已知函数fx=x2-2ax-3在区间12上单调求实数a的取值范围

合集下载

已知函数单调性求参数取值范围

已知函数单调性求参数取值范围

技法点拨已知函数单调性求参数取值范围■欧阳丽丽摘要:利用导数根据函数单调性(区间)求参数的取值范围,是高考考查函数单调性的一个重要考点,下面将这类问题举例分析。

关键词:导数;单调性;参数取值范围一、转化为不等式的恒成立问题求参数取值范围若函数f (x )在(a ,b )上单调递增,则f′(x )≥0;若函数f (x )在(a ,b )上单调递减,则f′(x )≤0,将问题转化为函数最值问题求解。

一般地,分离变量后,若得到a ≥h (x ),则只需a ≥h (x )max ;若得到a ≤h (x ),则只需a ≤h (x )min 。

注意:f (x )在(a ,b )上为增函数(减函数)的充要条件是对任意的x ∈(a ,b )都有f ′(x )≥0(f′(x )≤0)且在(a ,b )内的任一非空子区间上f′(x )≠0。

例1,已知函数f (x )=ln x -12ax 2-2x (a ≠0)在[1,]4上单调递减,求a 的取值范围。

解:因为f (x )在[1,]4上单调递减,所以当x ∈[1,]4时,f′(x )=1x -ax -2≤0恒成立,即a ≥1x 2-2x 恒成立。

设h (x )=1x2-2x ,x ∈[1,]4所以只要a ≥h (x )max 。

而h′(x )=2(x +1)(x +1)x 4。

当x ∈[1,]4,h′(x )>0,所以h (x )在[1,]4上单调递增。

所以当h (x )max =h (4)=-716,所以a ≥-716,即a 的取值范围是éëêöø÷-716,+∞。

评析:由f (x )在[1,]4上单调递增,得到f′(x )≤0,进而分离参数a ,构造新的函数h (x ),本题转化为求h (x )max 。

例2,已知函数f (x )=ax +1x +2在(-2,+)∞内单调递减,求实数a 的取值范围。

利用函数的单调性求参数的取值范围(使用)

利用函数的单调性求参数的取值范围(使用)

例1:已知函数f (x) x3 ax2 3x 1在[2,4]上是单调递增函数, 求参数a的取值范围.
解 f '(x) 3x2 2ax 3, x [2,4]
: 则f '(x) 0在[2,4]上恒成立
即3x2 2ax 3 0,恒成立x [2,4]
方法:(分离参数)2ax 3x2 3恒成立
f '(x) ax (2a 1) 2 (ax 1)(x 2)
x
x
(1)当a 0时,f '(x) 2 x x
所以f (x)在(0,2)上递增,在(2, )上递减。
(2)当a
0时,令f
'(x)
0,
得x1
1 a
0.x2
2
结合二次函数图象知 f (x)在(0,2)上递增;
在(2, )递减。
(3)当a
即3x2 a 3 0,恒成立x [0,)
方法:(分离参数)
a 3x2 3恒成立
a (3x2 3)min a 3
练习 若函数f (x) x3 ax2 1在(0,2)内单调递减, 2: 求实数a的取值范围.
解析: f '(x) 3x2 2ax, x (0,2)
则f '(x) 0在(0,2)上恒成立
利用函数单调性求参数的 取值范围
复习
1 用导数判断函数单调性法则:

如果在(a,b)内,f
(x)>0,则f
(x)在此区间是增函数;
如果在(a,b)内,f (x)<0,则f (x)在此区间是减函数。
2、求函数单调区间的一般步骤 是
1、求定义 域2、求导
f'(x) 3、令f'(x)>0,求出增区间,令f'(x)<0, 求出减区间。

3.2.1第1课时函数的单调性(教学课件)-高中数学人教A版(2019)必修第一册

3.2.1第1课时函数的单调性(教学课件)-高中数学人教A版(2019)必修第一册

A.(-∞,1]
B.(-∞,2]
()
C.[1,+∞)
D.[2,+∞)
【答案】B 【解析】∵函数 f(x)=x2-(a-1)x+5 图象的对称轴为 x=a-2 1,且
f(x)在区间12,1上单调递增,∴a-2 1≤21,即 a≤2.
3.(题型3)函数f(x)是定义域上的单调递减函数,且图象过点(-3,2) 和(1,-2),则使|f(x)|<2的x的取值范围是________.
设x1,x2是f(x)定义域某一个子区间M上的两个变量值,如果f(x)满足 以下条件,该函数f(x)是否为增函数?
(1)对任意 x1<x2,都有 f(x1)<f(x2); (2)对任意 x1,x2(x1≠x2),都有(f(x1)-f(x2))(x1-x2)>0; (3)对任意 x1,x2(x1≠x2)都有fxx11- -fx2x2>0.
【答案】-1,12 -1≤x≤1,
【解析】由题意得x<21,
解得-1≤x<12.
题型4 根据函数的单调性求参数的取值范围 已知函数f(x)=x2-2ax-3在区间[1,2]上具有单调性,求实数a
的取值范围. 素养点睛:考查直观想象和数学运算的核心素养. 解:由于二次函数图象的开口向上,对称轴为x=a,故其增区间为
(2)画出函数y=-x2+2|x|+1的 图象并写出函数的单调区间.
素养点睛:考查直观想象和逻 辑推理的核心素养.
【答案】(1)[-2,1] [3,5] [-5, -2] [1,3]
【解析】观察图象可知,y=f(x)的单调区间有[-5,-2],[-2,1], [1,3],[3,5].其中 y=f(x)在区间[-5,-2],[1,3]上具有单调递增,在区 间[-2,1],[3,5]上单调递减.

高中数学(人教a版)必修一:第1-3章-全册综合质量评估试卷(含答案) (2)

高中数学(人教a版)必修一:第1-3章-全册综合质量评估试卷(含答案) (2)

温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。

关闭Word文档返回原板块。

综合质量评估第一至第三章(120分钟 150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集U={1,2,3,4,5,6},A={1,2,3},B={2,3,4},则ð(A∪UB)=( )A.{2,3}B.{5,6}C.{1,4,5,6}D.{1,2,3,4}2.下列函数中,在(0,1)上为单调递减的偶函数的是( )A.y=B.y=x4C.y=x-2D.y=-3.由下表给出函数y=f(x),则f(f(1))等于( )A.1B.2C.4D.54.函数f(x)=x2-2ax+3在区间[2,3]上是单调函数,则a的取值范围是( )A.a≤2或a≥3B.2≤a≤3C.a≤2D.a≥35.(2012·安徽高考)(log29)·(log34)=( )A. B. C.2 D.46.(2012·天津高考)已知a=21.2,b=()-0.8,c=2log52,则a,b,c的大小关系为( )A.c<b<aB.c<a<bC.b<a<cD.b<c<a7.判断下列各组中的两个函数是同一函数的为( )(1)f(x)=,g(t)=t-3(t≠-3).(2)f(x)=,g(x)=.(3)f(x)=x,g(x)=.(4)f(x)=x,g(x)=.A.(1)(4)B.(2)(3)C.(1)(3)D.(3)(4)8.函数f(x)=1+log2x与g(x)=2-x+1在同一坐标系下的图象大致是( )9.若f(x)=,则f(x)的定义域为( )A.(-,0)B.(-,0]C.(,+∞)D.(0,+∞)10.(2012·广东高考)下列函数中,在区间(0,+∞)上为增函数的是( )A.y=ln(x+2)B.y=-C.y=()xD.y=x+11.给出下列四个等式:f(x+y)=f(x)+f(y),f(xy)=f(x)+f(y),f(x+y)=f(x)f(y),f(xy)=f(x)f(y),下列函数中不满足以上四个等式中的任何一个等式的是( )A.f(x)=3xB.f(x)=x+x-1C.f(x)=log2xD.f(x)=kx(k≠0)12.某市房价(均价)经过6年时间从1200元/m2增加到了4800元/m2,则这6年间平均每年的增长率是( )A.-1B.+1C.50%D.600元二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中的横线上)13.若函数f(x+1)=x2-1,则f(2)= .14.计算(的结果是.15.已知函数f(x)=a x+log a(x+1)在[0,1]上的最大值与最小值之和为a,则a的值为.16.给出下列四个判断:①若f(x)=x2-2ax在[1,+∞)上是增函数,则a=1;②函数f(x)=2x-x2只有两个零点;③函数y=2|x|的最小值是1;④在同一坐标系中函数y=2x与y=2-x的图象关于y轴对称.其中正确的序号是.三、解答题(本大题共6小题,共70分,解答时写出必要的文字说明、证明过程或演算步骤)17.(10分)设集合A={x|0<x-a<3},B={x|x≤0或x≥3},分别求满足下列条件的实数a的取值范围:(1)A∩B= .(2)A∪B=B.18.(12分)(2012·冀州高一检测)计算下列各式的值:(1)(2-(-9.6)0-(+()-2.(2)log 3+lg 25+lg 4+.19.(12分)已知二次函数f(x)满足f(x+1)-f(x)=2x且f(0)=1.(1)求f(x)的解析式.(2)当x∈[-1,1]时,不等式f(x)>2x+m恒成立,求实数m的范围. 20.(12分)某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比.已知投资1万元时,两类产品的收益分别为0.125万元和0.5万元(如图).(1)分别写出两种产品的收益与投资额的函数关系.(2)该家庭现有20万元资金,全部用于理财投资,问:怎么分配资金能使投资获得最大收益,其最大收益是多少万元?21.(12分)定义在[-1,1]上的偶函数f(x),已知当x∈[0,1]时的解析式为f(x)=-22x+a2x(a∈R).(1)求f(x)在[-1,0]上的解析式.(2)求f(x)在[0,1]上的最大值h(a).22.(12分)(能力挑战题)设f(x)=ax2+x-a,g(x)=2ax+5-3a.(1)若f(x)在[0,1]上的最大值为,求a的值.(2)若对于任意x1∈[0,1],总存在x0∈[0,1],使得f(x1)=g(x0)成立,求a的取值范围.答案解析1.【解析】选B.因为A∪B={1,2,3,4},所以ð(A∪B)={5,6}.U2. 【解析】选C.y=x-2为偶函数,且在(0,1)上单调递减.3.【解析】选B.f(f(1))=f(4)=2.4.【解析】选A.函数f(x)=x2-2ax+3在区间[2,3]上是单调函数,则其对称轴x=a≥3或x=a≤2.【误区警示】本题易出现选C或选D的错误,原因为没有想到在区间[2,3]上既可以单调递增也可以单调递减.5.【解题指南】先利用换底公式将各个对数化为同底的对数,再根据对数的运算性质求值.【解析】选D.log29×log34=×=×=4.6.【解析】选 A.b=()-0.8=20.8<a=21.2,c=2log52=log54<log55=1<b=20.8,所以c<b<a.【变式备选】已知三个数a=60.7,b=0.70.8,c=0.80.7,则三个数的大小关系是( )A.a>c>bB.b>c>aC.c>b>aD.a>b>c【解析】选A.a=60.7>1,b=0.70.8<1,c=0.80.7<1,又0.70.8<0.70.7<0.80.7,所以a>c>b.7.【解析】选A.f(x)=与g(t)=t-3(t≠-3)定义域、值域及对应关系均相同,是同一函数;g(x)==x与f(x)=x定义域,值域及对应关系均相同,是同一函数;故(1)(4)正确.8.【解析】选C.f(x)=1+log2x过点(1,1),g(x)=2-x+1也过点(1,1).9.【解析】选A.要使函数f(x)=的解析式有意义,自变量x需满足:lo(2x+1)>0,2x+1>0,即0<2x+1<1,解得-<x<0,故选A.【变式备选】函数f(x)=的值域是( )A.RB.[1,+∞)C.[-8,1]D.[-9,1]【解析】选C.0≤x≤3时,2x-x2∈[-3,1];-2≤x<0时,x2+6x∈[-8,0),故函数值域为[-8,1].10.【解题指南】本小题考查函数的图象及性质,要逐一进行判断.对于复合函数的单调性的判断要根据内外函数单调性“同则增,异则减”的原则进行判断.【解析】选A.对选项A,因为内外函数在(0,+∞)上都是增函数,根据复合函数的单调性,此函数在(0,+∞)上是增函数,故正确;对选项B,内函数在(0,+∞)上是增函数,外函数在(0,+∞)上是减函数,根据复合函数的单调性,此函数在(0,+∞)上是减函数,故不正确;对选项C,指数函数y=a x(0<a<1)在R上是减函数,故不正确;对选项D,函数y=x+在(0,1)上是减函数,在[1,+∞)上是增函数,故不正确.11.【解析】选B.f(x)=3x满足f(x+y)=f(x)f(y);f(x)=log2x满足f(xy)= f(x)+f(y);f(x)=kx(k≠0)满足f(x+y)=f(x)+f(y);故选B.12.【解析】选A.设这6年间平均每年的增长率是x,则1200(1+x)6=4800,解得1+x==,即x=-1.13.【解析】f(2)=f(1+1)=12-1=0.答案:014.【解析】(=(=(=2.答案:215.【解析】∵f(x)在[0,1]上为单调函数,∴最值在区间的两个端点处取得,∴f(0)+f(1)=a,即a0+log a(0+1)+a1+log a(1+1)=a,解得a=.答案:16.【解析】若f(x)=x2-2ax在[1,+∞)上是增函数,其对称轴x=a≤1,故①不正确;函数f(x)=2x-x2有三个零点,所以②不正确;③函数y=2|x|的最小值是1正确;④在同一坐标系中,函数y=2x与y=2-x的图象关于y 轴对称正确.答案:③④17.【解析】∵A={x|0<x-a<3},∴A={x|a<x<a+3}.(1)当A∩B=∅时,有解得a=0.(2)当A∪B=B时,有A⊆B,所以a≥3或a+3≤0,解得a≥3或a≤-3.18.【解析】(1)原式=(-1-(+()-2=(-1-()2+()2=-1=.(2)原式=log3+lg(25×4)+2=log3+lg 102+2=-+2+2=.19.【解析】(1)设f(x)=ax2+bx+c(a≠0),由题意可知:a(x+1)2+b(x+1)+c-(ax2+bx+c)=2x;c=1.整理得:2ax+a+b=2x,∴∴f(x)=x2-x+1.(2)当x∈[-1,1]时,f(x)>2x+m恒成立,即x2-3x+1>m恒成立; 令g(x)=x2-3x+1=(x-)2-,x∈[-1,1],则g(x)min=g(1)=-1,∴m<-1.20.【解析】(1)设f(x)=k 1x,g(x)=k2,所以f(1)==k1,g(1)==k2,即f(x)=x(x≥0),g(x)=(x≥0).(2)设投资债券类产品x万元,则股票类投资为(20-x)万元. 依题意得:y=f(x)+g(20-x)=+(0≤x≤20),令t=(0≤t≤2),则y=+t=-(t-2)2+3,所以当t=2,即x=16万元时,收益最大,y max=3万元.21.【解析】(1)设x∈[-1,0],则-x∈[0,1],f(-x)=-2-2x+a2-x,又∵函数f(x)为偶函数,∴f(x)=f(-x),∴f(x)=-2-2x+a2-x,x∈[-1,0].(2)∵f(x)=-22x+a2x,x∈[0,1],令t=2x,t∈[1,2].∴g(t)=at-t2=-(t-)2+.当≤1,即a≤2时,h(a)=g(1)=a-1;当1<<2,即2<a<4时,h(a)=g()=;当≥2,即a≥4时,h(a)=g(2)=2a-4.综上所述,h(a)=22.【解析】(1)①当a=0时,不合题意.②当a>0时,对称轴x=-<0,所以x=1时取得最大值1,不合题意.③当a≤-时,0<-≤1,所以x=-时取得最大值-a-=.得:a=-1或a=-(舍去).④当-<a<0时,->1,所以x=1时取得最大值1,不合题意.综上所述,a=-1.(2)依题意a>0时,f(x)∈[-a,1],g(x)∈[5-3a,5-a],所以解得,a∈[,4],a=0时不符题意舍去.a<0时,g(x)∈[5-a,5-3a],f(x)开口向下,最小值为f(0)或f(1),而f(0)=-a<5-a,f(1)=1<5-a不符题意舍去,所以a∈[,4].关闭Word文档返回原板块。

2019-2020学年高一数学人教A版必修1练习:2.2.2 对数函数及其性质 Word版含解析

2019-2020学年高一数学人教A版必修1练习:2.2.2 对数函数及其性质 Word版含解析

2.2.2 对数函数及其性质课后篇巩固提升基础巩固1.y=2x与y=log2x的图象关于( )A.x轴对称B.直线y=x对称C.原点对称D.y轴对称y=2x与y=log2x互为反函数,故函数图象关于直线y=x对称.2.函数y=ln(1-x)的图象大致为( )(-∞,1),且函数在定义域上单调递减,故选C.3.已知函数y=log a(x+c)(a,c为常数,且a>0,a≠1)的图象如图所示,则下列结论成立的是( )A.a>1,c>1B.a>1,0<c<1C.0<a<1,c>1D.0<a<1,0<c<1y=log a (x+c )的图象是由y=log a x 的图象向左平移c 个单位长度得到的,结合题图知0<c<1.根据单调性易知0<a<1.4.已知a>0且a ≠1,函数y=log a x ,y=a x ,y=x+a 在同一坐标系中的图象可能是( )函数y=a x 与y=log a x 的图象关于直线y=x 对称,再由函数y=a x 的图象过(0,1),y=log a x 的图象过(1,0),观察图象知,只有C 正确.5.已知a=,b=log 2,c=lo ,则( )2-1313g 1213A.a>b>cB.a>c>bC.c>b>aD.c>a>b0<a=<20=1,b=log 2<log 21=0,c=lo >lo =1,∴c>a>b.故选D .2-1313g 1213g 12126.若对数函数f (x )的图象经过点P (8,3),则f = .(12)f (x )=log a x (a>0,a ≠1),则log a 8=3,∴a 3=8,∴a=2.∴f (x )=log 2x ,故f =log 2=-1.(12)1217.将y=2x 的图象先 ,再作关于直线y=x 对称的图象,可得到函数y=log 2(x+1)的图象( )A.先向上平移一个单位长度B.先向右平移一个单位长度C.先向左平移一个单位长度D.先向下平移一个单位长度,可求出解析式或利用几何图形直观推断.8.已知函数f (x )=直线y=a 与函数f (x )的图象恒有两个不同的交点,则a 的取值范围{log 2x ,x >0,3x ,x ≤0,是 .f (x )的图象如图所示,要使直线y=a 与f (x )的图象有两个不同的交点,则0<a ≤1.9.作出函数y=|log 2x|+2的图象,并根据图象写出函数的单调区间及值域.y=log 2x 的图象,如图甲.再将y=log 2x 在x 轴下方的图象关于x 轴对称翻折到x 轴上方(原来在x 轴上方的图象不变),得函数y=|log 2x|的图象,如图乙;然后将y=|log 2x|的图象向上平移2个单位长度,得函数y=|log 2x|+2的图象,如图丙.由图丙得函数y=|log 2x|+2的单调递增区间是[1,+∞),单调递减区间是(0,1),值域是[2,+∞).10.已知对数函数y=f(x)的图象经过点P(9,2).(1)求y=f(x)的解析式;(2)若x∈(0,1),求f(x)的取值范围.(3)若函数y=g(x)的图象与函数y=f(x)的图象关于x轴对称,求y=g(x)的解析式.设f(x)=log a x(a>0,且a≠1).由题意,f(9)=log a9=2,故a2=9,解得a=3或a=-3.又因为a>0,所以a=3.故f(x)=log3x.(2)因为3>1,所以当x∈(0,1)时,f(x)<0,即f(x)的取值范围为(-∞,0).g1(3)因为函数y=g(x)的图象与函数y=log3x的图象关于x轴对称,所以g(x)=lo x.3能力提升1.函数y=log a(x+2)+1(a>0,且a≠1)的图象过定点( )A.(1,2)B.(2,1)C.(-2,1)D.(-1,1)x+2=1,得x=-1,此时y=1.2.若函数f (x )=log 2x 的反函数为y=g (x ),且g (a )=,则a=( )14A.2 B.-2 C. D.-1212,得g (x )=2x .∵g (a )=,∴2a =,∴a=-2.14143.若函数f (x )=log 2(x 2-ax-3a )在区间(-∞,-2]上是减函数,则实数a 的取值范围是( )A.(-∞,4)B.(-4,4]C.(-∞,4)∪[2,+∞)D.[-4,4)t (x )=x 2-ax-3a ,则由函数f (x )=log 2t 在区间(-∞,-2]上是减函数,可得函数t (x )在区间(-∞,-2]上是减函数,且t (-2)>0,所以有-4≤a<4,故选D .4.已知函数f (x )=a x +log a (x+1)在[0,1]上的最大值与最小值之和为a ,则a 的值等于( )A. B.2 C.3D.1213y=a x 与y=log a (x+1)在[0,1]上的单调性相同,所以f (x )在[0,1]上的最大值与最小值之和为f (0)+f (1)=(a 0+log a 1)+(a 1+log a 2)=a ,整理得1+a+log a 2=a ,即log a 2=-1,解得a=.故选A .125.已知a=log 23.6,b=log 43.2,c=log 43.6,则a ,b ,c 的大小关系为 .a==2log 43.6=log 43.62,又函数y=log 4x 在区间(0,+∞)上是增函数,3.62>3.6>3.2,log 43.6log 42∴log 43.62>log 43.6>log 43.2,∴a>c>b.6.已知a>0且a ≠1,则函数y=a x 与y=log a (-x )在同一直角坐标系中的图象只能是下图中的 (填序号).方法一)首先,曲线y=a x 位于x 轴上方,y=log a (-x )位于y 轴左侧,从而排除①③.其次,从单调性考虑,y=a x 与y=log a (-x )的增减性正好相反,又可排除④.故只有②满足条件.(方法二)若0<a<1,则曲线y=a x 下降且过点(0,1),而曲线y=log a (-x )上升且过点(-1,0),所有选项均不符合这些条件.若a>1,则曲线y=a x 上升且过点(0,1),而曲线y=log a (-x )下降且过点(-1,0),只有②满足条件.(方法三)如果注意到y=log a (-x )的图象关于y 轴的对称图象为y=log a x 的图象,又y=log a x 与y=a x 互为反函数(两者图象关于直线y=x 对称),则可直接选②.7.已知函数f (x )是定义在R 上的奇函数,若当x ∈(0,+∞)时,f (x )=lg x ,则满足f (x )>0的x 的取值范围是 .f (x )的解析式为f (x )=其图象如右图所示.{lg x ,x >0,0,x =0,-lg (-x ),x <0,由函数图象可得不等式f (x )>0时,x 的取值范围为(-1,0)∪(1,+∞).-1,0)∪(1,+∞)8.设函数f (x )=ln(ax 2+2x+a )的定义域为M.(1)若1∉M ,2∈M ,求实数a 的取值范围;(2)若M=R ,求实数a 的取值范围.由题意M={x|ax 2+2x+a>0}.由1∉M ,2∈M 可得{a ×12+2×1+a ≤0,a ×22+2×2+a >0,化简得解得-<a ≤-1.{2a +2≤0,5a +4>0,45所以a 的取值范围为.(-45,-1](2)由M=R 可得ax 2+2x+a>0恒成立.当a=0时,不等式可化为2x>0,解得x>0,显然不合题意;当a ≠0时,由二次函数的图象可知Δ=22-4×a×a<0,且a>0,即化简得解得a>1.{4-4a 2<0,a >0,{a 2>1,a >0,所以a 的取值范围为(1,+∞).9.已知函数f (x )=log 2(a 为常数)是奇函数.1+ax x -1(1)求a 的值与函数f (x )的定义域;(2)若当x ∈(1,+∞)时,f (x )+log 2(x-1)>m 恒成立,求实数m 的取值范围.∵函数f (x )=log 2是奇函数,1+axx -1∴f (-x )=-f (x ).∴log 2=-log 2.1-ax -x -11+ax x -1即log 2=log 2,∴a=1.ax -1x +1x -11+ax 令>0,解得x<-1或x>1.1+x x -1所以函数的定义域为{x|x<-1或x>1}.(2)f (x )+log 2(x-1)=log 2(1+x ),当x>1时,x+1>2,∴log 2(1+x )>log 22=1.∵x ∈(1,+∞),f (x )+log 2(x-1)>m 恒成立,∴m ≤1.故m 的取值范围是(-∞,1].。

一轮复习(二次函数)

一轮复习(二次函数)

函数一轮复习学案八(二次函数)一、知识梳理1.二次函数的解析式2.二次函数的图象与性质3.二次函数图像的对称轴通常有以下三种求法:(1)利用配方法求二次函数y =ax 2+bx +c (a ≠0)的对称轴为x =-b2a. (2)若二次函数f (x )对任意x 1,x 2∈R 都有f (x 1)=f (x 2),则对称轴为x =x 1+x 22.(3)若二次函数y=f(x)对定义域内所有x都有f(a+x)=f(a-x),则对称轴为x=a(a为常数).4.二次函数最值的类型及解法(1)二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴定区间动,不论哪种类型,解决的关键是对称轴与区间的关系,当含有参数时,要依据对称轴与区间的关系实行分类讨论;(2)常结合二次函数在该区间上的单调性或图象求解,最值一般在区间的端点或顶点处取得.二、典型例题考点一求二次函数解析式例1设二次函数f(x)满足f(x-2)=f(-x-2)且图象在y轴上的截距为1,在x轴上截得的线段长为求f(x)的解析式.例2已知函数f(x)=x2+mx+n的图象过点(1,3),且f(-1+x)=f(-1-x)对任意实数都成立,函数y=g(x)与y=f(x)的图象关于原点对称.求f(x)与g(x)的解析式.考点二二次函数在某个闭区间上的最值例3 已知f(x)=-4x2+4ax-4a-a2在区间[0,1]内有最大值-5,求a的值及函数表达式f(x).例4函数f(x)=-x2+4x-1在区间[t,t+1] (t∈R)上的最大值为g(t).(1)求g(t)的解析式;(2)求g(t)的最大值.考点三二次函数图象与性质的应用例5已知函数f(x)=x2+2ax+3,x∈[-4,6].(1)当a=-2时,求f(x)的最值;(2)求实数a的取值范围,使y=f(x)在区间[-4,6]上是单调函数;(3)当a=-1时,求f(|x|)的单调区间.例6 已知函数f(x)=x|x-2|.(1)写出f(x)的单调区间;(2)解不等式f(x)<3;(3)设0<a≤2,求f(x)在[0,a]上的最大值.考点四:二次函数与一元二次方程、一元二次不等式的综合问题例7设函数f(x)=ax2-2x+2,对于满足1<x<4的一切x值都有f(x)>0,求实数a的取值范围.例8若二次函数f(x)=ax2+bx+c (a≠0)满足f(x+1)-f(x)=2x,且f(0)=1.(1)求f(x)的解析式;(2)若在区间[-1,1]上,不等式f(x)>2x+m恒成立,求实数m的取值范围.二次函数反馈练习一命题人:徐相炳 做题人:程云一、填空题.1、若函数y =x 2+(a +2)x +3,x ∈[a ,b ]的图象关于直线x =1对称,则b =______.2、设函数f (x )=ax 2+2x -3在区间(-∞,4)上是单调递增函数,则实数a 的取值范围是________.3、已知二次函数f(x)=ax 2+bx+1的值域为[0,+∞)且f(-1)=0,则a =________,b =________.4、若函数f(x)=(x+a)(bx+2a)(a 、b ∈R)是偶函数,且它的值域为(-∞,4],则该函数的解析式f(x)=__________.5、若二次函数)(x f y =满足)3()3(x f x f -=+,则方程0)(=x f 的两根和为_________.6、若函数y=x 2-3x-4的定义域为[0,m],值域为[-254,-4],则m 的取值范围为_________.7、已知关于x 的不等式220x ax a -+>在R 上恒成立,则实数a 的取值范围是_________.8、已知函数()f x 是二次函数,不等式()0f x >的解集是(0,4),且()f x 在区间[1,5]-上的最大值是12,则()f x 的解析式为 .9、函数)2()1()(22-+-+=a x a x x f 的一个零点比1大,一个零点比1小,求实数a 的取值范围为 .10、已知f (x )=m (x-2m )(x +m +3),g (x )=2x-2。

2019年人教版高中数学必修一考点练习:动轴定区间与定轴动区间(含答案解析)

2019年人教版高中数学必修一考点练习:动轴定区间与定轴动区间(含答案解析)

二次函数动轴定区间与定轴动区间问题一、单调性1. 如果函数f (x )=x 2-ax -3在区间(-∞,4]上单调递减,那么实数a 的取值范围为( )A .[8,+∞)B .(-∞,8]C .[4,+∞)D .[-4,+∞)2.二次函数y =3x 2+2(m -1)x +n 在区间(-∞,1)上是减函数,在区间[1,+∞)上是增函数,则实数m =________.3. 若函数f (x )=mx 2-2x +3在[-1,+∞)上递减,则实数m 的取值范围为( )A .(-1,0)B .[-1,0)C .(-∞,-1]D .[-1,0]二、动轴定区间1. 若函数f (x )=x 2+ax +b 在区间[0,1]上的最大值是M ,最小值是m ,则M -m ( )A .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关2. 求函数在区间上的最小值.()221f x x ax =+-[]0,33. 已知二次函数f (x )=ax 2-2x (0≤x ≤1),求f (x )的最小值.4.已知值域为[-1,+∞)的二次函数f (x )满足f (-1+x )=f (-1-x ),且方程f (x )=0的两个实根x1,x 2满足|x 1-x 2|=2.(1)求f (x )的表达式;(2)函数g (x )=f (x )-kx 在区间[-1,2]上的最大值为f (2),最小值为f (-1),求实数k 的取值范围.5. 已知函数f (x )=x 2+ax +3-a ,若x ∈[-2,2],f (x )≥0恒成立,求a 的取值范围.6. 函数.()23f x x ax =++(1)当时,恒成立,求得取值范围;x R ∈()f x a ≥a (2)当时,恒成立,求的取值范围;[]2,2x ∈-()f x a ≥a 三、定轴动区间1. 若函数f (x )=x 2-2x +1在区间[a ,a +2]上的最小值为4,则实数a 的取值集合为( )A .[-3,3]B .[-1,3]C .{-3,3}D .{-1,-3,3}2. 已知a 是实数,记函数f (x )=x 2-2x +2在[a ,a +1]上的最小值为g (a ),求g (a )的解析式.来源学*科*网四、综合1.已知函数,若对于任意,都有成立,则实数()21f x x mx =+-[],1x m m ∈+()0f x <的取值范围是 .m 2.若函数f (x )=ax 2+20x +14(a >0)对任意实数t ,在闭区间[t -1,t +1]上总存在两实数x 1,x 2,使得|f (x 1)-f (x 2)|≥8成立,则实数a 的最小值为________.参考答案二次函数动轴定区间与定轴动区间问题一、单调性1. 解析:选A 函数f (x )图象的对称轴方程为x =,由题意得≥4,解得a ≥8.a2a22.解析:二次函数y =3x 2+2(m -1)x +n 的图象的开口向上,对称轴为直线x =-,要使m -13得函数在区间(-∞,1)上是减函数,在区间[1,+∞)上是增函数,则x =-=1,解得m -13m =-2.答案:-23. 解析:选D 当m =0时,f (x )=-2x +3在R 上递减,符合题意;当m ≠0时,函数f (x )=mx 2-2x +3在[-1,+∞)上递减,只需对称轴x =≤-1,且m <01m ,解得-1≤m <0,综上,实数m 的取值范围为[-1,0].二、动轴定区间1. 解析:选B f (x )=2-+b ,(x +a 2)a 24①当0≤-≤1时,f (x )min=m =f =-+b ,a 2(-a 2)a 24f (x )max =M =max{f (0),f (1)}=max{b,1+a +b },∴M -m =max 与a 有关,与b 无关;{a 24,1+a +a 24}②当-<0时,f (x )在[0,1]上单调递增,a2∴M -m =f (1)-f (0)=1+a 与a 有关,与b 无关;③当->1时,f (x )在[0,1]上单调递减,a2∴M -m =f (0)-f (1)=-1-a 与a 有关,与b 无关.综上所述,M -m 与a 有关,但与b 无关.2.【答案】因为,所以的图像是开口向上的抛物线,对称轴是直()()221f x x a a =+--()f x 线.x a =-如图:当即时,函数在上是增函数,0a -<,0a ≥()f x []0,3所以时,;0x =()min 01f f ==-当时,函数在上先单调递减,在单调递增,03a <-<,30a -<<()f x []0,3所以,即;x a =-()2min 1f f a a =---当时,即时函数在上时减函数,3a ->3a <-()f x []0,3所以时,.3x =()()min 386f x f a ==+综上所述,当时,函数的最小值为;0a ≥()f x 1-当,函数单的最小值为;30a -<<21a --当时,函数的最小值为.a ≤-3()f x 86a +3. 解:(1)当a >0时,f (x )=ax 2-2x 图象的开口方向向上,且对称轴为x =.1a ①当≤1,即a ≥1时,f (x )=ax 2-2x 图象的对称轴在[0,1]内,1a ∴f (x )在上递减,在上递增.[0,1a ][1a ,1]∴f (x )min=f =-=-.(1a )1a 2a 1a②当>1,即0<a <1时,f (x )=ax 2-2x 图象的对称轴在[0,1]的右侧,1a ∴f (x )在[0,1]上递减.∴f (x )min =f (1)=a -2.(2)当a <0时,f (x )=ax 2-2x 的图象的开口方向向下,且对称轴x =<0,在y 轴的左侧,1a ∴f (x )=ax 2-2x 在[0,1]上递减.∴f (x )min =f (1)=a -2.综上所述,f (x )min =Error!4. 解:(1)由f (-1+x )=f (-1-x ),可得f (x )的图象关于直线x =-1对称,来源:Z §xx §]设f (x )=a (x +1)2+h =ax 2+2ax +a +h (a ≠0),由函数f (x )的值域为[-1,+∞),可得h =-1,根据根与系数的关系可得x 1+x 2=-2,x 1x 2=1+,ha ∴|x 1-x 2|== =2,x 1+x 2 2-4x 1x 2-4h a 解得a =1,∴f (x )=x 2+2x .(2)由题意得函数g (x )在区间[-1,2]上单调递增,又g (x )=f (x )-kx =x 2-(k -2)x .∴g (x )的对称轴方程为x =,k -22则≤-1,即k ≤0,故k 的取值范围为(-∞,0].k -225. 解:f (x )=2--a +3,令f (x )在[-2,2]上的最小值为g (a ).(x +a 2)a 24(1)当-<-2,即a >4时,g (a )=f (-2)=7-3a ≥0,a2∴a ≤.73又a >4,∴a 不存在.(2)当-2≤-≤2,即-4≤a ≤4时,a2g (a )=f=--a +3≥0,(-a 2)a 24∴-6≤a ≤2.又-4≤a ≤4,∴-4≤a ≤2.(3)当->2,即a <-4时,g (a )=f (2)=7+a ≥0,∴a ≥-7.a2又a <-4,∴-7≤a <-4.综上可知,a 的取值范围为[-7,2].6. 【答案】恒成立,即恒成立.()f x a ≥230x ax a ++-≥只需,即∴.()2430a a =--Δ≤24120a a +-≤,6a -≤≤2(2)()2223324a a f x x ax x ⎛⎫=++=++-⎪⎝⎭当即时,由∴22a -<-,4a >()()min 227f x f a =-=-+,27a a -+≥,73a ≤,a ∈∅.当即时,得,∴222a-≤-44a -≤≤()2min 34a f x a =-≥,62a -≤≤.42a-≤≤当,即时,,22a->4a <-()()min 227f x f a ==+由得∴.综上得.27a a +≥,7a ≥-,74a -<-≤[]7,2a ∈-三、定轴动区间1.解析:选C ∵函数f (x )=x 2-2x +1=(x -1)2的图象的对称轴为直线x =1,f (x )在区间[a ,a +2]上的最小值为4,∴当a ≥1时,f (x )min =f (a )=(a -1)2=4,a =-1(舍去)或a =3;当a +2≤1,即a ≤-1时,f (x )min =f (a +2)=(a +1)2=4,a =1(舍去)或a =-3;当a <1<a +2,即-1<a <1时,f (x )min =f (1)=0≠4.故a 的取值集合为{-3,3}.故选C.2. 解:f (x )=x 2-2x +2=(x -1)2+1,x ∈[a ,a +1],a ∈R ,对称轴为x =1.当a+1<1,即a<0时,函数图象如图(1),函数f(x)在区间[a,a+1]上为减函数,所以最小值为f(a+1)=a2+1;当a≤1≤a+1,即0≤a≤1时,函数图象如图(2),在对称轴x=1处取得最小值,最小值为f( 1)=1;当a>1时,函数图象如图(3),函数f(x)在区间[a,a+1]上为增函数,所以最小值为f(a)=a2-2a+2.综上可知,g(a)=Error!四、综合1. 略2.解析:由题意可得,当x∈[t-1,t+1]时,[f(x)max-f(x)min]min≥8,当[t-1,t+1]关于对称轴对称时,f(x)max-f(x)min取得最小值,即f(t+1)-f(t)=2at+a+20≥8,f(t-1)-f(t)=-2at +a-20≥8,两式相加,得a≥8,所以实数a的最小值为8.答案:8。

高一 函数的单调性及其最值知识点+例题+练习 含答案

高一 函数的单调性及其最值知识点+例题+练习 含答案

1.函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数y=f(x)的定义域为A,区间I⊆A,如果对于区间I内的任意两个值x1,x2当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间I上是增函数当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间I上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的(2)如果函数y=f(x)在区间I上是单调增函数或单调减函数,那么就说函数y=f(x)在区间I上具有单调性,区间I叫做y=f(x)的单调区间.2.函数的最值前提设函数y=f(x)的定义域为A,如果存在x0∈A,使得条件对于任意的x∈A,都有f(x)≤f(x0)对于任意的x∈A,都有f(x)≥f(x0) 结论f(x0)为最大值f(x0)为最小值判断下面结论是否正确(请在括号中打“√”或“×”)(1)在增函数与减函数的定义中,可以把“任意两个值x1,x2”改为“存在两个值x1,x 2”.( × )(2)对于函数f (x ),x ∈D ,若x 1,x 2∈D 且(x 1-x 2)·[f (x 1)-f (x 2)]>0,则函数f (x )在D 上是增函数.( √ )(3)函数y =f (x )在[1,+∞)上是增函数,则函数的单调递增区间是[1,+∞).( × ) (4)函数y =1x 的单调递减区间是(-∞,0)∪(0,+∞).( × )(5)所有的单调函数都有最值.( × )(6)对于函数y =f (x ),若f (1)<f (3),则f (x )为增函数.( × )1.下列函数中,①y =1x -x ;②y =x 2-x ;③y =ln x -x ;④y =e x -x ,在区间(0,+∞)内单调递减的是__________. 答案 ①解析 对于①,y 1=1x 在(0,+∞)内是减函数,y 2=x 在(0,+∞)内是增函数,则y =1x -x 在(0,+∞)内是减函数;②,③,④函数在(0,+∞)上均不单调.2.若函数f (x )=|2x +a |的单调递增区间是[3,+∞),则a 的值为________. 答案 -6解析 由图象易知函数f (x )=|2x +a |的单调增区间是[-a 2,+∞),令-a2=3,∴a =-6.3.设函数y =x 2-2x ,x ∈[-2,a ],若函数的最小值为g (a ),则g (a )=________.答案 ⎩⎪⎨⎪⎧a 2-2a ,-2≤a <1,-1,a ≥1解析 ∵函数y =x 2-2x =(x -1)2-1, ∴对称轴为直线x =1.当-2≤a <1时,函数在[-2,a ]上单调递减, 则当x =a 时,y min =a 2-2a ;当a ≥1时,函数在[-2,1]上单调递减,在[1,a ]上单调递增, 则当x =1时,y min =-1.综上,g (a )=⎩⎪⎨⎪⎧a 2-2a ,-2≤a <1,-1,a ≥1.4.(教材改编)已知函数f (x )=2x -1,x ∈[2,6],则f (x )的最大值为________,最小值为________. 答案 2 25解析 可判断函数f (x )=2x -1在[2,6]上为减函数,所以f (x )max =f (2)=2,f (x )min =f (6)=25.5.(教材改编)已知函数f (x )=x 2-2ax -3在区间[1,2]上具有单调性,则实数a 的取值范围为________________________________________________________________________. 答案 (-∞,1]∪[2,+∞)解析 函数f (x )=x 2-2ax -3的图象开口向上,对称轴为直线x =a ,画出草图如图所示.由图象可知函数在(-∞,a ]和[a ,+∞)上都具有单调性,因此要使函数f (x )在区间[1,2]上具有单调性,只需a ≤1或a ≥2,从而a ∈(-∞,1]∪[2,+∞).题型一 确定函数的单调性(区间)命题点1 给出具体解析式的函数的单调性例1 (1)下列函数中,①y =ln(x +2);②y =-x +1;③y =(12)x ;④y =x +1x ,在区间(0,+∞)上为增函数的是________.(2)函数f (x )=log 12(x 2-4)的单调递增区间是____________.(3)函数y =-x 2+2|x |+3的单调增区间为_________________________. 答案 (1)① (2)(-∞,-2) (3)(-∞,-1],[0,1] 解析 (1)y =ln(x +2)的增区间为(-2,+∞), ∴在区间(0,+∞)上为增函数.(2)因为y =log 12t 在定义域上是减函数,所以求原函数的单调递增区间,即求函数t =x 2-4的单调递减区间,结合函数的定义域,可知所求区间为(-∞,-2).(3)由题意知,当x ≥0时,y =-x 2+2x +3=-(x -1)2+4;当x <0时,y =-x 2-2x +3=-(x +1)2+4,二次函数的图象如图.由图象可知,函数y =-x 2+2|x |+3在(-∞,-1],[0,1]上是增函数. 命题点2 解析式含参函数的单调性例2 试讨论函数f (x )=axx -1(a ≠0)在(-1,1)上的单调性.解 设-1<x 1<x 2<1,f (x )=a ⎝ ⎛⎭⎪⎫x -1+1x -1=a ⎝⎛⎭⎪⎫1+1x -1,f (x 1)-f (x 2)=a ⎝ ⎛⎭⎪⎫1+1x 1-1-a ⎝ ⎛⎭⎪⎫1+1x 2-1=a (x 2-x 1)(x 1-1)(x 2-1),由于-1<x 1<x 2<1,所以x 2-x 1>0,x 1-1<0,x 2-1<0, 故当a >0时,f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 函数f (x )在(-1,1)上递减;当a <0时,f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 函数f (x )在(-1,1)上递增.综上,当a >0时,f (x )在(-1,1)上单调递减;当a <0时,f (x )在(-1,1)上单调递增. 引申探究若本题中的函数变为f (x )=axx 2-1 (a >0),则f (x )在(-1,1)上的单调性如何?解 设-1<x 1<x 2<1,则f (x 1)-f (x 2)=ax 1x 21-1-ax 2x 22-1 =ax 1x 22-ax 1-ax 2x 21+ax 2(x 21-1)(x 22-1)=a (x 2-x 1)(x 1x 2+1)(x 21-1)(x 22-1), ∵-1<x 1<x 2<1,∴x 2-x 1>0,x 1x 2+1>0,(x 21-1)(x 22-1)>0. 又∵a >0,∴f (x 1)-f (x 2)>0, ∴函数在(-1,1)上为减函数.思维升华 确定函数单调性的方法:(1)定义法和导数法,证明函数单调性只能用定义法和导数法;(2)复合函数法,复合函数单调性的规律是“同增异减”;(3)图象法,图象不连续的单调区间不能用“∪”连结.已知a >0,函数f (x )=x +ax(x >0),证明:函数f (x )在(0,a ]上是减函数,在[a ,+∞)上是增函数.证明 方法一 任意取x 1>x 2>0,则 f (x 1)-f (x 2)=⎝⎛⎭⎫x 1+a x 1-⎝⎛⎭⎫x 2+a x 2=(x 1-x 2)+⎝⎛⎭⎫a x 1-a x 2=(x 1-x 2)+a (x 2-x 1)x 1x 2=(x 1-x 2)⎝⎛⎭⎫1-a x 1x 2.当a ≥x 1>x 2>0时,x 1-x 2>0,1-ax 1x 2<0,有f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),此时,函数f (x )=x +ax (a >0)在(0,a ]上为减函数;当x 1>x 2≥a 时,x 1-x 2>0,1-ax 1x 2>0, 有f (x 1)-f (x 2)>0,即f (x 1)>f (x 2),此时,函数f (x )=x +ax(a >0)在[a ,+∞)上为增函数;综上可知,函数f (x )=x +ax(a >0)在(0,a ]上为减函数,在[a ,+∞)上为增函数.方法二 f ′(x )=1-a x 2,令f ′(x )>0,则1-ax2>0,解得x >a 或x <-a (舍).令f ′(x )<0,则1-ax 2<0,解得-a <x <a .∵x >0,∴0<x <a .故f (x )在(0,a ]上为减函数,在[a ,+∞)上为增函数.题型二 函数的最值例3 已知函数f (x )=x 2+2x +ax ,x ∈[1,+∞),a ∈(-∞,1].(1)当a =12时,求函数f (x )的最小值;(2)若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围. 解 (1)当a =12时,f (x )=x +12x +2在[1,+∞)上为增函数,f (x )min =f (1)=72.(2)f (x )=x +ax+2,x ∈[1,+∞).①当a ≤0时,f (x )在[1,+∞)内为增函数. 最小值为f (1)=a +3.要使f (x )>0在x ∈[1,+∞)上恒成立,只需a +3>0,即a >-3,所以-3<a ≤0. ②当0<a ≤1时,f (x )在[1,+∞)上为增函数,f (x )min =f (1)=a +3. 所以a +3>0,a >-3,所以0<a ≤1.综上所述,f (x )在[1,+∞)上恒大于零时,a 的取值范围是(-3,1]. 思维升华 求函数最值的常用方法:(1)单调性法:先确定函数的单调性,再由单调性求最值;(2)图象法:先作出函数的图象,再观察其最高点、最低点,求出最值;(3)换元法:对比较复杂的函数可通过换元转化为熟悉的函数,再用相应的方法求最值.(1)函数f (x )=⎩⎪⎨⎪⎧1x ,x ≥1,-x 2+2,x <1的最大值为________.(2)已知函数f (x )=1a -1x (a >0,x >0),若f (x )在⎣⎡⎦⎤12,2上的值域为[12,2],则a =________. 答案 (1)2 (2)25解析 (1)当x ≥1时,函数f (x )=1x 为减函数,所以f (x )在x =1处取得最大值,为f (1)=1;当x <1时,易知函数f (x )=-x 2+2在x =0处取得最大值,为f (0)=2. 故函数f (x )的最大值为2.(2)由反比例函数的性质知函数f (x )=1a -1x (a >0,x >0)在⎣⎡⎦⎤12,2上单调递增, 所以⎩⎪⎨⎪⎧f ⎝⎛⎭⎫12=12,f (2)=2,即⎩⎨⎧1a -2=12,1a -12=2,解得a =25.题型三 函数单调性的应用命题点1 比较大小例4 已知函数f (x )=log 2x +11-x,若x 1∈(1,2),x 2∈(2,+∞),则f (x 1)________0,f (x 2)________0.(判断大小关系) 答案 < >解析 ∵函数f (x )=log 2x +11-x 在(1,+∞)上为增函数,且f (2)=0,∴当x 1∈(1,2)时,f (x 1)<f (2)=0, 当x 2∈(2,+∞)时,f (x 2)>f (2)=0, 即f (x 1)<0,f (x 2)>0.命题点2 解不等式例5 已知函数f (x )为R 上的减函数,则满足f ⎝⎛⎭⎫⎪⎪⎪⎪1x <f (1)的实数x 的取值范围是______________. 答案 (-1,0)∪(0,1)解析 由f (x )为R 上的减函数且f ⎝⎛⎭⎫⎪⎪⎪⎪1x <f (1), 得⎩⎪⎨⎪⎧⎪⎪⎪⎪1x >1,x ≠0,即⎩⎨⎧|x |<1,x ≠0.∴-1<x <0或0<x <1.命题点3 求参数范围例6 (1)如果函数f (x )=ax 2+2x -3在区间(-∞,4)上是单调递增的,则实数a 的取值范围是__________.(2)已知f (x )=⎩⎪⎨⎪⎧(2-a )x +1,x <1,a x ,x ≥1,满足对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0成立,那么a 的取值范围是________. 答案 (1)⎣⎡⎦⎤-14,0 (2)[32,2) 解析 (1)当a =0时,f (x )=2x -3,在定义域R 上是单调递增的,故在(-∞,4)上单调递增; 当a ≠0时,二次函数f (x )的对称轴为x =-1a ,因为f (x )在(-∞,4)上单调递增, 所以a <0,且-1a ≥4,解得-14≤a <0.综合上述得-14≤a ≤0.(2)由已知条件得f (x )为增函数, ∴⎩⎪⎨⎪⎧2-a >0,a >1,(2-a )×1+1≤a ,解得32≤a <2,∴a 的取值范围是[32,2).思维升华 函数单调性应用问题的常见类型及解题策略(1)比较大小.比较函数值的大小,应将自变量转化到同一个单调区间内,然后利用函数的单调性解决.(2)解不等式.在求解与抽象函数有关的不等式时,往往是利用函数的单调性将“f ”符号脱掉,使其转化为具体的不等式求解.此时应特别注意函数的定义域. (3)利用单调性求参数.①视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数;②需注意若函数在区间[a ,b ]上是单调的,则该函数在此区间的任意子集上也是单调的; ③分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值.(1)f (x )是定义在(0,+∞)上的单调增函数,满足f (xy )=f (x )+f (y ),f (3)=1,当f (x )+f (x -8)≤2时,x 的取值范围是__________.(2)若f (x )=-x 2+2ax 与g (x )=a x +1在区间[1,2]上都是减函数,则a 的取值范围是__________.答案 (1)(8,9] (2)(0,1]解析 (1)2=1+1=f (3)+f (3)=f (9),由f (x )+f (x -8)≤2,可得f [x (x -8)]≤f (9),因为f (x )是定义在(0,+∞)上的增函数, 所以有⎩⎪⎨⎪⎧x >0,x -8>0,x (x -8)≤9,解得8<x ≤9.(2)由f (x )=-x 2+2ax 在[1,2]上是减函数可得[1,2]⊆[a ,+∞),∴a ≤1. ∵y =1x +1在(-1,+∞)上为减函数,∴由g (x )=ax +1在[1,2]上是减函数可得a >0,故0<a ≤1.1.确定抽象函数单调性解函数不等式典例 (14分)函数f (x )对任意的m 、n ∈R ,都有f (m +n )=f (m )+f (n )-1,并且x >0时,恒有f (x )>1.(1)求证:f (x )在R 上是增函数; (2)若f (3)=4,解不等式f (a 2+a -5)<2.思维点拨 (1)对于抽象函数的单调性的证明,只能用定义.应该构造出f (x 2)-f (x 1)并与0比较大小.(2)将函数不等式中的抽象函数符号“f ”运用单调性“去掉”是本题的切入点.要构造出f (M )<f (N )的形式. 规范解答(1)证明 设x 1,x 2∈R ,且x 1<x 2,∴x 2-x 1>0, ∵当x >0时,f (x )>1, ∴f (x 2-x 1)>1.[2分] f (x 2)=f [(x 2-x 1)+x 1] =f (x 2-x 1)+f (x 1)-1,[4分]∴f (x 2)-f (x 1)=f (x 2-x 1)-1>0⇒f (x 1)<f (x 2),∴f(x)在R上为增函数.[6分](2)解∵m,n∈R,不妨设m=n=1,∴f(1+1)=f(1)+f(1)-1⇒f(2)=2f(1)-1,[8分]f(3)=4⇒f(2+1)=4⇒f(2)+f(1)-1=4⇒3f(1)-2=4,∴f(1)=2,∴f(a2+a-5)<2=f(1),[11分]∵f(x)在R上为增函数,∴a2+a-5<1⇒-3<a<2,即a∈(-3,2).[14分]解函数不等式问题的一般步骤:第一步:(定性)确定函数f(x)在给定区间上的单调性;第二步:(转化)将函数不等式转化为f(M)<f(N)的形式;第三步:(去f)运用函数的单调性“去掉”函数的符号“f”,转化成一般的不等式或不等式组;第四步:(求解)解不等式或不等式组确定解集;第五步:(反思)反思回顾.查看关键点,易错点及解题规范.温馨提醒本题对函数的单调性的判断是一个关键点.不会运用条件x>0时,f(x)>1,构造不出f(x2)-f(x1)=f(x2-x1)-1的形式,便找不到问题的突破口.第二个关键应该是将不等式化为f(M)<f(N)的形式.解决此类问题的易错点:忽视了M、N的取值范围,即忽视了f(x)所在单调区间的约束.[方法与技巧]1.利用定义证明或判断函数单调性的步骤(1)取值;(2)作差;(3)定量;(4)判断.2.确定函数单调性有四种常用方法:定义法、导数法、复合函数法、图象法,也可利用单调函数的和差确定单调性.3.求函数最值的常用求法:单调性法、图象法、换元法.[失误与防范]1.分段函数单调性不仅要考虑各段的单调性,还要注意衔接点.2.函数在两个不同的区间上单调性相同,一般要分开写,用“,”或“和”连结,不要用“∪”.A 组 专项基础训练(时间:40分钟)1.下列函数f (x )中,①f (x )=1x;②f (x )=(x -1)2;③f (x )=e x ;④f (x )=ln(x +1),满足“对任意x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)”的是________.(填序号)答案 ①解析 由题意知f (x )在(0,+∞)上是减函数.①中,f (x )=1x满足要求; ②中,f (x )=(x -1)2在[0,1]上是减函数,在(1,+∞)上是增函数;③中,f (x )=e x 是增函数;④中,f (x )=ln(x +1)在(0,+∞)上是增函数.2.已知函数y =log 2(ax -1)在(1,2)上单调递增,则实数a 的取值范围是__________. 答案 [1,+∞)解析 要使y =log 2(ax -1)在(1,2)上单调递增,则a >0且a -1≥0,∴a ≥1.3.已知函数y =f (x )的图象关于x =1对称,且在(1,+∞)上单调递增,设a =f ⎝⎛⎭⎫-12,b =f (2),c =f (3),则a ,b ,c 的大小关系为______________.答案 b <a <c解析 ∵函数图象关于x =1对称,∴a =f ⎝⎛⎭⎫-12=f ⎝⎛⎭⎫52,又y =f (x )在(1,+∞)上单调递增, ∴f (2)<f ⎝⎛⎭⎫52<f (3),即b <a <c .4.若函数f (x )=x 2-2x +m 在 [3,+∞)上的最小值为1,则实数m 的值为________. 答案 -2解析 ∵f (x )=(x -1)2+m -1在[3,+∞)上为单调增函数,且f (x )在[3,+∞)上的最小值为1,∴f (3)=1,即22+m -1=1,m =-2.5.已知函数f (x )=2ax 2+4(a -3)x +5在区间(-∞,3)上是减函数,则a 的取值范围是__________.答案 [0,34] 解析 当a =0时,f (x )=-12x +5,在(-∞,3)上是减函数,当a ≠0时,由⎩⎨⎧ a >0,-4(a -3)4a ≥3,得0<a ≤34, 综上a 的取值范围是0≤a ≤34. 6.函数f (x )=⎩⎪⎨⎪⎧12log ,x x ≥1,2x ,x <1的值域为________. 答案 (-∞,2)解析 当x ≥1时,f (x )=log 12x 是单调递减的,此时,函数的值域为(-∞,0];当x <1时,f (x )=2x 是单调递增的,此时,函数的值域为(0,2).综上,f (x )的值域是(-∞,2).7.已知函数f (x )=⎩⎪⎨⎪⎧x 2+12a -2,x ≤1,a x -a ,x >1,若f (x )在(0,+∞)上单调递增,则实数a 的取值范围为________.答案 (1,2]解析 由题意,得12+12a -2≤0,则a ≤2,又y =a x -a (x >1)是增函数,故a >1,所以a 的取值范围为1<a ≤2.8.函数f (x )=⎝⎛⎭⎫13x -log 2(x +2)在区间[-1,1]上的最大值为________.答案 3解析 由于y =⎝⎛⎭⎫13x 在R 上递减,y =log 2(x +2)在[-1,1]上递增,所以f (x )在[-1,1]上单调递减,故f (x )在[-1,1]上的最大值为f (-1)=3.9.已知f (x )=x x -a(x ≠a ). (1)若a =-2,试证明f (x )在(-∞,-2)内单调递增;(2)若a >0且f (x )在(1,+∞)上单调递减,求a 的取值范围.(1)证明 任设x 1<x 2<-2,则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2(x 1-x 2)(x 1+2)(x 2+2). ∵(x 1+2)(x 2+2)>0,x 1-x 2<0,∴f (x 1)<f (x 2),∴f (x )在(-∞,-2)上单调递增.(2)解 任设1<x 1<x 2,则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a=a (x 2-x 1)(x 1-a )(x 2-a ). ∵a >0,x 2-x 1>0,∴要使f (x 1)-f (x 2)>0,只需(x 1-a )(x 2-a )>0在(1,+∞)上恒成立,∴a ≤1.综上所述,a 的取值范围是(0,1].10.设函数y =f (x )是定义在(0,+∞)上的函数,并且满足下面三个条件:①对任意正数x ,y ,都有f (xy )=f (x )+f (y );②当x >1时,f (x )<0;③f (3)=-1.(1)求f (1),f (19)的值; (2)如果不等式f (x )+f (2-x )<2成立,求x 的取值范围.解 (1)令x =y =1易得f (1)=0.而f (9)=f (3)+f (3)=-1-1=-2,且f (9)+f ⎝⎛⎭⎫19=f (1)=0,故f ⎝⎛⎭⎫19=2. (2)设0<x 1<x 2,则x 2x 1>1,f ⎝⎛⎭⎫x 2x 1<0, 由f (xy )=f (x )+f (y )得f (x 2)=f ⎝⎛⎭⎫x 1·x 2x 1=f (x 1)+f ⎝⎛⎭⎫x 2x 1<f (x 1), 所以f (x )是减函数.由条件①及(1)的结果得:f [x (2-x )]<f ⎝⎛⎭⎫19,其中0<x <2,由函数f (x )在R 上单调递减,可得⎩⎪⎨⎪⎧ x (2-x )>19,0<x <2,由此解得x 的取值范围是⎝⎛⎭⎫1-223,1+223. B 组 专项能力提升(时间:20分钟)11.对于任意实数a ,b ,定义min{a ,b }=⎩⎪⎨⎪⎧a ,a ≤b ,b ,a >b .设函数f (x )=-x +3,g (x )=log 2x ,则函数h (x )=min{f (x ),g (x )}的最大值是________.答案 1解析 依题意,h (x )=⎩⎪⎨⎪⎧ log 2x ,0<x <2,-x +3,x ≥2.当0<x <2时,h (x )=log 2x 是增函数;当x ≥2时,h (x )=3-x 是减函数,∴h (x )在x =2时,取得最大值h (2)=1.12.定义新运算:当a ≥b 时,ab =a ;当a <b 时,a b =b 2,则函数f (x )=(1x )x -(2x ),x ∈[-2,2]的最大值等于________.答案 6解析 由已知,得当-2≤x ≤1时,f (x )=x -2,当1<x ≤2时,f (x )=x 3-2.∵f (x )=x -2,f (x )=x 3-2在定义域内都为增函数.∴f (x )的最大值为f (2)=23-2=6.13.已知函数f (x )为(0,+∞)上的增函数,若f (a 2-a )>f (a +3),则实数a 的取值范围为_________.答案 (-3,-1)∪(3,+∞)解析 由已知可得⎩⎪⎨⎪⎧ a 2-a >0,a +3>0,a 2-a >a +3,解得-3<a <-1或a >3.所以实数a 的取值范围为(-3,-1)∪(3,+∞).14.已知函数f (x )=lg(x +a x-2),其中a 是大于0的常数. (1)求函数f (x )的定义域;(2)当a ∈(1,4)时,求函数f (x )在[2,+∞)上的最小值;(3)若对任意x ∈[2,+∞)恒有f (x )>0,试确定a 的取值范围.解 (1)由x +a x -2>0,得x 2-2x +a x>0, 当a >1时,x 2-2x +a >0恒成立,定义域为(0,+∞), 当a =1时,定义域为{x |x >0且x ≠1},当0<a <1时,定义域为{x |0<x <1-1-a 或x >1+1-a }.(2)设g (x )=x +a x-2,当a ∈(1,4),x ∈[2,+∞)时, g ′(x )=1-a x 2=x 2-a x 2>0恒成立, 所以g (x )=x +a x-2在[2,+∞)上是增函数. 所以f (x )=lg ⎝⎛⎭⎫x +a x -2在[2,+∞)上是增函数. 所以f (x )=lg ⎝⎛⎭⎫x +a x -2在[2,+∞)上的最小值为f (2)=lg a 2. (3)对任意x ∈[2,+∞)恒有f (x )>0,即x +a x-2>1对x ∈[2,+∞)恒成立. 所以a >3x -x 2,令h (x )=3x -x 2,而h (x )=3x -x 2=-⎝⎛⎭⎫x -322+94在x ∈[2,+∞)上是减函数, 所以h (x )max =h (2)=2,所以a >2.。

专题03 利用函数的单调性求参数取值范围(解析版)

专题03 利用函数的单调性求参数取值范围(解析版)

专题03利用函数的单调性求参数取值范围一、单选题1.已知函数()321f x x x ax =+-+在R 上为单调递增函数,则实数a 的取值范围为()A .1,3⎛⎤-∞- ⎥⎝⎦B .1,3⎛⎫-∞- ⎪⎝⎭C .1,3⎛⎫-+∞ ⎪⎝⎭D .1,3⎡⎫-+∞⎪⎢⎣⎭【解析】()232f x x x a '=+-,因为()f x 在R 上为单调递增函数,故()0f x ¢³在R 上恒成立,所以4120a ∆=+≤即13a ≤-,故选:A.2.若函数ln y x a x =+在区间[)1,+∞内单调递增,则a 的取值范围是()A .(),2-∞-B .(),1-∞-C .[)2,-+∞D .[)1,-+∞【解析】由ln 1a y x a x y x'=+⇒=+,因为函数ln y x a x =+在区间[)1,+∞内单调递增,所以有0y '≥在[)1,+∞上恒成立,即10a x +≥在[)1,+∞上恒成立,因为[)1,x ∞∈+,所以由100a x a a x x +≥⇒+≥⇒≥-,因为[)1,x ∞∈+,所以(,x -∈-∞-,于是有1a ≥-,故选:D3.若函数()cos f x ax x =+在(),-∞+∞上单调递增,则实数a 的取值范围是()A .(-1,1)B .[)1,+∞C .(-1,+∞)D .(-1,0)【解析】()sin f x a x '=-,由题意得:()sin 0f x a x '=-≥,即sin a x ≥在(),-∞+∞上恒成立,因为[]sin 1,1y x =∈-,所以1a ≥恒成立,故实数a 的取值范围是[)1,+∞.故选:B4.若函数()2sin f x bx x =+在ππ,42x ⎡⎤∈⎢⎣⎦上单调递增,则实数b 的取值范围是()A .0b ≥B .0b >C .b ≥D .b >【解析】由题意()2cos 0f x b x '=+≥在ππ,42⎡⎤⎢⎣⎦上恒成立,2cos b x ≥-,ππ,42x ⎡⎤∈⎢⎥⎣⎦时,2cos y x =-是增函数,max 0y =(π2x =时取得),所以0b ≥.故选:A .5.若函数2()ln 2f x x ax =+-在区间1,14⎛⎫⎪⎝⎭内存在单调递增区间,则实数a 的取值范围是()A .(,2)-∞-B .1,8⎛⎫-+∞ ⎪⎝⎭C .(2,)-+∞D .(8,)-+∞【解析】由2()ln 2f x x ax =+-可得:1()2f x ax x'=+.因为函数2()ln 2f x x ax =+-在区间1,14⎛⎫⎪⎝⎭内存在单调递增区间,所以()0f x '>在1,14x ⎛⎫∈ ⎪⎝⎭上有解,即212a x >-在1,14x ⎛⎫∈ ⎪⎝⎭上有解.设()21,1124,g x x x ⎛⎫∈-⎝=⎪⎭,由()30g x x -'=>在1,14x ⎛⎫∈ ⎪⎝⎭上恒成立,所以()g x 在1,14x ⎛⎫∈ ⎪⎝⎭单调递增,所以()()114g g x g ⎛⎫<< ⎪⎝⎭.所以184a g ⎛⎫>=- ⎪⎝⎭.故选:D 6.已知函数32()132x ax f x ax =+++存在三个单调区间,则实数a 的取值范围是()A .(0,4)B .[0,4]C .(,0)(4,)-∞+∞ D .(,0][4,)-∞+∞ 【解析】由题意,函数32()132x ax f x ax =+++,可得2()f x x ax a '=++,因为函数()f x 存在三个单调区间,可得()'f x 有两个不相等的实数根,则满足240a a ∆=->,解得0a <或4a >,即实数a 的取值范围是(,0)(4,)-∞+∞ .故选:C.7.若函数()219ln 2f x x x =-在区间[]1,a a -上单调递减,则实数a 的取值范围是()A .13a <£B .4a ≥C .23a -≤≤D .14a <≤【解析】函数()219ln 2f x x x =-,()0x >.则()299x f x x x x-'=-=,因为()f x 在区间[1]a a -,上单调递减,则()0f x '≤在区间[1]a a -,上恒成立,即290x -≤,所以03x <≤在区间[1]a a -,上恒成立,所以103a a ->⎧⎨≤⎩,解得13a <£,故选:A.8.已知函数()sin 2cos f x a x x =+在ππ,34x ⎡⎤∈--⎢⎥⎣⎦上单调递增,则a 的取值范围为()A .0a ≥B .22a -≤≤C .2a ≥-D .0a ≥或2a ≤-【解析】因为函数()sin 2cos f x a x x =+在ππ,34x ⎡⎤∈--⎢⎥⎣⎦上单调递增,所以()cos 2sin 0f x a x x '=-≥在ππ,34x ⎡⎤∈--⎢⎥⎣⎦上恒成立,即2tan a x ≥在ππ,34x ⎡⎤∈--⎢⎥⎣⎦上恒成立,由2tan y x =在π(,0)2-上单调递增知,max π2tan()24y =-=-,所以2a ≥-,故选:C9.若()1sin 2cos 24x f x a x x ⎛⎫=--+ ⎪⎝⎭是R 上的减函数,则实数a 的取值范围是()A .5,4⎡⎫+∞⎪⎢⎣⎭B .(],1-∞-C .5,4⎛⎤-∞ ⎝⎦D .[)1,+∞【解析】由1sin 2()()cos 24x f x a x x =--+,得1cos 2()sin 22xf x a x '=---,因为()1sin 2cos 24x f x a x x ⎛⎫=--+ ⎪⎝⎭是R 上的减函数,所以1cos 2()sin 022x f x a x '=---≤在R 上恒成立,即221cos2sin cos sin 1sin sin 22x a x x x x x ≤++=+=-+=215(sin )24x --+在R 上恒成立,由于1sin 1x -≤≤,所以215(1124a ---+=-≤.故选:B.10.若函数()()()()()1cos sin cos sin 3sin cos 412f x x x x x a x x a x =-++-+-在区间7,24ππ⎡⎤⎢⎥⎣⎦上单调递减,则实数a 的取值范围为()A .10,7⎡⎤⎢⎥⎣⎦B .16,09⎡⎤-⎢⎥⎣⎦C .1,7⎛⎤-∞ ⎥⎝⎦D .(],0-∞【解析】函数()()()()()1cos sin cos sin 3sin cos 412f x x x x x a x x a x =-++-+-()()1cos 23sin cos 412x a x x a x =+-+-()()()()2'sin 23cos sin 41cos sin 3cos sin 40f x x a x x a x x a x x a ∴=-+++-=-++++≤,对7π,2π4x ⎡⎤⎢⎥⎣⎦∈恒成立.πcos sin sin 4x x x ⎛⎫ ⎪⎝++⎭ ,∴当7π,2π4x ⎡⎤⎢⎥⎣⎦∈时,0cos sin 1x ≤+≤.令()()23401g t t at a t =-++≤≤,欲使()0g t ≤恒成立,只需满足231t a t ≤+,当01t ≤≤时,恒成立,即2min31t a t ⎛⎫≤ ⎪+⎝⎭,设[]311,4t m +=∈,13m t -=,222112203199999t m m m t m m -+==+-≥=+,当199m m =时,等号成立,即0a ≤.故选:D 11.若函数()()()1cos 23sin cos 212f x x a x x a x =+++-在0,2π⎡⎤⎢⎥⎣⎦上单调递减,则实数a 的取值范围为A .11,5⎡⎤-⎢⎥⎣⎦B .1,15⎡⎤-⎢⎥⎣⎦C .[)1,1,5⎛⎤-∞-⋃+∞ ⎥⎝⎦D .(]1,1,5⎡⎫-∞-⋃+∞⎪⎢⎣⎭【解析】由函数()()()1cos 23sin cos 212f x x a x x a x =+++-,且f (x )在区间0,2π⎡⎤⎢⎥⎣⎦上单调递减,∴在区间0,2π⎡⎤⎢⎥⎣⎦上,f ′(x )=−sin 2x +3a (cosx −sinx )+2a −1≤0恒成立,∵设4t cosx sinx x π=⎛⎫ ⎪⎝=-⎭-,∴当x ∈0,2π⎡⎤⎢⎥⎣⎦时,444x πππ-⎥∈-⎡⎤⎢⎣⎦,,t ∈[−1,1],即−1≤cosx −sinx ≤1,令t ∈[−1,1],sin 2x =1−t 2∈[0,1],原式等价于t 2+3at +2a −2≤0,当t ∈[−1,1]时恒成立,令g (t )=t 2+3at +2a −2,只需满足312(1)510a g a ⎧-≤-⎪⎨⎪=-≤⎩或312(1)10ag a ⎧-≥⎪⎨⎪-=--≤⎩或3112(1)510(1)10a g a g a ⎧-<-<⎪⎪=-≤⎨⎪-=--≤⎪⎩,解得∅或213a -≤≤-或2135a -<≤,综上,可得实数a 的取值范围是11,5⎡⎤-⎢⎥⎣⎦,故选:A .二、多选题12.若函数21()9ln 2f x x x =-,在区间[]1,1m m -+上单调,则实数m 的取值范围可以是()A .4m =B .2m ≤C .12m <≤D .03m <≤【解析】定义域为()0,∞+,299()x f x x x x'-=-=;由()0f x '≥得函数()f x 的增区间为[)3,+∞;由()0f x '≤得函数()f x 的减区间为(]0,3;因为()f x 在区间[]1,1m m -+上单调,所以1013m m ->⎧⎨+≤⎩或13m -≥解得12m <≤或4m ≥;结合选项可得A,C 正确.故选:AC.三、填空题13.若函数()313f x x ax =-+有三个单调区间,则实数a 的取值范围是________.【解析】()'2f x x a =-+,由于函数()313f x x ax =-+有三个单调区间,所以()'20f x x a =-+=有两个不相等的实数根,所以0a >.故答案为:()0,∞+14.已知函数322()3(1)1(0)f x kx k x k k =+--+>,若()f x 的单调递减区间是(0,4),则实数k 的值为________.【解析】由322()3(1)1(0)f x kx k x k k =+--+>,得'2()36(1)f x kx k x =+-,因为()f x 的单调递减区间是(0,4),所以'()0f x <的解集为(0,4),所以4x =是方程236(1)0kx k x +-=的一个根,所以126(1)0k k +-=,解得13k =15.若函数()2sin x f x e mx x =+-在[)0,∞+单调递增,则实数m 的取值范围为________.【解析】由()2sin x f x e mx x =+-,得()'2cos xf x e mx x =+-,若函数()2sin x f x e mx x =+-在[)0,∞+单调递增,则()'2cos 0xf x e mx x =+-在[)0,∞+上恒成立,令()2cos xg x e mx x =+-,0x,则()'2sin x g x e m x =++,再令()2sin xh x e m x =++,0x,则()'cos x h x e x =+,因为0x ,所以01x e e = ,所以()'cos 0xh x e x =+在[)0,∞+上恒成立,则()h x 在[)0,∞+上单调递增,故()min ()012h x h m ==+;当120m +时,得12m - ,此时()()'0g x h x = ,则()g x 在[)0,∞+上单调递增,则()()00g x g =,此时符合()'2cos 0x f x e mx x =+- 在[)0,∞+上恒成立;当120m +<时,得12m <-,()00,x ∃∈+∞,使得0()0h x =,故[)00,x x ∈时,()0h x <,即()'0g x <,()0,x x ∈+∞时,()0h x >,即()'0g x >,故()g x 在[)00,x 上单调递减,则当[)00,x x ∈时,()()00g x g =,此时()'2cos 0x f x e mx x =+- ,不合题意;综上,实数m 的取值范围为12m - .16.已知函数1()2ln f x x x x=--,21()(1)2x g x x e ax =--,R a ∈.对于任意12,(1,)x x ∈+∞,且12x x ≠,必有()()()()12120f x f x g x g x ->-,则a 的取值范围是___________.【解析】()f x 定义城为(0,)+∞.22212(1)()10x f x x x x-'=+-=≥.故()f x 在(1,)+∞内单调递增.对于任意12,(1,)x x ∈+∞,不妨设12x x <,则()()120f x f x -<.故()()120g x g x -<,()()12g x g x <,()g x 在(1,)+∞内单调递增.故()()0x xg x xe ax a e x '=-=-≥在(1,)+∞恒成立,即x a e ≤恒成立,可知a e ≤.∴a 的取值范围为(,]e -∞.17.已知函数32()23f x x kx x =-+-在R 上不单调,则k 的取值范围是______.【解析】22()341f x x kx '=-+,因为函数32()23f x x kx x =-+-在R 上不单调,所以223410x kx -+=必有解,当223410x kx -+=只有一个解时,22()3410f x x kx '=-+≥得出函数()f x 在R 上单调递增,与题干矛盾,故223410x kx -+=必有两个不等实根则()2044310k ∆>⇒--⨯⨯>,解得k <或k >18.若实数()0,2a ∈,()0,2b ∈,则函数()232211432f x a x b x x =+-在区间()1,+∞单调递增的概率为___________.【解析】由题意222()40f x a x b x ¢=+-³在(1,)+∞上恒成立,二次函数的对称轴是2202bx a=-<,因此()'f x 在(1,)+∞上单调递增,所以22(1)40f a b ¢=+-³,易知满足02,02a b <<<<的点(,)a b 据区域为图中正方形OABC ,面积为224⨯=,又满足2240a b +-³的(,)a b 在正方形OABC 在圆224x y +=外部的部分,面积为214244p p -´=-,所以概率为44P π-=.19.若函数()324132x a f x x x =-++在区间(1,4)上不单调,则实数a 的取值范围是___________.【解析】 函数()324132x af x x x =-++,'2()4f x x ax ∴=-+,若函数()f x 在区间(1,4)上不单调,则()'240f x x ax =-+=在(1,4)上存在变号零点,由240x ax -+=得4a x x =+,令4()g x x x =+,(1,4)x ∈,'2(2)(2)()x x g x x +-=,()g x ∴在()1,2递减,在()2,4递增,而()422+42g ==,()411+51g ==,()444+54g ==,所以45a <<.故答案为:()45,.四、解答题20.已知函数()31f x x ax =--.(1)若()f x 在区间(1,)+∞上为增函数,求a 的取值范围.(2)若()f x 的单调递减区间为(1,1)-,求a 的值.【解析】(1)因为()23f x x a '=-,且()f x 在区间(1,)+∞上为增函数,所以()0f x '≥在(1,)+∞上恒成立,即230x a -≥在(1,+∞)上恒成立,所以23a x ≤在(1,)+∞上恒成立,所以3a ≤,即a 的取值范围是(],3-∞(2)由题意知0a >.因为()31f x x ax =--,所以()23f x x a '=-.由()0f x '<,得x <()f x 的单调递减区间为(,又已知()f x 的单调递减区间为(1,1)-,所以(=(1,1)-1=,即3a =.21.已知函数()ln af x x x=-.(1)若3a =-,求函数()f x 的极值;(2)若函数()f x 在3,e e ⎡⎤⎣⎦上单调递增,求a 的取值范围.【解析】(1)当3a =-时,3()ln (0)f x x x x =+>,则'22133()x f x x x x-=-=,令'()0f x =,得3x =,x ,'()f x 和()f x 的变化情况如下表x(0,3)3(3,)+∞'()f x -0+()f x 递减极小值递增所以当3x =时,()f x 取得极小值(3)ln 31f =+,无极大值(2)由()ln a f x x x =-(0x >),得()'221a x a f x x x x+=+=(0x >),当0a ≥时,'()0f x >,所以()f x 在(0,)+∞上单调递增,所以()f x 在3,e e ⎡⎤⎣⎦上单调递增,当0a <时,由'()0f x =,得x a =-,x ,'()f x 和()f x 的变化情况如下表x (0,)a -a-(,)a -+∞'()f x -0+()f x 递减极小值递增因为()f x 在3,e e ⎡⎤⎣⎦上单调递增,所以a e -≤,得0e a -≤<,综上,a 的取值范围为[,)e -+∞22.已知a R ∈,函数2()()e (xf x x ax x R =-+∈,e 为自然对数的底数).(1)当2a =时,求函数()f x 的单调递增区间;(2)若函数()f x 在(1,1)-上单调递增,求a 的取值范围;【解析】(1)当2a =时,2()(2)e x f x x x =-+,2()(2)e x f x x '=--令()0f x '>,得220x -<,∴x <()f x ∴的单调递增区间是(;(2)2()[(2)]e x f x x a x a '=-+-+,若()f x 在(1,1)-内单调递增,即当11x -<<时,()0f x ',即2(2)0x a x a -+-+对(1,1)x ∈-恒成立,即111a x x +-+ 对(1,1)x ∈-恒成立,令111y x x =+-+,则2110(1)y x '=+>+,111y x x ∴=+-+在(1,1)-上单调递增,1311112y ∴<+-=+,32a ∴ ,当32a =时,当且仅当0x =时,()0f x '=,a ∴的取值范围是3,2⎡⎫+∞⎪⎢⎣⎭.23.已知函数1()xxf x ax e +=-.(1)若曲线()y f x =在点(0,(0))f 处的切线方程为y x b =+,求实数a ,b 的值;(2)若函数()f x 在区间(0,2)上存在..单调增区间,求实数a 的取值范围;(3)若()f x 在区间(0,2)上存在极大值,求实数a 的取值范围(直接写出结果).【解析】(1)因为1(1)()x x x xf x a a e e'-+=-=+,所以(0)f a '=,因为曲线()y f x =在点(0,(0))f 处的切线方程为y x b =+,所以切线斜率为1,即1a =,(0)1f b =-=,所以1,1a b ==-.(2)因为函数()f x 在区间(0,2)上存在单调增区间,所以()0x xf x a e='+>在(0,2)上有解,即只需()'f x 在(0,2)上的最大值大于0即可.令1()(),()x x x xh x f x a h x e e-==+='',当(0,1)x ∈时,()0,()h x h x '>为增函数,当(1,2)x ∈时,()0,()h x h x '<为减函数,所以,当1x =时,()h x 取最大值1a e +,故只需10a e +>,即1a e >-.所以实数a 的取值范围是1,e ⎛⎫-+∞ ⎪⎝⎭.(3)212,⎛⎫-- ⎪⎝⎭e e 24.1.已知函数()()31R f x x ax a =--∈.(1)若函数()f x 在R 上单调递增,求实数a 的取值范围;(2)若函数()f x 的单调递减区间是)-,求实数a 的值;(3)若函数()f x 在区间()1,1-上单调递减,求实数a 的取值范围.【解析】(1)易知()23f x x a '=-.因为()f x 在R 上单调递增,所以()0f x '≥恒成立,即23a x ≤恒成立,故()2min30a x≤=.经检验,当0a =时,符合题意,故实数a 的取值范围是(],0-∞.(2)由(1),得()23f x x a '=-.因为()f x 的单调递减区间是()1,1-,所以不等式230x a -<的解集为()1,1-,所以-1和1是方程230x a -=的两个实根,所以3a =.(3)由(1),得()23f x x a '=-.因为函数()f x 在区间()1,1-上单调递减,所以()0f x '≤在()1,1x ∈-上恒成立,即23a x ≥在()1,1x ∈-上恒成立.又函数23y x =在()1,1-上的值域为[)0,3,所以3a ≥.故实数a 的取值范围是[)3,+∞.25.已知函数22()ln ()f x x a x ax a R =-+∈.(1)当1a =时,求函数()f x 的最值(2)若函数()f x 在区间[1,)+∞上是减函数,求实数a 的取值范围.【解析】(1)当1a =时,2()ln f x x x x =-+,则()()2211121()21x x x x f x x x x x+---'=-+=-=-,当01x <<时,()0f x '>,当1x >时,()0f x '<,所以当1x =时,()f x 有最大值0,无最小值;(2)21()2f x a x a x-'=+,因为函数()f x 在区间[1,)+∞上是减函数,所以21()20f x a x a x=-+≤'在区间[1,)+∞上恒成立,令()212g x a x a x =-+,则()22120g x a x'=--<,所以()g x 在区间[1,)+∞上递减,所以()()2max 121g x g a a ==-++,则2210a a -++≤,即2210≥--a a ,即()()2110a a +-≥,解得12a ≤-或1a ≥,所以实数a 的取值范围1(,[1,)2-∞-⋃+∞.26.已知函数()22f x x a x x =⋅-+.(1)当1a =时,求曲线()y f x =在点()()22f ,处的切线方程;(2)若()22f x x a x x =⋅-+在区间[0,1]上单调递增,求实数a 的取值范围.【解析】(1)当1a =时,()22·21||()1f x x x x x x =+=--,则2()341'=-+f x x x ,所以()(252,2)f f '==,所以,所求切线方程为25(2)y x -=-,即580x y --=.(2)设()()2201g x x x a x =+≤≤-,则()2(1)0g x x '=-≤,所以()g x 在[]0,1上单调递减,从而()()()10g g x g ≤≤,即()1a g x a ≤≤-.(i )当1a ≥时,()10g x a ≥≥-,则()22()f x x x x a -=+,则2()34f x x x a '=-+,若()f x 在[]0,1上单调递增,则2()340f x x x a '=-+≥对于任意的[]0,1x ∈恒成立,即234a x x ≥-+.因为2224343(33x x x -+=--+,所以当23x =时,2434()3max x x +=-,所以43a ≥,又1a ≥,此时a 的取值范围为4,3⎡⎫+∞⎪⎢⎣⎭(ii )当0a ≤时,()0g x ≤,则()2()2f x x x x a =-+-,则2()34f x x x a '=-+-,若()f x 在[]0,1上单调递增,则2()340f x x x a '=-+-≥对于任意的[]0,1x ∈恒成立,即234a x x ≤-+.因为2224343(33x x x -+=--+,所以当0x =时,2min 340()x x +=-,所以0a ≤,此时a 的取值范围为(,0]-∞.(iii )当01a <<时,则存在唯一的()00,1x ∈,使得()00g x =.当()100,x x ∈时,()10g x >,即存在()010,1x x ∈,且10x x <,使得()()10g x g x >,从而()()1100x g x x g x >,即()()10f x f x >,这与“()f x 在[]0,1上为增函数”矛盾,此时不合题意.综上,实数a 的取值范围(]4,0,3⎡⎫-∞+∞⎪⎢⎣⎭27.已知函数()ln f x ax x =-,()e 2ax g x x =+,其中a ∈R .(1)当2a =时,求函数()f x 的极值;(2)若存在区间(0,)D ⊆+∞,使得()f x 与()g x 在区间D 上具有相同的单调性,求实数a 的取值范围.【解析】(1)当2a =时,()2ln f x x x =-,定义域为(0,)+∞,则1()2f x x'=-,故当10,2x ⎛⎫∈ ⎪⎝⎭时,()0f x '<,()f x 单调递减;当1,2x ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '>,()f x 单调递增.所以()f x 在12x =处取得极小值,且11ln 22f ⎛⎫=+ ⎪⎝⎭,无极大值.(2)由题意知,1()f x a x'=-,()e 2ax g x a '=+.当0a >时,()0g x '>,即()g x 在R 上单调递增,而()f x 在1,a ⎛⎫+∞ ⎪⎝⎭上单调递增,故必存在区间(0,)D ⊆+∞,使得()f x 与()g x 在区间D 上单调递增;当0a =时,1()0f x x '=-<,故()f x 在(0,)+∞上单调递减,而()g x 在(0,)+∞上单调递增,故不存在满足条件的区间D ;当0a <时,1()0f x a x '=-<,即()f x 在(0,)+∞上单调递减,而()g x 在12,ln a a ⎛⎫⎛⎫-∞- ⎪ ⎪⎝⎭⎝⎭上单调递减,在12ln ,a a ⎛⎫⎛⎫-+∞ ⎪ ⎪⎝⎭⎝⎭上单调递增,若存在区间(0,)D ⊆+∞,使得()f x 与()g x 在区间D 上有相同的单调性,则有12ln 0a a ⎛⎫-> ⎪⎝⎭,解得2a <-.综上可知,a 的取值范围为(,2)(0,)-∞-+∞ .。

人教B版高中数学必修第一册精品课件 第3章 函数 3.1.2 第1课时 单调性的定义与证明

人教B版高中数学必修第一册精品课件 第3章 函数 3.1.2 第1课时 单调性的定义与证明

【典例】 已知函数f(x)是定义在区间[-1,1]上的增函数,且f(x-2)<f(1-x),则x
的取值范围为
.
错解:因为f(x)是定义在区间[-1,1]上的增函数,且f(x-2)<f(1-x),
3
所以x-2<1-x,解得x< 2
3
答案:x< 2
.
以上解答过程中都有哪些错误?出错的原因是什么?你如何改正?你如何防
由图象确定函数单调性的方法及注意事项
(1)若图象从左向右上升,则函数单调递增;若图象从左向右下降,则函数单
调递减.
(2)单调区间必须是函数定义域的子集,单调区间之间不能用“∪”,而应用“,”
将它们隔开或用“和”字连接.
【变式训练1】 画出函数y=-x2+2|x|+1的图象,并写出该函数的单调区间.
函数(也称在区间I上单调递增);
(2)如果对任意x1,x2∈I,当x1<x2时,都有 f(x1)>f(x2),则称y=f(x)在区间I上是减
函数(也称在区间I上单调递减).
两种情况下,都称函数在区间I上具有单调性(区间I为函数的单调区间,也可
分别称为单调递增区间或单调递减区间).
3.(1)若函数y=f(x)在区间[1,+∞)内是减函数,则f(3)和f(5)的大小关系
-a≥2(其中当-a≤1时,函数f(x)在区间[1,2]上单调递减;
当-a≥2时,函数f(x)在区间[1,2]上单调递增),从而a∈
(-∞,-2]∪[-1,+∞).
已知函数的单调性或单调区间求参数的取值范围,要将参数视为已知数,依
据函数的图象或函数单调性的定义,确定函数的单调区间,与已知的单调区

高中数学第二章函数2.3函数的单调性课件北师大版必修1

高中数学第二章函数2.3函数的单调性课件北师大版必修1

第十页,共36页。
5.函数 f(x)=-x2+6x+8 在[-2,1]上的最大值是________. 【解析】 f(x)=-x2+6x+8=-(x-3)2+17, 所以函数 f(x)在[-2,1]上是增函数. 所以 f(x)的最大值为 f(1)=13. 【答案】 13
第十一页,共36页。
课堂探究 类型一 函数单调性的判定或证明 [例 1] (1)函数 y=f(x)的图像如图所示,其减区间是( )
(2)证明:对于任意的 x1,x2∈(-∞,0),且 x1<x2, 有 f(x1)-f(x2)=x121-x122 =x22x-21x22x21=x2-xx121xx222+x1. ∵x1<x2<0,∴x2-x1>0,x1+x2<0,x12x22>0. ∴f(x1)-f(x2)<0, 即 f(x1)<f(x2).
第二十一页,共36页。
方法归纳,
函数单调性应用的关注点 (1)函数单调性的定义具有“双向性”:利用函数单调性的定义可 以判断、证明函数的单调性,反过来,若已知函数的单调性,可以确 定函数中参数的范围. (2)若一个函数在区间[a,b]上是单调的,则此函数在这一单调区 间内的任意子集上也是单调的.
第二十二页,共36页。
跟踪训练 2 已知函数 f(x)=x2-2ax-3 在区间[1,2]上单调,求实 数 a 的取值范围.
第二十三页,共36页。
【解析】 函数 f(x)=x2-2ax-3 的图像开口向上,对称轴为直线 x=a,画出草图如图所示.
由图像可知函数在(-∞,a]和[a,+∞)上分别单调,因此要使函 数 f(x)在区间[1,2]上单调,只需 a≤1 或 a≥2(其中当 a≤1 时,函数 f(x) 在区间[1,2]上单调递增;当 a≥2 时,函数 f(x)在区间[1,2]上单调递减), 从而 a∈(-∞,1]∪[2,+∞).

18.已知函数f(x)=,g(x)=x2-3ax+2a2(a<0),若不存在实数x使得f(x)>1和g(x)<0同时成立,试求a的范围.

18.已知函数f(x)=,g(x)=x2-3ax+2a2(a<0),若不存在实数x使得f(x)>1和g(x)<0同时成立,试求a的范围.

09高三数学不等式测验题 姓名 ________________1、对于三个集合C B A ,,,条件C B A A C C B B A ==⊆⊆⊆是,,的( C )A. 充分不必要条件B.必要不充分条件C.充要条件D. 非充分非必要条件 2.不等式121x <-的解集为( B )A .13(,1)(1,)22B .13(,)(,)22-∞+∞C .3(,1)(,)2-∞+∞ D. 13(,1)(,)22+∞3.集合1{|0}1x A x x -=<+、{|B x x b a =-<,若"1"a =是""A B ⋂≠∅的充分条件,则b 的取值范围可以是( D )A .20b -≤< B.02b <≤ C. 31b -<<- D.12b -≤<4. 若a 、b 都是正数,则关于x 的不等式-b <x1<a 的解集是 ( C )A.(-b 1,0)∪(0,a1) B.(-a 1,0)∪(0,b 1) C.(-∞,-b 1)∪(a 1,+∞) D.(-a 1,b1)5. 已知h >0,设甲:两实数a 、b 满足|a -b|<2h ;乙:两实数a 、b 满足|a -1|<h 且|b -1|<h,则( B )A.甲是乙的充分但不必要条件B.甲是乙的必要但不充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件,也不是乙的必要条件 6.当x ∈[-1,3]时,不等式a ≥x 2-2x -1恒成立,则a 的最大值和最小值分别为 ( B )A.2,-1B.不存在,2C.2,不存在D.-2,不存在 7.设关于x 的不等式lg(19)x x a ++->恒成立,则a 的取值范围是 ( A )A.(),1-∞B.(],1-∞C.()1,+∞D.[)1,+∞8.已知函数2()(0)f x ax bx c a =++>,αβ、为方程()f x x =的两根,且10,0x aαβα<<<<<,给出下列不等式,其中成立的是 ( B )错误!未找到引用源。

吉林省长春市长春外国语学校2024-2025学年高一上学期第二次月考数学试题(含答案)

吉林省长春市长春外国语学校2024-2025学年高一上学期第二次月考数学试题(含答案)

长春外国语学校2024-2025学年高一上学期第二次月考数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区.2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚.3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效.4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑.5.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀.一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. ( )A.B. C.D. 2. 用二分法求方程近似解时,所取的第一个区间可以是( )A. B. C. D. 3. 在平面直角坐标系中,已知角的顶点与坐标原点重合,始边与轴的非负半轴重合,终边经过点,下列结论错误的是( )A.B. C. D. 4. 荀子《劝学》中说:“不积跬步,无以至千里;不积小流,无以成江海.”所以说学习是日积月累的过程,每天进步一点点,前进不止一小点.我们可以把看作是每天的“进步”率都是,一年后是;而把看作是每天“退步”率都是,一年后是;这样,一年后的“进步值”是“退步值”的倍.那么当“进步值”是“退步值”的5倍时,大约经过多少5πsin6=1212-41log 02x x-=()0,1()1,2()2,3()3,4()π0αα<<x (P -2π3α=sin α=cos α=tan α=()36511%+1%3651.01 3.7.7834≈()36511%-1%3650.990.0255≈3653651.0114810.99≈天.(参考数据;,)( )A. 70B. 80C. 90D. 1005. 函数的图象是()A. B.C. D.6. 已知,,,则的最小值为( )A. 2B. C. D. 47. 已知,则()A. B.C.D.8. 设是定义在上的偶函数,且对任意的,有,,则的解集为( )A. B. C. D. 二、多项选择题(本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得6分,部分选对得部分分,有选错的得0分.)9. 当两个集合有公共元素,且互不为对方的子集时,我们称这两个集合“相交”.对于集合,,若集合与“相交”,则等于( )A 4B. 2C. 1D. 010. 下列各式正确的是( ).lg101 2.0043≈lg 99 1.9956≈lg 20.3010≈()()24ln f x xx =--0x >0y >lg 2lg 4lg 2x y +=112x y+()222log 41log 40+<<a a a a 10a 4<<12<<a 1142a <<1a <<()f x ()(),00,-∞+∞ ()()2121,,0x x x x ∈-∞≠()()()12120x x f x f x ⎡⎤⌝->⎣⎦()20240f -=()()0f x f x x+-<()(),02024,-∞+∞ ()(),20240,2024-∞ ()()2024,00,2024- ()()2024,02024,-+∞ {}2|10M x ax =-=1,12N ⎧⎫=⎨⎬⎩⎭M N aA. 设B. 已知,则C 若,,则D11. 设,已知,是方程的两根,则下列等式正确的是( )A. B. C. D. 二、填空题(本题共3小题,每小题5分,共15分.)12. 已知满足,且,则__________.13. 若函数在区间上单调递减,则实数的取值范围是__________.14. 已知函数,,函数,,对于,,使得成立,则实数的取值范围是__________.四、解答题(本题共5小题,满分77分,要求写出必要的解题过程.)15. 已知.(1)化简;(2)若,且为第三象限角,求的值.16. 如图,点A ,B ,C 是圆上的点...0a >16a=31a b +=81333a ba⋅=log 2a m =log 5a n =220m n a +=4511lg 3log 9log 3+=()0,πα∈sin αcos α230x x m --=43m =-sin cos αα-=7tan 13α=22cos sin αα-=()f x ()()()2f x y f x f y +=++()21f =()3f =()()()22log 20f x x axa =->31,2⎛⎤⎥⎝⎦a ()221f x x x =-++[]0,2x ∈()1g x ax =-[]1,1x ∈-[]10,2x ∀∈[]21,1x ∃∈-()()21g x f x =a ()()()()πtan πsin πsin 23πcos 3πcos 2f αααααα⎛⎫--+ ⎪⎝⎭=⎛⎫+- ⎪⎝⎭()f α()4cos 2π5α-=-α()f αO(1)若,,求扇形AOB 的面积和弧AB 的长;(2)若扇形AOB 的面积为,求扇形AOB 周长的最小值,并求出此时的值.17. 已知函数(1)当时,求函数的定义域;(2)当时,存在使得不等式成立,求实数的取值范围.18. 已知函数第三象限角,且(1)求的值:(2)求的值.19 已知函数,.(1)若函数的图象与直线没有公共点,求的取值范围;(2)若函数,,是否存在,使的最小值为0.若存在,求出的值;若不存在,请说明理由.为.π6ACB ∠=4cm AB =210cm AOB ∠()()()log 10,1xa f x a a a =->≠13a =()f x 3a =[]1,3x ∈()()3log 130xf x m -+->m ()f x =α()23f α=-2sin 3cos 3sin 2cos αααα-+442cos 2cos sin sin 2cos 1ααααα+--()()41log 412xf x x =+-x ∈R ()f x 12y x a =+a ()()2421x f x x g x m +=+⋅-[]20,log 3x ∈m ()g x m长春外国语学校2024-2025学年高一上学期第二次月考数学试卷简要答案一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)【1题答案】【答案】A【2题答案】【答案】B【3题答案】【答案】C【4题答案】【答案】B【5题答案】【答案】B【6题答案】【答案】D【7题答案】【答案】C【8题答案】【答案】D二、多项选择题(本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得6分,部分选对得部分分,有选错的得0分.)【9题答案】【答案】AC【10题答案】【答案】ABC【11题答案】【答案】BD二、填空题(本题共3小题,每小题5分,共15分.)【12题答案】【答案】【13题答案】【答案】【14题答案】【答案】四、解答题(本题共5小题,满分77分,要求写出必要的解题过程.)【15题答案】【答案】(1)(2)【16题答案】【答案】(1)面积为,弧AB 的长为 (2),【17题答案】【答案】(1) (2)【18题答案】【答案】(1) (2)【19题答案】【答案】(1) (2)存在,5241,3⎡⎫⎪⎢⎣⎭(,3][3,)-∞-+∞ ()tan f αα=-()34fα=-28πcm 34πcm 32AOB ∠=(),0-∞313,log 14⎛⎫-∞ ⎪⎝⎭79-74(],0-∞1m =-。

2021年高一上学期期末重难点综合复习专题7:函数的应用(二)综合专练含解析

2021年高一上学期期末重难点综合复习专题7:函数的应用(二)综合专练含解析

数 m 的取值范围是 ___________.
三、解答题
21. 已知函数 y = x2 + a - 3 x - 3a. (1)关于 x 的方程 y = 0 有一个正根和一个负根,求实数 a 的取值范围; (2)∀ x ∈ R,有 y > -41 恒成立,求实数 a 的取值范围; (3)解关于 x 的不等式 y < 0.
f(x) 的一对 “ 黄金点对 ”(注:点对 [A,B] 与 [B,A] 可看作同一对 “ 黄金点对 ”)已知函数
2x + 9,x < 0
f(x) = -x2 + 4x,0 ≤ x ≤ 4 ,则此函数的 “ 黄金点对 ” 有(

x2 - 12x + 32,x > 4
A. 0 对
B. 1 对
C. 2 对
故选:A
lgx ,0 < x ≤ 10
2. 函数 f(x) = -21 x + 6,x > 10 ,若 f(a)= f(b)= f(c)且 a,b,c 互不相等,则 abc 的取值范
围是(

A(. 1,10)
B(. 10,12)
C(. 5,6)
D(. 20,24)
【标准答案】B 【思路点拨】先画出分段函数的图象,根据图象确定字母 a、b、c 的取值范围,再利用函数解 析式证明 ab = 1,最后数形结合写出其取值范围即可 【精准解析】
15. 关于 x 方程 2ax2 - x - 1 = 0 在 0 < x < 1 内恰有一解,则 a 的取值范围 _______
16. 已知 f(x) = x -a 1 ,x ≤ 0 ,若关于 x 的方程 f[ f(x)] = 0 仅有一解,则 a 的取值范围是 ___ lgx,x > 0

人教版高中数学必修第一册-二次函数在给定区间上最值问题-专题强化训练【含答案】

人教版高中数学必修第一册-二次函数在给定区间上最值问题-专题强化训练【含答案】

二次函数在给定区间上最值问题二次函数的单调性与对称轴和开口方向有关,往往来讲,二次函数的开口方向一般是给定的,在此情况下,二次函数的单调性就和对称轴与闭区间的位置关系有关。

因而在求最值时,往往需要讨论对称轴和区间的位置关系,这类题目在后续学习中经常遇见。

例题精讲:一.选择题(共7小题)1.若函数2()5f x x mx =++在区间[1,5]上单调递增,则m 的取值范围为()A .[2-,)+∞B .(-∞,2]-C .[10-,)+∞D .(-∞,10]-2.已知函数2247y x ax =++在区间[3-,1]-上是单调函数,则实数a 的取值范围是()A .(-∞,1]B .[6,)+∞C .(-∞,2][6 ,)+∞D .(-∞,1][3 ,)+∞3.若二次函数2()21f x ax ax =++在区间[2-,3]上的最大值为6,则(a =)A .13B .13-或5C .13或5-D .13-4.若函数2()43f x x x =--在区间[n ,]m 上的值域为[7-,2],则m n -的取值范围是()A .[1,5]B .[2,7]C .[3,6]D .[4,7]5.已知2()2af x x ax =-+在区间[0,1]上的最大值为g (a ),则g (a )的最小值为()A .0B .12C .1D .26.已知函数2()2(2)1f x ax a x =--+,[1x ∈-,3]是单调函数,则a 的取值范围是()A .[0,1]B .[1-,0]C .[1-,1]D .[1-,2]7.函数2()2f x x x =--在[a ,]b 上的值域是[3-,1],若1b =,则a b +的取值集合为()A .[3-,1]-B .[2-,0]C .[4-,0]D .[2-,1]二.解答题(共5小题)8.已知函数2()f x x ax=-(1)若在区间[1,)+∞上是增函数,求实数a 的取值范围;(2)求函数()f x 在区间[1,2]上的最小值.9.已知函数2()41f x x mx =-+,m R ∈.(1)若关于x 的不等式()0f x <解集为空集,求m 的取值范围;(2)若函数()f x 在区间[2-,)+∞上是单调增函数,求f (1)的最小值.10.山东新旧动能转换综合试验区是党的十九大后获批的首个区域性国家发展战略,也是中国第一个以新旧动能转换为主题的区域发展战略.济南新旧动能转换先行区肩负着山东新旧动能转换先行先试的重任,某制造企业落户济南先行区,该企业对市场进行了调查分析,每年固定成本1000万元,每生产产品x (百件),需另投入成本()R x 万元,且210300,060()10006103000,60x x x R x x x x ⎧+<<⎪=⎨+-⎪⎩,由市场调研知,每件产品售价6万元,且全年内生产的产品当年能全部销售完.(1)求年利润()W x (万元)关于年产量x (百件)的函数解析式.(利润=销售额-成本)(2)年产量x 为多少(百件)时,企业所获利润最大?最大利润是多少?11.已知函数2()3f x x ax =+-.(1)若不等式()4f x >-的解集为R ,求实数a 的取值范围;(2)若不等式()26f x ax - 对任意[1x ∈,3]恒成立,求实数a 的取值范围.12.已知函数2()1f x x ax =-+.(1)求()f x 在[0,1]上的最大值;(2)当1a =时,求()f x 在闭区间[t ,1]()t t R +∈上的最小值.参考答案一.选择题(共7小题)1.【解答】解:2()5f x x mx =++ 在区间[1,5]上单调递增,12m∴-,故2m - .故选:A .2.【解答】解:函数的对称轴是x a =-,若函数在区间[3-,1]-上是单调函数,则3a -- 或1a -- ,解得:3a 或1a ,故选:D .3.【解答】解:显然0a ≠,有2()(1)1f x a x a =+-+,当0a >时,()f x 在[2-,3]上的最大值为f (3)151a =+,由1516a +=,解得13a =,符合题意;当0a <时,()f x 在[3-,2]上的最大值为(1)1f a -=-,由16a -=,解得5a =-,所以,a 的值为13或5-.故选:C .4.【解答】解:2()43f x x x =-- ,f ∴(2)7=-,(1)f f -=(5)2=,()f x 在区间[n ,]m 上的值域为[7-,2],∴当1n =-,2m =或2n =,5m =时m n -的最小值3,当1n =-,5m =时,m n -取得最大值6,故m n -的范围[3,6]故选:C .5.【解答】解:因为2()2a f x x ax =-+的开口向上,对称轴2ax =,①122a 即1a 时,此时函数取得最大值g (a )f =(1)12a=-,②当122a >即1a >时,此时函数取得最大值g (a )(0)2af ==,故g (a )1,12,12aa a a ⎧-⎪⎪=⎨⎪>⎪⎩ ,故当1a =时,g (a )取得最小值12.故选:B .6.【解答】解:当0a =时,函数()41f x x =+,为增函数,符合题意;当0a ≠时,函数2()2(2)1f x ax a x =--+的对称轴为2a x a-=,且函数在区间[1-,3]是单调函数,∴21a a -- ,或23a a- ,解得01a < 或10a -< .综上,实数a 的取值范围是[1-,1].故选:C .7.【解答】解:22()2(1)1f x x x x =--=-++,1x ∴=-时,()f x 取到最大值1,方程223x x --=-的根是3x =-或1.若1b =,则31a -- ,a b ∴+的取值集合围是:[2-,0].故选:B .二.解答题(共5小题)8.【解答】解:(1)函数()f x 的对称轴是2a x =,若在区间[1,)+∞上是增函数,则12a,解得:2a ;(2)①12a即2a 时,()f x 在[1,2]递增,故()min f x f =(1)1a =-,②122a <<即24a <<时,()f x 在[1,)2a 递减,在(2a,2]递增,故2()()24mina a f x f ==-,③22a即4a 时,()f x 在[1,2]递减,故()min f x f =(2)42a =-.9.【解答】解:(1)()0f x < 解集为空集,∴判别式△2160m m =- ,解得016m .(2)2()41f x x mx =-+,图象开口向上,对称轴8mx =,因为函数()f x 在区间[2-,)+∞上是单调增函数,所以28m- ,解得16m - ,f (1)4m =-是关于m 的减函数,所以当16m =-时,f (1)取最小值为20.10.【解答】解:(1)当060x <<时,22()600(10300)1000103001000W x x x x x x =-+-=-+-;当60x 时,10001000()600(6103000)1000102000W x x x x x x=-+--=--.2103001000,060()1000102000,60x x x W x x x x ⎧-+-<<⎪∴=⎨--+⎪⎩;(2)当060x <<时,22()10300100010(15)1250W x x x x =-+-=--+,当15x =时,()1250max W x =万元;当60x 时,()W x 单调递减,4150()(60)3max W x W ==.∴年产量x 为60(百件)时,企业所获利润最大,最大利润是41503万元.11.【解答】解:(1)由不等式()4f x >-的解集为R ,234x ax ∴+->-解集为R ,即210x ax ++>解集为R ,可得△0<,即240a -<,解得22a -<<,故a 的取值范围是(2,2)-.(2)由不等式()26f x ax - 对任意[1x ∈,3]恒成立,()26f x ax ∴- ,即2326x ax ax +-- 对任意[1x ∈,3]恒成立,即230x ax -+ 对任意[1x ∈,3]恒成立,3()min a x x ∴+ ,[1x ∈,3];3x x += ;当且仅当3x x=,即x =a ∴故a 的取值范围是(-∞,.12.【解答】解:(1)2()1f x x ax =-+的开口向上,对称轴2a x =,所以在区间[0,1]的哪个端点离对称轴远,则在哪个端点处取得最大值,当122a 即1a 时,()f x 取得最大值f (1)2a =-,当122a >即1a >时,()f x 的最大值(0)1f =,(2)当1a =时,2()1f x x x =-+的对称轴12x =,当12t 时,()f x 在[t ,1]t +上单调递增,所以2()()1min f x f t t t ==-+,当112t +即12t - 时,()f x 在[t ,1]t +上单调递减,2()(1)1min f x f t t t =+=++,当112t t <<+即1122t -<<时,()f x 在1(,)2t 上单调递减,在1(2,1)t +上单调递增,故13()()24min f x f ==,令()()min g t f x =,则2211,2311(),42211,2t t t g t t t t t ⎧-+⎪⎪⎪=-<<⎨⎪⎪++-⎪⎩.。

高一数学难题压轴题

高一数学难题压轴题

高一数学难题压轴题一、若函数f(x) = x2 - 2ax + 3在区间[1,3]上单调递减,则a的取值范围是?A. a ≤ 1B. a ≥ 3C. 1 ≤ a ≤ 3D. a > 3(答案)B(解析)由于二次函数f(x) = x2 - 2ax + 3的对称轴为x = a,且函数在区间[1,3]上单调递减,所以对称轴x = a应在区间[1,3]的右侧,即a ≥ 3。

二、已知等差数列{an}的前n项和为Sn,且a1 = 1,S3 = -3,则a4等于?A. -3B. -5C. -7D. -9(答案)C(解析)由等差数列的前n项和公式Sn = n/2 * (2a1 + (n-1)d),代入S3 = -3和a1 = 1,解得公差d = -2。

因此,a4 = a1 + 3d = 1 - 6 = -5 + (-2) = -7。

三、设函数f(x) = |x - 1| + |x - a|,若f(x) ≤ 2的解集包含[-1,2],则a的取值范围是?A. [-1,3]B. [-2,2]C. [1,3]D. [0,4](答案)A(解析)由f(x) ≤ 2,得|x - 1| + |x - a| ≤ 2。

考虑x在[-1,2]区间内,分别讨论x < 1,1 ≤ x < a,x ≥ a三种情况,结合绝对值的性质,可得a的取值范围为[-1,3]。

四、已知向量a = (1,2),b = (2,1),c = (1,n),若(a + 2b) ⊥ c,则n = ?A. 5B. -5C. 3D. -3(答案)B(解析)由向量加法得 a + 2b = (5,4)。

因为(a + 2b) ⊥ c,所以(a + 2b) · c = 0,即51 + 4n = 0,解得n = -5/4 * 4 = -5。

五、若关于x的不等式x2 + ax + b < 0的解集为{x | -3 < x < -1},则ab等于?A. 6B. -6C. 12D. -12(答案)A(解析)由题意知-3和-1是方程x2 + ax + b = 0的两个根,根据韦达定理得-3 + (-1) = -a,-3 * (-1) = b,解得a = 4,b = 3,所以ab = 4 * 3 = 12的相反数,即-6的相反数,为6。

2024数学高考原卷

2024数学高考原卷

2024数学高考原卷一、若复数z满足(1+i)z=2,则z的实部为:A. 1B. -1C. 2D. -2(答案)A(解析)由(1+i)z=2,得z=2/(1+i)=(2(1-i))/((1+i)(1-i))=1-i,所以z的实部为1。

二、设函数f(x)=x2+2ax+3在区间[-1,2]上是单调函数,则a的取值范围是:A. [-2,1]B. (-∞,-2]∪[1,+∞)C. [-1,2]D. (-∞,-1]∪[2,+∞)(答案)B(解析)函数f(x)=x2+2ax+3的对称轴为x=-a,要使函数在区间[-1,2]上单调,则需对称轴x=-a在区间[-1,2]的左侧或右侧,即-a≤-1或-a≥2,解得a≥1或a≤-2。

三、已知等差数列{an}的前n项和为Sn,且a1=1,S3=6,则a4=:A. 4B. 5C. 6D. 7(答案)C(解析)由等差数列前n项和公式Sn=na1+n(n-1)d/2,代入S3=6,a1=1,解得d=1,所以a4=a1+3d=1+3=4+1=6。

四、若向量a=(1,2),向量b=(2,1),则向量a与向量b的夹角为:A. 30°B. 45°C. 60°D. 90°(答案)B(解析)向量a与向量b的夹角θ满足cosθ=(a·b)/(|a||b|),代入a=(1,2),b=(2,1),得cosθ=(12+21)/(sqrt(12+22)*sqrt(22+12))=1,所以θ=45°。

五、已知函数f(x)=lnx-x+1,则f(x)的零点个数为:A. 0B. 1C. 2D. 3(答案)B(解析)求导得f'(x)=1/x-1,令f'(x)=0,解得x=1,当x<1时,f'(x)>0,f(x)单调递增;当x>1时,f'(x)<0,f(x)单调递减,所以f(x)在x=1处取得最大值f(1)=0,且当x趋于0或正无穷时,f(x)均趋于负无穷,所以f(x)只有一个零点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x2, 则
1 1 f(x1)-f(x2)=x1+x -x2+x 1 2
x1x2-1 =(x1-x2)· . x1x2 ∵1≤x1<x2,∴x1-x2<0,x1x2>1,∴x1x2-1>0, ∴f(x1)-f(x2)<0,即 f(x1)<f(x2). ∴f(x)在[1,+∞)上是增函数.
1 的取值范围是2,2.(12
(8 分)
分)
• 已知函数f(x)=x2-2ax-3 在区间[1,2]上单调,求实数 a的取值范围.
• 解 函数f(x)=x2-2ax-3的图象开 口向上,对称轴为直线x=a,画出草 图如图所示.由图象可知函数在(-∞, a]和(a,+∞)上分别单调,因此要使 函数f(x)在区间[1,2]上单调,只需a≤1 或a≥2(其中当a≤1时,函数f(x)在区间 [1,2]上单调递增;当a≥2时,函数f(x) 在区间[1,2]上单调递减),从而a∈(- ∞,1]∪[2,+∞).
(2)解
由(1)可知,f(x)在[1,4]上递增,
∴当 x=1 时,f(x)min=f(1)=2, 17 当 x=4 时,f(x)max=f(4)= . 4 17 综上所述,f(x)在[1,4]上的最大值是 4 ,最小值是 2.
规律方法
(1) 运用函数单调性求最值是求函数最值的常用方
法, 特别是当函数图象不易作出时, 单调性几乎成为首选方法. (2)函数的最值与单调性的关系 ①若函数在闭区间[a,b]上是减函数,则 f(x)在[a,b]上的最大 值为 f(a),最小值为 f(b); ②若函数在闭区间[a,b]上是增函数,则 f(x)在[a,b]上的最大 值为 f(b),最小值为 f(a).
[规范解答] ∵f(x)在区间[-2,2]上单调递增, ∴-2≤x1<x2≤2 时,总有 f(x1)<f(x2)成立.反之也成立,即若 f(x1)<f(x2),则-2≤x1<x2≤2.(4 分) ∵f(1-m)<f(m), -2≤m≤2 ∴-2≤1-m≤2, 1-m<m 1 解得2<m≤2.(10 分) ∴所求 m
例题 已知函数y=x2+2x-3 且x [-2,2],
求函数的最值?
解析:函数配方有 y=(x+1)2-4如右图 即当x=-1时ymin =-4 ;当x=2时ymax =f(2)=5 练习1 求函数y=x2-2x-3且x [0,3]的最值?
例题已知函数y=-x2-2x+3且x [0 ,2],
素,如函数 f(x)=-x2(x∈R)的最大值为有 f(0)=0,注意对“存 在”一词的理解. (2)对于定义域内全部元素,都有 f(x)≤M 成立,“任意”是说 对每一个值都必须满足不等式.
题型一 利用图象求函数的最值 x2,-1≤x≤1 【例 1】 已知函数 f(x)=1 求 f(x)的最大值、最 ,x>1. x 小值. [思路探索] 可先画出 f(x)的图象,观察图象的最高与最低点, 从而确定最大、最小值.
解 作出函数 f(x)的图象(如图) 由图象可知,当 x=± 1 时,f(x)取最大值为 f(± 1)=1.当 x=0 时, f(x)取最小值 f(0)=0, 故 f(x)的最大值为 1,最小值为 0.
题型二 利用单调性求函数的最值 1 【例 2】 已知函数 f(x)=x+x . (1)求证:f(x)在[1,+∞)上是增函数. (2)求 f(x)在[1,4]上的最大值及最小值. [思路探索] 利用定义证明 f(x)的单调性, 再利用单调性求最值.
(4)并不是所有函数都具有单调性.若一个函数在定义区间上既 有增区间又有减区间,则此函数在这个区间上不存在单调性. 提醒 若函数出现两个或两个以上的单调区间时,两单调区间 不能用“∪”连接呦!而用“和”或“,”连接.
2.判断函数单调性的常用方法 (1)定义法:这是证明或判定函数单调性的常用方法.这种判断 函数单调性的最基本的方法在高考中常有考查,一定要引起重 视. (2)图象法:根据函数图象的升、降情况进行判断. (3)依据已知函数的单调性判断:如根据已学过的一次函数、二 次函数、反比例函数的单调性情况.
名师点睛 1.对函数单调性概念的理解 (1)单调性是与“区间”紧密相关的概念,一个函数在定义域的 不同的区间上可以有不同的单调性. (2)单调性是函数在某一区间上的“整体”性质,因此定义中的 x1、 x2 有以下几个特征: 一是任意性, 即“任意取 x1, x2”, “任 意”二字绝不能丢掉,证明单调性时更不可随意以两个特殊值 替换; 二是有大小, 通常规定 x1<x2; 三是属于同一个单调区间. (3) 单调性能使自变量取值之间的不等关系和函数值的不等关 系正逆互推,即由 f(x)是增(减)函数且 f(x1)<f(x2)⇔x1<x2(x1>x2).
求函数的最值? 解析:y= -x2-2x+3 = -(x+1)2+4 因为x[0,2]如右图 则ymax=f(0)= 0+0+3=3 ymin=f(2)= -4-4+3=-5
第2课时 函数的最大(小)值
知识探究(一)
观察下列两个函数的图象:
y
M
M
y
x
o
x0
图1
o
图2
x0
x
思考1:这两个函数图象有何共同特征?
函数图象上最高点的纵坐标叫什么名称?
思考2:设函数y=f(x)图象上最高点的纵坐标为M, 则对函数定义域内任意自变量x,f(x)与M的大小 关系如何?
特别提醒
(1)定义中 M 首先是一个函数值, 它是值域的一个元
3.判断(证明)函数的单调性 判断(证明)函数单调性的步骤
题型 函数单调性的应用 【例】 (12 分)已知函数 f(x)的定义域为[-2,2], 且 f(x)在区间[- 2,2]上是增函数,f(1-m)<f(m),求实数 m 的取值范围. 审题指导 利用单调性, 将函数值的大小关系转化为自变量的大 小关系,即脱去 f 符号,转化为关于 m 的一元一次不等式,解 出 m 的范围.
相关文档
最新文档