最短路径模型

合集下载

最短路径问题数学模型

最短路径问题数学模型

最短路径问题数学模型
最短路径问题是指在一个给定的图中,求出两个顶点之间的最短路径的问题。

在实际生活中,这类问题很常见,比如我们要从一个城市到另一个城市,就需要找到最短的路线。

这个问题可以用数学模型来描述。

首先,我们可以把这个问题抽象成一个图论问题,其中图的顶点表示城市,边表示两个城市之间的道路。

每条边都有一个权值表示道路的长度。

假设我们要求从顶点s到顶点t的最短路径,我们可以用一个数组d来记录s到各个顶点的最短距离,初始化为无穷大。

然后,我们可以使用一种叫做Dijkstra算法的算法来求解这个问题。

具体的过程是:
1. 初始化d[s]=0,d[v]=无穷大(v≠s)。

2. 从未标记的节点中选择标号最小的节点v,对v进行标记。

3. 更新所有v的出边相邻节点的距离,具体为:若d[v]+v到该节点的距离< d[该节点],则更新d[该节点]为d[v]+v到该节点的距离。

4. 重复步骤2和3,直到所有节点都被标记。

5. d[t]即为s到t的最短距离。

这个算法的时间复杂度为O(n^2),其中n是节点数。

当然,还有更快的算法,比如Floyd算法,但是它的时间复杂度更高,达到了O(n^3)。

总之,最短路径问题是一个经典的数学问题,可以用图论和算法
来描述和求解。

熟练掌握这个问题对于计算机科学专业的学生来说非常重要。

给定场景下机器人避障行走的最短路径模型及求解

给定场景下机器人避障行走的最短路径模型及求解

√ ( 7 3 + 0 7 p ) +
) 7 p ' — ( 7 — 3 +0 — 2 2 7 )+ — ( 1 8 一 8 p-6 0 )
: 、 6 2 9 2 9 p ( 9 1 2 6 2 +3 5 4 p ) ( I 1 0 2 5 8 p( 7 0 8 p 5 1 4 7 6 ¨
使 之更 好 地 服务 油 田开 发项 目 , 重 点关 心油 井 挤注 防 垢。油 田 进 入 中后 期 开发 后 , 含 水 率 不断 升 高 , 各种 结垢 问题 也将 日益 严重 , 井 下挤 注 防垢 技术 的应 用 势在 必 行 , 科 学合 理地 应用 油
井 挤注 防垢 技术 , 做 好应 尽 的准 备 工作 , 将 会 大 大提 高我 国油
所以: 最短 时 间路径为
m i n = 喜 厶,
用此模 型就 可 以对起 点到 目标 点之 间的路 径进行 优化 求解 。

4 3 给定场 景下 最短 路径模 型求 解
应 用 “拉 线 原 理 ” , 计 算 各 个 路 线 的 最 短 路 径 相 互 比 较 可 得 最 优 行 走 路 线 以 及 最 短 路 径 。 知 o ( o , 0 ) A ( 3 0 0 , 3 0 0 )的 最 优 行 走 路 线 为 O A A ,最
o ( o , 0 ) - - - ) A ( 3 0 0 , 3 0 0 ) B 00 0 , 7 0 0 ) C( 7 0 0 , 6 4 0 ) 的最优 行走 路
线为 D一 5 一 一 7 一 D8 一 一 一 9 一 9一 A1 0 一B t 0 一C 一0 , 最 短路径 L=3 0 4 2 . 8 0 2 2。
验 及应 用 。
模型缺陷 : 在 障碍 物 较 多 时 , 且形 状 不规 则 时 , 模型 需 要 0 一 A的最短路 径 o ( o , 0 ) C ( 7 0 0 , 6 4 0 ) 的 最 0一 B的最 短路 径 优 行 走 路 线 为 参 考 文献 [ 1 ] 机 器人 行走 问题. h t t p : / / w e n k u . b a i d u . c o m /

最短路径模型

最短路径模型

最短路径模型一一旋转最值类当点P是O O外一点,直线PO分别交O O于点A、B两点,则线段PA的长是点P 到O O的最短距离,线段PB的长是点P至U O O上的点的最长距离•当点P是O O内一点,直线PO分别交O O于点A、B,则线段PA的长是点P到O O 上的点的最短距离,线段PB的是点P到O O 上的点的最长距离•总结:用旋转思想解决线段最值问题的本质是利用三角形三边关系解决问题•特点:旋转类最值一般涉及到平面上一定点到圆上一动点的最大值(或最小值),属于单动点问题,有时动点的运动路径圆(或圆弧)并不直接给出,此时需要根据条件把“隐圆”勾画出来,具体来说“隐圆”一般有如下呈现方式:①定点定长:② 定弦定角•的动点,将△ EBF沿EF所在直线折叠得到△ EB' F,连结B'D,则B'D的最小值是()【典例2】如图,E、F是正方形ABCD的边AD上两个动点,满足AE= DF,连接CF交BD于点G,连结BE交AG于点H,若正方形的边长是2,则线段DH长度的最小值是_____ . ___A . 2 .10-2 B. 6 D. 4C. 2.13-2【针对训练】1.如图,在△ ABC 中,/ ACB = 90° AC = 2, BC = 1,点A , C 分别在x 轴,y 轴上,当点 A 在x 轴正半轴上运动时,点 C 随之在y 轴上运动,在运动过程中,点B相切,点P 、Q 分别是边BC 和半圆上的运点,连接PQ ,则PQ 长的最大值与最小值的和是(4.如图,AC = 3, BC = 5,且/ BAC = 90 ° D 为 AC 上一动点,以 交圆于E 点,连CE ,则CE 的最小值为( ).6. 如图,△ ABC >△ EFG 是边长为2的等边三角形,点 D 是边BC 、EF 的中点,直线 AG 、 FG 相交于点M ,当△ EFG 绕点D 旋转时,线段BM 长的最小值是C. -2到原点0的最大c . 1 22. 如图,在矩形 ABCD 段CE 的最小值为(A . 323. 如图,在△ ABC 中,中,AB = 4, BC = 6, E 是矩形内部的一个动点,且 ).B. 2 .10-2C. 2.13-2AE 丄BE ,则线D. 4AB = 10, AC = 8, BC = 6,以边AB 的中点 O 为圆心,作半圆与 AC A. 13 2B. .132C. 55.如图,已知正方形 ABCD 的边长为2, E 是BC 边上的动点, 足为G ,连结CG ,贝U CG 的最小值为( ).16 D.—9 BF 丄AE 交CD 于点F ,垂AD 为直径作圆,连接 BDD.3 16 1A .B .B7. 如图,在边长为2的菱形ABCD中,/ A = 60° M是AD边的中点,N是AB边上一动&如图,△ ABC为等边三角形,AB=2,若点P ABC内一动点,且满足/ PAB= / ACP ,则线段PB长度的最小值为 ________________ 9.如图,在正方形ABCD中,0是对角线AC与BD的交点,M是BC边上的动点(点M不与B, C重合),CN丄DM , CN与AB交于点N,连接0M , ON , MN .下列五个结论:①△ CNB ◎△ DMC :②厶CON◎△ DOM ;③厶OMN OAD :④AN2+CM2=MN2;⑤若AB=2,1则S A OMN的最小值是一,其中正确结论的个数是()2R C门八A . 2 B. 3 C. 4 D. 510.如图,Rt A ABC 中,AB丄BC, AB=6 , BC=4, P是厶ABC内部的一个动点,且满足 / PAB=Z PBC,则线段CP长的最小值为()12- 1313 1311.二次函数y 2(x 1)5,当m W x< n且mn v 0时,y的最小值为2m,最大值为2n,则m+n的值为()A . 5B . 22 C.△12.如图,已知直线 y -X 3与x 轴、y 轴分别交于A 、B 两点,P 是以C (0,1 )为圆心,417,P 是AB 上一点,BP=3, Q 是CD 边上一动点,将梯形APQD 沿直线PQ 折叠,A 的对应点 A 当CA '的长度最小时, CQ 的长为( 13 D . 2 14•将形状、大小完全相同的两个等腰三角形如图所示放置,点 C . 8 D 在AB 边上,△ DEF 绕点 D 旋转,腰 DF 和底边DE 分别交△ CAB 的两腰CA , CB 于M , N 两点,若 CA=5, AB=6, 12 — 的最小值为 MA DN 15.如图,在直角坐标系中,O A 的圆心A 的坐标为(-1, 0) ,半径为1,点P 为直线 过点P 作O A 的切线,切点为Q ,则切线长PQ 的最小值是则厶PAB 面积的最大值是(PB . 213.如图,菱形 ABCD 的边 AB=8, / B=60°16. 如图,在矩形纸片ABCD中,AB=2, AD=3,点E是AB的中点,点F是AD边上的一个动点,将△ AEF沿EF所在直线翻折,得到△ A' EF,则A' C的长的最小值是_____________ .17. _________________________________________________ 如图所示,已知点C (1, 0),直线y=-x+7与两坐标轴分别交于A, B两点,D, E分别是AB, OA上的动点,则△ CDE周长的最小值是_________________________________________________ .18. 如图,△ APB中,AB=2, / APB=90°,在AB的同侧作正△ ABD、正厶APE和正△ BPC,则四边形PCDE面积的最大值是 ________ .19. _____________________________________________________________ 如图,边长为4的正方形ABCD内接于点0,点E是A B上的一动点(不与A、B重合),点F是BC上的一点,连接0E、OF,分别与AB、BC交于点G, H,且/ EOF =90 °,有以下结论:① A E B F:②厶OGH 是等腰三角形;③四边形OGBH的面积随着点E位置的变化而变化:④厶GBH周长的最小值为4 2 .其中正确的是________________________________________________________ (把你认为正确结论的序号都填上).nc20. 如图,等腰△ ABC 中,CA=CB=4,/ ACB=120。

勾股定理的简单应用(最短路径四种常见模型)学案苏科版数学八年级上册

勾股定理的简单应用(最短路径四种常见模型)学案苏科版数学八年级上册

(最短路径四种常见模型)【学习目标】 1.掌握如何求长(正)方体中的最短路径2.掌握如何求圆柱中的最短路径3.掌握如何求阶梯的最短路径4. 掌握如何求U 型滑道的最短路径【典型例题】类型一、长(正)方体中的最短路径【例1】如图,一长方体木块长6AB =,宽5BC =,高1BB 2=, 一直蚂蚁从木块点A 处,沿木块表面爬行到点1C 位置最短路径的长度为( )举一反三:【变式1】如图,正方体的棱长为2cm ,点B 为一条棱的中点.蚂蚁在正方体表面爬行,从点A 爬到点B 的最短路程是( )A .√10cmB .4cmC .√17cmD .5cm【变式2】如图,在墙角处放着一个长方体木柜(木柜与墙面和地面均没有缝腺),一只蚂蚁从柜角A 处沿着木柜表面爬到柜角C 1处.若AB =3,BC =4,CC 1=5,则蚂蚁爬行的最短路程是( )A .√74B .3√10C .√89D .12【变式3】棱长分别为5cm ,3cm 两个正方体如图放置,点P 在E 1F 1上,且E 1P =13E 1F 1,一只蚂蚁如果要沿着长方体的表面从点A 爬到点P ,需要爬行的最短距离是 .【变式4】如图,两个一样的长方体礼品盒,其底面是边长为15cm 的正方形,高为20cm ;现有彩带若干(足够用),数学组的小明和小刚分别采用自己喜欢的方式用彩带装饰两个礼品盒(假设彩带完美贴合长方体礼品盒).(1)如图1,小明从底面点A开始均匀缠绕长方体侧面,刚好缠绕2周到达点B,求所用彩带的长度;(2)如图2,小刚沿着长方体的表面从点C缠绕到点D,点D与点E的距离是5cm,请问小刚所需要的彩带最短是多少?(注:以上两问均要求画出平面展开示意图,再解答)类型二、圆柱中的最短距离【例2】如图,已知圆柱底面的周长为6,圆柱高为3,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为()A.4√3B.2√3C.3√5D.6√2举一反三:【变式1】如图,小冰想用一条彩带缠绕圆柱4圈,正好从A点绕到正上方的B点,已知知圆柱底面周长是3m,高为16m,则所需彩带最短是()m.A.8 B.5 C.20 D.10【变式2】如图,圆柱形玻璃杯高为7cm,底面周长为20cm在杯内壁离杯底2cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为()(杯壁厚度不计)【变式3】如图,已知线段BC是圆柱底面的直径,圆柱底面的周长为10,圆柱的高12AB=,在圆柱的侧面上,过点A、C两点嵌有一圈长度最短的金属丝.(1)见将圆柱侧面沿的开,所得的圆针侧面展开图是___________.(2)求该金属丝的长.【变式4】如图1,一只蚂蚁要从圆柱的下底面的点A爬到上底面的点B处,求它爬行的最短距离. 已知圆柱底面半径为R,高度为h.小明同学在研究这个问题时,提出了两种可供选择的方案,方案1:沿A→C→B爬行;方案2:沿圆柱侧面展开图的线段AB爬行,如图2.(π取3)(1)当1h=时,哪种方式的爬行距离更近?R=,4(2)当1h=时,哪种方式的爬行距离更近?R=,1(3)当R与h满足什么条件时,两种方式的爬行距离同样远?类型三、阶梯的最短距离【例3】某宾馆在重新装修后,准备在大厅的主楼梯上铺上红色地毯.已知楼梯总高度5米,楼梯长13米,主楼道宽2米;这种红色地毯的售价为每平方米30元,其侧面如图所示,则购买地毯至少需要元.举一反三:【变式1】如图是一个三级台阶,它的每一级的长、宽、高分别是4米、0.7米、0.3米,A、B是这个台阶上两个相对的顶点,A点处有一只蚂蚁,它想到B点去吃可口的食物,则蚂蚁沿台阶面爬行到B点最短路程是米.【变式2】如图是一个三级台阶,它的每一级的长、宽和高分别为9、3和1,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物.则这只蚂蚁沿着台阶面爬行的最短路程是()A.18B.15C.12D.8【变式3】如图是一个三级台阶,每级台阶都是长、宽和高分别等于90cm,25cm和15cm的长方体,A和B是这个台阶的两个相对的端点.在A点处有一只蚂蚁,想到B点去吃可口的食物,请你算一算,这只蚂蚁从A点出发,沿着台阶面爬到B点,最短路程是多少?【变式4】如图有一个四级台阶,它的每一级的长、宽分别为18分米、4分米.(1)如果给台阶表面8个矩形区域铺上定制红毯,需要定制红毯的面积为432平方分米,那么每一级台阶的高为多少分米?(2)A和C是这个台阶上两个相对的端点,台阶角落点A处有一只蚂蚁,想到台阶顶端点C 处去吃美味的食物,则蚂蚁沿着台阶面从点A爬行到点C的最短路程为多少分米?类型四、U型池的最短距离【例4】如图,这是一个供滑板爱好者使用的U形池,该U形池可以看作是一个长方体去掉一个“半圆柱”而成,中间可供滑行部分的截面是弧长为12m的半圆,其边缘AB=CD=20m(边缘的宽度忽略不计),点E在CD上,CE=4m.一滑板爱好者从A点滑到E点,则他滑行的最短距离为()A.28m B.24m C.20m D.18m举一反三:【变式1】如图,是一个供滑板爱好者使用的U型池,该U型池可以看作是一个长方体去掉一个“半圆柱”而成,中间可供滑行的部分的截面是半径为10 m的半圆,其边缘AB=CD=30 m. 小明要在AB上选取一点E,能够使他从点D滑到点E再到点C的滑行距离最短,则他滑行的最短距离为__________ m.(π取3)【变式2】如图,这是一个供滑板爱好者使用的U型池的示意图,该U型池可以看成是长方体去掉一个“半圆柱”而成,中间可供滑行部分的截面是直径为32m的半圆,其边缘AB=CD=15m,点E在CD上,CE=3m,一滑板爱好者从A点滑到E点,则他滑行的最短距离约为_____m.(边缘部分的厚度忽略不计)。

第05讲 最短路径(解析版)-2023-2024学年八年级数学上册同步学与练(人教版)

第05讲 最短路径(解析版)-2023-2024学年八年级数学上册同步学与练(人教版)

第05讲最短路径课程标准学习目标①最短路径的基本原理②最短路径的基本模型 1.掌握最短路径的基本原理,即两点之间线段最短,点到直线的距离最短。

2.掌握最短路径的几种模型,能够熟练的运用轴对称,垂直平分线的性质解决相应题目。

知识点01最短路径的基本原理1.最短路径的基本原理:①两点之间,线段最短。

如图,②号线最短②点到直线的距离最短。

如图,PC最短。

③垂直平分线上任意一点到线段两端点的距离相等。

如图,MN是垂直平分线,CA=CB。

知识点02最短路径的基本类型1——直线上一点到同侧两点的距离之和最短1.如图,存在直线l以及直线外的点P和点Q,直线l上存在一点M,使得MP+MQ的值最小:方法点拨:作其中一点关于直线的对称点,连接对称点与另一点,线段与直线的交点即为要找的点M。

解:如图,作点P关于直线l的对称点p’。

连接P’Q,P’Q与直线l交于点M,则此时MP+MQ最小。

证明:∵P与P’关于直线l对称∴直线l是PP’的垂直平分线∴MP=MP’∴MP+MQ=MP’+MQ=P’Q。

∴MP+MQ此时有最小值,为P’Q的长度题型考点:①基本作图。

②求值计算。

【即学即练1】1.如图,在正方形网格中有M,N两点,在直线l上求一点P使PM+PN最短,则点P应选在()A.A点B.B点C.C点D.D点【解答】解:如图,点M′是点M关于直线l的对称点,连接M′N,则M′N与直线l的交点,即为点P,此时PM+PN最短,∵M′N与直线l交于点C,∴点P应选C点.故选:C.【即学即练2】2.如图,在等边△ABC中,BC边上的高AD=6,E是高AD上的一个动点,F是边AB的中点,在点E运动的过程中,EB+EF存在最小值,则这个最小值是()A.5B.6C.7D.8【解答】解:如图,连接CE,∵等边△ABC中,AD是BC边上的中线,∴AD是BC边上的高线,即AD垂直平分BC,∴EB=EC,∴BE+EF=CE+EF,∴当C、F、E三点共线时,EF+EC=EF+BE=CF,∵等边△ABC中,F是AB边的中点,∴AD=CF=6,即EF+BE的最小值为6.故选:B.知识点03最短路径基本类型——角内一点与角两边构成的三角形周长最短1.如图,已知∠MON 以及角内一点P ,角的两边OM 与ON 上存在点A 与点B ,使得△PAB 的周长最小:方法点拨:分别作点P 关于OM 与ON 的对称点P ’与P ’’,连接P ’P ’’。

数学建模最短路径模型

数学建模最短路径模型

数学建模最短路径模型数学建模是一种将实际问题转化为数学问题,并通过数学方法加以分析和求解的过程。

在实际生活中,最短路径问题是我们经常遇到的一个问题。

例如,出行时如何选择最优路线、快递如何选择最短路线送达等等。

所以最短路径模型是数学建模中比较基础的问题之一。

最短路径问题是指在一个图中,给定两个节点,求两个节点之间的最短路径。

其中图中的节点可以表示位置,边可以表示路径(即从一个位置到另一个位置的路线)。

解决最短路径问题的方法有很多,这里我们介绍其中的两类:迪杰斯特拉算法和弗洛伊德算法。

迪杰斯特拉算法是指从一个起点开始不断扩张,直到到达终点的过程。

具体来说,其实现过程如下:(1)定义一个起点,然后将该点到其它点的路程距离存储到数组D中,若两点之间没有路线,则存储为∞。

(2)定义一个集合S,将起点加入S中。

(3)对于除起点外的其它所有点v,若v与起点有路径,则将D[v]赋值为该路径的距离,否则保持为∞。

(4)进入循环,对于集合V-S中的每个点v,找到距离它最近的点k,即D[k]+weight[k][v]最小,并将其加入S中。

若从起点到k的路径加上k到v的路径距离小于从起点到v的路径距离,则更新D[v]。

(5)重复上述步骤3和4,直到S中含有终点或V-S为空为止。

(6)输出起点到终点的最短路径长度。

弗洛伊德算法是一种动态规划算法,通过对于任意两个节点的距离进行不断松弛来计算最短路径。

具体来说,其实现过程如下:(1)定义一个二维数组m,其中m[i][j]表示节点i到节点j的最短距离。

初始化m[i][j]为i到j的直接距离,若不存在直接距离则设置为∞。

(2)对于任意k,遍历所有节点i和j,若m[i][j]>m[i][k]+m[k][j],则更新m[i][j]。

(3)输出起点到终点的最短路径长度。

以上就是解决最短路径模型的两种方法,每种方法都有其适用的场景。

无论是哪种方法,最短路径模型的核心是图的表示方法和路径之间距离的计算方法,通过这个模型可以在实际生活中解决很多常见的问题。

军旅导航——最短路径问题的数学模型

军旅导航——最短路径问题的数学模型

军旅导航——最短路径问题的数学模型1. 引言最短路径问题(Shortest Path Problem,SPP)是图论中的一个经典问题,旨在寻找图中两点之间的最短路径。

在军旅导航领域,最短路径问题同样具有重要的应用价值。

本文将详细介绍最短路径问题的数学模型,并探讨其在军旅导航中的应用。

2. 最短路径问题的数学模型2.1 图的定义首先,我们需要明确图的概念。

图是由顶点(节点)集合和边集合组成的一种数学结构。

其中,顶点表示图中的点,边表示顶点之间的关系。

图可以分为有向图和无向图,本文主要讨论有向图。

2.2 路径和距离路径是由一系列顶点组成的序列,表示图中两点之间的连线。

路径的长度等于路径上边的数量。

两条路径如果包含相同的顶点,且边的顺序相同,则称这两条路径为同一路径。

距离是指图中两点之间的最短路径长度。

在有向图中,距离可以是带权重的,即每条边都有一个权重。

2.3 最短路径问题最短路径问题旨在寻找图中两点之间的最短距离路径。

根据图中边的权重,最短路径问题可以分为以下两种:1. 权重均为正数的最短路径问题:这种情况下,最短路径问题可以通过Dijkstra算法或Bellman-Ford算法求解。

2. 含有负权重的最短路径问题:这种情况下,最短路径问题可以通过Floyd-Warshall算法求解。

3. 军旅导航中的应用在军旅导航领域,最短路径问题可以用于计算部队行进的最短路线、最优调度等问题。

以下是一个具体的应用场景:假设有一支军队需要从起点A到达终点B,沿途有多个城市C、D、E等,每个城市之间的道路都有不同的长度和通行条件。

我们需要找到一条从A到B的最短路径,以确保军队能够尽快到达目的地。

通过构建一个有向图,顶点集合包含A、B以及沿途的城市C、D、E等,边集合表示城市之间的道路及长度。

利用最短路径算法,我们可以计算出从A到B的最短路径,从而为军队提供导航。

4. 总结本文从军旅导航的实际应用出发,介绍了最短路径问题的数学模型。

最短路径的数学模型

最短路径的数学模型

最短路径的数学模型最短路径的数学模型:从A到B的最短路径问题引言:在现实生活中,我们常常需要找到两个地点之间的最短路径,比如从家里到公司的最短路线,或者从一个城市到另一个城市的最短航线。

这种最短路径问题在数学中有一种通用的数学模型,被广泛应用于计算机科学、运筹学以及交通规划等领域。

本文将介绍这个数学模型,并通过一个具体的例子来说明其应用。

一、问题描述:最短路径问题可以被定义为:给定一个图G,其中包含一些节点和连接这些节点的边,每条边都有一个权重(或距离)值,我们希望找到从节点A到节点B的最短路径。

二、数学模型:为了解决最短路径问题,我们需要构建一个数学模型。

这个模型可以使用图论中的图和路径的概念来描述。

1. 图的定义:在最短路径问题中,图G可以被定义为一个由节点和边组成的集合。

其中节点表示地点或位置,边表示连接这些地点的路径。

每条边都有一个权重值,表示从一个地点到另一个地点的距离或成本。

2. 路径的定义:路径是指从一个地点到另一个地点经过的一系列节点和边的组合。

在最短路径问题中,我们希望找到一条路径,使得路径上所有边的权重之和最小。

3. 最短路径的定义:最短路径是指从节点A到节点B的路径中,路径上所有边的权重之和最小的路径。

三、最短路径算法:为了解决最短路径问题,我们需要使用一种算法来计算最短路径。

下面介绍两种常用的最短路径算法:Dijkstra算法和Floyd-Warshall算法。

1. Dijkstra算法:Dijkstra算法是一种贪心算法,用于计算带权重的图中节点A到其他所有节点的最短路径。

该算法的基本思想是从起始节点开始,依次选择与当前节点距离最近的节点,并更新到达其他节点的最短路径。

这个过程不断重复,直到找到从节点A到所有其他节点的最短路径。

2. Floyd-Warshall算法:Floyd-Warshall算法是一种动态规划算法,用于计算带权重的图中任意两个节点之间的最短路径。

该算法通过一个二维数组来存储节点之间的最短路径长度,并不断更新这个数组,直到找到所有节点之间的最短路径。

最短路径问题梳理

最短路径问题梳理
常见路径最值模型梳捋
按照路径最值问题的构成或解答方式分组。
模型组一
1 两点一线异侧和最小值问题 问题:两定点A、B位于直线l异侧,在直线l上找一点P,使PA+PB值最 小. 问题解决:
结论:根据两点之间线段最短,PA+PB的最小值即为线段AB长.
模型组一
2. 两点一线同侧和最小值问题 问题:两定点A、B位于直线l同侧,在直线l上找一点P,使得PA+PB值 最小. 问题解决:
(分析:PQ为定值,只需AP+QB的值最小,可通 过平移,使P、Q“接头”,转化为基本模型)
解:将点A沿着平行于l的方向,向右移至A´, 使AA´=PQ=a,连接A´B交直线l于点Q,在l上截取
PQ=a(P在Q左边),则线段PQ即为所求,此 时
AP+PQ+QB的最小值为A´B+PQ,即A´B+a
ห้องสมุดไป่ตู้
模型组三
解:作点A关于OM的对称点A′,过点A′作AQ⊥ON 于 点Q,A′Q交OM于点P,此时AP+PQ最小;
理由:由轴对称的性质知AP=A′P, 要使AP+PQ最小, 只需A′P+PQ最小,从而 转化为拓展模型1
模型组二
3. “胡不归”问题 基本模型:两定一动,动点在定直线上
问题:点A为直线l上一定点,点B为直线外一定点, P为直线l上一动点,要使 AP+BP最小.
模型组四
2.异侧差最小值问题
问题:两定点A、B位于直线l异侧,在直线l上找一点P,使得|PA-
PB|的值最小. 问题解决:
A▪
B▪
结论:根据垂直平分线上的点到线段两端点的距 离相等,当PA=PB时,|PA-PB|=0.
模型组四总结:

最短路径 数学表达

最短路径 数学表达

最短路径数学表达在数学中,最短路径问题是一种最优化问题,它涉及从一个源点到一个终点的最短路径查找。

最短路径问题在很多实际场景中都有广泛的应用,比如交通系统中的最短路径规划、位置服务(GPS)、物流规划、图像处理等等。

最短路径的数学表达可以用来解决路径优化问题,其一般形式如下:最短路径问题:给定一个有向图G=(V,E),给定两个结点s和t,求从s到t的一条最短路径。

最短路径问题的数学模型可以表示为:min f(x) = c(x)s.t. x∈P(s, t)其中x是最短路径中的路径矢量,c(x)是路径代价函数,P(s,t)是从s到t的所有路径集。

该模型可以把最短路径问题转化为一个求最小值的优化问题,即求出代价值最小的最短路径。

最短路径问题的求解通常有多种算法,比如贪婪算法、动态规划等等。

其中最常用的方法是Dijkstra算法,它是一种潜伏机制,通过合理的搜索,可以在有向图中找到最短路径。

Dijkstra算法的步骤如下:1.定源点s,初始化s的距离为0,设定其他结点的距离为无穷大,表示尚未探测;2.较上一个节点的所有邻接节点,把当前访问节点的距离和邻接节点的距离加起来,求出新的距离,取最小值更新邻接节点的距离;3.复以上步骤,直到把终点t也更新为最短路径;4.最终结果抽象为路径,返回最短路径。

由于有了最短路径数学表达式和算法,可以利用数学建模求解各种实际场景中的最短路径优化问题,比如位置服务(GPS),它可以帮助你避免在交通拥挤的城市中走着走着就迷路,便捷高效地达到目的地;物流规划中也可以利用最短路径的数学模型来求解路径最优化问题,从而找到最快、最省费用的路线;在图像处理中,最短路径可以用来求解最短连接问题,例如计算机视觉系统中视觉对象的精确轮廓提取。

综上所述,最短路径问题在实际场景中具有重要的应用价值,它可以帮助求解许多优化问题,而最短路径的数学表达以及求解算法也成为实现这些问题的基础和依据。

最短路径问题初中数学模型

  最短路径问题初中数学模型
第10题图
课后精练
【提示】过B作BF⊥OA于F,过D作DE⊥OA于E,过C 作CM⊥OA于M;证明△OBF∽△ODE,△ACM∽△ADE, 再根据相似三角形线段的比例关系,求解即可.
【答案】8
答案图
课后精练 11.在Rt△ABC中,∠ACB=90°,AC=8,BC= 6,点D是以点A为圆心4为半径的圆上一点,连接BD, 点M为BD中点,线段CM长度的最大值为______.
OC 交圆 O 于点 F,如图.
由题可得∠AED=∠AEB=90°,
∴点 E 在以 AB 中点 O 为圆心的圆上(在△ABC 内部).
由题意,得 AC=AB=4,半径 OE=OA=2,
∴由勾股定理,得 OC=2 5.
答案图
根据三角形三边的关系,得
CE≥OC-OE=2 5-2(取等号时非三角形),
∴当点 C,E,O 三点共线时,CE 最小,最小值为 2 5-2.
15
11 由相似三角形线段的比例关系表示出
A.4
B. 4
C.3
D. 4
HF,DH,再由S△CEF=S梯形HFCD+S△CDE-
S△EHF列关系式即可.
课后精练 5.如图,E是边长为4 cm的正方形ABCD的边AB上 一点,且AE=1 cm,P为对角线BD上的任意一点,则 AP+EP的最小值是___5___cm.
课堂精讲
例 2 如图,△ABC 中,∠BAC=60°,∠ABC=45°, AB=2 2,D 是线段 BC 上的一个动点,以 AD 为直径画⊙O 分别交 AB,AC 于点 E,F,连接 EF,则 EF 的最小值是________.
课堂精讲
【分析】由垂线段的性质可知,当 AD 为△ABC 的边 BC 上的高时,直径 AD 最短.如图,连接 OE,OF,过点 O 作 OH⊥EF,垂足为 H,

数学模型 DjiST算法 最短路径

数学模型 DjiST算法 最短路径

∙一、基本思想:按路径长度递增顺序求最短路径算法。

二、数据的存储结构:有向连通网络: G ,采用带权邻接矩阵cost[ ][ ]存储三、算法具体步骤:设V0是起始源点,U=已求得最短路径终点集合。

V-U=未确定最短路径的顶点的集合(1)初始U={v0}, 辅助数组dist[N](对已经找到最短路径终点的顶点vi ( i ∈U ),vi 所对应的数组分量dist[i]的值为负数;对从v0出发,尚未确定为最短路径终点的顶点vj (j ∈ V - U ),vj 所对应的数组分量dist[j]的值为从v0出发,考虑途经已确定为终点的顶点,到达vj (∈ V - U )的最短路径)。

初始时,对j ∈ V - U ,有dist[j]=cost[v][j]; 而对U={v}, 则有dist[v]= - cost[v][v] 。

(2)扫描dist[ ]数组,找出非0、非负且最小的dist[j](j∈V-U),即从v0出发到vj(j∈V-U)的路径是最短的。

(3)vj并入U ,则dist[j]=-dist[j]。

(4)调整dist[k](k∈V-U),考虑从v0出发,途经vj到达vk是否更短。

比较:若-dist[j]+cost[j][k]<disk[k], 则dist[k]= -disk[j]+ cost[j][k] 。

(5)重复(2)(3)(4)共n-1次。

四、源代码:void dijkstra( int cost[][N], int v ,int t)//起点为v,终点为t{int dist[N],i,j,wfor (i=0; i<N; i++)dist[i]=cost[v][i]; //初始化dist[v]=-dist[v];for( i=0; i<N; i++){j=mincost(dist);//找非0、非负且最小的dist[j]if(( j==0)||(j==t));break;dist[j]=-dist[j];// vj并入U中for(k=0;k<N;k++) // 调整dist[k]if(dist[k]>0) // vk是尚未到达的终点if(-dist[j]+cost[j][k]<dist[k])dist[k]=-dist[j]+cost[j][k];//途经vj到达vk的距离更短}for ( i=0; i<N; i++)if(dist[j]<0)printf(“%d, %d: %d\n”,v,i,-dist[i]);}int mincost( int dist[ ])// 在V-U 集合中找顶点j,dist[j]是dist[ ]中的最小值{int i, min, j;min=MAX;j=0;for(i=0;i<N;i++)if(dist[i]>=0&& dist[i]<min){min=dist[i];j=i; }return(j);}五、小结(1) “按路径长度递增顺序”是因为,扩展下一个永久标记节点总是从U中节点的邻接节点中找到。

数学建模最短路径问题模型

数学建模最短路径问题模型

数学建模最短路径问题模型数学建模是利用数学方法和技巧解决实际问题的过程。

最短路径问题是指在图中找到一个节点到另一个节点的最短路径。

这个问题在现实生活中有着广泛的应用,比如导航系统、物流运输等。

最短路径问题可以使用多种方法来解决,其中最常见的方法是使用图论中的最短路径算法,例如Dijkstra算法和Floyd-Warshall算法。

Dijkstra算法是一种贪心算法,用于解决带非负边权的单源最短路径问题。

它的基本思想是通过迭代的方式逐步确定从源节点到其他节点的最短路径。

Dijkstra算法的步骤如下:1. 初始化,将源节点到其他节点的距离都设为正无穷,将源节点到自身的距离设为0。

2. 选择一个当前节点,将其加入已确定最短路径的节点集合。

3. 对于当前节点的邻居节点,更新其到源节点的距离,如果通过当前节点的距离更短,则更新最短距离。

4. 重复步骤2和3,直到所有节点都加入已确定最短路径的节点集合。

5. 返回从源节点到其他节点的最短路径。

Floyd-Warshall算法是一种动态规划算法,用于解决所有节点对之间的最短路径问题。

它的基本思想是通过逐步迭代来更新节点之间的最短路径。

Floyd-Warshall算法的步骤如下:1. 初始化,将节点之间的距离设为正无穷,将每个节点到自身的距离设为0。

2. 对于每一对节点(i, j),判断从节点i到节点j是否存在经过其他节点的更短路径,如果存在则更新最短距离。

3. 重复步骤2,直到所有节点之间的最短路径都被求出。

4. 返回任意两个节点之间的最短路径。

除了以上两种算法,还有其他的最短路径算法,比如Bellman-Ford算法和A*算法等。

这些算法都有各自的特点和适用范围,根据具体情况选择合适的算法。

此外,最短路径问题还可以使用线性规划、整数规划和动态规划等数学建模方法来解决。

这些方法可以将问题转化为数学模型,通过求解模型得到最优解。

对于复杂的最短路径问题,可以将其转化为有向图或无向图来进行建模。

专题01 勾股定理中的四类最短路径模型(原卷版)

专题01 勾股定理中的四类最短路径模型(原卷版)

专题01 勾股定理中的四类最短路径模型勾股定理中的最短路线问题通常是以“两点之间,线段最短”为基本原理推出的。

人们在生产、生活实践中,常常遇到带有某种限制条件的最近路线即最短路线问题。

对于数学中的最短路线问题可以分为两大类:第一类为在同一平面内;第二类为空间几何体中的最短路线问题,对于平面内的最短路线问题可先画出方案图,然后确定最短距离及路径图。

对于几何题内问题的关键是将立体图形转化为平面问题求解,然后构造直角三角形,利用勾股定理求解。

模型1.圆柱中的最短路径模型【模型解读】圆柱体中最短路径基本模型如下:计算跟圆柱有关的最短路径问题时,要注意圆柱的侧面展开图为矩形,利用两点之间线段最短结合勾股定理进行求解,注意展开后两个端点的位置,有时候需要用底面圆的周长进行计算,有时候需要用底面圆周长的一半进行计算。

注意:1)运用勾股定理计算最短路径时,按照展开—定点—连线—勾股定理的步骤进行计算;2)缠绕类题型可以求出一圈的最短长度后乘以圈数。

【最值原理】两点之间线段最短。

A.413cm例3.(2023春每根柱子的彩灯带需要从均为2米,高均为变式1.(2023·个长方体去掉一个(边缘的宽度忽略不计)()A.28m B.变式2.(2023春·四川德阳柱两底面圆周上的点,且A这根棉线的长度最短为___________cm变式3.(2022·山东青岛·八年级期末)如图,一个圆桶,底面直径为16cm ,高为18cm ,则一只小虫从下底点A 处爬到上底B 处再回到A 处,则小虫所爬的最短路径长是( )(p 取3)A .60cmB .40cmC .30cmD .20cm模型2.长方体中的最短路径模型【模型解读】长方体中最短路径基本模型如下:计算跟长方体有关的最短路径问题时,要熟悉长方体的侧面展开图,利用两点之间线段最短结合勾股定理进行求解,注意长方体展开图的多种情况和分类讨论。

注意:1)长方体展开图分类讨论时可按照“前+右”、“前+上”和“左+上”三种情况进行讨论;2)两个端点中有一个不在定点时讨论方法跟第一类相同。

最短路径求最值12个模型详解

最短路径求最值12个模型详解

最短路径求最值12个模型详解最短路径求最值是指要在最小的距离内求出最优的结果。

最短路径求最值的12个模型如下:1. 旅行商问题(TSP):旅行商问题是求解对给定城市进行最佳巡回路径的一种最优化问题。

2. 最大流最小割:最大流最小割是一种最优化问题,它是用最小的割点将一个连通图分割成两部分,使得最大的流量在这两部分之间流动的最优化问题。

3. 关键路径算法:关键路径算法是一种运用于解决项目计划问题的最优化算法,它寻找出在所有可能路径中,最短的项目路径作为最终的项目安排。

4. 迪杰斯特拉算法:迪杰斯特拉算法是一种最短路径搜索算法,它通过控制向图中每个点的距离,来求出从指定点出发到达目的地最短的距离。

5. 弗洛伊德算法:弗洛伊德算法是一种求解最短路径的算法,通过使用动态规划的方法,它可以在网络中快速求出最短路径。

6. 贝尔曼-福德算法:贝尔曼-福德算法是一种求解最短路径的算法,它利用宽度优先和深度优先搜索结合的方法,求出网络中任意两点之间的最短路径。

7. 克鲁斯卡尔算法:克鲁斯卡尔算法是一种解决最短路径问题的算法,它通过比较每条边的权值来求解8.斐波那契堆:斐波那契堆是一种运用斐波那契算法实现最小堆和最大堆结构的数据结构,可以帮助快速查找最大和最小值。

9. A*算法:A*算法是一种运用heuristics函数的最优化搜索算法,它可以快速的找到最短的路径。

10. Dijkstra–Scholten算法:Dijkstra–Scholten算法是一种在复杂网络环境中求解最短路径的算法,它采用端到端的方法求出最适合的路径。

11. Bellman-Ford算法:Bellman-Ford算法是一种最短路径算法,它将路径最优化的目标写成一个系统的线性方程,并利用动态规划技术解决这类问题。

12. Johnson算法:Johnson算法是一种运用反向算法实现最短路径搜索的方法,它由索引器和搜索器两部分组成,索引器会根据输入的起点和终点,快速计算出最短路径并输出。

【初中数学】最短路径模型及例题解析

【初中数学】最短路径模型及例题解析

【初中数学】最短路径模型及例题解析一、最短路径模型简介在日常生活中,我们常常会遇到寻找从一个地点到另一个地点的最短路径问题。

例如,从家到学校、从甲地到乙地等。

在数学领域,最短路径问题属于图论的研究范畴,是图论中的一个基本问题。

最短路径模型就是用来解决这类问题的一种数学方法。

最短路径模型主要包括以下几个要素:1. 图:由顶点(地点)和边(路径)组成的集合。

2. 距离:表示两个顶点之间的距离或权重。

3. 路径:从一个顶点到另一个顶点经过的边的序列。

4. 最短路径:在所有路径中,长度最小的路径。

二、最短路径模型的求解方法1. 枚举法:枚举所有可能的路径,然后从中选择长度最小的路径。

这种方法适用于顶点数量较少的简单图。

2. Dijkstra算法:适用于带权重的有向图,通过逐步求解,找到从源点到其他所有顶点的最短路径。

3. Floyd算法:适用于求解任意两个顶点之间的最短路径,通过动态规划的方法,求解所有顶点对之间的最短路径。

三、例题解析【例题1】某城市有6个主要交通枢纽,分别用A、B、C、D、E、F表示。

下面是这6个交通枢纽之间的距离表(单位:千米):```A B C D E FA 0 5 7 8 9 10B 5 0 6 7 8 9C 7 6 0 4 5 6D 8 7 4 0 3 4E 9 8 5 3 0 2F 10 9 6 4 2 0```求从A到F的最短路径。

【解析】这是一个典型的最短路径问题,我们可以使用Dijkstra算法求解。

1. 初始化:将所有顶点的距离设置为无穷大,源点A的距离设置为0。

2. 选取距离最小的顶点,标记为已访问。

此时,A为已访问顶点。

3. 更新相邻顶点的距离:从A出发,更新B、C、D、E、F的距离。

此时,B、C、D、E、F的距离分别为5、7、8、9、10。

4. 重复步骤2和3,直到所有顶点都被访问。

最后得到的最短路径为A→B→E→F,长度为14千米。

【例题2】某城市有5个公园,分别用P1、P2、P3、P4、P5表示。

初中数学常考的最短路径13种模型

初中数学常考的最短路径13种模型

初中数学常考的最短路径13种模型数学好教师
问题概述:最短路径问题是图论研究中的⼀个经典算法问题,旨在寻找图(由结点和路径组成的)中两结点之间的最短路径.算法具体的形式包括:
①确定起点的最短路径问题 - 即已知起始结点,求最短路径的问题②确定终点的最短
路径问题 - 与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题③确
定起点终点的最短路径问题 - 即已知起点和终点,求两结点之间的最短路径④全局最
短路径问题 - 求图中所有的最短路径
问题原型:“将军饮马”,“造桥选址”,“费马点”。

涉及知识:“两点之间线段最短”,“垂线段最短”,“三⾓形三边关系”,“轴对称”,“平移”。

出题背景:⾓、三⾓形、菱形、矩形、正⽅形、梯形、圆、坐标轴、抛物线等。

解题思路:找对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最短路径模型——旋转最值类
【典例1】如图,在矩形ABCD中,AB=4,AD=6,E是AB边的中点,F是线段BC边上的动点,将△EBF沿EF所在直线折叠得到△EB′F,连结B′D,则B′D的最小值是().
A.B.6 C.D.4
【典例2】如图,E、F是正方形ABCD的边AD上两个动点,满足AE=DF,连接CF 交BD于点G,连结BE交AG于点H,若正方形的边长是2,则线段DH长度的最小值
是 .
H G
A
【针对训练 】
1. 如图,在△ABC 中,∠ACB =90°,AC =2,BC =1,点A ,C 分别在x 轴,y 轴上,当点A 在x 轴正半轴上运动时,点C 随之在y 轴上运动,在运动过程中,点B 到原点O 的最大距离为( ).
A B C .1+ D .3
2.如图,在矩形ABCD 中,AB =4,BC =6,E 是矩形内部的一个动点,且AE ⊥BE ,则线段CE 的最小值为( ).
A .32
B .
C .
D .4 3. 如图,在△ABC 中,AB =10,AC =8,BC =6,以边AB 的中点O 为圆心,作半圆与AC 相切,点P 、Q 分别是边BC 和半圆上的运点,连接PQ ,则PQ 长的最大值与最小值的和是( ).
A .6
B .1
C .9
D .322
4.如图,AC =3,BC =5,且∠BAC =90°,D 为AC 上一动点,以AD 为直径作圆,连接BD 交圆于E 点,连CE ,则CE 的最小值为( ).
A .213-
B .213+
C .5
D .9
16 5.如图,已知正方形ABCD 的边长为2,E 是BC 边上的动点,BF ⊥AE 交CD 于点F ,垂足为G ,连结CG ,则CG 的最小值为( ).
A 1
B 1
C 1
D 1
6.如图,△ABC 、△EFG 是边长为2的等边三角形,点D 是边BC 、EF 的中点,直线AG 、FG 相交于点M ,当△EFG 绕点D 旋转时,线段BM 长的最小值是
A .2
B 1
C
D 1
7.如图,在边长为2的菱形ABCD 中,∠A =60°,M 是AD 边的中点,N 是AB 边上一动点,将△AMN 沿MN 所在的直线翻折得到△A′MN ,连结A′C ,则A′C 长度的最小值是 .
8.如图,△ABC 为等边三角形,AB =2,若点P 为△ABC 内一动点,且满足∠PAB =∠ACP ,则线段PB 长度的最小值为 .
9.如图,在正方形ABCD 中,O 是对角线AC 与BD 的交点,M 是BC 边上的动点(点M 不与B ,C 重合),CN ⊥DM ,CN 与AB 交于点N ,连接OM ,ON ,MN .下列五个结论:①△CNB ≌△DMC ;②△CON ≌△DOM ;③△OMN ∽△OAD ;④AN 2+CM 2=MN 2;⑤若AB =2,则S △OMN 的最小值是12
,其中正确结论的个数是( ) A .2 B .3 C .4 D .5
10.如图,Rt △ABC 中,AB ⊥BC ,AB =6,BC =4,P 是△ABC 内部的一个动点,且满足∠P AB =∠PBC ,则线段CP 长的最小值为( )
A .23
B .2
C .13
138 D .131312 11.二次函数2(1)5y x =--+,当m ≤x ≤n 且mn <0时,y 的最小值为2m ,最大值为2n ,
则m +n 的值为( )
A .52
B .2
C .32
D .12
12.如图,已知直线334
y x =-与x 轴、y 轴分别交于A 、B 两点,P 是以C (0,1)为圆心,1为半径的圆上一动点,连结P A 、PB .则△P AB 面积的最大值是( )
A .8
B .12
C .212
D .172 13.如图,菱形ABCD 的边AB =8,∠B =60°,P 是AB 上一点,BP =3,Q 是CD 边上一动点,将梯形APQD 沿直线PQ 折叠,A 的对应点A ′.当CA ′的长度最小时,CQ 的长为( )
A .5
B .7
C .8
D .132
14.将形状、大小完全相同的两个等腰三角形如图所示放置,点D 在AB 边上,△DEF 绕点D 旋转,腰DF 和底边DE 分别交△CAB 的两腰CA ,CB 于M ,N 两点,若CA =5,AB =6,AB =1:3,则MD +12MA DN
⋅的最小值为 .
15.如图,在直角坐标系中,⊙A 的圆心A 的坐标为(﹣1,0),半径为1,点P 为直线
34
3+-=x y 上的动点,过点P 作⊙A 的切线,切点为Q ,则切线长PQ 的最小值是 .
16.如图,在矩形纸片ABCD中,AB=2,AD=3,点E是AB的中点,点F是AD边上的一个
动点,将△AEF沿EF所在直线翻折,得到△A′EF,则A′C的长的最小值是.
17.如图所示,已知点C(1,0),直线y=﹣x+7与两坐标轴分别交于A,B两点,D,E分
别是AB,OA上的动点,则△CDE周长的最小值是.
18.如图,△APB中,AB=2,∠APB=90°,在AB的同侧作正△ABD、正△APE和正△BPC,
则四边形PCDE面积的最大值是.
19.如图,边长为4的正方形ABCD内接于点O,点E是AB上的一动点(不与A、B重合),点F是BC上的一点,连接OE、OF,分别与AB、BC交于点G,H,且∠EOF=90°,有=;②△OGH是等腰三角形;③四边形OGBH的面积随着点E位置以下结论:①AE BF
的变化而变化;④△GBH周长的最小值为4+.其中正确的是(把你认为正确
结论的序号都填上).
20.如图,等腰△ABC中,CA=CB=4,∠ACB=120°,点D在线段AB上运动(不与A、B 重合),将△CAD与△CBD分别沿直线CA、CB翻折得到△CAP与△CBQ,给出下列结论:
①CD=CP=CQ;
②∠PCQ的大小不变;
③△PCQ;
④当点D在AB的中点时,△PDQ是等边三角形,其中所有正确结论的序号是.
21.如图,已知正方形ABCD边长为3,点E在AB边上且BE=1,点P,Q分别是边BC,CD的动点(均不与顶点重合),当四边形AEPQ的周长取最小值时,四边形AEPQ的面积是.
22.如图,四边形ABCD是矩形纸片,AB=2.对折矩形纸片ABCD,使AD与BC重合,折痕为EF;展平后再过点B折叠矩形纸片,使点A落在EF上的点N,折痕BM与EF相交于点Q;再次展平,连接BN,MN,延长MN交BC于点G.有如下结论:
;④△BMG是等边三角形;⑤P为线段BM上一动点,①∠ABN=60°;②AM=1;③QN=
3
H是BN的中点,则PN+PH.其中正确结论的序号是.
23.如图,∠AOB =30°,点M 、N 分别是射线OA 、OB 上的动点,OP 平分∠AOB ,且OP =6,当△PMN 的周长取最小值时,四边形PMON 的面积为 .
24.如图,在⊙O 中,直径CD 垂直于不过圆心O 的弦AB ,垂足为点N ,连接AC ,点E 在AB 上,且AE =CE .
(1)求证:AC 2=AE •AB ;
(2)过点B 作⊙O 的切线交EC 的延长线于点P ,试判断PB 与PE 是否相等,并说明理由;
(3)设⊙O 半径为4,点N 为OC 中点,点Q 在⊙O 上,求线段PQ 的最小值.
25.如图,在正方形ABCD 中,点E 、G 分别是边AD 、BC 的中点,AF =
14
AB . (1)求证:EF ⊥AG ;
(2)若点F 、G 分别在射线AB 、BC 上同时向右、向上运动,点G 运动速度是点F 运动速度的2倍,EF ⊥AG 是否成立(只写结果,不需说明理由)?
(3)正方形ABCD 的边长为4,P 是正方形ABCD 内一点,当PAB OAB S S ∆∆=,求△P AB 周长的最小值.
26.在数学兴趣小组活动中,小明进行数学探究活动,将边长为2的正方形ABCD与边长为
AEFG按图1位置放置,AD与AE在同一直线上,AB与AG在同一直线上.(1)小明发现DG⊥BE,请你帮他说明理由;
(2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,请你帮他求出此时BE的长;
(3)如图3,小明将正方形ABCD绕点A继续逆时针旋转,线段DG与线段BE将相交,交点为H,写出△GHE与△BHD面积之和的最大值,并简要说明理由.。

相关文档
最新文档