统计分布列各种练习题

合集下载

直方图统计练习题

直方图统计练习题

直方图统计练习题在统计学中,直方图是一种用来表示数据分布情况的图表。

它将数据划分成一系列等宽的区间,并在横轴上绘制出这些区间的范围,纵轴表示数据在该区间内的频数或频率。

通过直方图,我们可以直观地观察到数据的分布形态、集中程度以及异常值等信息。

为了更好地理解和练习直方图的统计分析,下面将给出一些直方图统计练习题。

练习题1:某班级的学生体重数据如下(单位:kg):56 54 59 62 63 65 60 65 57 58 70 65 58 63 64请根据这组数据绘制出直方图,并回答以下问题:1. 该班级学生的体重数据大致呈什么样的分布形态?2. 最常见的体重区间是多少至多少kg?3. 体重在50kg至60kg之间的学生人数占总人数的百分比是多少?练习题2:一份调查统计了某国家不同年龄段的人口数量数据如下(单位:百万):0-18岁:250 18-35岁:320 35-50岁:280 50岁以上:220请根据这组数据绘制出直方图,并回答以下问题:1. 该国家人口数量在不同年龄段上的分布情况如何?2. 在哪个年龄段上,人口数量最多?3. 50岁以上的人口数量占总人口数量的百分比是多少?练习题3:一份统计调查了某公司员工的工作经验数据如下(单位:年):0-2年:20 2-5年:30 5-10年:40 10年以上:10请根据这组数据绘制出直方图,并回答以下问题:1. 该公司员工的工作经验分布情况如何?2. 在哪个工作经验区间上,员工数量最多?3. 具有5年以上工作经验的员工占总员工数量的百分比是多少?练习题4:一份调查记录了某城市不同民族的人口数量数据如下(单位:千人):汉族:900 苗族:120 壮族:300 回族:100请根据这组数据绘制出直方图,并回答以下问题:1. 该城市不同民族的人口分布情况如何?2. 哪个民族的人口数量最多?3. 除汉族外,其他民族的人口数量总和占该城市总人口数量的百分比是多少?通过以上的练习题,我们可以巩固对直方图及其统计分析的理解。

数学六年级上册《统计》练习题(含答案)

数学六年级上册《统计》练习题(含答案)

7.1统计【基础训练】一、填一填1.常用的统计图有()、()和()统计图。

2.扇形统计图能够清楚地看出()和()的关系。

3.某班有40人,参加音乐兴趣小组的有10人,制作成扇形统计图后,音乐兴趣小组所在的扇形百分比是()。

4.如图,是某农场饲养三种家禽情况的统计图,这是一个()统计图,用()表示家禽的总数,用()表示各种家禽与总数的关系。

如果三种家禽共有300只,则鸡有()只,鸭有()只,鹅有()只。

5.要反应果园里各种果树的具体数量,最好选择()统计图。

6.要反应股票的涨跌情况,最好选择()统计图。

7.已知西湖公园实际占地120公顷,请根据以下西湖公园占地分布情况统计图填写下表。

占地类型湖面山丘路面其他占地面积面积(公顷)(1)喜欢《走进科学》的老师占全体老师人数的()%(2)喜欢()节目和()节目的人数差不多。

(3)喜欢()节目人数是最少的,喜欢()节目人数是最多的,有()人。

二、选择题1.某小学六年级男、女生人数如图所示,则男生占全年级人数的( )。

A 4%B 48%C 92.3%D 52%2.要表示某学校小学各年级学生人数同全校学生总人数的关系,应选择( )统计图比较合适。

A 条形B 扇形C 折线3.永辉超市共运来水果320千克,其中橘子运来120千克,香蕉60千克,橘子约占运来水果的( )A 37.5%B 18.75%C 42.5%D 11.9%4. 六(5)班有40名学生,选举班长的得票数为:小简20票,小何10票,小邓7票,小李3票,下列四幅图中( )图准确的表示了这一结果。

A B C D5.某校对300名学生最喜欢的球类进行了调查,最喜欢乒乓球的有( )人,喜欢足球的有( )人。

A 90 75B 90 60C 60 75D 75 54三、计算题12%+14%= 200%+150%= 8%+16%=80%—15%= 190%-160%= 11%+22%=43×8= 32÷3= =÷53109四、应用题1.下面是某省地形情况分布图,这个省的总面积为16万平方千米。

小学四年级简单统计练习题

小学四年级简单统计练习题

小学四年级简单统计练习题题目:小学四年级简单统计练习题一、选择题根据给定的数据,选择正确的答案,并将选项字母填入括号内。

1. 下图是小明所在班级的学生喜欢的水果调查结果,请问班级学生最喜欢的水果是:( ) A. 苹果 B. 香蕉 C. 橙子 D. 葡萄2. 小明家邻居一周内购买的早餐种类如下:鸡蛋三明治5个,油条10根,包子8个,豆浆3杯。

请问邻居一周内购买的早餐数量共有多少个?( ) A. 5 B. 13 C. 26 D. 213. 以下是小明妈妈在超市购买的食品种类:苹果5个,橙子3个,香蕉7个,葡萄3串。

请问小明妈妈一共购买了多少个食品?( ) A. 8 B. 15 C. 7 D. 18二、填空题根据问题,选择合适的单词填入横线上。

4. 在小王的镜子里,他看到自己有两只_____和一张_____。

答案:眼睛、嘴巴5. 在小红的书包里,有一本______、两本______和三本______。

答案:课本、练习册、故事书三、应用题根据问题,使用线段统计图,回答下列问题。

6. 小明一周学习英语的时间如下:星期一:2小时星期二:3小时星期三:1小时星期四:4小时星期五:2小时星期六:3小时星期日:2小时请根据线段统计图,回答下列问题:(1)小明一周学习英语的总时间是多少小时?(2)哪一天小明学习的英语时间最多?(3)哪一天小明学习的英语时间最少?四、解答题小明家中有30只玩具熊,20只玩具汽车,10只玩具娃娃。

请根据题目,回答下列问题。

7. 小明家中一共有多少只玩具?答:30 + 20 + 10 = 60只玩具。

8. 玩具熊和玩具汽车的总数有多少?答:30 + 20 = 50只玩具。

9. 玩具娃娃和玩具汽车的总数有多少?答:10 + 20 = 30只玩具。

以上就是小学四年级简单统计练习题,希望能够帮助你巩固学习知识。

高中数学:统计与统计案例练习

高中数学:统计与统计案例练习

高中数学:统计与统计案例练习一、选择题1.某校为了解学生平均每周的上网时间(单位:h),从高一年级1 000名学生中随机抽取100 名进行了调查,将所得数据整理后,画出频率分布直方图(如图),其中频率分布直方图从左到右前3个小矩形的面积之比为1 : 3 : 5,据此估计该校高一年级学生中平均每周上网时间少于4 h的学生人数为()领率组距A. 200 C. 400 0.0350.015B. 240D. 48010平均每周上网时间(h)解析:选C 设频率分布直方图中从左到右前3个小矩形的面积分别为A3K5P.由频率分布直方图可知,最后2个小矩形的面积之和为(0.015+0.035)X2 = 0.1.由于频率分布直方图中各个小矩形的面积之和为1,所以P+3P+5P=0.9,即尸=0.1.所以平均每周上网时间少于4h的学生所占比例为尸+3P=0.4,由此估计学生人数为0.4X1 000 =400.2. AQI(Air Quality Index,空气质量指数)是报告每日空气质量的参数,描述了空气清洁或污染的程度.AQI共分六级,一级优(0〜50),二级良(51〜100),三级轻度污染(101〜150),四级中度污染(151〜200),五级重度污染(201〜300),六级严重污染(大于300).如图是昆明市2021年4月份随机抽取的10天的AQI茎叶图,利用该样本估计昆明市2021年4月份空气质量优的天数为 ()A. 3B. 4C. 12D. 2142解析:选c 从茎叶图知,10天中有4天空气质量为优,所以空气质量为优的频率为 1 V.Z 22所以估计昆明市2021年4月份空气质量为优的天数为30X5=12,应选C.3.〔成都模拟〕某城市收集并整理了该市2021年1月份至10月份各月最低气温与最高气 温〔单位:C 〕的数据,绘制了下面的折线图.该城市各月的最低气温与最高气温具有较好的线性关系,那么根据折线图,以下结论错误 的是〔〕A.最低气温与最高气温为正相关B. 10月的最高气温不低于5月的最高气温C.月温差〔最高气温减最低气温〕的最大值出现在1月D.最低气温低于0C 的月份有4个解析:选D 在A 中,最低气温与最高气温为正相关,故A 正确;在B 中,10月的最高气温 不低于5月的最高气温,故B 正确;在C 中,月温差〔最高气温减最低气温〕的最大值出现在1月, 故C 正确:在D 中,最低气温低于0℃的月份有3个,故D 错误.应选D.4 .〔承德模拟〕为了解户籍、性别对生育二胎选择倾向的影响,某地从育龄人群中随机抽取 了容量为100的样本,其中城镇户籍与农村户籍各50人;男性60人,女性40人,绘制不同群体 中倾向选择生育二胎与倾向选择不生育二胎的人数比例图〔如下图〕,其中阴影局部表示倾向 选择生育二胎的对应比例,那么以下表达中错误的选项是〔〕A.是否倾向选择生育二胎与户籍有关B.是否倾向选择生育二胎与性别无关♦最高气温 ♦最低气温C.倾向选择生育二胎的人员中,男性人数与女性人数相同D.倾向选择不生育二胎的人员中,农村户籍人数少于城镇户籍人数解析:选C 由题图,可得是否倾向选择生育二胎与户籍有关、与性别无关;倾向选择不 生育二胎的人员中,农村户籍人数少于城镇户籍人数;倾向选择生育二胎的人员中,男性人数为 60X60% =36,女性人数为40X60%=24,不相同.应选C.5 .(石家庄模拟)某学校48两个班的兴趣小组在一次对抗赛中的成绩如茎叶图所示,通过 茎叶图比拟两个班兴趣小组成绩的平均值及标准差.3 4 28 8 4 6 8 65152①A 班兴趣小组的平均成绩高于B 班兴趣小组的平均成绩; ②B 班兴趣小组的平均成绩高于A 班兴趣小组的平均成绩; ③A 班兴趣小组成绩的标准差大于B 班兴趣小组成绩的标准差;@B 班兴趣小组成绩的标准差大于A 班兴趣小组成绩的标准差. 其中正确结论的编号为()A.①④C. ®®其方差为白义[(53—78尸+(62—78/ +…+ (95—78)2]=121.6, 那么其标准差为'121.6%11.03;45+48+5H -------- F91B 班兴趣小组的平均成成为'」=66,其方差为表义[(45—66)2+(48 - 66)2 + ... + (91-66)2] =169.2, 那么其标准差为1169.2%13.01.应选A.6 .某商场对某一商品搞活动,该商品每一个的进价为3元,销售价为8元,每天售出的 第20个及之后的半价出售.该商场统计了近10天这种商品的销量,如下图,设M 个)为每天商 品的销量,M 元)为该商场每天箱售这种商品的利润.从日利润不少于96元的几天里任选2天, 那么选出的这2天日利润都是97元的概率为()4 5 5 1 6 2 7 38班8 3 6 4 5 3 4 02B.②③D.①③解析:选A A 班兴趣小组的平均成绩为 53+62+64+…+92+95--------------- ---------------- =785x, x=18, 19, y =<l95+(x-19)(4-3), x=20, 21, J5x, x=18, 19, 即 L176+x, x=20, 21.当日销量不少于20个时,日利泗不少于96元, 当日销量为20个时,日利润为96元, 当日销量为21个时,日利润为97元,日利泗为96元的有3天,记为日利泗为97元的有2天,记为人丛从中任选2天有 (.4),(〃石),(.力),(.1),3/),(48),3«),(c4),(.,8),(48),共 10 种情况.其中选出的这2天日利泗都是97元的有(A,8)1种情况. 故所求概率为关.应选B. 二、填空题7 .某小卖部销售某品牌饮料的零售价与销量间的关系统计如下:单价x/元 3.0 3.2 3.4 3.6 3.8 4.0 销量w 瓶504443403528x,y 的关系符合回归方程£=£+2其中分=-20.假设该品牌饮料的进价为2元,为使利润 最大,零售价应定为 元.解析:依题意得:x =3.5, y =40,A所以.=40—(- 20)X3.5=110,所以回归直线方程为f=-20x+110,利润 L = (A —2)(-20A + 110)= -201+ 150x-220,B 选• •1 - 9 1 - 5 A.C 解BioD.g由题意知频数(天)0 18 19 20 2 俏量〔个〕所以x=* = 3.75元时,利润最大.答案:3.758.某高校调查了200名学生每周的自习时间(单位:小时),制成了如下图的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是.解析:设所求的人数为〃,由频率分布直方图,自习时间不少于22.5小时的频率为(0.04+0.08 +0.16) X 2.5=0.7, n=0.7 X 200=140.答案:1409.为比拟甲乙两地某月11时的气温情况,随机选取该月5天11时的气温数据(单位:C) 制成如下图的茎叶图,甲地该月11时的平均气温比乙地该月11时的平均气温高1 ℃,那么甲地该月11时的平均气温的标准差为.甲9 8 2 62 m 03 I解析:甲地该月11时的气温数据(单位:℃)为28,29,30,30+〃?,32;乙地该月11时的气温数据(单位:℃)为26,28,29,31,31,那么乙地该月11时的平均气温为(26+28+29+31+31计5 = 29(℃),所以甲地该月11时的平均气温为30 ℃,故(28+29+30+30+m + 32)+5 = 30,解得〃?=1,那么甲地该月11时的平均气温的标准差为嗝义[(28 - 30产+(29 - 30)2+(30 - 30/+(31 - 30/+(32 - 30户]=\(2.答案:^2三、解做题10.某篮球运发动的投篮命中率为50%,他想提升自己的投篮水平,制定了一个夏季练习计划,为了了解练习效果,执行练习前他统计了10场比赛的得分,计算出得分的中位数为15,平均得分为15,得分的方差为463执行练习后也统计了10场比赛的得分,茎叶图如下图:0 8 91 2 4 4 5 6 82 1 3(1)请计算该篮球运发动执行练习后统计的10场比赛得分的中位数、平均得分与方差;⑵如果仅从执行练习前后统计的各10场比赛得分数据分析,你认为练习方案对该运发动的投篮水平的提升是否有帮助?为什么?解:(1)练习后得分的中位数为上芋=14.5;平均得分为8+9+12+14+14+15+16+18 + 21+23= 15:10方差为击义[(8—15)2 + (9 — 15>+(12 —15>+(14 — 15)2+(14 — 15> + (15 —15>+(16 — 15产+(18-15)2+(21-15)2+(23 —15)2]=20.6.(2)尽管中位数练习后比练习前稍小,但平均得分一样,练习前方差20.6小于练习前方差46.3, 说明练习后得分稳定性提升了(阐述观点合理即可),这是投篮水平提升的表现.故此练习方案对该篮球运发动的投篮水平的提升有帮助.11.(西安八校联考)在2021年俄罗斯世界杯期间,莫斯科的局部餐厅销售了来自中国的小龙虾,这些小龙虾均标有等级代码.为得到小龙虾等级代码数值x与销售单价y(单位:元)之间的关系,经统计得到如下数据:⑴销售单价),与等级代码数值x之间存在线性相关关系,求),关于x的线性回归方程(系数精确到0.1);(2)假设莫斯科某餐厅销售的中国小龙虾的等级代码数值为98,请估计该等级的中国小龙虾销售单价为多少元?参考公式:对于一组数据(xi1 ),3,光),…其回归直线f=源+2的斜率和截距的最小2Xyi一〃x y八 '। A — A——二乘估计分别为Z? = ----------------- a= y —b x .n _Xxr-n x 26 6参考数据:2>»=8 440, 2e = 25 564.—38+48 + 58 + 68 + 78 + 88解:(1)由题意,得x -■= 63,- 16.8+18.8+20.8 + 22.8 + 24+25.8 _y = 6 =21.5,yA_8 440 - 6X63X21.5〜h = ~~6Z—=25 564—6X63X63「026 A 2A — A 一a= y -bx =21.5-0.2X63 = 8.9.故所求线性回归方程为f=0.2x+8.9.⑵由(1)知,当%=98 时,>=0.2X98+8.9=28.5.・•・估计该等级的中国小龙虾销售单价为28.5元.12.(长沙模拟)某职称晋级评定机构对参加某次专业技术测试的100人的成绩进行了统计, 绘制的频率分布直方图如下图.规定80分以上者晋级成功,否那么晋级失败(总分值为100分).(1)求图中.的值;(2)估计该次测试的平均分不(同一组中的数据用该组的区间中点值代表);(3)根据条件完成下面2X2列联表,并判断能否有85%的把握认为“晋级成功〞与性别有关.P(K?2k)0.40 0.25 0.15 0.1()0.050.025k0.708 1.323 2.072 2.706 3.841 5.024解:(1)由频率分布直方图中各小长方形面积总和为1,得(2.+ 0.020+0.03.+0.040)义10=1,解得〃=0...5.⑵由频率分布直方图知洛小组的中点值依次是55,65,75,85,95, 对应的频率分别为0.05.30,0.40,0.20.05,那么估计该次测试的平均分为 x = 55X0.05 + 65X0.30 + 75X0.40 + 85X0.20 + 95X0.05 = 74(分). ⑶由频率分布直方图知,晋级成功的频率为0.20+0.05=0.25, 故晋级成功的人数为100X0.25 = 25,填写2X2列联表如下:晋级成功 晋级失败合计男 16 34 50 女 9 41 50 合计2575100100X(16X41 ——25X75X50X50^2,613>2.072,所以有85%的把握认为“晋级成功〞与性别有关.1 .为检查某工厂所生产的8万台电风扇的质量,抽查了其中20台的无故障连续使用时限(单 位:小时)如下:248 256 232 243 188 268 278 266 289 312 274296 288 302 295 228 287 217 329 283K 2=n(acl-bc)2(1)完成下面的频率分布表,并作出频率分布直方图;(2)估计8万台电风扇中有多少台无故障连续使用时限不低于280小时;(3)用组中值(同一组中的数据在该组区间的中点值)估计样本的平均无故障连续使用时限.解:(1)频率分布表及频率分布直方图如下所示:0.0100 ——⑵由题意可得8乂(0.30+0.10+0.05) = 3.6,所以估计8万台电风扇中有3.6万台无故障连续使用时限不低于280小时.(3)由频率分布直方图可知x =190X0.05 + 210X0.05 + 230X0.10 + 250X0.15 + 270X0.20 + 290X0.30 + 310X0.10 + 330X0.05 = 269(小时),所以样本的平均无故障连续使用时限为269小时.2 .海水养殖场进行某水产品的新、旧网箱养殖方法的产量比照,收获时各随机抽取了 100 个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下:(1)记A 表示事件“旧养殖法的箱产量低于50kg 〞,估计A 的概率;⑵填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:箱产量V50 kg箱产量250 kg旧养殖法新养殖法(3)根据箱产量的频率分布直方图,对这两种养殖方法的优劣进行比拟. 附:P (心2)0.050 0.010 0.001 k3.841 6.635 10.8280.01500.0125频率 仇距0.0075 0.0050 0.0025.厂工丁丁丁丁厂!无故障连续使用时用/小时新养殖法、n(ad-bc)1 _ .K-= . , , ,,其中〃=a+/?+c+d.(a+Z?)(c 十d)(a十c)(Z?+d)解:⑴旧养殖法的箱产量低于50 kg的频率为(0.012+0.014+0.024+0.034+0.040)X5=0.62.因此,事件A的概率估计值为0.62.⑵根据箱产量的频率分布直方图得到联表:K2=---------- -------------------- 15 705100X100 X 96X104由于15.705>6.635,故有99%的把握认为箱产量与养殖方法有关.(3)箱产量的频率分布直方图说明:新养殖法的箱产量平均值(或中位数)在50 kg到55 kg 之间,旧养殖法的箱产量平均值(或中位数)在45 kg到50 kg之间,且新养殖法的箱产量分布集中程度较旧养殖法的箱产量分布集中程度高,因此,可以认为新养殖法的箱产量较高且稳定,从而新养殖法优于旧养殖法.3.为了监控某种零件的一条生产线的生产过程,检验员每隔30 min从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm).下面是检验员在一天内依次抽取的16个零件的尺寸:经计算得x =+£即=9.97,5=、*ZG L x )21 /=1 \ / 1O/=1/ 1 16 _ / 16 16 _=、/讳16 X 2比0.212, / L G-8.5)2^ 18.439,Z (x,- x )(L8.5)=—2.78,其中为为抽取的第i个零件的尺寸,i= 1,2, (16)(1)求⑶,i)(i= 12…,16)的相关系数二并答复是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(假设加V0.25,那么可以认为零件的尺寸不随生产过程的进行而系统地变大或变小);(2)一天内抽检零件中,如果出现了尺寸在(刀-35,7 +3s)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.①从这一天抽检的结果看,是否需对当天的生产过程进行检查?②在(7 -35,7 +3s)之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)附:样本(H,v)(i = 12…4的相关系数£(X,-7)(57-7)r=I ______/ / ・、/(),008公丫0・09・、/ £ d )2、/ £ 8 - 5 )216 _Z (XL x )(/—8.5)尸1解:(1)由样本数据得8,i)(i= 1,2,…,16)的相关系数为r= --------- /--- 1/16 _ / 16、/ Z (即- X C-8.5)2 -2.78剔除第13个数据,剩下数据的样本方差为aX 〔1 591.134 —9.22?—15X 10.022〕=0.008,A Q 这条生产线当天生产的零件尺寸的标准差的估计值为廊而比0.09.4.〔昆明模拟〕〞工资条里显红利,个税新政入民心〞.随着2021年新年钟声的敲响,我国 自1980年以来,力度最大的一次个人所得税〔简称个税〕改革迎来了全面实施的阶段.某IT 从业 者为了解自己在个税新政下能享受多少税收红利,绘制了他在26〜35岁〔2021〜2021年〕之间各 年的月平均收入〕,〔单位:千元〕的散点图:20・・・・ 16- ・ , 12- ., 8 ■ •4°123456789 io"年龄代码工注:年龄代码1~10分别对应年的26〜35岁⑴由散点图知,可用回归模型y=h\n x+a 拟合〕,与x 的关系,试根据有关数据建立〕,关于x 的回归方程;〔2〕如果该IT 从业者在个税新政下的专项附加扣除为3 000元/月,试利用〔1〕的结果,将月平 均收入视为月收入,根据新旧个税政策,估计他36岁时每个月少缴纳的个人所得税.1010 10 _10_ _ 10附注:参考数据:= 55,2〕〉= 155.5,N 〔即一x 〕2 =82.5,2 — x〕〔F — y 〕 = 94.9,26= i=li=li=lJ =1io _ io _ _15.1,2 缶- 1〕2=4.84,£〔力一 t 〕〔yi- y 〕 =242其中"=ln 为;取 In 11 =24,In 36=361=1 /=1参考公式:回归方程.=筋+味中斜率和截距的最小二乘估计分别为公= n ______ _X 〔出一〃〕〔.- V 〕 曰 A - A — -------------------------- \a= v —b u .Z 〔3一 〃 〕2月平均收入y千元解:(1)令 f=lnx,那么 y=bf+a10__Z & -,)()L y)24.2, b ~ ~__Z _痴_5ze —)2r=l10Zu-_2__155.5-_2_=而=-^-=15.55, t =苗A — A —a= y —b t = 15.55 —5X 1.51=8,所以〕,关于/的回归方程为〕,=5/+8.1015.1 lo"=L51由于/=lnx,所以y关于x的回归方程为y=51nx+8.⑵由⑴得,该IT从业者36岁时月平均收入为y=51n 11+8 = 5X2.4+8 = 20〔千元〕.旧个税政策下每个月应缴纳的个人所得税为1 500X3%+3 000X10%+4 500X20%+〔20 000-3 500-9 000〕X25% = 3 120〔元〕.新个税政策下每个月应缴纳的个人所得税为3 000X3%+〔20 000-5 OOO-3OOO-3 000〕X 10%=990〔元〕.故根据新旧个税政策,该IT从业者36岁时每个月少缴纳的个人所得税为3 120-990=2 130(70).I— 0 180.212X716X18.439 ',由于lrlV0.25,因此可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小.(2)①由于7 =9.97,产0.212,由样本数据可以看出抽取的第13个零件的尺寸在(T—3s,7 + 3s)以外,因此需对当天的生产过程进行检查.②剔除离群值,即第13个数据,剩下数据的平均数为右义(16义9.97—9.22)=10.02,这条生产线当天生产的零件尺寸的均值的估计值为10.02.162X?=16X0.212I2+16X9.972^1 591.134,。

统计第三章练习题

统计第三章练习题

第三章 数据分布特征的描述(一)单项选择题(在下列备选答案中,只有一个是正确的,请将其顺序号填入括号内)1.平均指标反映了( )。

①总体变量值分布的集中趋势 ②总体分布的离散特征 ③总体单位的集中趋势 ④总体变动趋势 2.加权算术平均数的大小( )。

①受各组标志值的影响最大 ②受各组次数的影响最大③受各组权数系数的影响最大 ④受各组标志值和各组次数的共同影响3.在变量数列中,如果变量值较小的一组权数较大,则计算出来的算术平均数( )。

①接近于变量值大的一方 ②接近于变量值小的一方 ③不受权数的影响 ④无法判断4.权数对于平均数的影响作用取决于( )。

①总体单位总量 ②各组的次数多少 ③各组标志值的大小 ④各组次数在总体单位总量中的比重 5.由组距变量数列计算算术平均数时,用组中值代表组内标志值的一般水平,有一个假定条件,即( )。

①各组的次数必须相等 ②各组标志值必须相等 ③各组标志值在本组内呈均匀分布 ④各组必须是封闭组 6.如果次数分布中,各个标志值扩大为原来的2倍,各组次数都减小为原来的1/2,则算术平均数( )。

①增加到原来的21 ②稳定不变 ③减少到原来的21④扩大为原来的2倍 7.已知某市场某种蔬菜早市、午市、晚市的每公斤价格,在早市、午市、晚市的销售额基本相同的情况下,计算平均价格可采取的平均数形式是( )。

①简单算术平均数 ②加权算术平均数③简单调和平均数 ④加权调和平均数8.凡是变量值的连乘积等于总比率或总速度的现象,要计算其平均比率或平均速度都可以采用( )。

①算术平均法 ②调和平均法 ③几何平均法 ④中位数法 9.四分位差排除了数列两端各( )单位标志值的影响。

①10% ②15% ③25% ④ 35% 10.如果一组变量值中有一项为零,则不能计算( )。

①算术平均数 ②调和平均数 ③众数 ④中位数11.在掌握了各组单位成本和各组产量资料时,计算平均单位成本所使用的方法应是( )。

统计练习题及答案

统计练习题及答案

统计练习题及答案一、选择题1. 以下哪个是描述变量之间关系的统计学方法?A. 回归分析B. 抽样调查C. 假设检验D. 方差分析答案:A2. 一个总体的均值是100,标准差是15,求其95%置信区间的宽度。

A. 4.5B. 6C. 7.5D. 9答案:C3. 以下哪个不是统计学中的基本概念?A. 总体B. 样本C. 变量D. 函数答案:D4. 什么是统计学中的“中心极限定理”?A. 任何分布的样本均值的分布都趋近于正态分布B. 任何分布的样本的分布都趋近于正态分布C. 总体均值的分布都趋近于正态分布D. 总体的分布都趋近于正态分布答案:A5. 以下哪种情况下,使用配对样本t检验是合适的?A. 比较两个独立样本均值的差异B. 比较两个配对样本均值的差异C. 比较一个样本均值与总体均值的差异D. 比较两个不同总体方差的差异答案:B二、简答题1. 什么是标准正态分布?请简述其特点。

答案:标准正态分布是一个均值为0,标准差为1的正态分布。

其特点是对称分布,以均值为中心,数据分布呈钟形曲线,且99.7%的数据落在均值±3个标准差的范围内。

2. 描述什么是双尾检验和单尾检验,并简述它们的区别。

答案:双尾检验是指在假设检验中,备择假设涉及总体参数的两个方向的变化,即大于或小于零假设中的参数值。

单尾检验则只关注一个方向的变化。

区别在于双尾检验的拒绝域在零假设两侧,单尾检验的拒绝域在一侧。

三、计算题1. 假设有一个样本,其数据如下:2, 4, 6, 8, 10。

计算样本的均值、中位数和众数。

答案:均值 = (2+4+6+8+10)/5 = 6;中位数 = 6(因为数据已经排序,中间的数是6);众数 = 6(因为6出现的次数最多)。

2. 如果一个总体的平均年龄是40岁,标准差是10岁,一个随机选择的样本的平均年龄是45岁,样本量是100。

请问这个样本的平均年龄与总体平均年龄之间是否有显著差异?答案:使用单样本t检验,计算t值 = (45-40)/(10/√100)= 5/1= 5。

统计学二项分布习习题

统计学二项分布习习题

欢迎阅读(一)单项选择题1.某地人群中高血压的患病率为π,由该地区随机抽查n 人,则( )A .样本患病率p =X /n 服从B (n , π)B .n 人中患高血压的人数X 服从B (n , π)C .患病人数与样本患病率均不服从B (n , π)D .患病人数与样本患病率均服从B (n , π)答案:B[评析] 本题考点:二项分布概念的理解。

二项分布中所指的随机变量X 代表n 次试验中出现某种结果的次数,具体到本题目就是指抽查的n2 [n ,π)案为D 。

3. A C [记。

4. 95% A C [评析]本题考点:Poisson 分布的正态近似性。

当X 较大(一般大于50)时,Poisson 分布近似正态分布,按照正态分布资料的计算公式计算该地区井水中平均每升细菌含量的95%可信区间,再除以1000即得平均每毫升井水中细菌的平均含量(设1000X Y =,有1000100001000==X Y S S )。

(二) 是非题从装有红、绿、蓝三种颜色的乒乓球各500、300、200只的暗箱中随机取出10个球,以X 代表所取出球中的红色球数,则X 服从二项分布B (10,0.5)。

( )答案:正确。

[评析] 本题考点:二项分布的定义。

二项分布成立的条件是:①每次试验只能是互斥的两个结果之一;②每次试验的条件不变;③各次试验独立。

此题目所述情况完全满足后两个条件,关键在于第一个条件的判断,从表面上看,每次试验的结果有三种,但本题目所关心的试验结果是“红色与否”,因而该试验结果仍为两种互斥的情况—“红色”和“非红色”。

所以,此题目所述情况满足以上三个条件,X服从二项分布B (10,0.5)。

(三)计算题炮击命中目标的概率为0.2,共发射了14发炮弹。

已知至少要两发炮弹命中目标才能摧毁之,试求摧毁目标的概率。

答案:0.802[评析]本题的考点:二项分布概率函数的理解和应用能力。

摧毁目标的概率即有两发或两发以上炮弹命中目标的概率,此概率又等于1减去只有一发命中1. = X1+X22.4.5.的数量,若进行100次这样的抽查,其中的95次所得数据应在以下范围内()。

统计学 练习题附答案

统计学 练习题附答案

一.单项选择题1.比较两组数据的离散程度最合适的统计量是( D )。

A.极差B.平均差C.标准差D.离散系数2.如果峰度系数k>3,表明该组数据是( A )。

A.尖峰分布B.扁平分布C.左偏分布D.右偏分布3.某大学经济管理学院有1200名学生,法学院有800名学生,医学院有320名学生,理学院有200名学生。

上面的描述中,众数是( B )。

A.1200B.经济管理学院C.200D.理学院4.某班共有25名学生,期末统计学课程的考试分数分别为:68,73,66,76,86,74,61,89,65,90,69,67,76,62,81,63,68,81,70,73,60,87,75,64,56,该班考试分数下四分位数和上四分位数分别是( A)。

A.64.5和78.5B.67.5和71.5C.64.5和71.5D.64.5和67.55.对于右偏分布,平均数、中位数和众数之间的关系是( A )。

A.平均数>中位数>众数B.中位数>平均数>众数C.众数>中位数>平均数D.众数>平均数>中位数6.某班学生的统计学平均成绩是70分,最高分是96分,最低分是62分,根据这些信息,可以计算的测度离散程度的指标是( B )。

A.方差B.极差C.标准差D.变异系数7.在离散程度的测度中,最容易受极端值影响的是( A )。

A.极差B.方差C.标准差D.平均差8.在比较两组数据的离散程度时,不能直接比较它们的标准差,因为两组数据的( D )。

A.标准差不同B.方差不同C.数据个数不同D.计量单位不同9.总量指标按其反应的内容不同,可分为( C )。

A.总体指标和个体指标B.时期指标和时点指标C.总体单位总量指标和总体标识总量指标D.总体单位总量指标和标识单位指标10.反映同一总体在不同时间上的数量对比关系的是( C )。

A.计划完成成都相对指标B.比较相对指标C.动态相对指标D.比例相对指标11.2003年全国男性人口数为66556万人,2002年全国金融、保险业增加值为5948.9亿元,2003年全社会固定资产投资总额为55566.61亿元,2003年全国城乡居民人民币储蓄存款余额103617.7亿元。

f分布练习题

f分布练习题

f分布练习题F分布练习题统计学中,F分布是一种常见的概率分布,用于比较两个或更多样本方差的差异。

在实际应用中,我们经常需要计算和理解F分布的概率和相关统计量。

本文将通过一些练习题来帮助读者更好地掌握和应用F分布。

问题一:假设有两个样本,样本一的自由度为3,样本二的自由度为5。

计算在给定显著性水平α=0.05下,拒绝原假设的临界值。

解答一:根据题目中给出的自由度,我们可以在F分布表中查找相应的临界值。

对于样本一自由度为3,样本二自由度为5的情况,我们需要找到α=0.05水平下的临界值。

根据查表可得,F分布的临界值为3.49。

因此,在给定显著性水平α=0.05下,拒绝原假设的临界值为3.49。

问题二:现有两个样本,样本一的自由度为10,样本二的自由度为15。

计算在给定显著性水平α=0.01下,样本均值差异显著的临界值。

解答二:在这个问题中,我们需要计算样本均值差异是否显著。

根据题目中给出的自由度,我们可以在F分布表中查找相应的临界值。

对于样本一自由度为10,样本二自由度为15的情况,我们需要找到α=0.01水平下的临界值。

根据查表可得,F分布的临界值为2.98。

因此,在给定显著性水平α=0.01下,样本均值差异显著的临界值为2.98。

问题三:一项研究中,有三个样本,样本一的自由度为5,样本二的自由度为8,样本三的自由度为12。

计算在给定显著性水平α=0.05下,样本方差是否显著不同。

解答三:在这个问题中,我们需要判断样本方差是否显著不同。

根据题目中给出的自由度,我们可以在F分布表中查找相应的临界值。

对于样本一自由度为5,样本二自由度为8,样本三自由度为12的情况,我们需要找到α=0.05水平下的临界值。

根据查表可得,F分布的临界值为3.01。

因此,在给定显著性水平α=0.05下,样本方差显著不同的临界值为3.01。

通过以上练习题,我们可以看到F分布在统计学中的重要性。

它可以用于比较样本方差、判断样本均值差异是否显著等。

高中数学【统计与统计案例】专题练习

高中数学【统计与统计案例】专题练习

高中数学【统计与统计案例】专题练习1.(多选)下列统计量中,能度量样本x 1,x 2,…,x n 的离散程度的是( ) A.样本x 1,x 2,…,x n 的标准差 B.样本x 1,x 2,…,x n 的中位数 C.样本x 1,x 2,…,x n 的极差 D.样本x 1,x 2,…,x n 的平均数 答案 AC解析 由标准差的定义可知,标准差考查的是数据的离散程度;由中位数的定义可知,中位数考查的是数据的集中趋势;由极差的定义可知,极差考查的是数据的离散程度;由平均数的定义可知,平均数考查的是数据的集中趋势;故选AC.2.某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下: 旧设备 9.8 10.3 10.0 10.2 9.9 9.8 10.0 10.1 10.2 9.7 新设备10.110.410.110.010.110.310.610.510.410.5旧设备和新设备生产产品的该项指标的样本平均数分别记为x -和y -,样本方差分别记为s 21和s 22. (1)求x -,y -,s 21,s 22;(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果y --x -≥2s 21+s 2210,则认为新设备生产产品的该项指标的均值较旧设备有显著提高,否则不认为有显著提高).解 (1)x -=9.8+10.3+10.0+10.2+9.9+9.8+10.0+10.1+10.2+9.710=10,y -=10.1+10.4+10.1+10.0+10.1+10.3+10.6+10.5+10.4+10.510=10.3,s 21=0.22+0.32+0+0.22+0.12+0.22+0+0.12+0.22+0.3210=0.036,s 22=0.22+0.12+0.22+0.32+0.22+0+0.32+0.22+0.12+0.2210=0.04. (2)由(1)知,y --x -=0.3; 2s 21+s 2210=20.036+0.0410=20.007 6.又(y --x -)2=0.09>(20.007 6)2=0.030 4,则y --x ->2s 21+s 2210,所以新设备生产产品的该项指标的均值较旧设备有显著提高.3.某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i )(i =1,2,…,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得∑20i =1x i =60,∑20i =1y i =1 200,∑20i =1(x i -x -)2=80,∑20i =1(y i-y -)2=9 000,∑20i =1(x i -x -)(y i -y -)=800.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i ,y i )(i =1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数r =∑ni =1 (x i -x -)(y i -y -)∑n i =1(x i -x -)2∑n i =1 (y i -y -)2,2≈1.414.解 (1)由已知得样本平均数y -=120∑20i =1y i =60,从而该地区这种野生动物数量的估计值为60×200=12 000.(2)样本(x i ,y i )(i =1,2,…,20)的相关系数r =∑20i =1 (x i -x -)(y i -y -)∑20i =1(x i -x -)2∑20i =1(y i -y -)2=80080×9 000=223≈0.94.(3)分层随机抽样:根据植物覆盖面积的大小对地块分层,再对200个地块进行分层随机抽样.理由如下:由(2)知各样区的这种野生动物数量与植物覆盖面积有很强的正相关性.由于各地块间植物覆盖面积差异很大,从而各地块间这种野生动物数量差异也很大,采用分层随机抽样的方法较好地保持了样本结构与总体结构的一致性,提高了样本的代表性,从而可以获得该地区这种野生动物数量更准确的估计.1.抽样方法抽样方法包括简单随机抽样、分层随机抽样,两种抽样方法都是等概率抽样,体现了抽样的公平性,但又各有其特点和适用范围. 2.统计中的五个数据特征(1)众数:在样本数据中,出现次数最多的那个数据.(2)中位数:在样本数据中,将数据按大小顺序排列,位于最中间的数据.如果数据的个数为偶数,就取中间两个数据的平均数作为中位数. (3)平均数:样本数据的算术平均数,即x -=1n (x 1+x 2+…+x n ).(4)第p 百分位数:将一组数据(共n 个)按从小到大排列,计算i =n ×p %,若i 不是整数,而大于i 的比邻整数为j ,则第p 百分位数为第j 项数据;若i 是整数,则第p 百分位数为第i 项与第(i +1)项数据的平均数.(5)方差与标准差.s 2=1n [(x 1-x -)2+(x 2-x -)2+…+(x n -x -)2],s =1n [(x 1-x -)2+(x 2-x -)2+…+(x n -x -)2].3.频率分布直方图的两个结论 (1)小长方形的面积=组距×频率组距=频率. (2)各小长方形的面积之和等于1. 4.回归分析与独立性检验(1)回归直线y ^=b ^x +a ^经过样本点的中心(x -,y -),若x 取某一个值代入回归直线方程y ^=b ^x +a ^中,可求出y 的估计值. (2)独立性检验对于取值分别是{x 1,x 2}和{y 1,y 2}的分类变量X 和Y ,其样本频数列联表是:X Y 合计 y 1 y 2 x 1 a b a +b x 2 c d c +d 合计a +cb +dn则χ2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )(其中n =a +b +c +d 为样本容量).热点一 用样本估计总体考向1 数字特征与统计图表的应用【例1】 (1)空气质量指数分为六级,指数越大说明污染的情况越严重,对人体危害越大,其中指数范围[0,50],[51,100],[101,150],[151,200],[201,300]分别对应“优”“良”“轻度污染”“中度污染”“重度污染”五个等级.如图是某市连续14天的空气质量指数趋势图,下列说法不正确的是( )A.这14天中有4天空气质量为“良”B.这14天中空气质量指数的中位数是103C.从2日到5日空气质量越来越差D.连续三天中空气质量指数方差最小的是9日到11日(2)2020年我国突发新冠肺炎疫情,疫情期间中小学生“停课不停学”.已知某地区中小学生人数情况如甲图所示,各学段学生在疫情期间“家务劳动”的参与率如乙图所示.为了进一步了解该地区中小学生参与“家务劳动”的情况,现用分层随机抽样的方法抽取4%的学生进行调查,则抽取的样本容量、抽取的高中生中参与“家务劳动”的人数分别为()A.2 750,200B.2 750,110C.1 120,110D.1 120,200答案(1)B(2)C解析(1)在这14天中,1日、3日、12日、13日的空气质量为良,共4天,故A正确.14天中空气质量指数的中位数为86+1212=103.5,故B错误.从2日到5日,空气质量指数越来越高,故空气质量越来越差,C正确.观察题图可得,9日至11日空气质量指数偏差最小,因此方差最小,D正确.综上知,说法不正确的是B.(2)学生总数为15 500+5 000+7 500=28 000(人),由于抽取4%的学生进行调查,则抽取的样本容量为28 000×4%=1 120.故高中生应抽取的人数为5 000×4%=200,而抽取的高中生中参与“家务劳动”的比率为0.55,故抽取的高中生中参与“家务劳动”的人数为200×0.55=110.探究提高 1.解题的关键是理解统计图表的含义,从中提取数字信息,平均数、众数、中位数描述数据的集中趋势,方差与标准差描述数据的波动大小,标准差、方差越小,数据的离散程度越小,越稳定.2.进行分层随机抽样的相关计算时,常用到的两个关系:(1)样本容量n总体的个数N=该层抽取的个体数该层的个体数;(2)总体中某两层的个体数之比等于样本中这两层抽取的个体数之比.【训练1】(1)以下数据为参加数学竞赛决赛的15人的成绩:(单位:分)78,70,72,86,88,79,80,81,94,84,56,98,83,90,91,则这15人成绩的第80百分位数是()A.90B.90.5C.91D.91.5(2)(多选) 2020年上半年,中国养猪企业受猪价高位的利好影响,大多收获史上最佳半年报业绩,部分企业半年报营业收入同比增长超过1倍.某养猪场抓住机遇,加大了生猪养殖规模,为了检测生猪的养殖情况,该养猪场对2 000头生猪的体重(单位:kg)进行了统计,得到如图所示的频率分布直方图,则下列说法正确的是()A.这2 000头生猪体重的众数为160 kgB.这2 000头生猪中体重不低于200 kg的有80头C.这2 000头生猪体重的中位数落在区间[140,160)内D.这2 000头生猪体重的平均数为152.8 kg答案(1)B(2)BCD解析(1)把成绩按从小到大的顺序排列为:56,70,72,78,79,80,81,83,84,86,88,90,91,94,98,因为15×80%=12,所以这15人成绩的第80百分位数是90+912=90.5.(2)由频率分布直方图可知,[140,160)这一组的数据对应的小长方形最高,所以这2 000头生猪的体重的众数为150 kg,A错误;这2 000头生猪中体重不低于200 kg的有0.002×20×2 000=80(头),B正确;因为生猪的体重在[80,140)内的频率为(0.001+0.004+0.01)×20=0.3,在[140,160)内的频率为0.016×20=0.32,且0.3+0.32=0.62>0.5,所以这2 000头生猪体重的中位数落在区间[140,160)内,C正确;这2 000头生猪体重的平均数为(0.001×90+0.004×110+0.01×130+0.016×150+0.012×170+0.005×190+0.002×210)×20=152.8(kg),D正确.考向2用样本的频率分布估计总体分布【例2】为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A,B两组,每组100只,其中A组小鼠给服甲离子溶液,B组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.(1)求乙离子残留百分比直方图中a,b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).解(1)由已知得0.70=a+0.20+0.15,故a=0.35,b=1-0.05-0.15-0.70=0.10.(2)甲离子残留百分比的平均值的估计值为2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05.乙离子残留百分比的平均值的估计值为3×0.05+4×0.10+5×0.15+6×0.35+7×0.20+8×0.15=6.00.探究提高 1.平均数与方差都是重要的数字特征,是对数据的一种简明描述,它们所反映的情况有着重要的实际意义.2.在例2中,抓住频率分布直方图各小长方形的面积之和为1,这是求解的关键;本题易混淆频率分布条形图和频率分布直方图,误把频率分布直方图纵轴的几何意义当成频率,导致样本数据的频率求错.【训练2】(多选)为了更好地支持中小型企业的发展,某市决定对部分企业的税收进行适当的减免,现调查了当地100家中小型企业年收入(单位:万元)情况,并根据所得数据画出了如图所示的频率分布直方图,则下列结论正确的是()A.样本在区间[500,700]内的频数为18B.如果规定年收入在300万元以内的企业才能享受减免税收政策,估计有30%的当地中小型企业能享受到减免税收政策C.样本的中位数大于350万元D.可估计当地中小型企业年收入的平均数超过400万元(同一组中的数据用该组区间的中点值作代表)答案ABC解析依题意,(0.001+0.002+0.002 6×2+a+0.000 4)×100=1,所以a=0.001 4.对于A,样本在[500,700]内的频率为(0.001 4+0.000 4)×100=0.18,故频数为0.18×100=18,故A正确.对于B,年收入在300万元以内的频率为(0.001+0.002)×100=0.3,故B正确. 对于C,设样本的中位数为x,易知中位数位于[300,400]内,则0.3+(x-300)×0.002 6=0.5,解得x≈376.9,376.9>350,故C正确.因为样本的平均数为150×0.1+250×0.2+350×0.26+450×0.26+550×0.14+650×0.04=376<400,所以估计当地中小型企业年收入的平均数小于400万元,故D 错误. 热点二 回归分析【例3】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t)和年利润z (单位:千元)的影响,对近8年的年宣传费x i 和年销售量y i (i =1,2,…,8)数据进行了初步处理,得到如图所示散点图及一些统计量的值.x -y -w -∑8i =1(x i -x -)2∑8i =1(w i -w -)2∑8i =1(x i -x -)·(y i -y -) ∑8i =1(w i -w -)·(y i -y -) 46.65636.8289.8 1.61 469108.8表中w i =x i ,w -=18∑8i =1w i .(1)根据散点图判断,y =a +bx 与y =c +d x 哪一个更适宜作为年销售量y 关于年宣传费x 的回归方程?(给出判断即可,不必说明理由) (2)根据(1)的判断结果及表中数据,建立y 关于x 的回归方程.(3)已知这种产品的年利润z 与x ,y 的关系为z =0.2y -x .根据(2)的结果回答下列问题:①年宣传费x =49时,年销售量及年利润的预报值是多少? ②年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据(u 1,v 1),(u 2,v 2),…,(u n ,v n ),其回归直线v =α+βu 的斜率和截距的最小二乘估计分别为:β^=∑ni =1(u i -u -)(v i -v -)∑n i =1(u i -u -)2,α^=v --β^u -.解 (1)由散点图可以判断,y =c +d x 更适宜作为年销售量y 关于年宣传费x 的回归方程.(2)易知w =x ,则y ^=d ^w +c ^.由题意得d ^=∑8i =1(w i -w -)(y i -y -)∑8i =1(w i -w -)2=108.81.6=68,所以c ^=y --d ^w -=563-68×6.8=100.6.所以y 关于w 的线性回归方程为y ^=100.6+68w , 所以y 关于x 的回归方程为y ^=100.6+68x .(3)①由(2)知,当x =49时,年销售量y 的预报值为y ^=100.6+6849=576.6,年利润z 的预报值为z ^=576.6×0.2-49=66.32.②根据(2)的结果知,年利润z 的预报值z ^=0.2(100.6+68x )-x =-x +13.6x +20.12,所以当x =13.62=6.8,即x =46.24时,z ^取得最大值.故年宣传费为46.24千元时,年利润的预报值最大. 探究提高 1.求回归直线方程的关键及实际应用 (1)关键:正确理解b ^,a ^的计算公式并准确地计算.(2)实际应用:在分析实际中两个变量的相关关系时,可根据样本数据作出散点图来确定两个变量之间是否具有相关关系,若具有线性相关关系,则可通过线性回归方程估计和预测变量的值. 2.相关系数(1)当r >0时,表明两个变量正相关;当r <0时,表明两个变量负相关. (2)当|r |>0.75时,认为两个变量具有较强的线性相关关系.【训练3】 (多选)我国5G 技术研发试验在2016~2018年进行,分为5G 关键技术试验、5G 技术方案验证和5G 系统验证三个阶段.2020年初以来,5G 技术在我国已经进入高速发展的阶段,5G 手机的销量也逐渐上升.某手机商城统计了2021年5个月5G 手机的实际销量,如下表所示:若y 与x 线性相关,且求得线性回归方程为y ^=45x +5,则下列说法正确的是( ) A.a =142 B.y 与x 正相关C.y 与x 的相关系数为负数D.2021年7月该手机商城的5G 手机销量约为365部 答案 AB解析 x -=1+2+3+4+55=3,y -=50+96+a +185+2275=558+a 5,因为点(x -,y -)在回归直线上,所以558+a5=45×3+5,解得a =142,所以选项A 正确;从表格数据看,y 随x 的增大而增大,所以y 与x 正相关,所以选项B 正确;因为y 与x 正相关,所以y 与x 的相关系数为正数,所以选项C 错误;2021年7月对应的月份编号x =7,当x =7时,y ^=45×7+5=320,所以2021年7月该手机商城的5G 手机销量约为320部,所以选项D 错误.故选AB.热点三 独立性检验【例4】 为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM2.5和SO 2浓度(单位:μg/m 3),得下表:(1)估计事件“该市一天空气中PM2.5浓度不超过75,且SO 2浓度不超过150”的概率;(2)根据所给数据,完成下面的2×2列联表:(3)根据(2)中的列联表,依据小概率值α=0.01的χ2独立性检验,能否认为该市一天空气中PM2.5浓度与SO 2浓度有关? 附:χ2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),解 (1)根据抽查数据,该市100天的空气中PM2.5浓度不超过75,且SO 2浓度不超过150的天数为32+18+6+8=64,因此,该市一天空气中PM2.5浓度不超过75,且SO 2浓度不超过150的概率的估计值为64100=0.64. (2)根据抽查数据,可得2×2列联表:(3)零假设为H 0:该市一天空气中PM2.5浓度与SO 2浓度无关.根据(2)的列联表得χ2=100×(64×10-16×10)280×20×74×26≈7.484>6.635=x 0.01.根据小概率值α=0.01的χ2独立性检验,我们推断H 0不成立,即认为该市一天空气中PM2.5浓度与SO 2浓度有关,此推断犯错误的概率不超过0.01. 探究提高 1.独立性检验的一般步骤 (1)根据样本数据列成2×2列联表; (2)根据公式χ2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),计算χ2的值;(3)查表比较χ2与临界值的大小关系,作统计判断.2.χ2的值越大,对应假设事件H 0成立(两类变量相互独立)的概率越小,H 0不成立的概率越大.【训练4】 甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,为了比较两台机床产品的质量,分别用两台机床各生产了200件产品,产品的质量情况统计如下表:(1)甲机床、乙机床生产的产品中一级品的频率分别是多少?(2)依据小概率值α=0.01的χ2独立性检验,能否认为甲机床的产品质量与乙机床的产品质量有差异?附:χ2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),α 0.050 0.010 0.001 x α3.8416.63510.828解 (1)根据2×2列联表知:甲机床生产的产品中一级品的频率为150200=75%, 乙机床生产的产品中一级品的频率为120200=60%.(2)零假设为H 0:甲机床的产品质量与乙机床的产品质量没有差异.由2×2列联表,得χ2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )=400×(150×80-120×50)2270×130×200×200=40039≈10.256>6.635=x 0.01.根据小概率值α=0.01的χ2独立性检验,我们推断H 0不成立,即认为甲机床的产品质量与乙机床的产品质量有差异,此推断犯错误的概率不超过0.01.一、选择题1.设一组样本数据x 1,x 2,…,x n 的方差为0.01,则数据10x 1,10x 2,…,10x n 的方差为( ) A.0.01 B.0.1 C.1 D.10答案 C解析 10x 1,10x 2,…,10x n 的方差为102×0.01=1.2.为了研究某班学生的脚长x (单位:厘米)和身高y (单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y 与x 之间有线性相关关系,设其回归直线方程为y ^=b ^x +a ^.已知∑10i =1x i =225,∑10i =1y i =1 600,b ^=4.该班某学生的脚长为24,据此估计其身高为( ) A.160 B.163 C.166 D.170答案 C解析 ∵x -=110∑10i =1x i =110×225=22.5,y -=110∑10i =1y i=160, ∴a ^=y --b ^x -=160-4×22.5=70, ∴回归直线方程为y ^=4x +70. 因此估计其身高y ^=4×24+70=166.3.从一批零件中抽取80个,测量其直径(单位:mm),将所得数据分为9组:[5.31,5.33),[5.33,5.35),…,[5.45,5.47),[5.47,5.49],并整理得到如下频率分布直方图,则在被抽取的零件中,直径落在区间[5.43,5.47)内的个数为( )A.10B.18C.20D.36答案 B解析 因为直径落在区间[5.43,5.47)内的频率为0.02×(6.25+5.00)=0.225,所以零件的个数为0.225×80=18.4.某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图中A 点表示十月的平均最高气温约为15 ℃,B 点表示四月的平均最低气温约为5 ℃.下面叙述不正确的是()A.各月的平均最低气温都在0 ℃以上B.七月的平均温差比一月的平均温差大C.三月和十一月的平均最高气温基本相同D.平均最高气温高于20 ℃的月份有5个答案 D解析由雷达图易知A,C正确;七月的平均最高气温超过20 ℃,平均最低气温约为12 ℃,一月的平均最高气温约为6 ℃,平均最低气温约为2 ℃,所以七月的平均温差比一月的平均温差大,B正确;由雷达图知平均最高气温超过20 ℃的月份有3个月,D错误.5.(多选) 5G时代已经到来,5G的发展将直接带动包括运营、制造、服务在内的通信行业整体的快速发展,进而对GDP增长产生直接贡献,并通过产业间的关联效应,间接带动国民经济各行业的发展,创造出更多的经济增加值.如图,某单位结合近年数据,对今后几年的5G经济产出作出预测.由上图提供的信息可知()A.运营商的经济产出逐年增加B.设备制造商的经济产出前期增长较快,后期放缓C.设备制造商在各年的总经济产出中一直处于领先地位D.信息服务商与运营商的经济产出的差距有逐步拉大的趋势 答案 ABD解析 对于A ,由图知,运营商的经济产出逐年增加,故A 正确;对于B ,由图知,设备制造商的经济产出在2020~2023年间增长较快,后几年增长逐渐趋于平缓,故B 正确;对于C ,由图可知,设备制造商在各年的总经济产出中在前期处于领先地位,而后期是信息服务商处于领先地位,故C 错误;对于D ,由图知,在2020~2025年间信息服务商与运营商的经济产出的差距不大,后几年中信息服务商的经济产出增长速度明显高于运营商的经济产出增长速度,两者间的差距有逐步拉大的趋势,故D 正确.综上所述,选ABD.6.已知某7个数的平均数为4,方差为2,现加入一个新数据4,此时这8个数的平均数为x -,方差为s 2,则( )A.x -=4,s 2<2B.x -=4,s 2>2 C.x ->4,s 2<2 D.x ->4,s 2>2答案 A解析 ∵某7个数的平均数为4,∴这7个数的和为4×7=28.∵加入一个新数据4,∴x -=28+48=4.又∵这7个数的方差为2,且加入一个新数据4,∴这8个数的方差s 2=7×2+(4-4)28=74<2,故选A.二、填空题 7.给出如下列联表非 30 50 80 合计5060110根据独立性检验,__________在犯错误的概率不超过0.01的前提下认为“高血压与患心脏病有关”(填“能”或“不能”). 答案 能解析 零假设为H 0:高血压与患心脏病无关. 由列联表中的数据可得 χ2=110×(20×50-10×30)230×80×50×60≈7.486>6.635=x 0.01,根据小概率值α=0.01的χ2独立性检验,我们推断H 0不成立,即认为高血压与患心脏病有关,此推断犯错误的概率不超过0.01,即能在犯错误的概率不超过0.01的前提下,认为高血压与患心脏病有关.8.为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,测试成绩(单位:分)如图所示,假设得分值的中位数为m e ,众数为m 0,平均值为x -,则m e ,m 0与x -的大小关系是________.答案 m 0<m e <x -解析 由图可知,30名学生的得分情况依次为得3分的有2人,得4分的有3人,得5分的有10人,得6分的有6人,得7分的有3人,得8分的有2人,得9分的有2人,得10分的有2人.中位数为第15、16个数(分别为5、6)的平均数,即m e =5.5.5出现的次数最多,故m 0=5,x -=2×3+3×4+10×5+6×6+3×7+2×8+2×9+2×1030≈5.97.于是得m 0<m e <x -.9.下面的折线图给出的是甲、乙两只股票在某年中每月的收盘价格,已知股票甲的极差是6.88元,标准差为2.04元;股票乙的极差为27.47元,标准差为9.63元,根据这两只股票在这一年中的波动程度,给出下列结论:①股票甲在这一年中波动相对较小,表现的更加稳定;②购买股票乙风险高但可能获得高回报;③股票甲的走势相对平稳,股票乙的收盘价格波动较大;④两只股票在全年都处于上升趋势.其中正确的结论是________(填序号).答案 ①②③解析 由题意可知,甲的标准差为2.04元,乙的标准差为9.63元,可知股票甲在这一年中波动相对较小,表现的更加稳定,故①正确;甲的极差是6.88元,乙的极差为27.47元,可知购买股票乙风险高但可能获得高回报,故②正确;通过折线图可知股票甲的走势相对平稳,股票乙的收盘价格波动较大,故③正确;通过折线图可得乙在6月到8月明显是下降趋势,故④错误. 三、解答题10.某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:性别对该商场的服务 合计满意不满意(1)分别估计男、女顾客对该商场服务满意的概率;(2)依据小概率值α=0.05的χ2独立性检验,能否认为男、女顾客对该商场服务的评价有差异?附:χ2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ).解 (1)由调查数据,男顾客中对该商场服务满意的比率为4050=0.8,因此男顾客对该商场服务满意的概率的估计值为0.8.女顾客中对该商场服务满意的比率为3050=0.6,因此女顾客对该商场服务满意的概率的估计值为0.6. (2)零假设为H 0:男、女顾客对该商场服务的评价没有差异. 由列联表中的数据,得 χ2=100×(40×20-30×10)250×50×70×30≈4.762>3.841=x 0.05.根据小概率值α=0.05的χ2独立性检验,我们推 断H 0不成立,即认为男、女顾客对商场服务的评价有差异,此推断犯错误的概率不大于0.05.11.某互联网公司为了确定下季度的前期广告投入计划,收集了近6个月广告投入量x (单位:万元)和收益y (单位:万元)的数据如表:他们分别用两种模型①y =bx +a ,②y =a e bx 进行拟合,得到相应的回归方程并进行残差分析,得到如图所示的残差图及一些统计量的值.x -y -∑6i =1x i y i∑6i =1x 2i7301 464.24 364(1)根据残差图,比较模型①,②的拟合效果,应选择哪个模型?并说明理由; (2)残差绝对值大于2的数据被认为是异常数据,需要剔除. (ⅰ)剔除异常数据后,求出(1)中所选模型的回归方程; (ⅱ)若广告投入量x =18,则该模型收益的预报值是多少?附:对于一组数据(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其回归直线y ^=b ^x +a ^的斜率和截距的最小二乘估计分别为:b ^=∑n i =1(x i -x -)(y i -y -)∑n i =1(x i -x -)2=∑ni =1x i y i -nx -·y -∑n i =1x 2i -n ·x -2,a ^=y --b ^x -. 解 (1)由于模型①残差波动小,应该选择模型①. (2)(ⅰ)剔除异常数据,即3月份的数据, 剩下数据的平均数为x -=15×(7×6-6)=7.2,y -=15×(30×6-31.8)=29.64,∑5i =1x i y i -5x -·y -=206.4,∑5i =1x 2i -5·x -2=68.8. ∴b ^=206.468.8=3,a ^=y --b ^x -=29.64-3×7.2=8.04.∴所选模型的回归方程为y ^=3x +8.04. (ⅱ)若广告投入量x =18,则该模型收益的预报值是3×18+8.04=62.04(万元).12.(多选)2020年7月国家统计局发布了我国2020年上半年国内经济数据,图1为国内三大产业生产总值的比重,图2为第三产业中各行业生产总值的比重.以下关于我国2020年上半年经济数据的说法正确的是()A.在第三产业中,“批发和零售业”与“金融业”的生产总值之和同“其他服务业”的生产总值基本持平B.若“租赁和商务服务业”生产总值为15 000亿元,则“房地产业”生产总值为32 500亿元C.若“金融业”的生产总值为42 000亿元,则第三产业生产总值为262 500亿元D.若“金融业”的生产总值为42 000亿元,则第一产业生产总值为45 000亿元答案ABC解析对于选项A,在第三产业中,“批发和零售业”与“金融业”的生产总值之和占比为16%+16%=32%,“其他服务业”的生产总值占比为32%,所以“批发和零售业”与“金融业”的生产总值之和同“其他服务业”的生产总值基本持平,故选项A正确.对于选项B,若“租赁和商务服务业”生产总值为15 000亿元,在第三产业中,因为“租赁和商务服务业”生产总值占比为6%,所以第三产业生产总值为15 000=250 000(亿元),又“房地产业”生产总值占比为13%,所以“房地产6%业”生产总值为13%×250 000=32 500(亿元),故选项B正确.对于选项C ,在第三产业中,若“金融业”的生产总值为42 000亿元,因为“金融业”生产总值占比为16%,所以第三产业生产总值为42 00016%=262 500(亿元),故选项C 正确.对于选项D ,第三产业生产总值在三大产业中占比为57%,第一产业生产总值在三大产业中占比为6%,由C 选项知第三产业生产总值为262 500亿元,所以第一产业生产总值为262 50057%×6%≈27 632(亿元),所以选项D 错误.13.由于受到网络电商的冲击,某品牌的洗衣机在线下的销售受到影响,承受了一定的经济损失,现将A 地区200家实体店该品牌洗衣机的月经济损失统计如图所示,估算月经济损失的平均数为m ,中位数为n ,则m -n =________.答案 360解析 第一块小矩形的面积S 1=0.3,第二块小矩形的面积S 2=0.4,故n =2 000+0.5-0.30.000 2=3 000;又第四、五块小矩形的面积均为S =0.06,故a =12 000[1-(0.3+0.4+0.06×2)]=0.000 09,所以m =1 000×0.3+3 000×0.4+5 000×0.18+(7 000+9 000)×0.06=3 360,故m -n =360.14.某公司为了预测下月产品销售情况,找出了近7个月的产品销售量y (单位:万件)的统计表:月份代码t 1 2 3 4 5 6 7 销售量y (万件)y 1y 2y 3y 4y 5y 6y 7但其中数据污损不清,经查证∑7i =1y i =9.32,∑7i =1t i y i =40.17,∑7i =1(y i -y -)2=0.55.。

统计学习题(抽样分布、参数估计)

统计学习题(抽样分布、参数估计)

统计学习题(抽样分布、参数估计)练习题第1章绪论(略)第2章统计数据的描述2.1某家商场为了解前来该商场购物的顾客的学历分布情况,随机抽取了100名顾客。

其学历表示为:1.初中;2.高中/中专;3.大专;4.本科及以上学历。

调查结果如下:4222434414 2244432422 3121441424 2332134344 3312424324 2322212244 2123333334 2343313232 4313434214 2242334121(1)制作一张频数分布表。

(2)绘制一张条形图,反映学历分布。

2.2为了解某电信客户对该电信公司的服务的满意度情况,某调查公司分别对两个地区的电信用户在以下五个方面对受访用户的满意情况进行了问卷调查得到的数据如下(表中数据为平均满意度打分,从1分到10分满意度依次递增):地区企业形象客户期望质量感知价值感知客户总体满意度A 8.269504 7.51773 9.2624117.9148948.411348B 7.447368 8.3684218.9736848.1052637.394737试用条形图反映将两地区的满意度情况。

2.3下面是一个班50个学生的经济学考试成绩:88569179699088718279 988534744810075956092 83646569996445766369 6874948167818453912484628183698429667594(1)对这50名学生的经济学考试成绩进行分组并将其整理成频数分布表,绘制直方图。

(2)用茎叶图将原始数据表现出来。

2.4如下数据反映的是某大学近视度数的情况,共120名受访同学,男女同学各60名。

男149 161761821310 80 951081414 0 144145151515161681882121 0 21211052121211116817521 0 356462121212121312121 0 2121212121375375383838 8 45566065120 30120 7521女120 3334537437538700 90700 60141516212121211517170 0 0 0 0 0 0 0 5 521 0 1752121214043451217517 8 181818518519195196202021 0 21212121212121333335 0 3636363840474865055(1)按近视度数分别对男女学生进行分组。

统计整理练习题

统计整理练习题

统计整理练习题统计整理练习题一、单项选择题1.统计分组是统计资料整理中常用的统计方法,它能够区分()。

A.总体中性质相同的单位 B.总体标志 C.一总体与它总体D.总体中性质相异的单位【答案】D2.统计分组的关键在于确定()。

A.组中值 B.组距C.组数 D.分组标志和分组界限【答案】D3..按照反映事物属性差异的品质标志进行分组称为按品质标志分组。

下述分组中属于这一类的是()。

A.人口按年龄分组 B.在校学生按性别分组C.职工按工资水平分组 D.企业按职工人数规模分组【答B4.按数量标志分组的关键是确定()。

A.变量值的大小B.组数 C.组中值 D.组距【答案】D5.全国总人口按年龄分为5组,这种分组方法属于()。

A.简单分组 B.复合分组C.按品质标志分组D.以二都不对【答A6.对某校学生先按年级分组,在此基础上再按年龄分组,这种分组方法是()。

A.简单分组 B.复合分组 C.再分组 D.平行分组【答案】B7.对某校学生分别按年级和年龄分组,由此形成的分组体系是()。

A.平行分组体系 B.复合分组体系 C~二者兼而有之 D.二者都不是【答案】A8.组距数列中的上限一般是指()。

A.本组变量的最大值B.本组变量的最小值C.总体内变量的最大值 D.总体内变量的最小值【答案】A9.组距和组数是组距数列中的一对基本要素,当变量的全距一定时,组距和组数()。

A.没有关系 B.关系不确定 C.有正向关系 D.有反向关系【答案】D10.等距数列和异距数列是组距数列的两种形式,其中等距数列是指()。

A.各组次数相等的数列B.各组次数不等的数列 C.各组组距相等的数列D.各组组距不等的数列【答案】C11.用离散变量作分组标志时,相邻组的上下限应()A.重合 B.间C.不相等 D.相等【答案】B12.某企业职工月工资收入最高者为4260元,最低者为2700元,据此分为六个组,形成闭口式等距数列,则组距应为()。

《统计学》--数据分布特征的统计描述练习

《统计学》--数据分布特征的统计描述练习

第三章数据分布特征的统计描述练习题一、单项选择题1、一组数据排序后处于25%和75%位置上的值称为(C)A、众数B、中位数C、四分位数D、均值2、离散系数的主要用途是(C)A、反映一组数据的离散程度B、反映一组数据的平均水平C、比较多组数据的离散程度D、比较多组数据的平均水平3、离散系数(C)A、只能消除一组数据的水平对标准差的影响B、只能消除一组数据的计量单位对标准差的影响C、可以同时消除数据的水平和计量单位对标准差的影响D、可以准确反映一组数据的离散程度4、峰态通常是与标准正态分布相比较而言的,如果一组数据服从标准正态分布,则峰态系数的值(A)A、等于0B、大于0C、小于0D、等于15、如果峰态系数K>0,表明该组数据是(A)A、尖峰分布B、扁平分布C、左偏分布D、右偏分布6、某大学经济管理学院有1200名学生,法学院有800名学生,医学院有320名学生,理学院有200名学生。

在上面的描述中,众数是(B)A、1200B、经济管理学院C、200D、理学院7、某居民小区准备采取一项新的物业管理措施,为此,随机抽取了100户居民进行调查,其中表示赞成的有69户,表示中立的有22户,表示反对的有9户,描述该组数据的集中趋势宜采用(A)A、众数B、中位数C、四分位数D、均值8、甲、乙两组工人的平均日产量分别为18件和15件。

若甲、乙两组工人的平均日产量不变,但是甲组工人数占两组工人总数的比重下降,则两组工人总平均日产量(B)A、上升B、下降C、不变D、可能上升,也可能下降9、权数对平均数的影响作用取决于(C)。

在统计计算中,用来衡量总体中各单位标志值在总体中作用大小的数值叫权数。

A、各组标志值的大小B、各组的次数多少C、各组次数在总体单位总量中的比重D、总体单位总量10、当各个变量值的频数相等时,该变量的(A)A、众数不存在B、众数等于均值C、众数等于中位数D、众数等于最大的数据值11、有8名研究生的年龄分别为21,24,28,22,26,24,22,20岁,则他们的年龄中位数为(B)A、24B、23C、22D、2112、下列数列平均数都是50,在平均数附近离散程度最小的数列是(b)A、0 20 40 50 60 80 100B、0 48 49 50 51 52 100C、0 1 2 50 98 99 100D、0 47 49 50 51 53 10013、如果你的业务是提供足球运动鞋的号码,那么,哪一种平均指标对你更有用?(d)A、算术平均数B、几何平均数C、中位数D、众数14、假定某人6个月的收入分别是1800元,1840元,1840元,1840元,1840元,8800元,反映其月收入一般水平应该采用(C)A、算术平均数B、几何平均数C、众数D、调和平均数15、某组数据分布的偏度系数为正时,该数据的众数、中位数、均值的大小关系是(B )A、众数>中位数>均值B、均值>中位数>众数C、中位数>众数>均值D、中位数>均值>众数二、填空题1、某班的经济学成绩如下表所示:43 55 56 56 59 60 67 69 73 75 77 77 78 79 80 81 82 83 83 83 84 86 87 88 88 89 90 90 95 97该班经济学成绩的平均数为77 ,众数为83 ,中位数为,上四分位数为,下四分位数为,四分位差为,离散系数为。

统计课练习题+答案

统计课练习题+答案

1试根据上表资料,计算该厂职工工资平均数、标准差。

解:x =∑∑fxf=)(68040027200040040*90060*800140*700100*60060*500元==++++σ=()∑∑-ffx x 2=40040)680900(60)680800(140)680700(100)680600(60)68050022222-+-+-+-+-=62.11640544000=2、某企业2000-2005年某种产品产量资料如下:运用简单的最小二乘法配合直线,并预测2006年产品产量。

解:(1)x 取值:1.2.3.4.5.6 y :50.52.53.56.58.61()5.36/216/654321==+++++=x ()556/3306/615856535250==+++++=y()∑==+++++=71586*119361*658*556*453*352*250*1*6xy n()()∑∑==++++++++++=6930330*21615856535250*654321y x()∑==+++++=54691*6654321*622222x n()()44165432122=+++++=∑x()17.2171.21052284415466930715822≈≈=--=--=∑∑∑∑∑x x n y x xy n b 所以 40.474015.475.3*171.255≈=-=-=x b y a 所以 x bx a y c 17.24.47+=+=所以(2))(59.627*17.24.4772006万台时,年即=+==c y x3、根据某城市500户居民家计调查结果,将居民户按其食品开支占全部消费开支的比重(即恩格尔系数)分组后,得到如下的频数分布资料。

要求根据资料通过计算该城市恩格尔系数的算术平均数,中位数和众数分析算术平均数的方法的优缺点。

恩格尔系数(%) 居民户数 20以下 6 20~30 38 30~40 107 40~50 114 50~60 137 60~70 74 70以上 24 合计500解:()%12.485002406050024*7574*65137*55114*45107*3538*256*15==++++++==∑∑f xf x ()()%67.5267.25010*6323235063741372311413710506060-50%68.4868.84010*11415125040250015110738611410405050-402112111=+≈++=∆+∆∆+==-=∆=-=∆=-==+≈-+=-+===++===-=--∑∑d L M d i f s fL M fs f i o mm e m m 众数所在组:中位数所在组:4、工商部门对某超市经销的小包装休闲食品进行重量合格抽查,规定每包重量不低于30(1) 这批食品的平均每包重量是否符合规定要求。

统计学练习题及答案

统计学练习题及答案

统计学练习题及答案数据分布特征的描述1.下面是我国人口和国土面积资料:────────┬─────────────── │根据第四人次人口普查调整数├──────┬──────── │1982年│ 1990年────────┼──────┼──────── 人口总数│ __ │ __ 男│ __ │ __ 女│ __ │ __────────┴──────┴────────国土面积960万平方公里。

试计算所能计算的全部相对指标。

2.某企业2022年某产品单位成本520元,2022年计划规定在上年的基础上单位成本降低5%,实际降低6%,试确定2022年单位成本的计划数与实际数,并计算2022年降低成本计划完成程度指标。

3.某市共有50万人,其市区人口占85%,郊区人口占15%,为了解该市居民的收入水平,在市区抽查了1500户居民,每人平均收入为1400元;在郊区抽查了1000 户居民,每人年平均收入为1380元,若这两个抽样数字具有代表性,则计算该市居民年平均收入应采用哪一种形式的平均数方法进行计算?4.有两个班级统计学成绩如下:根据上表资料计算:(1)哪个班级统计学成绩好?(2)哪个班级的成绩分布差异大?5.2022年8月份甲、乙两农贸市场资料如下:────┬──────┬─────────┬─────────品种│价格(元/斤)│甲市场成交额(万元)│乙市场成交量(万斤)────┼──────┼─────────┼───────── 甲│ 1.2 │ 1.2 │ 2 乙│ 1.4 │ 2.8 │ 1 丙│ 1.5 │ 1.5 │ 1────┼──────┼─────────┼───────── 合计│ ── │ 5.5 │ 4────┴──────┴─────────┴─────────试问哪一个市场农产品的平均价格较高?并说明原因。

6.某车间有甲、乙两个生产组,甲组平均每个工人的日产量36件,标准差9.6件。

扇形统计图应用题专项练习20题

扇形统计图应用题专项练习20题

扇形统计图应用题专项练习20题1、某位同学上个月的消费情况统计图如图所示(1)这位同学上网用了7元,则他上个月消费了多少元?(2)乘车、买学生用品,买零食和玩各花了多少元?(3)你还能想出什么问题?2、小明调查了本地区去年4月份每天的天气情况,并把它分为晴天、阴天和雨天三类,制成了下面的统计图。

请你算一算,晴天占这个月天数的百分之多少?晴天有多少天?3、六(1)班共有40人,下面是他们一些最喜欢的饮料的统计图,请问每种饮料各有多少人喜欢?4、六年级学生参加各兴趣小组的人数占总人数的百分比如图所示,其中60名同学喜欢美术,请你算算喜欢书法的同学有多少?5、如图是某蔬菜种植基地里蔬菜种植面积的扇形统计图。

(1)已知西红柿的种植面积是2.5公顷,蔬菜种植总面积是多少公顷?(2)萝卜的种植面积是多少公顷?6、下面是光明小学六年级学生的视力情况统计图。

(1)根据以上信息,下面分析不正确的是()。

A.假性近视的人数和视力正常的人数一样多。

B.近视人数占全年级人数的30%。

C.视力不良(包括假性近视和近视)的人数占全年级人数的65%。

D.假性近视的人数可能比近视的人数少一些。

(2)视力正常的有70人,六年级共有多少人?(3)这所学校六年级学生的视力情况如何?对于保护视力,你有什么建议?请写下来。

7、学校六年级有250名同学,参加课外兴趣小组分布情况如下图。

①参加体育兴趣小组的同学比参加音乐小组的同学多多少人?②参加其它兴趣小组的同学有多少人?③根据题目条件自己提出问题,并列式解答。

8、下图是六(1)班全班同学最喜爱的体育运动制作的扇形统计图,请你看图解答下列问题。

(1)其他占总数的()%。

(2)如果喜欢打排球的同学有9人,则全班有()人。

(3)根据题目中的信息,请你提出一个数学问题,并解答。

9、希望小学六年级学生体重情况统计如图。

(1)正常体重的人数占全班的()%。

(2)肥胖和超重人数共20人,全年级共有()人。

统计学原理计算题期末练习参考答卷

统计学原理计算题期末练习参考答卷

统计学原理计算题期末练习参考答卷一、次数分布表的编制:1、某生产车间40名工人日加工零件数(件)如下:30 26 42 41 36 44 40 37 43 35 37 25 45 29 43 31 36 49 34 47 33 43 38 42 32 25 30 46 29 34 38 46 43 39 35 40 48 33 27 28 要求:(1)根据以上资料分成如下几组:25—30,30—35,35—40,40—45,45—50计算出各组的频数和频率,编制次数分布表。

(2)根据整理表计算工人的平均日产零件数。

解、(1(2所以工人的平均日产零件数:每人每日件/5.37401500===∑∑fxf x2、有27个工人看管机器台数如下:5 4 2 4 3 4 3 4 4 2 4 3 4 3 26 4 4 2 2 3 4 5 3 2 4 3 试编制分配数列。

二、平均指标、相对指标、变量指标的计算1.某车间有甲、乙两个生产小组,甲组平均每个工人的日产量为22件标准差为3.5件;计算乙组每个工人的平均日产量,并比较甲、乙两生产小组哪个组的日产量更有代表性? 解:)/(171001700人件乙===∑∑f xf x ())(65.21007022件乙==-=∑∑ff x x σ。

又因为:)/(22人件甲=x )(5.3件甲=σ 1591.0225.3===甲甲甲x σν 1559.01765.2===乙乙乙x σν 即:甲ν>乙ν 因此乙组的平均数更具代表性。

2、某局15个企业99年某产品的单位成本资料如下:试计算该产品的平均单位产品成本。

解:由于组距式分组,故采用组中值计算:∑∑∑∑⨯==ffx f xf x =11×22%+13×40%+15×38%=2.42+5.2+5.7=13.32(元/件)3、 已知某局20个企业的有关统计资料如下:试计算产值的平均计划完成程度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

统计分布列练习题姓名--------
1. 四个不同的小球放入四个不同的盒中,空盒个数为为ξ,求ξ的分布列及期望
2.将5封信投入3个不同的邮筒,没有空邮筒,第一个邮筒的信件数为ξ,求ξ的分布列及期望
3. 4名学生分配到3个车间去劳动,每车间至少一人,第一车间人数ξ,求ξ的分布列及期望?
4.将1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数字,则2号方格与所填的数字不是2,1所在位置为ξ,求ξ的分布列及期望.
5.从5名男生和4名女生中选出4人去参加辩论比赛
(1)如果4人中男生和女生各选2人,男生中的甲与女生中的乙参选数为ξ,求ξ的分布列及期望;(2)如果男生中的甲与女生中的乙必须在内,男生参选数为ξ,求ξ的分布列及期望;
(3)如果男生中的甲与女生中的乙至少要有1人在内,男生参选数为ξ,求ξ的分布列及期望;
(4)如果4人中必须既有男生又有女生,男生参选数为ξ,求ξ的分布列及期望
6.某科技小组有6名同学,现从中选出3人去参观展览,至少有1名女生入选时的不同选法有16种,女生的参观展览人数为ξ,求ξ的分布列及期望
7.5个人分4张同样的足球票,每人至多分两张,而且票必须分完,得票人数为ξ,求ξ的分布列及期8.学校召开学生代表大会,高二年级的3个班共选6名代表,每班至少1名,一班所去人数为ξ,求ξ的分布列及期望
9.公共汽车上有4位乘客,汽车沿途停靠6个站,停车次数为ξ,求ξ的分布列及期望
10.有10只不同的试验产品,其中有4只次品,6只正品,现每次取一只测试,直到测出3只次品为止,检测次数为ξ,求ξ的分布列及期望
11.从6台原装计算机和5台组装计算机中任意选取5台参加展览,原装计算机参展数为ξ,求ξ的分布列及期望
12.在10瓶饮料中,有5瓶已过了保质期,逐一检测,直到过期产品全部确定为止检验次数为ξ,求ξ的分布列及期望
13.第1小组有足球票3张、篮球票2张,第2小组有足球票2张、篮球票3张,甲从第1小组的5张票和乙从第2小组的5张票中各任抽2张,两人抽到足球票数为ξ,求ξ的分布列及期望
14.5封信投入4个信箱,空信箱数是ξ,求ξ的分布列及期望
15.袋中装有标号为1,2,3,4的四只球,四人从中各取一只球,其中甲不取1号球,乙不取2号球,丙取球号为ξ,求ξ的分布列及期望
16.5名旅客随机地住入旅馆的3间客房中,所占房间数为ξ,求ξ的分布列及期望.
17.6本不同的书分给3个人,每人至少分得1本,甲得书数为ξ,求ξ的分布列及期望
18.将6个球随机地放入4个盒子中,每盒至少一球,甲盒中球数为ξ,求ξ的分布列及期望
19.从装有10个红球和5个白球的口袋中,任意摸出4个球,白球个数为ξ,求ξ的分布列及期望20.甲组有3名男生,2名女生;乙组有2名男生,3名女生,今从甲、乙两组各抽2名同学参加拥军活动,抽得男生数为ξ,求ξ的分布列及期望?
21.一组有5名学生,生日月数种数为ξ,求ξ的分布列及期望
22.某人有6把钥匙其中仅有2把钥匙可以打开房门,开锁次数为ξ,求ξ的分布列及期望
23.在放有5个红球、4个黑球、3个白球的袋中,任意取出3个球,同色球个数为ξ,求ξ的分布列及期望
24.某道路的A、B、C三处设有交通灯,这三盏灯在一分钟内开放绿灯的时间分别为25秒、35秒、45秒,某辆车在这条路上行驶时,三处停车次数ξ,求ξ的分布列及期望
2.10张奖券中含有3张中奖的奖券,每人购买1张,则前3个购买者中,中奖人数ξ,求ξ的分布列及期望
25.甲、乙两队参加乒乓球团体比赛,甲队与乙队实力之比为3:2,比赛时均能正常发挥技术水平,则在5局3胜制中,所打局数为ξ,求ξ的分布列及期望
26. 有一批数量很大的产品,其次品率是15%,对这批产品进行抽查,每次抽取1件,如果抽出次品,
则抽查终止,否则继续抽查,直到抽出次品为止,但抽查次数不超过5次求抽查次数ξ的期望
27. 从编号为1,2,3,…,10的共10个球中,取出4个球,使得这4个球的编号最小为奇数为ξ,求ξ的分布列及期望,
28 一袋中装有5只球,编号为1,2,3,4,5,在袋中同时取3只,以ξ表示取出的三只球中的最小号码,写出随机变量ξ的分布列.
29 盒中装有一打(12个)乒乓球,其中9个新的,3个旧的(用过的球即为旧的),从盒中任取3个使用,用完后装回盒中,此时盒中旧球个数ξ是一个随机变量,求ξ的分布列.
30在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖。

某顾客从此10张券中任抽2张,求:
(1) 该顾客中奖的概率;(2) 该顾客获得的奖品总价值ξ (元)的概率分布列和期望E ξ。

31甲、乙、丙三人按下面的规则进行乒乓球比赛:第一局由甲、乙参加而丙轮空,以后每一局由前一局的获胜者与轮空者进行比赛,而前一局的失败者轮空.比赛按这种规则一直进行到其中一人连胜两局或打满6局时停止.设在每局中参赛者胜负的概率均为12
,且各局胜负相互独立.求:(Ⅰ) 打满3局比赛还未停止的概率;(Ⅱ)比赛停止时已打局数ξ的分别列与期望E ξ.
32求证:从袋中任意摸出2个球,至少得到1个黑球的概率不大于
107。

并指出袋中哪种颜色的球个数最少。

33甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为
21与p ,且乙投球2次均未命中的概率为16
1.;若甲投球1次,乙投球2次,两人共命中的次数记为ξ,求ξ的分布列和数学期望. 34设进入某商场的每一位顾客购买甲种商品的概率为0.5,购买乙种商品的概率为0.6,且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的。

记ξ表示进入商场的3位顾客中至少购买甲、乙两种商品中的一种的人数,求ξ的分布列及期望。

35已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方法:
方案甲:逐个化验,直到能确定患病动物为止.
方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.
(Ⅰ)求依方案甲所需化验次数不少于依方案乙所需化验次数的概率;
(Ⅱ)ξ表示依方案乙所需化验次数,求ξ的期望.
36.6本不同的书,分给甲、乙、丙三人,每人至少1本 甲得书数为为ξ,求ξ的分布列及期望 37本不同的书,分给甲、乙、丙三人 甲得书数为为ξ,求ξ的分布列及期望。

相关文档
最新文档