξ=,12D D ξξ> C .12E E ξξ=,12D D ξξ< D .12E E ξξ>,12D D ξξ>10.随机变量ξ服从正态分布()2,N μσ,若(2)0.2P ξ<=,(26)0.6P ξ<<=,则μ=( )A .3B .4C .5D .611.某地区气象台统计,该地区下雨的概率是415,刮风的概率为215,既刮风又下雨的概率为110,则在下雨天里,刮风的概率为( ) A .8225B .12C .34D .3812.若随机变量X 的分布列为( )且()1E X =,则随机变量X 的方差()D X 等于( ) A .13B .0C .1D .23二、填空题13.在一个不透明的摸奖箱中有五个分别标有1,2,3,4,5号码的大小相同的小球,现甲、乙、丙三个人依次参加摸奖活动,规定:每个人连续有放回地摸三次,若得到的三个球编号之和恰为4的倍数,则算作获奖,记获奖的人数为X ,则X 的数学期望为___________.14.随机变量X 的概率分布满足()()100,1,2,3,10k C P X k k M===,,则()E X =______________.15.随机变量X 的取值为0、1、2,()00.2P X ==,0.4DX =,则EX =______.16.随机变量ξ的取值为0,1,2,若()104P ξ==,()1E ξ=,则()D ξ=______. 17.设随机变量X 的概率分布如下表所示,且随机变量X 的均值()E X 为2.5 ,则随机变量X 的方差()V X 为__________.18.抛掷红、黄两颗骰子,设事件A 为“黄色的骰子的点数为3或6”,事件B 为“两颗骰子的点数之和大于7”.当已知黄色的骰子的点数为3或6时,两颗骰子的点数之和大于7的概率为__________.三、解答题19.某不透明纸箱中共有4个小球,其中1个白球,3个红球,它们除了颜色外均相同. (1)一次从纸箱中摸出两个小球,求恰好摸出2个红球的概率;(2)每次从纸箱中摸出一个小球,记录颜色后放回纸箱,这样摸取4次,记取到红球的次数为ξ,求ξ的分布列;(3)每次从纸箱中摸取一个小球,记录颜色后放回纸箱,这样摸取20次,取得几次红球的概率最大?(只需写出结论)20.根据国家《环境空气质量》规定:居民区中的PM 2.5(PM 2.5是指大气中直径小于或等于2.5微米的颗粒物,也称可入肺颗粒物)年平均浓度不得超过35微克/立方米,PM 2.5的24小时平均浓度不得超过75微克/立方米.某城市环保部门随机抽取了一居民区去年40天的PM 2.5的24小时平均浓度的监测数据,数据统计如下:(2)求该样本的平均数,并根据样本估计总体的思想,从PM2.5的年平均浓度考虑,判断该居民区的环境是否需要改进?说明理由;(3)将频率视为概率,监测去年的某2天,记这2天中该居民区PM2.5的24小时平均浓度符合环境空气质量标准的天数为ξ,求ξ的分布列及均值E(ξ)和方差D(ξ).21.某单位招聘员工时,要求参加笔试的考生从5道A类题和3道B类题共8道题中任选3道作答.(1)求考生甲至少抽到2道B类题的概率;(2)若答对A类题每道计1分,答对B类题每道计2分,若不答或答错,则该题计0分.考生乙抽取的是1道A类题,2道B类题,且他答对每道A类题的概率为23,答对每道B类题的概率是12,各题答对与否相互独立,用X表示考生乙的得分,求X的分布列和数学期望.22.三个罐子分别编号为1,2,3,其中1号罐中装有2个红球和1个黑球,2号罐中装有3个红球和1个黑球,3号罐中装有2个红球和2个黑球,若某人从中随机取一罐,再从中任意取出一球,求取得红球的概率.23.某商场在“双十二”进行促销活动,现有甲、乙两个盒子,甲盒中有3红2白共5个小球,乙盒中有1红4白共5个小球,这些小球除颜色外完全相同.有两种活动规则:规则一:顾客先从甲盒中随机摸取一个小球,从第二次摸球起,若前一次摸到红球,则还从该盒中摸取一个球,若前一次摸到白球,则从另一个盒中摸取一个球,每摸出1个红球奖励100元,每个顾客只有3次摸球机会(每次摸球都不放回);规则二:顾客先从甲盒中随机摸取一个小球,从第二次摸球起,若前一次摸到红球,则要从甲盒中摸球一个,若前一次摸到白球,则要从乙盒中摸球一个,每摸出1个红球奖励100元,每个顾客只有3次摸球机会(每次摸球都不放回).(1)按照“规则一”,求一名顾客摸球获奖励金额的数学期望;(2)请问顾客选择哪种规则进行抽奖更有利,并请说明理由.24.山竹,原产于马鲁古,具有清热泻火、生津止渴的功效,其含有丰富的蛋白质与脂类,对体弱、营养不良的人群都有很好的调养作用,因此被誉为夏季的“水果之王”,受到广大市民的喜爱.现将某水果经销商近一周内山竹的销售情况统计如下表所示:(1)根据表格中数据,完善频率分布直方图;(2)求近一周内采购量在286箱以下(含286箱)的人数以及采购数量x 的平均值; (3)以频率估计概率,若从所有采购者中随机抽取4人,记采购量不低于260箱的采购人数为X ,求X 的分布列以及数学期望()E X .25.某学校为了了解学生暑假期间学习数学的情况,抽取了人数相等的甲、乙两班进行调查,甲班同学每天学习数学的平均时间的频率分布直方图(将时间分成[0,1),[1,2),[2,3),[3,4),[4,5),[5,6]共6组)和乙班同学每天学习数学的平均时间的频数分布表如图所示(单位:小时).(1)从甲班每天学习数学的平均时间在[0,2)的人中随机选出3人,求3人中恰有1人学习数学的平均时间在[0,1)范围内的概率;(2)从甲、乙两个班每天学习数学平均时间不小于5个小时的学生中随机抽取4人进一步了解其他情况,设4人中乙班学生的人数为ξ,求ξ的分布列和数学期望.26.某种子公司培育了一个豌豆的新品种,新品种豌豆豆荚的长度比原来有所增加,培育人员在一块田地(超过1亩)种植新品种,采摘后去掉残次品,将剩下的豆荚随机按每20个一袋装袋密封.现从中随机抽取5袋,测量豌豆豆荚的长度(单位:dm ),将测量结果按)0.6,0.8⎡⎣,)0.8,1.0⎡⎣,)1.0,1.2⎡⎣,)1.2,1.4⎡⎣,[]1.41.6,分为5组,整理得到如图所示的频率分布直方图.(1)求a 的值并估计这批新品种豌豆豆荚长度的平均数x -(不含残次品,同一组中的数据用该组区间的中点值作代表);(2)假设这批新品种豌豆豆荚的长度X 服从正态分布()2,N μσ,其中μ的近似值为豌豆豆荚长度的平均数x -,0.23σ=,试估计采摘的100袋新品种豌豆豆荚中,长度位于区间()0.88,1.57内的豆荚个数;(3)如果将这批新品种豌豆中豆荚长度超过1.4dm 的豆荚称为特等豆荚,以频率作为概率,随机打开一袋新品种豌豆豆荚,记其中特等豆荚的个数为ξ,求1ξ≤的概率和ξ的数学期望.附:19170.04620⎛⎫≈ ⎪⎝⎭,若随机变量()2,X N μσ,则()0.6827P X μσμσ-<<+=,(22)0.9545P X μσμσ-<<+=.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据分布列的性质可得23a =,由()2E ξ=可得出62m n =-,再由二次函数的基本性质可求得()D ξ的最小值. 【详解】由分布列的性质可得23a =,()12233E m n ξ=+=,所以,26m n +=,则62m n =-,()()()()()()222221212224222203333D m n n n n ξ=-+-=-+-=-≥,因此,()D ξ的最小值为0. 故选:A. 【点睛】本题考查利用随机分布列的性质解题,同时也考查了方差最值的计算,考查计算能力,属于中等题.2.C解析:C 【分析】由(20)(30)p X P X =<=求出的范围,再由方差公式求出值.【详解】∵(20)(30)p X P X =<=,∴2020303030205050(1)(1)C p p C p p -<-,化简得1p p -<,即12p >,又()850(1)D X p p ==-,解得0.2p =或0.8p =,∴0.8p =,故选C . 【点睛】 本题考查概率公式与方差公式,掌握这两个公式是解题的关键,本题属于基础题.3.B解析:B 【分析】记事件A 为“至少有一个女孩”,事件B 为“另一个也是女孩”,分别求出A 、B 的结果个数,问题是求在事件A 发生的情况下,事件B 发生的概率,即求(|)P B A ,由条件概率公式求解即可. 【详解】解:一个家庭中有两个小孩只有4种可能:{男,男},{男,女},{女,男},{女,女}.记事件A 为“至少有一个女孩”,事件B 为“另一个也是女孩”,则{A =(男,女),(女,男),(女,女)},{B =(男,女),(女,男),(女,女)},{AB =(女,女)}.于是可知3()4P A =,1()4P AB =. 问题是求在事件A 发生的情况下,事件B 发生的概率,即求(|)P B A ,由条件概率公式,得()114334P B A ==.故选:B . 【点睛】本题的考点是条件概率与独立事件,主要考查条件概率的计算公式:()()()P AB P B A P A =,等可能事件的概率的求解公式:()mP M n=(其中n 为试验的所有结果,m 为基本事件的结果).4.D解析:D 【分析】根据裂项相消法以及概率的性质求出a ,再得出()E X ,最后由()()E aX aE X =得出答案. 【详解】()()11a a aP X n n n n n ===-++(1)(2)(3)1P X P X P X =+=+== 122334a a a a a a ∴-+-+-=,解得43a =则221(1),(2),(3)2369129a a a P X P X P X ========= 62113()1239999E X ∴=⨯+⨯+⨯=452()()392137E aX aE X ∴==⨯=故选:D 【点睛】本题主要考查了随机变量分布列的性质以及均值的性质,属于中档题.5.C解析:C 【分析】根据题意,求出()P A 和()P AB ,由公式()()()|P AB P B A P A =即可求出解答.【详解】解:因为事件A 为“抓取的球中存在两个球同色”包括两个同色和三个同色,所以()213363393357198428C C C P A C +=== 事件A 发生且事件B 发生概率为:()12213336392363847C C C C P AB C +===故()()()3127|191928P AB P B A P A ===. 故选:C. 【点睛】本题考查条件概率求法,属于中档题.6.A解析:A 【分析】计算出()E ξ和()2E ξ,根据()()()22D E E ξξξ=-将()D ξ表示成关于p 的函数,研究函数的单调性即可得出结论. 【详解】()()()()222112nni i i i i i i D E p E E p ξξξξξξξ==⎡⎤=-⋅=-+⋅⎡⎤⎣⎦⎣⎦∑∑()()()()()()()2222222122ni i i i i p p E E E E E E E ξξξξξξξξξ=⎡⎤=-+=-+=-⎣⎦∑, 由分布列得()1111012222p p p E ξ--=-⨯+⨯+⨯=,()211110222p p p E ξ+-+=⨯+⨯=, 所以,()()()()222221111152224444p p D E E p p p ξξξ+-⎛⎫=-=-=-++=--+ ⎪⎝⎭, 所以,当()0,1p ∈时,()D ξ随着p 的增大而增大. 故选:A. 【点睛】本题考查离散型随机变量的期望和方差,考查二次函数的单调性,属于中等题.7.A解析:A 【分析】设事件A 为:至少有1个景点未被选择,事件B 为:恰有2个景点未被选择,计算()P AB 和()P A ,再利用条件概率公式得到答案.【详解】设事件A 为:至少有1个景点未被选择,事件B 为:恰有2个景点未被选择331()39P AB == 3337()139A P A =-=()1()()7P AB P B A P A == 故答案选A 【点睛】本题考查了条件概率,意在考查学生对于条件概率的理解和计算.8.A解析:A 【分析】根据条件概率的计算公式,分别求解公式各个部分的概率,从而求得结果. 【详解】设事件A 为“学生甲不是第一个出场,学生乙不是最后一个出场”;事件B 为“学生丙第一个出场”则()41134333555578A C C A P A A A +==,()1333555518C A P AB A A == 则()()()1837813P AB P B A P A === 本题正确选项:A 【点睛】本题考查条件概率的求解,关键是能够利用排列组合的知识求解出公式各个构成部分的概率.9.B解析:B 【分析】分别求出两个随机变量的分布列后求出它们的期望和方差可得它们的大小关系. 【详解】1ξ可能的取值为0,1,2;2ξ可能的取值为0,1,()1409P ξ==,()1129P ξ==,()141411999P ξ==--=, 故123E ξ=,22214144402199999D ξ=⨯+⨯+⨯-=. ()22110323P ξ⨯===⨯,()221221323P ξ⨯⨯===⨯, 故223E ξ=,2221242013399D ξ=⨯+⨯-=, 故12E E ξξ=,12D D ξξ>.故选B. 【点睛】离散型随机变量的分布列的计算,应先确定随机变量所有可能的取值,再利用排列组合知识求出随机变量每一种取值情况的概率,然后利用公式计算期望和方差,注意在取球模型中摸出的球有放回与无放回的区别. 10.B解析:B【分析】直接根据正态曲线的对称性求解即可.【详解】(2)0.2ξ<=,(26)0.6Pξ<<=,()610.20.60.2Pζ∴>=--=,即()()26P Pζζ<=>,2642μ+∴==,故选B.【点睛】本题主要考查正态分布与正态曲线的性质,属于中档题. 正态曲线的常见性质有:(1)正态曲线关于xμ=对称,且μ越大图象越靠近右边,μ越小图象越靠近左边;(2)边σ越小图象越“痩长”,边σ越大图象越“矮胖”;(3)正态分布区间上的概率,关于μ对称,()()0.5P x P xμμ>=<=11.D解析:D【解析】分析:根据条件概率求结果.详解:因为在下雨天里,刮风的概率为既刮风又下雨的概率除以下雨的概率,所以在下雨天里,刮风的概率为13104815=,选D.点睛:本题考查条件概率,考查基本求解能力.12.D解析:D【解析】分析:先根据已知求出a,b的值,再利用方差公式求随机变量X的方差()D X.详解:由题得1113,,130213a ba ba b⎧++=⎪⎪∴==⎨⎪⨯++=⎪⎩所以2221112()(01)(11)(21).3333D X=-⋅+-⋅+-⋅=故答案为D.点睛:(1)本题主要考查分布列的性质和方差的计算,意在考查学生对这些知识的掌握水平.(2) 对于离散型随机变量ξ,如果它所有可能取的值是1x ,2x ,…,n x ,…,且取这些值的概率分别是1p ,2p ,…,n p ,那么D ξ=211()x E p ξ-⋅+222()x E p ξ-⋅+…+2()n n x E p ξ-⋅,称为随机变量ξ的均方差,简称为方差,式中的E ξ是随机变量ξ的期望.二、填空题13.【分析】由题意可知抽得三球编号和为4812三种情况的基本事件有31种而总事件有125种即三个球编号之和恰为4的倍数的概率为则有根据二项分布的期望公式求期望即可【详解】三个球编号之和恰为4的倍数的基本 解析:93125【分析】由题意可知抽得三球编号和为4,8,12三种情况的基本事件有31种,而总事件有125种,即三个球编号之和恰为4的倍数的概率为31125,则有31~(3,)125X B ,根据二项分布的期望公式求期望即可. 【详解】三个球编号之和恰为4的倍数的基本事件:(1,1,2)有3种、(1,2,5)有6种、(1,3,4)有6种、(2,2,4)有3种、(2,3,3)有3种、(2,5,5)有3种、(3,4,5)有6种、(4,4,4)有1种,而总共有555125⨯⨯=, ∴三个球编号之和恰为4的倍数的概率为31125,由题意31~(3,)125X B , ∴X 的数学期望:3193()3125125E X =⨯=. 故答案为:93125. 【点睛】关键点点睛:根据编号和分组得到三个球编号之和恰为4的倍数的基本事件数,进而确定其概率,由人数为X 服从31(3,)125B 的二项分布,求期望. 14.【分析】由可求得再利用随机变量数学期望公式结合倒序相加法可求得的值【详解】由题意可得则倒序:故则故答案为:【点睛】关键点点睛:本题考查数学期望的计算解题的关键就是利用二项式系数的对称性结合倒序相加法 解析:5【分析】由()101k P X k ===∑可求得102M =,再利用随机变量数学期望公式结合倒序相加法可求得()E X 的值. 【详解】由题意可得()101010101000212k k k C P X k M MM ======⇒=∑∑, 则()012101010101001210C C C C E X M M M M=⋅+⋅+⋅++⋅. 倒序:()109801010101010980C C C C E X M M M M=⋅+⋅+⋅++⋅. 0101010C C =,191010C C =,281010C C =,,故()()012101010101010210E X C C C C M=++++=,则()5E X =.故答案为:5. 【点睛】关键点点睛:本题考查数学期望的计算,解题的关键就是利用二项式系数的对称性,结合倒序相加法求出()E X 的值,同时也要注意随机变量在所有可能取值下的概率之和为1,结合二项式定理求出M 的值.15.【分析】设可得出可求出的表达式利用方差公式可求出的值即可求出的值【详解】设其中可得出解得因此故答案为:【点睛】本题考查利用随机变量方差求数学期望解题的关键就是列出方程求解考查运算求解能力属于中等题 解析:1【分析】设()2P X x ==,可得出()10.8P X x ==-,可求出EX 的表达式,利用方差公式可求出x 的值,即可求出EX 的值. 【详解】设()2P X x ==,其中00.8x ≤≤,可得出()10.8P X x ==-,()00.210.820.8EX x x x ∴=⨯+⨯-+=+,()()()()2220.80.20.20.8 1.20.4DX x x x x x =+⨯+-⨯-+-⨯=,解得0.2x =,因此,0.20.81EX =+=. 故答案为:1. 【点睛】本题考查利用随机变量方差求数学期望,解题的关键就是列出方程求解,考查运算求解能力,属于中等题.16.【分析】根据计算得到再计算得到答案【详解】则;故故答案为:【点睛】本题考查了方差的计算意在考查学生的计算能力 解析:12【分析】根据()()3124P P ξξ=+==,()()()1221P E P ξξξ=+===计算得到 ()()111,224P P ξξ====,再计算()D ξ得到答案.【详解】()104P ξ==,则()()3124P P ξξ=+==;()()()1221P E P ξξξ=+===故()()111,224P P ξξ====.()()()()22211111011214242D ξ=-+-+-=故答案为:12【点睛】本题考查了方差的计算,意在考查学生的计算能力.17.【解析】分析:根据分布列的性质求出的值然后再根据方差的定义求解即可得到结论详解:由题意得即解得∴点睛:(1)离散型随机变量的分布列中所有概率和为1这一性质为求概率和检验分布列是否正确提供了工具(2)解析:98【解析】分析:根据分布列的性质求出,a b 的值,然后再根据方差的定义求解即可得到结论.详解:由题意得3318163352348162a b a b ⎧+++=⎪⎪⎨⎪++⨯+⨯=⎪⎩,即716528a b a b ⎧+=⎪⎪⎨⎪+=⎪⎩,解得14316a b ⎧=⎪⎪⎨⎪=⎪⎩.∴()2222515353539123424216282168V X ⎛⎫⎛⎫⎛⎫⎛⎫=-⨯+-⨯+-⨯+-⨯= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.点睛:(1)离散型随机变量的分布列中所有概率和为1,这一性质为求概率和检验分布列是否正确提供了工具.(2)求分布列的期望和方差时可根据定义直接求解即可.18.【解析】分析:由题意知这是一个条件概率做这种问题时要从这两步入手一是做出黄色骰子的点数为或的概率二是两颗骰子的点数之和大于的概率再做出两颗骰子的点数之和大于且黄色骰子的点数为或的概率根据条件概率的公 解析:712【解析】分析:由题意知这是一个条件概率,做这种问题时,要从这两步入手,一是做出黄色骰子的点数为3或6的概率,二是两颗骰子的点数之和大于7的概率,再做出两颗骰子的点数之和大于7且黄色骰子的点数为3或6的概率,根据条件概率的公式得到结果.详解:设x 为掷红骰子的点数,y 为黄掷骰子得的点数,(),x y 共有6636⨯=种结果,则黄色的骰子的点数为3或6所有12种结果,两颗骰子的点数之和大于7所有结果有10种,利用古典概型概率公式可得()()()1211077,,363361836P A P B P AB =====,由条件概率公式可得()()()7736|1123P AB P B A P A ===,故答案为712. 点睛:本题主要考查条件概率以及古典概型概率公式的应用,属于难题,利用古典概型概率公式求概率时,找准基本事件个数是解题的关键,基本亊件的探求方法有 (1)枚举法:适合给定的基本事件个数较少且易一一列举出的;(2)树状图法:适合于较为复杂的问题中的基本亊件的探求.在找基本事件个数时,一定要按顺序逐个写出;(3)利用两个原理及排列组合知识.三、解答题19.(1)12;(2)分布列见解析;(3)15次. 【分析】(1)利用组合数公式和古典概型的概率公式可求得所求事件的概率; (2)由题意可知,34,4B ξ⎛⎫⎪⎝⎭,利用二项分布可得出随机变量ξ的分布列; (3)根据独立重复试验的概率公式可得出结论. 【详解】(1)一次从纸箱中摸出两个小球,恰好摸出2个红球,相当于从3个红球中摸出2个红球,由古典概型的概率公式可知,所求事件的概率为232412C P C ==;(2)每次从纸箱中摸出一个小球,记录颜色后放回纸箱,则每次摸到红球的概率均为34, 这样摸球4次,则34,4B ξ⎛⎫ ⎪⎝⎭, 所以,()4110=4256P ξ⎛⎫== ⎪⎝⎭,()3143131=4464P C ξ⎛⎫==⋅⋅ ⎪⎝⎭,()22243127244128P C ξ⎛⎫⎛⎫==⋅⋅= ⎪⎪⎝⎭⎝⎭,()334312734464P C ξ⎛⎫==⋅⋅= ⎪⎝⎭,()438144256P ξ⎛⎫===⎪⎝⎭. 因此,随机变量ξ的分布列如下表所示:【点睛】思路点睛:求解随机变量分布列的基本步骤如下:(1)明确随机变量的可能取值,并确定随机变量服从何种概率分布; (2)求出每一个随机变量取值的概率;(3)列成表格,对于抽样问题,要特别注意放回与不放回的区别,一般地,不放回抽样由排列、组合数公式求随机变量在不同取值下的概率,放回抽样由分步乘法计数原理求随机变量在不同取值下的概率.20.(1)22.5微克/立方米, 37.5微克/立方米;(2)40.5(微克/立方米), 需要改进,理由见解析;(3)分布列见解析,1.8,0.18. 【分析】(1)根据表中数据即可得出; (2)直接计算出平均数即可判断; (3)可得ξ的可能取值为0,1,2,且92,10B ξ⎛⎫⎪⎝⎭,由此的可得出分布列,求出均值和方差. 【详解】(1)由表可知众数在第二组,为15+3022.52=微克/立方米, 因为前两组的频率之和为0.4,前三组的频率之和为0.6,故中位数在第三组,设为x , 则0.1300.24530x -=-,解得37.5x =微克/立方米, 所以众数为22.5微克/立方米,中位数为37.5微克/立方米.(2)去年该居民区PM 2.5的年平均浓度为7.5×0.1+22.5×0.3+37.5×0.2+52.5×0.2+67.5×0.1+82.5×0.1=40.5(微克/立方米). ∵40.5>35,∴去年该居民区PM 2.5的年平均浓度不符合环境空气质量标准,故该居民区的环境需要改进.(3)记事件A 表示“一天PM 2.5的24小时平均浓度符合环境空气质量标准”,则P (A )=910. 随机变量ξ的可能取值为0,1,2,且92,10B ξ⎛⎫ ⎪⎝⎭. ∴2299()11010kkk P k C ξ-⎛⎫⎛⎫==- ⎪ ⎪⎝⎭⎝⎭(k=0,1,2),即∴()2 1.810E np ξ==⨯=, 91()(1)20.181010D np p ξ=-=⨯⨯=. 【点睛】本题考查样本数据众数、中位数、平均数的求解,考查二项分布的分布列和均值、方差的求解,解题的关键是正确分析数据,得出92,10B ξ⎛⎫ ⎪⎝⎭. 21.(1)27;(2)分布列见解析;期望为83.【分析】(1)利用组合数计算考生甲至少抽到2道B 类题的种数,利用古典概型的概率计算公式可求概率.(2)X 的所有可能取值为0,1,2,3,4,5,分别计算出各自的概率后可得分布列,再利用公式计算期望即可. 【详解】解:(1)设“考生甲至少抽到2道B 类题”为事件A ,则213353382()7C C C P A C +== (2)X 的所有可能取值为0,1,2,3,4,5,所以2211(0)113212P X ⎛⎫⎛⎫==-⨯-= ⎪ ⎪⎝⎭⎝⎭,2211(1)1326P X ⎛⎫==⨯-= ⎪⎝⎭,122111(2)113226P X C ⎛⎫⎛⎫==-⨯⨯-⨯= ⎪ ⎪⎝⎭⎝⎭,122111(3)13223P X C ⎛⎫==⨯⨯-⨯= ⎪⎝⎭, 222211(4)1C 3212P X ⎛⎫⎛⎫==-⨯⨯= ⎪ ⎪⎝⎭⎝⎭, 2211(5)326P X ⎛⎫==⨯= ⎪⎝⎭,所以X 的分布列为所以123456631263EX =⨯+⨯+⨯+⨯+⨯=. 【点睛】方法点睛:离散型随机变量的分布列的计算,注意理解每个取值的含义,并借助排列组合的知识计算相应的概率.22.2336【分析】记i B ={球取自i 号罐}(1,2,3)i =,A ={取得红球},则123A AB AB AB =++,且123,,AB AB AB 两两互斥,由条件概率公式计算出123,,AB AB AB 的概率可得结论.【详解】记i B ={球取自i 号罐}(1,2,3)i =,A ={取得红球},显然A 的发生总是伴随着123,,B B B 之一同时发生,即123A AB AB AB =++,且123,,AB AB AB 两两互斥,()()()123231,,342P A B P A B P A B ===∣∣∣,所以()()()()()3123112131123()33343236i i i P A P AB P AB P AB P B P A B ==++===⨯+⨯+⨯=∑∣.【点睛】关键点点睛:本题考查条件概率,互斥事件的概率公式.解题关键是把取得红球这个事件拆分成三个互斥事件的和:记i B ={球取自i 号罐}(1,2,3)i =,A ={取得红球},123A AB AB AB =++,而由条件概率公式可得123,,AB AB AB 的概率.23.(1)138;(2)选择规则一更有利.理由见解析.【分析】(1)按规则一,设3次摸球后摸到的红球个数为随机变量X ,其可能的取值有0,1,2,3,4利用互斥事件以及独立事件同时发生的计算公式分别计算出各个概率的值,并列出分布列,而所求的奖励金额为随机变量100X ,根据期望计算公式即可求解; (2)与(1)同方法可求出规则二的奖励金额的期望,与(1)中的结果相比较,即可知规则一更有利. 【详解】解:(1)按照规则一,设顾客经过3次摸球后摸取的红球个数为X , 则X 可以取0,1,2,3,则()2412055425==⨯⨯=P X ; ()32421424314154555455425==⨯⨯+⨯⨯+⨯⨯=P X ; ()32232113254354550==⨯⨯+⨯⨯=P X ;()3211354310==⨯⨯=P X . 随机变量X 的分布列为:()214131100100012313825255010⎛⎫=⨯⨯+⨯+⨯+⨯= ⎪⎝⎭E X .(2)若选规则二,设顾客经过3次摸球后摸取的红球个数为Y ,则Y 可以取0,1,2,3()2436055425==⨯⨯=P Y ; ()32421124117154555455450==⨯⨯+⨯⨯+⨯⨯=P Y ;()3223212138254354555425==⨯⨯+⨯⨯+⨯⨯=P Y ;()3211354310==⨯⨯=P Y .随机变量Y 的分布列为:()61781100100012312825502510⎛⎫=⨯+⨯+⨯+⨯= ⎪⎝⎭E Y ,因为()()100100>EX E Y ,所以选择规则一更有利.【点睛】方法点睛:与数学期望相关的决策性问题解题步骤:①设出随机变量,并写出其所有可能的取值;②求出每个随机变量的概率;③写出分布列;④求出数学期望;⑤针对具体的问题选择合适的方案.24.(1)直方图见解析;(2)270;(3)分布列见解析,()125E X =. 【分析】(1)求出各组频率,得出频率除以组距值,即可完善频率分布直方图; (2)根据频率分布直方图即可列式求解; (3)可知34,5X B ⎛⎫⎪⎝⎭,求出概率,即可得出分布列和期望值. 【详解】(1)依题意,转化频率分布表如下所示: 采购数量x (单位:箱) [)220,240[)240,260[)260,280[)280,300[]300,320采购人数 100 100 50 200 50 频率 0.2 0.2 0.1 0.4 0.1 频率/组距0.0100.0100.0050.0200.005(2)采购量在286箱以下(含286)的频率为60.20.20.10.40.6220+++⨯=; 故采购量在286箱以下(含286)的人数为5000.62310⨯=; 所求平均值为2300.22500.22700.12900.43100.146502711631270⨯+⨯+⨯+⨯+⨯=++++=;(3)依题意,34,5X B ⎛⎫ ⎪⎝⎭,则()421605625P X ⎛⎫=== ⎪⎝⎭, ()3143296155625P X C ⎛⎫⎛⎫=== ⎪⎪⎝⎭⎝⎭,()222432216255625P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭, ()33432216355625P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,()438145625P X ⎛⎫=== ⎪⎝⎭, 故X 的分布列为:故()455E X =⨯=. 【点睛】 本题考查频率分布直方图、样本的数字特征、离散型随机变量的分布列以及数学期望,考查考生直观想象、数学建模、数学运算、逻辑推理的核心素养. 25.(1)35;(2)分布列见解析,127. 【分析】(1)先求出甲班的总人数,再利用频率分布直方图求出甲班在[0,1),[1,2)的人数,从而可以计算出抽取 3人中恰有1人学习数学的平均时间在[0,1)范围内的概率;(2)首先计算出甲,乙两班中数学平均时间在区间[5,6]的人数,从而可以得到随机变量ξ的取值,并计算出对应的概率,写出随机变量ξ的分布列,即可计算出随机变量ξ的数学期望.【详解】(1)因为乙班学生的总人数为2+5+10+16+14+3=50,所以甲班中学习平均时间在[0,1)内的人数为50×0.04=2,甲班中学习平均时间在[1,2)内的人数为50×0.08=4.设“3人中恰有1人学习数学的平均时间在[0,1)范围内”为事件A ,则122436263()205C C P A C ⋅⨯===; (2)甲班学习数学平均时间在区间[5,6]的人数为50×0.08=4.由频数分布表知乙班学习数学平均时间在区间[5,6]的人数为3,两班中学习数学平均时间不小于5小时的同学共7人,ξ的所有可能取值为0,1,2,3.0434471(0)35C C P C ξ===, 13344712(1)35C C P C ξ===,22344718(2)35C C P C ξ===, 3134474(3)35C C P C ξ===. 所以ξ的分布列为()0123353535357E ξ=⨯+⨯+⨯+⨯=. 【点睛】 思路点睛:离散型随机变量分布列:(1)明取值;(2)求概率;(3)画表格;(4)做检验.26.(1)0.75a =,平均数为1.11;(2)1637(个);(3)概率为320,数学期望3. 【分析】(1)先根据频率分布直方图的性质求得a 的值,再根据平均数的计算方法即可得这批新品种豌豆荚长度的平均数的估计值;(2)根据μ与σ的值得到()0.88<<1.57X P ,即()2P X μσμσ-<<+,再利用正态分布的有关知识计算相应的概率,最后求豆荚个数;(3)先得到豆荚长度超过1.4dm 的频率为320,再判断ξ服从二项分布,最后计算所求概率和数学期望.【详解】(1)由频率分布直方图可得0.50.210.220.220.21a ⨯+⨯+⨯+⨯=.解得0.75a = 估计新品种豌豆豆荚长度的平均数0.70.50.20.910.2 1.120.2 1.30.750.2 1.50.750.2 1.11x =⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯=. (2)由(1)知新品种豌豆豆荚长度的平均数约为1.11,则 1.11μ=,又0.23σ=,所以0.88μσ-=, 1.34μσ+=,20.65μσ-=,2 1.57μσ+=.所以()()0.88 1.572P X P X μσμσ<<=-<<+()()220.81862P X P X μσμσμσμσ-<<++-<<+== 所以100袋豌豆豆荚中,长度位于区间()0.88,1.57内的豆荚个数为100200.81861637.21637⨯⨯=≈(个)(3)在新品种豌豆豆荚中随机抽取一个,豆长度超过1.4dm 的频率为。
随机变量及其分布列与独立性检验练习题附答案
数学学科自习卷(二)一、选择题1.将三颗骰子各掷一次,记事件A =“三个点数都不同”,B =“至少出现一个6点”,则条件概率()P A B ,()P B A 分别是( ) A.6091,12 B.12,6091 C.518,6091 D.91216,122.设随机变量ξ服从正态分布()3,4N ,若()()232P a P a ξξ<-=>+,则a 的值为A .73B .53C .5D .3 3.已知随机变量ξ~)2,3(2N ,若23ξη=+,则D η=A . 0B . 1C . 2D . 44.同时拋掷5枚均匀的硬币80次,设5枚硬币正好出现2枚正面向上,3枚反面向上的次数为ξ,则ξ的数学期望是( )A .20B .25C. 30 D .405. 甲乙两人进行乒乓球比赛, 约定每局胜者得1分, 负者得0分, 比赛进行到有一人比对方多2分或打满6局时停止, 设甲在每局中获胜的概率为23,乙在每局中获胜的概率为13,且各局胜负相互独立, 则比赛停止时已打局数ξ的期望()E ξ为( ) A .24181 B .26681 C .27481D .670243 6.现在有10张奖券,8张2元的,2张5元的,某人从中随机无放回地抽取3张奖券,则此人得奖金额的数学期望为( )A .6B .395C .415D .9 7.一个篮球运动员投篮一次得3分的概率为a ,得2分的概率为b ,不得分的概率为c ,,,(0,1)a b c∈,且无其它得分情况,已知他投篮一次得分的数学期望为1,则ab的最大值为()A.148B.124C.112D.168.位于数轴原点的一只电子兔沿着数轴按下列规则移动:电子兔每次移动一个单位,移动的方向向左或向右,并且向左移动的概率为23,向右移动的概率为13,则电子兔移动五次后位于点(1,0)-的概率是()A.4243B.8243C.40243D.80243二、填空题9.已知55104)1()1()1)(2(++⋅⋅⋅+++=-+x a x a a x x ,则=++531a a a ______.10.乒乓球比赛采用7局4胜制,若甲、乙两人实力相当,获胜的概率各占一半,则打完5局后仍不能结束比赛的概率等于_____________________.11.设ξ是离散型随机变量,21(),()33P a P b ξξ====,且a b <,又42,39E D ξξ==,则a b +的值为______ _.12.某车站每天8:009:00,9:0010:00--都恰有一辆客车到站,但到站的时刻是随机的,且两者到站的时间是相互独立的,其规律为到站的时刻 8:10 9:10 8:30 9:30 8:509:50概率 16 12 13一旅客8:20到站,则它候车时间的数学期望为_______。
随机变量及其分布练习试卷1(题后含答案及解析)
随机变量及其分布练习试卷1(题后含答案及解析) 题型有:1. 单项选择题 2. 多项选择题 3. 综合分析题单项选择题每题1分。
每题的备选项中,只有1个符合题意。
1.一个样本由n个观测值组成,已知样本均值的样本标准差S皆为正数,如果每个观测值扩大到2倍,则下列说法正确的是()。
A.和S都扩大2倍B.和S都不变C.扩大2倍,S扩大4倍D.扩大4倍,S扩大2倍正确答案:C解析:由E(aX+b)=aE(X)+b var(ax+b)=a2var(X)可知。
知识模块:随机变量及其分布2.以下分别用来表示分布的中心位置和散布的大小的特征值是()。
A.均值、方差B.方差、均值C.标准差、均值D.方差、标准差正确答案:A解析:均值表示了分布的中心位置,方差和标准差表示分布的散布的大小。
知识模块:随机变量及其分布设随机变量Z的分布列为:X:0 1 2 3 4 P:0.50.20.10.15 0.05则3.E(X)为()。
A.0.105B.2.0C.1.6D.1.0正确答案:A解析:(1)E(X)=0×0.5+1×0.2+2×0.1+3×0.15+4×0.05=0.105知识模块:随机变量及其分布4.P(0≤X<3)为()。
A.0.9C.0.4D.0.7正确答案:B解析:(2)P(0≤X<3)=0.5+0.2+0.1=0.8知识模块:随机变量及其分布5.设X为[a、b)上的连续型随机变量,已知a<c<d<b,且c-a=d-c=b-d,则下列结论成立的是()。
A.P(a<X≤d)=2P(a<X≤c)B.P(c<X≤d)=P(d<X≤b)C.P(a≤X<b)=1/3D.P(X=a)=P(X=b)正确答案:D解析:对于连续型随机变量,在给定区间上取值的概率P是以在取值区间上,概率密度分布曲线与X轴所夹的曲边梯形的面积。
对于连续随机变量X取一点的概率为0,所以选D。
知识模块:随机变量及其分布6.设X~N(1,4),则P(0≤X<2)可表示为()。
第二章随机变量及其分布练习题
第二章随机变量及其分布练习题1.甲、乙两人各进行一次射击,甲击中目标的概率是0.8,乙击中目标的概率是0.6,则两人都击中目标的概率是〔 〕A.1.4 B.0.9C.0.6 D.0.48 2.设随机变量1~62X B ⎛⎫ ⎪⎝⎭,,则(3)P X =等于〔 〕 A.516 B.316 C.58 D.7163.设随机变量X 的概率分布列为X1 2 3 P 16 13 12则E (X +2)的值为 ( ).A.113 B .9 C.133 D.734.两台相互独立工作的电脑,产生故障的概率分别为a ,b ,则产生故障的电脑台数的均值为〔 〕A.abB.a b + C.1ab - D.1a b --5.某一般高校招生体育专业测试合格分数线确定为60分.甲、乙、丙三名考生独立参加测试,他们能到达合格的概率分别是0.9,0.8,0.75,则三人中至少有一人达标的概率为( )A .0.015B .0.005 6.设随机变量~()X B n p ,,则22()()DX EX 等于〔 〕 A.2p B.2(1)p - C.np D.2(1)p p -7.对标有不同编号的6件正品和4件次品的产品进行检测,不放回地依次摸出2件.在第一次摸出正品的条件下,第二次也摸到正品的概率是().A.35 B.25 C.110 D.598.从1,2,3,4,5中任取2个不同的数,事件A=“取到的2个数之和为偶数〞,事件B=“取到的2个数均为偶数〞,则P(B|A)=().A.18 B.14 C.25 D.129.设随机变量ξ服从正态分布N(0,1),P(ξ>1)=p,则P(-1<ξ<0)等于().A.12p B.1-p C.1-2p D.12-p10.已知随机变量X服从正态分布N(μ,σ2),且P(μ-2σ<X<μ+2σ)=0.954 4,P(μ-σ<X<μ+σ)=0.682 6.假设μ=4,σ=1,则P(5<X<6)=( ) A.0.135 9 B.0.135 8C.0.271 8 D.0.271 611.甲、乙两人进行乒乓球比赛,比赛规则为“3局2胜〞,即以先赢2局者为胜.依据经验,每局比赛中甲获胜的概率为0.6,则本次比赛甲获胜的概率是().A.0.216 B.0.36 C.0.432 D.0.648 12.马老师从课本上抄录一个随机变量ξ的概率分布列如下表:处字迹模糊,但能断定这两个“?〞处的数值相同.据此,小牛给出了正确答案E(ξ)=________.13.如图,EFGH是以O为圆心、半径为1的圆的内接正方形.将一颗豆子随机地扔到该圆内,用A表示事件“豆子落在正方形EFGH内〞,B表示事件“豆子落在扇形OHE(阴影局部)内〞,则(1)P(A)=________;(2)P(B|A)=________.14.某灯泡厂生产大批灯泡,其次品率为1.5%,从中任意地陆续取出100个,则其中正品数X的均值为个,方差为.15.某大厦的一部电梯从底层出发后只能在第18、19、20层停靠,假设该电梯在底层载有5位乘客,且每位乘客在这三层的每一层下电梯的概率均为1 3,用X表示这5位乘客在第20层下电梯的人数,则P(X=4)=________.16.在口袋中有不同编号的3个白球和2个黑球.如果不放回地依次取两个球,求在第1次取到白球的条件下,第2次也取到白球的概率.17.某商场为刺激消费,拟按以下方案进行促销:顾客每消费500元便得到奖券一张,每张奖券的中奖概率为12,假设中奖,商场返回忆客现金100元.某顾客现购置价格为2 300元的台式电脑一台,得到奖券4张.(1)设该顾客中奖的奖券张数为X,求X的分布列;(2)设该顾客购置台式电脑的实际支出为Y元,用X表示Y,并求Y的数学期望.18.某公司“咨询热线〞共有8路外线,经长期统计发觉,在8点到10点这段时间内,外线同时打入情况如下表所示:同时0 1 2 3 4 5 6 7 8打入个数x概率p 0.13 0.35 0.27 0.14 0.08 0.02 0.01 0 0〔1〕假设这段时间内,公司只安排了2位接线员〔一个接线员一次只能接一个〕①求至少一路不能一次接通的概率;②在一周五个工作日中,如果有三个工作日的这段时间〔8点至10点〕内至少一路不能一次接通,那么公司的形象将受到损害,现用至少一路不能一次接通的概率表示公司形象的“损害度〞,求上述情况下公司形象的“损害度〞.〔2〕求一周五个工作日的这段时间〔8点至10点〕内,同时打入数X的均值.19.某仪表厂从供给商处购置元器件20件,双方协商的验货规则是:从中任取3件进行质量检测,假设3件中无不合格品,则这批元器件被接受,否则就要重新对这批元器件逐个检查.(1)假设该批元器件的不合格率为10%,求需对这批元器件逐个检查的概率;(2)假设该批元器件的不合格率为20%,求3件中不合格元器件个数的分布列与期望.20.某商店试销某种商品20天,获得如下数据:日销售量(件)012 3频数159 5该商品3件,当天营业结束后检查存货.假设发觉存量少于2件,则当天进货补充至3件,否则不进货.将频率视为概率.(1)求当天商店不进货的概率;(2)记X为第二天开始营业时该商品的件数.求X的分布列和数学期望.21.设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立.(1)求同一工作日至少3人需使用设备的概率;(2)X表示同一工作日需使用设备的人数,求X的数学期望.。
晋城市选修三第二单元《随机变量及其分布》检测(包含答案解析)
一、选择题1.已知随机变量ξ的分布列如下表,若()2E ξ=,则()D ξ的最小值等于( )A .0B .2C .1D .122.近几年新能源汽车产业正持续快速发展,动力蓄电池技术是新能源汽车的核心技术.已知某品牌新能源汽车的车载动力蓄电池充放电次数达到800次的概率为90%,充放电次数达到1000次的概率为36%.若某用户的该品牌新能源汽车已经经过了800次的充放电,那么他的车能够达到充放电100次的概率为( ) A .0.324B .0.36C .0.4D .0.543.随机变量ξ的分布列如表所示,若1()3E X =-,则(31)D X +=( )A .4B .5C .6D .74.设103p <<,随机变量ξ的分布列如下:当p 在10,3⎛⎫ ⎪⎝⎭内增大时,下列结论正确的是( ) A .()D ξ减小 B .()D ξ增大 C .()D ξ先减小后增大 D .()D ξ先增大后减小5.已知随机变量X 的分布列:Xa 2P12p - 12p若()1E X =,(21)2D X +=,则p =( ) A .13B .14C .15D .166.在一次期中考试中,数学不及格的人数占20%,语文不及格占10%,两门都不及格占5%,若一名学生语文及格,则该生数学不及格的概率为( ) A .16B .14C .29D .9507.已知随机变量()2,1XN ,其正态分布密度曲线如图所示,若向长方形OABC 中随机投掷1点,则该点恰好落在阴影部分的概率为( ) 附:若随机变量()2,N ξμσ,则()0.6826P μσξμσ-≤≤+=,()220.9544P μσξμσ-≤≤+=.A .0.1359B .0.7282C .0.6587D .0.86418.条件:p 将1,2,3,4四个数字随机填入如图四个方格中,每个方格填一个数字,但数字可以重复使用.记方格A 中的数字为1x ,方格B 中的数字为2x ;命题1若p ,则()()1122E x E x =,且()()()1212E x x E x E x +=+;命题2若P ,则()()1124D x D x =,且()()()1212D x x D x D x +=+( )A .命题1是真命题,命题2是假命题B .命题1和命题2都是假命题C .命题1是假命题,命题2是真命题D .命题1和命题2都是真命题9.某校从6名学生干部(其中女生4人,男生2人)中选3人参加学校的汇演活动,在女生甲被选中的情况下,男生乙也被选中的概率为( )A .12B .25C .35D .4510.下列四个结论中正确的个数是(1)对于命题0:p x R ∃∈使得2010x -≤,则:p x R ⌝∃∈都有210x ->;(2)已知2(2,)XN σ,则 (2)0.5P X >=(3)已知回归直线的斜率的估计值是2,样本点的中心为(4,5),则回归直线方程为ˆ23yx =-; (4)“1≥x ”是“12x x+≥”的充分不必要条件. A .1B .2C .3D .411.已知一组数据12,,,n x x x 的平均数3x =,方差24s =,则数据1232,32,,32n x x x +++的平均数、方差分别为( )A .9,12B .9,36C .11,12D .11,3612.若随机变量X 的分布列为( )且()1E X =,则随机变量X 的方差()D X 等于( ) A .13B .0C .1D .23二、填空题13.已知随机变量ξ和η,其中η=4ξ-2,且E (η)=7,若ξ的分布列如下表,则n 的值为__.14.一个家庭有两个小孩,假设生男生女是等可能的,已知这个家庭有一个是女孩的条件下,这时另一个也是女孩的概率是________.15.在5道题中有3道理科题和2道文科题,如果不放回地依次抽取2道题,在第一次抽到理科题的条件下,第2次也抽到理科题的概率为_____.16.某工厂在试验阶段大量..生产一种零件,这种零件有A 、B 两项技术指标需要检测,设各项技术指标达标与否互不影响,若有且仅有一项技术指标达标的概率为12,至少一项技术指标达标的概率为34.按质量检验规定:两项技术指标都达标的零件为合格品,任意依次抽取该种零件4个,设ξ表示其中合格品的个数,则E ξ=______.17.袋中装有10个形状大小均相同的小球,其中有6个红球和4个白球.从中不放回地依次摸出2个球,记事件A =“第一次摸出的是红球”,事件B =“第二次摸出的是白球”,则()|P B A =______.18.从编号为1,2,…,10的10个大小相同的球中任取4个,在选出4号球的条件下,选出球的最大号码为6的概率为_____.三、解答题19.已知某射手射中固定靶的概率为34,射中移动靶的概率为23,每次射中固定靶、移动靶分别得1分、2分,脱靶均得0分,每次射击的结果相互独立,该射手进行3次打靶射击:向固定靶射击1次,向移动靶射击2次.(1)求“该射手射中固定靶且恰好射中移动靶1次”的概率; (2)求该射手的总得分X 的分布列和数学期望.20.2020年某市教育主管部门为了解近期举行的数学竞赛的情况,随机抽取500名参赛考生的数学竞赛成绩进行分析,并制成如下的频率分布直方图:(1)求这500名考生的本次数学竞赛的平均成绩x (精确到整数); (2)由频率分布直方图可认为:这次竞赛成绩X 服从正态分布()2,N μσ,其中μ近似等于样本的平均数x ,σ近似等于样本的标准差s ,并已求得18s ≈.用该样本的频率估计总体的概率,现从该市所有考生中随机抽取10名学生,记这次数学竞赛成绩在(86,140]之外的人数为Y ,求(2)P Y =的值(精确到0.001). 附:(1)当()2,XN μσ时,()0.6827,(22)0.9545P X P X μσμσμσμσ-<+=-<+=;(2)820.81860.18140.0066⨯≈.21.黑龙江省哈尔滨市为了打好疫情防控阻击战、歼灭战,在全民核酸检测期间,倡议全体市民:不聚餐、不聚集、居家抗疫.哈尔滨市市民小李为了增加居家抗疫的趣味性,在家里进行套圈游戏,游戏规则如下:向甲、乙两个物体进行套圈,先向甲物体套圈一次,再向乙物体套圈两次,一共套圈三次,向甲物体套圈时命中得2分,没有命中得0分;向乙物体套圈时,如果连续命中两次得3分,只命中一次得1分,一次也没有命中得0分.小李同志目前的水平是:向甲物体套圈时,命中的概率是34;向乙物体套圈时,命中的概率为23.假设小李同志每次套圈的结果相互独立.(1)求小李同志恰好命中三次的概率;(2)求小李同志获得总分X 的分布列及数学期望.22.为了解果园某种水果产量情况,随机抽取100个水果测量质量,样本数据分组为[)100,150,[)150,200,[)200,250,[)250,300,[)300,350,[]350,400(单位:克),其频率分布直方图如图所示:(1)用分层抽样的方法从样本里质量在[)250,300,[)300,350的水果中抽取6个,求质量在[)250,300的水果数量;(2)从(1)中得到的6个水果中随机抽取3个,记X 为质量在[)300,350的水果数量,求X 的分布列和数学期望;(3)果园现有该种水果越20000个,其等级规则及销售价格如下表所示: 质量m (单位:克) 200m <200300m ≤<300m ≥等级规格二等一等特等价格(元/个) 4 7 1023.某食品厂为了检查一条自动包装流水线的生产情况,随即抽取该流水线上40件产品作为样本算出他们的重量(单位:克)重量的分组区间为(490495],,(495500],,…,(510515],,由此得到样本的频率分布直方图,如图所示.(1)根据频率分布直方图,求重量超过505克的产品数量.(2)在上述抽取的40件产品中任取2件,设X 为重量超过505克的产品数量,求X 的分布列及期望.(3)在上述抽取的40件产品中任取5件产品,求恰有2件产品的重量超过505克的概率. 24.玻璃杯成箱出售,每箱20只,假设各箱含0,1,2只残次品的概率分别为0.8,0.1,0.1,一顾客欲购一箱玻璃杯,售货员随意取一箱,顾客开箱随意地察看四只,若无残次品,则买下该箱,否则退回.试求: (1)顾客买下该箱的概率α;(2)在顾客买下的一箱中,求无残次品的概率β.25.某单位招聘员工时,要求参加笔试的考生从5道A 类题和3道B 类题共8道题中任选3道作答.(1)求考生甲至少抽到2道B 类题的概率;(2)若答对A 类题每道计1分,答对B 类题每道计2分,若不答或答错,则该题计0分.考生乙抽取的是1道A 类题,2道B 类题,且他答对每道A 类题的概率为23,答对每道B 类题的概率是12,各题答对与否相互独立,用X 表示考生乙的得分,求X 的分布列和数学期望.26.近年来,我国肥胖人群的规模不断扩大,肥胖人群有很大的心血管安全隐患,目前,国际上常用身体质量指数(Bodv Mass Index ,缩写BMI )来衡量人体胖瘦程度以及是否健康,其计算公式是BMI =体重(单位:千克) 身高2(单位:2m ),中国成人的BMI 数值标准为:BMI <18.5为偏瘦;18.5≤BMI <24为正常;24≤BMI <28为偏胖;BMI ≥28为肥胖.某单位随机调查了100名员工,测量身高、体重并计算出BMI 值.(1)根据调查结果制作了如下2×2列联表,请将2×2列联表补充完整,并判断是否有99%的把握认为肥胖与不经常运动有关;人中“经常运动且不肥胖”的人数为X ,求随机变量X 的分布列和数学期望.附:22()()()()()n ad bc K a b c d a c b d -=++++,n a b c d =+++.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据分布列的性质可得23a =,由()2E ξ=可得出62m n =-,再由二次函数的基本性质可求得()D ξ的最小值. 【详解】由分布列的性质可得23a =,()12233E m n ξ=+=,所以,26m n +=,则62m n =-,()()()()()()222221212224222203333D m n n n n ξ=-+-=-+-=-≥, 因此,()D ξ的最小值为0. 故选:A.本题考查利用随机分布列的性质解题,同时也考查了方差最值的计算,考查计算能力,属于中等题.2.C解析:C 【分析】事件A 表示“充放电次数达到800次”,事件B 表示“充放电次数达到1000次”,则()0.9=P A ,()0.36P AB =,结合条件概率的计算公式,即可求解.【详解】设事件A 表示“充放电次数达到800次”,事件B 表示“充放电次数达到1000次”, 则()90%0.9,()36%0.36P A P AB ====,所以某用户的该品牌新能源汽车已经经过了800次的充放电, 那么他的车能够达到充放电1000次的概率为:()0.36(|)0.4()0.9P AB P B A P A ===. 故选:C. 【点睛】本题主要考查了条件概率的计算,其中解答中熟记条件概率的计算公式,正确理解题意是解答的关键,着重考查推理与运算能力,属于基础题.3.B解析:B 【分析】 由于()13E X =-,利用随机变量的分布列列式,求出a 和b ,由此可求出()D X ,再由()(319)X D D X +=,即可求出结果.【详解】 根据题意,可知:112a b ++=,则12a b +=, ()13E X =-,即:1123b -+=-,解得:16b =,13a ∴=,()22211111151013233369X D ⎛⎫⎛⎫⎛⎫∴=-+⨯++⨯++⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则()59959(31)D D X X ==⨯+=, ∴5(31)D X +=.【点睛】本题考查离散型随机变量的方差的求法,以及离散型随机变量的分布列、数学期望等知识,考查运算求解能力.4.A解析:A 【分析】根据方差公式得出211()64D p ξ⎛⎫=-++ ⎪⎝⎭,结合二次函数的性质,即可得出答案. 【详解】122()01333E p p p ξ⎛⎫⎛⎫=⨯-+⨯+=+ ⎪ ⎪⎝⎭⎝⎭ 222122()013333D p p p p ξ⎛⎫⎛⎫⎛⎫⎛⎫=+--++-⨯+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⨯2212113964p p p ⎛⎫=--+=-++ ⎪⎝⎭当p 在10,3⎛⎫ ⎪⎝⎭内增大时,()D ξ∴减小故选:A 【点睛】本题主要考查了求离散型随机变量的方差,涉及了二次函数性质的应用,属于中档题.5.B解析:B 【分析】由(21)4()D X D X +=,可得1()2D X =,由随机变量分布列的期望、方差公式,联立即得解. 【详解】由题意,11()0()2121222aE X p a p p =⨯-+⨯+⨯=∴+= 且(21)2D X +=,又1(21)4()()2D X D X D X +=∴=22211()(01)()(1)(21)222D X p a p ∴=-⨯-+-⨯+-⨯=联立可得:11,4a p == 故选:B 【点睛】本题考查了随机变量分布列的期望和方差,考查了学生概念理解,数学运算的能力,属于中档题.6.A解析:A 【分析】记“一名学生语文及格”为事件A ,“该生数学不及格”为事件B ,所求即为(|)P B A ,根据条件概率的计算公式,和题设数据,即得解. 【详解】记“一名学生语文及格”为事件A ,“该生数学不及格”为事件B ,所求即为:()20%5%151(|)()110%906P A B P B A P A -====-故选:A 【点睛】本题考查了条件概率的计算,考查了学生概念理解,实际应用,数学运算的能力,属于基础题.7.D解析:D 【分析】根据正态分布密度曲线的对称性和性质,再利用面积比的几何概型求解概率,即得解. 【详解】由题意,根据正态分布密度曲线的对称性,可得:()()1(01)(22)0.13592P X P P μσξμσμσξμσ≤≤=-≤≤+--≤≤+=故所求的概率为10.13590.86411P -==, 故选:D 【点睛】本题考查了正态分布的图像及其应用,考查了学生概念理解,转化与划归的能力,属于基础题.8.D解析:D 【分析】方格A 中的数字为1x ,方格B 中的数字为2x ;由题意可知:所填入的数字1x 与2x 相互独立.再利用数学期望的性质及其方差的性质即可得出. 【详解】方格A 中的数字为1x ,方格B 中的数字为2x ;由题意可知:所填入的数字1x 与2x 相互独立.命题1若p ,则由数学期望的性质可得:()()1122E x E x =,且()()()1212E x x E x E x +=+;命题2若P ,则由方差的性质可得:()()1124D x D x =,且()()()1212D x x D x D x +=+.因此命题1,2都正确. 故选:D. 【点睛】本题考查数学期望的性质及其方差的性质,考查逻辑推理能力和运算求解能力.9.B解析:B 【分析】先求出女生甲被选中的情况下的基本事件总数1215C C n =,再求出在女生甲被选中的情况下,男生乙也被选中包含的基本事件个数为2124C C m =,结合条件概率的计算方法,可得m P n=. 【详解】女生甲被选中的情况下,基本事件总数1215C C 10n ==,在女生甲被选中的情况下,男生乙也被选中包含的基本事件个数为2124C C 4m ==,则在女生甲被选中的情况下,男生乙也被选中的概率为42105m P n ===. 故选B. 【点睛】本题考查了条件概率的求法,考查了学生的计算求解能力,属于基础题.10.C解析:C 【分析】由题意,(1)中,根据全称命题与存在性命题的关系,即可判定是正确的;(2)中,根据正态分布曲线的性质,即可判定是正确的;(3)中,由回归直线方程的性质和直线的点斜式方程,即可判定是正确;(4)中,基本不等式和充要条件的判定方法,即可判定. 【详解】由题意,(1)中,根据全称命题与存在性命题的关系,可知命题0:p x R ∃∈使得2010x -≤,则:p x R ⌝∀∈都有210x ->,是错误的;(2)中,已知()22,X N σ~,正态分布曲线的性质,可知其对称轴的方程为2x =,所以 (2)0.5P X >=是正确的;(3)中,回归直线的斜率的估计值是2,样本点的中心为(4,5),由回归直线方程的性质和直线的点斜式方程,可得回归直线方程为ˆ23yx =-是正确;(4)中,当1x ≥时,可得12x x +≥=成立,当12x x +≥时,只需满足0x >,所以“1x ≥”是“12x x+≥”成立的充分不必要条件. 【点睛】本题主要考查了命题的真假判定及应用,其中解答中熟记含有量词的否定、正态分布曲线的性质、回归直线方程的性质,以及基本不等式的应用等知识点的应用,逐项判定是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.11.D解析:D 【解析】分析:由题意结合平均数,方程的性质即可求得新数据的平均数和方差. 详解:由题意结合平均数,方程的性质可知: 数据1232,32,,32n x x x +++的平均数为:3211x +=,方差为22336s ⨯=.本题选择D 选项.点睛:本题主要考查平均数的性质,方差的性质等知识,意在考查学生的转化能力和计算求解能力.12.D解析:D 【解析】分析:先根据已知求出a,b 的值,再利用方差公式求随机变量X 的方差()D X .详解:由题得1113,,130213a b a b a b ⎧++=⎪⎪∴==⎨⎪⨯++=⎪⎩ 所以2221112()(01)(11)(21).3333D X =-⋅+-⋅+-⋅= 故答案为D.点睛:(1)本题主要考查分布列的性质和方差的计算,意在考查学生对这些知识的掌握水平.(2) 对于离散型随机变量ξ,如果它所有可能取的值是1x ,2x ,…,n x ,…,且取这些值的概率分别是1p ,2p ,…,n p ,那么D ξ=211()x E p ξ-⋅+222()x E p ξ-⋅+…+2()n n x E p ξ-⋅,称为随机变量ξ的均方差,简称为方差,式中的E ξ是随机变量ξ的期望.二、填空题13.【解析】所以且概率和解得解析:13【解析】42ηξ=-,()()9427,4E E E ηξξ=-==,所以()11912344124E m n ξ=⨯+++⨯=,且概率和111412m n +++=,解得13n =.14.【分析】利用列举法求出已知这个家庭有一个是女孩的条件下基本事件总数n=3这时另一个也是女孩包含的基本事件个数m=1由此能求出已知这个家庭有一个是女孩的条件下这时另一个也是女孩的概率【详解】一个家庭有解析:13【分析】利用列举法求出已知这个家庭有一个是女孩的条件下,基本事件总数n =3,这时另一个也是女孩包含的基本事件个数m =1,由此能求出已知这个家庭有一个是女孩的条件下,这时另一个也是女孩的概率. 【详解】一个家庭有两个小孩,假设生男生女是等可能的, 基本事件有: {男,男},{男,女},{女,男},{女,女}, 已知这个家庭有一个女孩的条件下,基本事件总数n =3 , 这时另一个也是女孩包含的基本事件个数m =1,∴已知这个家庭有一个女孩的条件下,这时另一个也是女孩的概率是13m p n ==, 故答案为:13【点睛】本题主要考查了条件概率,可以列举在某条件发生的情况下,所有事件的个数及所研究事件的个数,利用古典概型求解,属于中档题.15.【分析】由已知中5道题中如果不放回地依次抽取2道题在第一次抽到理科题的条件下剩余4道题中有2道理科题代入古典概型公式得到概率【详解】∵5道题中有3道理科题和2道文科题则第一次抽到理科题的前提下第2次解析:12【分析】由已知中5道题中如果不放回地依次抽取2道题.在第一次抽到理科题的条件下,剩余4道题中,有2道理科题,代入古典概型公式,得到概率. 【详解】∵5道题中有3道理科题和2道文科题,则第一次抽到理科题的前提下,第2次抽到理科题的概率P 2142==. 故答案为:12. 【点睛】本题考查的知识点是条件概率,分析出基本事件总数和满足条件的事件个数是解答的关键,但本题易受到第一次抽到理科题的影响而出错.16.1【分析】设两项技术指标达标的概率分别为得到求得的值进而得到可得分布列和的值得到答案【详解】由题意设两项技术指标达标的概率分别为由题意得解得所以即一个零件经过检测为合格品的概率为依题意知所以故答案为解析:1 【分析】设,A B 两项技术指标达标的概率分别为12,P P ,得到()()()()122112111231114P p P P P P ⎧-+-=⎪⎪⎨⎪---=⎪⎩,求得12,P P 的值,进而得到1(4,)4B ξ,可得分布列和E ξ的值,得到答案.【详解】由题意,设,A B 两项技术指标达标的概率分别为12,P P ,由题意,得()()()()122112111231114P p P P P P ⎧-+-=⎪⎪⎨⎪---=⎪⎩,解得1211,22P P ==, 所以1214P PP ==,即一个零件经过检测为合格品的概率为14, 依题意知1(4,)4B ξ,所以1414E ξ=⨯=.故答案为1. 【点睛】本题主要考查了随机变量的分布列及其数学期望的计算,其中解答中根据概率的计算公式,求得12,P P 的值,得到随机变量1(4,)4B ξ是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.17.【分析】首先第一次摸出红球为事件第二次摸出白球为事件分别求出利用条件概率公式即可求解【详解】由题意事件A 第一次摸到红球的概率为:又由第一次摸到红球且第二次摸到白球的概率为根据条件概率公式可得故答案为解析:49【分析】首先第一次摸出红球为事件A ,第二次摸出白球为事件B ,分别求出(),()P A P B ,利用条件概率公式,即可求解. 【详解】由题意,事件A“第一次摸到红球”的概率为:6()10P A =, 又由“第一次摸到红球且第二次摸到白球”的概率为6424()10990P A B =⨯=, 根据条件概率公式,可得()()24104|()9069P A B P B A P A ==⨯=,故答案为49. 【点睛】本题主要考查了概率的计算方法,主要是考查了条件概率与独立事件的理解,属于中档题.看准确事件之间的联系,正确运用公式,是解决本题的关键,着重考查了推理与运算能力.18.【分析】令事件求出即可求出选出4号球的条件下选出球的最大号码为6的概率【详解】令事件依题意知∴故答案为【点睛】本题考查古典概型理解古典概型的特征:试验结果的有限性和每一个试验结果出现的等可能性掌握列 解析:114【分析】令事件{}44A =选出的个球中含号球,{}46B =选出的个球中最大号码为,求出()39n A C =,()6n AB =,即可求出选出4号球的条件下,选出球的最大号码为6的概率. 【详解】令事件{}44A =选出的个球中含号球,{}46B =选出的个球中最大号码为,依题意知()39=84n A C =,()246n AB C ==, ∴()61|8414P B A ==,故答案为114. 【点睛】本题考查古典概型,理解古典概型的特征:试验结果的有限性和每一个试验结果出现的等可能性,掌握列举法,还要应用排列组合公式熟练,学会运用数形结合、分类讨论的思想解决概率的计算问题,属于中档题.三、解答题19.(1)13;(2)分布列答案见解析,数学期望:4112. 【分析】(1)记“该射手射中固定靶且恰好射中移动靶1次”为事件D ,得到D ABC BC A =+,结合互斥事件和相互独立事件的概率计算公式,即可求解;(2)随机变量X 的可能取值为0,1,2,3,4,5,根据互斥事件和相互独立事件的概率计算公式,求得相应的概率,得出分布列,利用期望的公式,即可求解. 【详解】(1)记“该射手射中固定靶且恰好射中移动靶1次”为事件D , 则()34P A =,()()23P B P C ==, D ABC BC A =+,其中ABC C AB +互斥,,,,,A B C B C 相互独立,从而()()()()322114336P ABC P A P B P C ⎛⎫==⨯-= ⎪⎝⎭, 则()()()()13P D P ABC ABC P ABC P ABC =+=+=, 所以该射手射中固定靶且恰好射中移动靶1次的概率为13. (2)随机变量X 的可能取值为0,1,2,3,4,5,则()()()()()3221011143336P X P ABC P A P B P C ⎛⎫⎛⎫⎛⎫====---=⎪⎪⎪⎝⎭⎝⎭⎝⎭, ()()()()()3111143312P X P ABC P A P B P C ====⨯⨯=,1211121(2)()()()()()()()4334339P X P ABC ABC P A P B P C P A P B P C ==+=+=⨯⨯+⨯⨯=,()()()()()()()()321312134334333P X P ABC ABC P A P B P C P A P B P C ==+=+=⨯⨯+⨯⨯=()()()()()122144339P X P ABC P A P B P C ====⨯⨯=,3221(5)()()()()4333P X P ABC P A P B P C ====⨯⨯=,该射手的总得分X 的分布列为随机变量X 的数学期望()012345.3612939312E X =⨯+⨯+⨯+⨯+⨯+⨯= 【点睛】求随机变量X 的期望与方差的方法及步骤: 理解随机变量X 的意义,写出X 可能的全部值; 求X 取每个值对应的概率,写出随机变量的分布列; 由期望和方差的计算公式,求得数学期望()(),E X D X ;若随机变量X 的分布列为特殊分布列(如:两点分布、二项分布、超几何分布),可利用特殊分布列的期望和方差的公式求解. 20.(1)104(分);(2)0.298. 【分析】(1)根据频率分布直方图,利用平均数公式求解.(2)由104,18μσ==,求得(86140)(2)P X P X μσμσ<=-<+,进而得到(P X μσ-或2)X μσ>+,然后由()10,0.1814Y B ~求解.【详解】(1)10(650.0028750.01850.01950.0181050.02x =⨯+⨯+⨯+⨯+⨯,1150.0181250.0121350.008+⨯+⨯+⨯1450.0012)+⨯1010.416104.16104(=⨯=≈分).(2)由题意知()2,,X Nμσ~且104,18μσ==,所以8610418,1401041822μσμσ=-=-=+⨯=+, 所以0.68270.9545(86140)(2)0.81862P X P X μσμσ+<=-<+==,所以(P X μσ-或2)10.81860.1814X μσ>+=-=,所以()10,0.1814Y B ~,所以()228102C 0.18140.8186450.006630.298P Y ==⨯⨯≈⨯≈.【点睛】结论点睛:(1)若X 服从正态分布,即X ~N (μ,σ2),要充分利用正态曲线的关于直线X =μ对称和曲线与x 轴之间的面积为1.(2)二项分布是概率论中最重要的几种分布之一,在实际应用和理论分析中都有重要的地位.①判断一个随机变量是否服从二项分布,关键有二:其一是独立性,即一次试验中,事件发生与不发生二者必居其一;其二是重复性,即试验是独立重复地进行了n 次. ②对于二项分布,如果在一次试验中某事件发生的概率是p ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是P (X =k )=kk n kn p q C -.其中k =0,1,…,n ,q =1-p .21.(1)13;(2)分布列见解析,()5918E X =. 【分析】(1)直接根据相互独立事件的概率公式计算即可;(2)X 的可能取值为0,1,2,3,5,根据独立事件、互斥事件的概率公式分别计算X 的各种取值对应的概率,得出分布列,再计算数学期望. 【详解】设小李同志第i 次套圈命中为事件i A ,1,2,3i =, 则123,,A A A 为独立事件, (1)设恰好命中三次为事件A .()()()()()12312332214333P A P A A A P A P A P A ===⨯⨯=(2)X 的可能取值为0,1,2,3,5则()1231111043336P X P A A A ---⎛⎫===⨯⨯= ⎪⎝⎭()123123121112114334339P X P A A A P A A A ----⎛⎫⎛⎫==+=⨯⨯+⨯⨯= ⎪ ⎪⎝⎭⎝⎭,()1233111243312P X P A A A --⎛⎫===⨯⨯= ⎪⎝⎭()1231231233P X P A A A P A A A P A A A ---⎛⎫⎛⎫⎛⎫==++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭12231232111144334334339669=⨯⨯+⨯⨯+⨯⨯=++= ()()123322154333P X P A A A ===⨯⨯=X 的分布列为则()01235369129318E X =⨯+⨯+⨯+⨯+⨯=. 【点睛】方法点睛:求解数学期望问题,首先要正确理解题意,其次要准确无误的找出随机变量的所有可能值,计算出相应的概率,写出随机变量的分布列,正确运用均值的公式进行计算,也就是要过三关:(1)阅读理解关;(2)概率计算关;(3)公式应用关. 22.(1)4个;(2)分布列见解析;期望为1;(3)143000(元). 【分析】(1)根据频率分布直方图得到质量在[)250,300,[)300,350的该水果的频率,按照比例抽取即可.(2)由(1)知,6个水果中由2个质量在[)300,350,得到X 的所有可能取值为0,1,2,再分别求得其相应的概率,列出分布列,再求期望.(3)根据频率分布直方图,得到质量在[)100,150,[)150,200,[)200,250,[)250,300,[)300,350,[]350,400的该种水果的频率,然后估计20000个水果中,哥等级的个数求解. 【详解】(1)质量在[)250,300,[)300,350的该水果的频率分别为0.008500.4⨯=,0.004500.2⨯=,其比为2:1,所以按分层抽样从质量在[)250,300,[)300,350的这种水果中随机抽取6个, 质量在[)250,300的该种水果有4个.(2)由(1)可知,6个水果中由2个质量在[)300,350, 所以X 的所有可能取值为0,1,2.()3436C 10C 5P X ===,()214236C C 31C 5P X ===,()124236C C 12C 5P X ===.所以X 的分布列为 故X 的数学期望()0121555E X =⨯+⨯+⨯=. (3)由频率分布直方图可知,质量在[)100,150,[)150,200,[)200,250,[)250,300,[)300,350,[]350,400的该种水果的频率分别为0.1,0.1,0.15,0.4,0.2,0.05.所以估计20000个水果中,二等品有()200000.10.14000⨯+=个; 一等品有()200000.150.411000⨯+=个; 特等品有()200000.20.055000⨯+=个.果园该种水果的销售收入为40004110007500010143000⨯+⨯+⨯=(元). 【点睛】方法点睛:求解离散型随机变量X 的分布列的步骤:①理解X 的意义,写出X 可能取的全部值;②求X 取每个值的概率;③写出X 的分布列.(2)求离散型随机变量的分布列的关键是求随机变量所取值对应的概率,在求解时,要注意应用计数原理、古典概型等知识. 23.(1)12件;(2)分布列见解析;期望为3965;(3)231703. 【分析】(1)求出重量超过505克的产品的频率,再计算数量即可;(2)X 的所有可能取值为0、1、2,求出对应的概率即可列出分布列,求出数学期望; (3)求出恰有2件产品的重量超过505克包含的基本事件的个数,除以总的基本事件的个数即可求解. 【详解】(1)重量超过505克的产品频率为0.0550.0150.3⨯+⨯=, 重量超过505克的产品数量是400.312⨯=件; (2)X 的所有可能取值为0、1、2,021228240142763(0)780130C C P X C ⋅⨯====, 1228241011228(15)7801306C C P X C ⋅⨯====, 20122824061111(2)780130C C P X C ⋅⨯====, X 的分布列为:X 的期望561139()01213013013065E X =⨯+⨯+⨯=; (3)设在上述抽取的40件产品中任取5件产品,恰有2件产品的重量超过505克为事件A ,则322812540231 ()703C CP AC⋅==.【点睛】思路点睛:求离散型随机变量的分布列及期望的一般步骤:(1)根据题中条件确定随机变量的可能取值;(2)求出随机变量所有可能取值对应的概率,即可得出分布列;(3)根据期望的概念,结合分布列,即可得出期望(在计算时,要注意随机变量是否服从特殊的分布,如超几何分布或二项分布等,可结合其对应的概率计算公式及期望计算公式,简化计算).24.(1)0.94;(2)0.85.【分析】(1)先求出一箱中有i件残次品的概率,再求查看的有i件残次品的概率,进而由条件概率求出顾客买下该箱玻璃杯的概率;(2)由(1)可得顾客买下该箱玻璃杯的条件下没有残次品的概率.【详解】设A=‘顾客买下该箱’,B=‘箱中恰有i件残次品’,i=0,1,2,(1)α=P(A)=P(B0)P(A|B0)+P(B1)P(A|B1)+P(B2)P(A|B2)=0.8+0.1×419420CC+0.1×418420CC≈0.94.(2)β=P(B0|A)=()()0.80.94P ABP A=≈0.85.【点睛】结论点睛:应用条件概率时弄清概率P(B|A)和P (AB) 的区别与联系:(1)联系:事件A和B都发生了;(2)区别: a、P(B| A)中,事件A和B发生有时间差异,A先B后;在P (AB)中,事件A、B同时发生.b、样本空间不同,在P(B|A)中,样本空间为A,事件P (AB)中,样本空间仍为Ω.25.(1)27;(2)分布列见解析;期望为83.【分析】(1)利用组合数计算考生甲至少抽到2道B类题的种数,利用古典概型的概率计算公式可求概率.(2)X的所有可能取值为0,1,2,3,4,5,分别计算出各自的概率后可得分布列,再利用公式计算期望即可.【详解】解:(1)设“考生甲至少抽到2道B类题”为事件A,则213353382 ()7C C CP AC+==(2)X的所有可能取值为0,1,2,3,4,5,。
大题专练训练50:随机变量的分布列(独立性检验)-2021届高三数学二轮复习
二轮大题专练50—随机变量的分布列(独立性检验)1.近年来,我国肥胖人群的规模急速增长,肥胖人群有着很大的健康隐患.目前,国际上常用身体质量指数(英文为BodyMassIndex,简称BMI)来衡量人体胖瘦程度以及是否健康,其计算公式是BMI=,中国成人的BMI数值标准为:BMI<18.5为偏瘦;18.5≤BMI<23.9为正常;24≤BMI<27.9为偏胖;BMI≥28为肥胖.某地区随机调查了100名35岁以上成人的身体健康状况,测量身高、体重并计算BMI数值.(1)根据调查结果制作下面的2×2列联表,并判断能否有99%的把握认为35岁以上成人肥胖与不经常运动有关?肥胖不肥胖总计经常运动员工4060不经常运动员工2440总计100参考公式:,其中n=a+b+c+d.参考数据:P(K2≥k)0.250.100.0500.0100.0050.001k 1.323 2.706 3.841 6.6357.87910.828(2)如果视样本的频率视为概率,现随机地从这个地区抽取经常运动人群中的3人,不经常运动人群中的1人座谈,记这4人中肥胖人数为X,求X的分布列和数学期望.解:(1)填表如下:肥胖不肥胖总计经常运动员工204060不经常运动员工241640总计4456100所以K2=≈6.926,因为6.926>6.635,所以有99%的把握认为肥胖与不经常运动有关.(2)“经常运动且肥胖”的概率为=,“经常运动且不肥胖”的概率为=,“不经常运动且肥胖”的概率为=,“不经常运动且不肥胖”的概率为=,X的所有可能取值为0,1,2,3,4,P(X=0)=()3×=,P(X=1)=××()2×+()3×=,P(X=2)=×()2××+××()2×=,P(X=3)=()3×+×()2××=,P(X=4)=()3×=,所以随机变量X的分布列为X01234P则数学期望为E(X)=0×+1×+2×+3×+4×=.2.随着人们生活水平的提高和对健康生活的重视,越来越多的人加入到了健身运动中.某健身房从参与健身的会员中随机抽取了100人,对其每周参与健身的天数和2020年在该健身房的消费金额(单位:元)进行统计,得到以下统计表和统计图:平均每周健身天数不大于23或4不小于5男性会员人数203510女性会员人数10205若某人平均每周健身天数不小于5,则称其为“健身达人”.该健身房规定年消费金额不超过1600元的为普通会员,超过1600元但不超过3200元的为银牌会员,超过3200元的为金牌会员.(1)已知金牌会员都是“健身达人”,现从这100位会员里的“健身达人”中随机抽取2人,求他们都是金牌会员的概率;(2)根据所给数据,完成下面的2×2列联表:男性会员女性会员是“健身达人”不是“健身达人”并判断能否在犯错误的概率不超过0.05的前提下认为是否为“健身达人”和性别有关?(3)该健身机构在2020年年底针对这100位会员举办一次消费返利活动,每位会员均可参与摸奖游戏,游戏规则如下:摸奖箱中装有5张形状大小完全一样的卡片,其中3张印跑步机图案、2张印动感单车图案,有放回地摸三次卡片,每次只能摸一张.若摸到动感单车的总次数为1,则获得50元奖励;若摸到动感单车的总次数为2,则获得100元奖励;若摸到动感单车的总次数为3,则获得200元奖励,其他情况不予奖励.规定每个普通会员只能参加1次摸奖游戏,每个银牌会员可参加2次摸奖游戏,每个金牌会员可参加3次摸奖游戏(每次摸奖结果相互独立).试估计在此次消费返利活动中该健身机构的总支出.附:,其中n=a+b+c+d.P(K2≥k0)0.5000.2500.1000.0500.0100.005 k00.455 1.323 2.706 3.841 6.6367.879解:(1)设事件A表示从这100位会员里的“健身达人”中随机抽取2人都是金牌会员,则.(2)根据题意:男性会员女性会员是“健身达人”105不是“健身达人”5530=,故不能在犯错误的概率不超过0.05的前提下认为是否为“健身达人”和性别有关系.(3)设一次摸奖所获得的奖励额为X,则X的所有可能取值为0,50,100,200,且,,,,故一次摸奖获得的奖励额的期望值为,故总支出约为(28+60×2+12×3)×63.2=184×63.2=11628.8元.3.为了解成年人的交通安全意识情况,某中学组织学生进行了一次全市成年人安全知识抽样调查.随机地抽取了200名成年人,然后对这200人进行问卷调查,其中拥有驾驶证的占25.这200人所得的分数都分布在[30,100]范围内,规定分数在80以上(含80)的为“具有很强安全意识”,所得分数的频率分布直方图如图.(1)补全下面的22⨯列联表,并判断能否有95%的把握认为“具有很强安全意识”与“拥有驾驶证”有关?拥有驾驶证没有驾驶证总计 具有很强安全意识 22 不具有很强安全意识总计200(2)将上述调查所得的频率视为概率,现从全市成年人中随机抽取3人,记“具有很强安全意识”的人数为X ,求X 的分布列及数学期望.附临界值表:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.2()P K0.15 0.10 0.05 0.025 0.010 0.005 0.0012.072 2.7063.841 5.024 6.635 7.879 10.828解:(1)200人中拥有驾驶证的占25,有80人,没有驾驶证的有120人,由题意知(0.0040.0080.0200.0280.0200.004)101a++++++⨯=,解得0.016a=.所以具有很强安全意识的人有200(0.0160.004)1040⨯+⨯=人,不具有很强安全意识的有160人.补全22⨯列联表如下:拥有驾驶证没有驾驶证总计具有很强安全意识221840不具有很强安全意识58102160总计80120200计算得2200(221021858)754.688 3.841408016012016K⨯⨯-⨯==≈>⨯⨯⨯,∴有95%的把握认为“具有很强安全意识”与“拥有驾驶证”有关.(2)由频率分布直方图中数据可知,抽到的每个成年人“具有很强安全意识”的概率为15,所以X的所有可能取值为0,1,2,3.则3464(0)()5125P X ===,1231448(1)()55125P X C ==⨯⨯=, 2231412(2)()55125P X C ==⨯⨯=, 311(3)()5125P X ===. 所以X 的分布列为:X 0 1 2 3 P6412548125121251125故64481213()01231251251251255E X =⨯+⨯+⨯+⨯=. 4.为了解使用手机是否对学生的学习有影响,某校随机抽取50名学生,对学习成绩和使用手机情况进行了调查,统计数据如表所示(不完整):使用手机不使用手机总计 学习成绩优秀 5 20 学习成绩一般总计3050(1)补充完整所给表格,并根据表格数据计算是否有99.9%的把握认为学生的学习成绩与使用手机有关;(2)现从如表 不使用手机的学生中按学习成绩是否优秀分层抽样选出9人,再从这9人中随机抽取3人,记这3人中“学习成绩优秀”的人数为X ,试求X 的分布列与数学期望.参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d=+++.参考数据:2)解:(1)完成列联表如下:∴2()50(5102015)0.053310.828()()()()20302525n ad bc K a b c d a c b d -⨯-⨯==≈<++++⨯⨯⨯,∴没有99.9%的把握认为学生的学习成绩与使用手机有关;(2)现从如表不使用手机的学生中按学习成绩是否优秀分层抽样选出9人, 则从学习成绩优秀中抽取209630⨯=人,从学习成绩一般中抽取109330⨯=人, 再从这9人中随机抽取3人,记这3人中“学习成绩优秀”的人数为X , 则X 的可能取值为0,1,2,3,33391(0)84C P X C ===,12633918(1)84C C P X C ===, 21633945(2)84C C P X C ===,363920(3)84C P X C ===,X ∴的分布列为:数学期望1184520()0123284848484E X =⨯+⨯+⨯+⨯=. 5.教育部官方数据显示,2020届大学毕业生达到844万,根据相关调查,位于大城市的应届毕业生毕业后,有30%会留在该城市进行就业,于是租房便成为这些毕业生的首选.为了了解应届毕业生房租支出的费用,研究人员对部分毕业生进行相关调查,所得数据如图所示.(2)为了了解应届生选择租房时考虑的主要因素,研究人员作出调查,所得数据如表所示,判断是否有99.9%的把握认为性别与选择租房时考虑的主要因素具有相关性.(3)由频率分布直方图,可近似地认为A 城市应届毕业生房租支出服从正态分布(N μ,23.2),若2020年该市区的应急毕业生共有100万人,试根据本题信息估计毕业后留在该市且房租支出介于8.6百元到21.4百元之间的毕业生人数. 参考数据:2()P K0.100 0.050 0.010 0.0012.7063.841 6.635 10.828()0.6827P X μσμσ-<<+≈,(22)0.9544P X μσμσ-<<+≈,(33)0.9973P X μσμσ-<<+≈.解:(1)依题意,(0.01250.050.03750.0125)41m ++++⨯=,解得0.1375m =; 故(0.012540.0580.1375120.0375160.012520)411.8x =⨯+⨯+⨯+⨯+⨯⨯=;(2)在本次实验中,2K 的观测值21500(500400300300)57.87610.828800800700700⨯⨯-⨯=≈>⨯⨯⨯,故有99.9%的把握认为性别与选择租房时考虑的主要因素具有相关性; (3)依题意,毕业后留在该市的应届毕业生人数为10000000.3300000⨯=人, 0.68270.9973(8602140)(3)0.842P x P x μσμσ+<<=-<<+==,故所求人数为3000000.84252000⨯=.6.智慧课堂是指一种打破传统教育课堂模式,以信息化科学技术为媒介实现师生之间、生生之间的多维度互动,能有效提升教师教学效果、学生学习成果的新型教学模式.为了进一步推动智慧课堂的普及和应用,A 市现对全市中小学智慧课堂的应用情况进行抽样调查,统计数据如表:(1)补全22⨯列联表,判断能否有99.5%的把握认为智慧课堂的应用与区域有关,并说明理由;(2)在偶尔应用或者不应用智慧课堂的学校中,按照农村和城市的比例抽取6个学校进行分析,然后再从这6个学校中随机抽取2个学校所在的地域进行核实,记其中农村学校有X 个,求X的分布列和数学期望.2)解:(1)22⨯列联表,(2分)222()160(20404060)3210.6677.879()()()()1006080803n ad bc K a b c d a c b d -⨯-⨯====>++++⨯⨯⨯.(4分) 所以有99.5%的把握认为认为智慧课堂的应用与区域有关.(6分)(2)在偶尔应用或者不应用智慧课堂的学校中,农村和城市的比例是2:1,所以抽取的6个样本有4个是农村学校,2个是城市学校,从中抽取2个,则X 的可能取值为0,1,2.(7分)0242261(0)15C C P X C ===,1142268(1)15C C P X C ===,2426022(2)5C CP X C ===. 所以X 的分布列为:(10分)X 的数学期望1824()012151553E X =⨯+⨯+⨯=.(12分) 7.某学校共有1000名学生,其中男生400人,为了解该校学生在学校的月消费情况,采取分层抽样随机抽取了100名学生进行调查,月消费金额分布在450~950之间.根据调查的结果绘制的学生在校月消费金额的频率分布直方图如图所示: 将月消费金额不低于750元的学生称为“高消费群”.(Ⅰ)求a 的值,并估计该校学生月消费金额的平均数(同一组中的数据用该组区间的中点值作代表);(Ⅱ)现采用分层抽样的方式从月消费金额落在[550,650),[750,850)内的两组学生中抽取10人,再从这10人中随机抽取3人,记被抽取的3名学生中属于“高消费群”的学生人数为随机变量X ,求X 的分布列及数学期望;(Ⅲ)若样本中属于“高消费群”的女生有10人,完成下列2×2列联表,并判断是否有97.5%的把握认为该校学生属于“高消费群”与“性别”有关?属于“高消费群”不属于“高消费群”合计男女合计(参考公式:,其中n=a+b+c+d)P(K2≥k)0.150.100.050.0250.0100.0050.001 k 2.072 2.706 3.841 5.024 6.6357.87910.828解:(Ⅰ)由题意知100×(0.0015+a+0.0025+0.0015+0.001)=1,解得a=0.0035,样本平均数为=500×0.15+600×0.35+700×0.25+800×0.15+900×0.10=670元.(Ⅱ)由题意,从[550,650)中抽取7人,从[750,850)中抽取3人,随机变量X的所有可能取值有0,1,2,3.P(X=k)=(k=0,1,2,3)所以随机变量X的分布列为:X0123P随机变量X的数学期望E(X)=+2×+3×=.(Ⅲ)由题可知,样本中男生40人,女生60人属于“高消费群”的25人,其中女生10人;得出以下2×2列联表:属于“高消费群”不属于“高消费群”合计男生152540女生105060合计2575100==>5.024,所以有97.5%的把握认为概型学生属于“高消费群”与性别有关.。
专题四 随机变量概率分布和独立性检验
专题四随机变量概率分布和独立性检验【温故·习新】1.甲、乙、丙三名同学高考结束之后,一起报名参加了驾照考试,在科目二考试中,甲通过的概率为12,甲、乙、丙三人都通过的概率为124,甲、乙、丙三人都没通过的概率为14,且在平时的训练中可以看出乙通过考试的概率比丙大.(1)求乙,丙两人各自通过考试的概率;(2)令甲、乙、丙三人中通过科目二考试的人数为随机变量ξ,求ξ的分布列及数学期望【释疑·拓展】例1.已知甲箱中装有3个红球,2个黑球,乙箱中装有2个红球,3个黑球,这些球除颜色外完全相同,某商场举行有奖促销活动,规定顾客购物1000元以上,可以参与抽奖一次,设奖规则如下:每次分别从以上两个箱子中各随机摸出2个球,共4个球,若摸出4个球都是红球,则获得一等奖,奖金300元;摸出的球中有3个红球,则获得二等奖,奖金200元;摸出的球中有2个红球,则获得三等奖,奖金100元;其他情况不获奖,每次摸球结束后将球放回原箱中.(1)求在1次摸奖中,获得二等奖的概率;(2)若3人各参与摸奖1次,求获奖人数X的数学期望()E X;(3)若商场同时还举行打9折促销活动,顾客只能在两项促销活动中任选一项参与.假若你购买了价值1200元的商品,那么你选择参与哪一项活动对你有利?例2.2017年12月,针对国内天了紧急限气措施,全市居民打况,对该地区某些年份天然气(1)由折线图可以看出,可用与年份x (单位:年)之间的关系ˆa的值,并预测2018年该地区(2)政府部门为节约能源出台该方案对新能源汽车的续航里的不同,将补贴金额划分为三每车补贴2.5万元,C 类:每车公司60辆新能源汽车的补贴情类型 A车辆数目10 为了制定更合理的补贴方案,政的补贴情况,在该出租车公司进一步跟踪调查.若抽取的国内天然气供应紧张的问题,某市政府及时安排部署居民打响了节约能源的攻坚战.某研究人员为了了解天然天然气需求量进行了统计,并绘制了相应的折线图.,可用线性回归模型拟合年度天然气需示量y (单位:的关系.并且已知y 关于x 的线性回归方程是 6.5ˆy x =该地区的天然气需求量; 源出台了《购置新能源汽车补贴方案》, 续航里程做出了严格规定,根据续航里程 分为三类,A 类:每车补贴1万元,B 类: :每车补贴3.4万元.某出租车公司对该 补贴情况进行了统计,结果如下表: 类B 类C 类2030方案,政府部门决定利用分层抽样的方式了解出租车公车公司的60辆车中抽取6辆车作为样本,再从6辆车2辆车享受的补贴金额之和记为“ξ”,求ξ的分布列排部署,加气站采取解天然气的需求状 单位:千万立方米)ˆa +,试确定租车公司新能源汽车辆车中抽取2辆车分布列及期望.【课后作业】1.口袋中装着标有数字1最大数字的8倍计分,每个小球字,求:(Ⅰ)取出的3个小球上期望;(Ⅲ)计分介于172从某商场随机抽取了2000进行统计,所得频率分布直方[800,1000),[1000,1200)形的面积分别为123,,S S S (1) 按分层抽样从价格在再从这6件中随机抽取2件作(2)在清明节期间,该商场制方案一:全场商品打八折;方案二:全场商品优惠如下表,的数据用该组区间中点值作代商品价格[200,400)400 优惠(元) 30 50,2,3,4的小球各2个,从口袋中任取3个小球,个小球被取出的可能性相等,用ξ表示取出的3个小小球上的数字互不相同的概率;(Ⅱ)随机变量ξ的概分到35分之间的概率. 000件商品,按商品价格(元) 布直方图如图所示.记价格在00),[1200,1400]对应的小矩,且12336S S S ==.格在[200,400),[1200,1400]的商品中共抽取6件,件作价格对比,求抽到的两件商品价格差超过800商场制定了两种不同的促销方案: 折;下表,如果你是消费者,你会选择哪种方案?为什么值作代表)400,[600)[600,800) [800,1000) [1000,1200) 50140160280小球,按3个小球上个小球上的最大数的概率分布和数学元的概率; 为什么?(同一组中1200)[1200,1400]3203据我国一项专题调查显示,北态,更令人担忧的是85%以上的特殊工作、生活环境和行为模这种状态不能及时得到纠正,非关系,对本公司部分员工进行理人员)共有10000人.其中男抽样的方法随机抽取了500(1)求男性员工、女性员工各(2)通过不记名问卷调查方式其中0.2a =、0.1b =,根据以 健康男员工 女员工 总计问能否有99%的把握认为亚健附:2(()()(n ad K a b a c =+++()20P K k ≥0k0.4示,北京市高级职称知识分子中竟有高达75.3%的人以上的企业管理者处于慢性疲劳状态或亚健康状态,行为模式所决定的.亚健康是指非病非健康的一种临纠正,非常容易引起身心疾病.某高科技公司为了解亚工进行了不记名问卷调查.该公司处于正常工作状态的其中男性员工有6000人,女性员工有4000人,从00人的样本,以调查健康状况. 员工各抽取多少人?查方式,得到如下等高条形图:根据以上等高条形图,完成下列22⨯列联表;亚健康 总计500为亚健康与性别有关?2),()()bc n a b c d c d b d -=++++. 0.50 0.25 0.05 0.025 0.455 1.321 3.840 5.024 的人处于亚健康状状态,这是由他们一种临界状态,如果了解亚健康与性别的状态的员工(包括管从10000中用分层0.0106.635。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率16 12 13
一旅客8:20到站,则它候车时间的数学期望为_______。(精确到分
三、解答题
13.我校社团联即将举行一届象棋比赛,规则如下:两名选手比赛时,每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或打满6局时结束.假设选手甲与选手乙比赛时,甲每局获胜的概率皆为
23
,且各局比赛胜负互不影响. (Ⅰ求比赛进行4局结束,且乙比甲多得2分的概率; (Ⅱ设ξ表示比赛停止时已比赛的局数,求随机变量ξ的分布列和数学期望.
P B A ==.故正确答案为A.考点:1.计数原理; 2.条件概率.
2. A【解析】略3源自 B【解析】4. B
【解析】
试题分析:5枚硬币正好出现2枚正面向上, 3枚反面向上的概率为22351
15( ( 2216
C =,由题意可知ξ服从5(80, 16的二项分布,所以数学期望为5802516
⨯=,故本题选B.考点:二项分布与数学期望.
23,向右移动的概率为13,则电子兔移动五次后位于点(1,0 -的概率是(
A . 4243 B . 8243 C. 40243 D . 80243
二、填空题
9.已知55104 1( 1( 1(2(++⋅⋅⋅+++=-+x a x a a x x ,则=++531a a a ______.
10.乒乓球比赛采用7局4胜制,若甲、乙两人实力相当,获胜的概率各占一半,则打完5局后仍不能结束比赛的概率等于_____________________.
试题分析:当取三张都是两元的得奖金额是632=⨯元;当取两张两元一张五元得奖金额是9522=+⨯元;当取一张两元两张五元得奖金额是125212=⨯+⨯元.故得奖金额为
12, 9, 6=ξ,对应的概率分别是310
2218310122831038, , C C C C C C C C ,故其数学期望是
E (67 7 1 117 39912,应选B. 15 15 15 15 5考点:概率和数学期望的计算. 7.B【解析】略8.D【解析】考点:n次独立重复试验中恰好发生k次的概率.专题:计算题.分析:根据题意,分析可得质点P移动五次后位于点(-1,0),其中向左移动3次,向右移动2次,进而借助排列、组合分析左右平移的顺序情况,由相互独立事件的概率公式,计算可得答案.解答:解:根据题意,质点P移动五次后位于点(-1,0),其中向左移动3次,向右移动2次;3其中向左平移的3次有C5种情况,剩下的2次向右平移;则其概率为C5 ×(3 1 2 2 3 80)×()=,3 243 3故选D.点评:本题考查相互独立事件的概率的计算,其难点在于分析质点P移动五次后位于点(-1,0)的实际平移的情况,这里要借助排列组合的知识.9.1【解析】试题分析:由题意得,令x0,得a0a1a2a3a4a5 2,令x2,得a0a1a2a3a4a5 0,两式相减,得2(a1a3a52,所以a1a3a51.考点:赋值法的应用. 10.5 8 1 2 1 2 5 . 8【解析】(方法一)打完5局后仍不能结束比赛的情况是甲、乙两人中任意某个人任意胜3 1 3 3 2)(1)局,另一个人胜2局,其概率为C 2C(5(方法二)打完5局后能结束比赛的情况是:甲、乙两人中任意某个人任意胜4局或5局全1 4 4胜,其概率等于C 2[C 5 ( (11 2 1 3 5 1 5C5 ( ],所以,打完5局后仍不能结束比赛的2 2 8概率等于111.3【解析】略12.27 3 5. 8 8【解析】101 1 1 1 13050709027. 2 3 36 12 18答案第2页,总4页
数学学科自习卷(二
一、选择题
1.将三颗骰子各掷一次,记事件A =“三个点数都不同” , B =“至少出现一个6点” ,则条件概率(P A B , (
P B A分别是( A. 6091, 12 B. 12, 6091 C. 518, 6091 D. 91216, 12
2.设随机变量ξ服从正态分布(3,4N ,若((232P a P a ξξ<-=>+,则a的值为
A . 6 B. 395 C. 415
D. 9 7.一个篮球运动员投篮一次得3分的概率为a ,得2分的概率为b ,不得分的概率为c , , , (0,1a b c ∈,且无其它得分情况,已知他投篮一次得分的数学期望为1,则ab的最大值为
( A . 148
B . 124 C . 112 D . 16 8.位于数轴原点的一只电子兔沿着数轴按下列规则移动:电子兔每次移动一个单位,移动的方向向左或向右,并且向左移动的概率为
,且每个家庭是否为“好字”家庭互不影响,设收入在8千~1
万的3个有二孩计划家庭中“好字”家庭有x个,求x的分布列及数学期望.下面的临界值表供参考:
答案第1页,总4页参考答案
1. A
【解析】
试题分析:由题意得事件A的个数为654120⨯⨯=,事件B的个数为33
6591-=,在B发
生的条件下A发生的个数为123560C A =,在A发生的条件下B发生的个数为123560C A =,所以(6091p A B =, (6011202
⨯====, , ( ,所以(52016266=2+4+6=. 9818181E ξ⨯⨯⨯故选B.考点:1.相互独立事件的概率; 2.数学期望.
【名师点睛】解答本题,关键在于准确理解题意,利用独立事件的概率计算公式,计算出随机变量的概率.能否理解数学期望个概念与计算公式,也是对考生的考验.
6. B
【解析】
A . 73B . 53
C . 5D . 3 3.已知随机变量ξ~ 2, 3(2N ,若23ξη=+,则D η=
A . 0 B . 1 C . 2 D . 4
4.同时拋掷5枚均匀的硬币80次,设5枚硬币正好出现2枚正面向上, 3枚反面向上的次数为ξ,则ξ的数学期望是(
A . 20 B. 25
C. 30 D. 40
5. B
【解析】
试题分析:由已知, ξ的可能取值是2, 4,6.设每局比赛为一轮,则该轮比赛停止的概率为222
15+=. 339
( (若该轮结束时比赛还要继续,则甲,乙在该轮中必是各得一分,此时,该轮比赛结果对下一轮比赛是否停止没有影响.
所以(((25542041624699981981
P P P ξξξ====
14. 2016年国家已全面放开“二胎”政策,但考虑到经济问题,很多家庭不打算生育二孩,为了解家庭收入与生育二孩的意愿是否有关,现随机抽查了某四线城市50个一孩家庭,它们中有二孩计划的家庭频数分布如下表:
(1由以上统计数据完成如下22⨯列联表,并判断是否有95的把握认为是否有二(2若二孩的性别与一孩性别相反,则称该家庭为“好字”家庭,设每个有二孩计划的家庭为“好字”家庭的概率为12
5.甲乙两人进行乒乓球比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或打满6局时停止,设甲在每局中获胜的概率为
23,乙在每局中获胜的概率为13
,且各局胜负相互独立,则比赛停止时已打局数ξ的期望(E ξ为( A . 24181 B. 26681 C. 27481
D. 670243 6.现在有10张奖券, 8张2元的, 2张5元的,某人从中随机无放回地抽取3张奖券,则此人得奖金额的数学期望为(
11.设ξ是离散型随机变量,
21( , ( 33P a P b ξξ====,且a b <,又42, 39E D ξξ==,则a b +的值为_______.
12.某车站每天8:009:00,9:0010:00--都恰有一辆客车到站,但到站的时刻是随机的,且两者到站的时间是相互独立的,其规律为
到站的时刻8:10 9:10 8:30 9:30 8:50