数学建模--野兔

合集下载

兔子繁殖数学建模斐波那契原型

兔子繁殖数学建模斐波那契原型

兔子繁殖数学建模斐波那契原型今天咱们来讲一个特别有趣的关于兔子繁殖的事儿。

在一个美丽的大草地里,住着一对可爱的小兔子。

这对小兔子是刚刚出生的,它们呀,还没有长大呢。

这个草地就像一个大大的家,有好多新鲜的青草可以吃。

过了一个月呀,这对小兔子长大了一些,不过还不能生小兔子呢。

又过了一个月,这对长大了的兔子就变成了大兔子,这个时候它们就有能力生小兔子啦。

然后呢,这对大兔子就生出了一对小兔子。

现在草地上就有原来的那对大兔子和新出生的一对小兔子啦,一共是两对兔子。

再过一个月呢,新出生的小兔子还没长大,可是原来的那对大兔子又生了一对小兔子。

这个时候呀,最早出生的那对小兔子长大了。

现在草地上就有最早的那对大兔子,它们生的两对小兔子,还有新长大的那对兔子,一共是三对兔子啦。

又过了一个月呢,最早的那对大兔子又生了一对小兔子,之前长大的那对兔子也生了一对小兔子,新出生的小兔子还没长大。

这样算下来呀,草地上就有最早的那对大兔子,它们生的三对小兔子,之前长大的兔子生的一对小兔子,还有两对新长大的兔子,一共是五对兔子了。

咱们这样一个月一个月地数下去,就会发现兔子的数量是这样变化的:1、1、2、3、5……这个数列就是按照一种很有趣的规律在增长呢。

就像我们数自己的手指头一样,一个一个很清楚。

这个规律就和一个很有名的数学东西有关,它叫斐波那契数列。

斐波那契发现了这个规律,就像他发现了一个藏在兔子世界里的秘密。

想象一下,如果这个草地超级大,兔子可以一直这样繁殖下去,那兔子的数量就会按照这个规律变得越来越多。

比如说,如果我们再往后算几个月,按照这个规律,下一个月兔子的对数就是前面两个月兔子对数的和。

像前面是3对和5对,那下一个月就会有8对兔子啦。

这个兔子繁殖的故事就像一个魔法一样,让我们看到了数学在生活里的影子。

我们可以把这个当成一个好玩的游戏,每个月去数一数兔子的数量,然后发现这个神奇的规律。

这样我们就会发现数学不是那么枯燥,而是像这个兔子的故事一样,充满了乐趣。

数学建模-猎狗追兔子问题

数学建模-猎狗追兔子问题

数学建模论文《数学建模》(2014春)课程期末论文摘要(一)对于问题一:自然科学中存在许多变量,也有许多常量,而我们要善于通过建立合适的模型找到这些变量之中的不变量。

猎狗追赶兔子的问题是我们在生活中常见的实例,而题目把我们生活中的普通的例子抽象成为高等数学中微分方程的例子,通过对高阶微分方程的分析,建立微分方程模型,并用数学软件编写程序求解,得出结论,解决生活中常见的实际问题。

(二)对于问题二:学习使用matlab进行数学模型的求解,掌握常用计算机软件的使用方法。

关键词微分方程导数的几何意义猎狗追兔子数学建模数学软件一、问题重述如图1所示,有一只猎狗在B 点位置,发现了一只兔子在正东北方距离它250m 的地方O 处,此时兔子开始以8m/s 的速度正向正西北方向,距离为150m 的洞口A 全速跑去. 假设猎狗在追赶兔子的时候,始终朝着兔子的方向全速奔跑。

请回答下面的问题:⑴ 猎狗能追上兔子的最小速度是多少? ⑵ 在猎狗能追上兔子的情况下,猎狗跑过的路程 是少?⑶ 假设猎狗在追赶过程中,当猎狗与兔子之间的距离为30m 时,兔子由于害怕导致奔跑速度每秒减半, 而狗却由于兴奋奔跑速度每秒增加0.1倍,在这种情 况下回答前面两个问题。

二、问题分析与假设在猎狗追赶兔子的时候猎狗一直朝着兔子的方向追赶,所以可以建立平面直角坐标系,通过导数联立起猎狗运动位移,速度和兔子的运动状态。

1.假设兔子的运动是匀速的。

2.假设猎狗的运动轨迹是一条光滑并且一阶导数存在的曲线。

3.猎狗的运动时匀速或者匀变速的。

4.猎狗运动时总是朝向兔子。

三、模型的建立及求解3.1 符号规定1.(x ,y ):猎狗或者兔子所在位置的坐标。

2. t :从开始到问题结束经过的时间。

3. a:猎狗奔跑的路程。

4. v:猎狗的奔跑速度。

3.2 模型一的建立与求解猎狗能够抓到兔子的必要条件:猎狗的运动轨迹在OA 要有交点以OA 为y 轴,以OB 为x 轴建立坐标系,则由图有O(0,0),A(0,150),B(250,0),兔子的初始位置0点,而猎狗初始位置是B 点,t (s )后猎狗到达了C (x ,y ),而兔子到达了D (0,8t ),则有CD 的连线是猎狗运动轨迹的一条切线,由导数的几何意义有:NW8dy y tdx x-=dav dt =da =三式联立消去t ,得到;设:若猎狗可以追上兔子则有当兔子在OA,猎狗在OB 之间运动时此方程有解,设:得到:得到:两式联立相加得到:1.如果q=1即v=8 m/s 得到所以此情况无交点,所以v=8m/s 猎狗无法追上兔子; 2.如果q<1即v>8m/s 得到此情况有交点,所以有可能能够追上兔子,如果要追上兔子需要y<=150; 解得到: 即所以这种情况下能够追上的最小速度是 .3.如果q>1 利用上式得到,所以这种情况不能追上兔子。

兔子问题_精品文档

兔子问题_精品文档

兔子问题简介兔子作为一种常见的小动物,其繁殖能力极强,因此兔子问题也成为了数学领域中的经典问题之一。

该问题涉及到兔子的繁殖规律,以及在特定的时间段内兔子的数量变化情况。

本文将从数学的角度探讨兔子问题,并分析其数学模型与解法。

数学模型假设一对刚出生的兔子在一个月后成熟,并从第二个月开始每个月都可以繁殖一对新兔子。

根据这个规律,我们可以建立以下递推关系式: - 第一个月,兔子的数量为1对; - 第二个月,兔子的数量为1对; - 第三个月,兔子的数量为前两个月兔子数量之和; - 第四个月,兔子的数量为前两个月兔子数量之和再加上前一个月兔子的数量; - 第五个月,兔子的数量为前两个月兔子数量之和再加上前一个月兔子的数量; - 依此类推…以此得到兔子数量的递推关系:Fn = Fn-1 + Fn-2解法根据兔子问题中的递推关系,我们可以通过递归或迭代的方式求得兔子在特定时间段内的数量。

递归解法递归解法是一种简单直观的方法,基于递归的思想。

递归函数可以通过调用自身来求解问题。

对于兔子问题,我们可以定义一个函数来递归地计算兔子数量。

def fibonacci(n):if n ==0:return0elif n ==1:return1else:return fibonacci(n-1) + fibonacci(n-2)通过调用fibonacci(n)函数,可以得到第n个月兔子的数量。

迭代解法迭代解法通过循环的方式来依次计算兔子的数量,相较于递归解法,迭代解法更加高效。

我们可以使用一个循环来计算兔子的数量,并利用两个变量来记录前两个月兔子的数量。

def fibonacci(n):if n ==0:return0elif n ==1:return1else:a, b =0, 1for _ in range(2, n+1):a, b = b, a+breturn b通过调用fibonacci(n)函数,同样可以得到第n个月兔子的数量。

狐狸与兔子数学模型的论文

狐狸与兔子数学模型的论文

狐狸与野兔(捕食者与被捕食者)问题摘要在生态系统中,捕食与被捕食的关系无处不在,它们相互依存,相互制约,在自然选择的条件下,只要经过足够长的时间,物种的数量关系就会达到动态的平衡,而这种平衡与初始状态下各物种的数量无关。

本文研究的是狐狸与野兔两个物种的关系,题目中已经给出了两个物种的变化率之间的关系,直接解出即可看出狐狸与野兔两个物种的数量关系,但已知的微分方程组不能直接解出解析解,因此,我们用“组合的2/3阶龙格-库塔-芬尔格算法”求给定微分方程的数值解,在给出初值:狐狸300只,野兔800只的情况下,用MATLAB 软件进行计算,然后通过狐狸和野兔数量的图像确定狐狸和野兔的数量关系:狐狸的数量随着野兔数量的增加而增加,而野兔的数量又随着狐狸的增加而减少,经过自然界的反馈作用,狐狸的数量又随着野兔数量的减少而减少,进一步,野兔的数量又会随着狐狸的减少而增加,它们的关系就这样循环,最后直至平衡,达到稳定状态。

在平衡状态下,狐狸和野兔的数量保持不变,因而它们的变化率应该为0,所以直接令微分方程等于0,解得平衡状态下:狐狸200只,野兔900只。

在没有人类捕猎的条件下,野兔数量的变化率为xy x dtdx 02.04-=,可见狐狸对野兔的捕捉量与狐狸和野兔的数量乘积成正比,比例系数为0.02。

同理,如果考虑人类对野兔的捕猎,可假设“人类对野兔的捕捉量与人类和野兔的数量乘积成正比,比例系数为a ”,在这种情况下,达到平衡时野兔的数量没有变化,狐狸的数量有所减少。

根据以上思路,如果考虑人类对狐狸进行捕猎,可假设“人类对狐狸的捕捉量与人类和狐狸的数量乘积成正比,比例系数为b ”,在这种情况下,达到平衡时狐狸的数量没有变化,野兔的数量有所增加。

关键词:组合的2/3阶龙格-库塔-芬尔格算法 滞后 反馈作用 MATLAB 自然平衡一、问题重述在一个封闭的大草原里生长着狐狸和野兔。

在大自然的和谐的坏境中,野免并没有因为有狐狸的捕食而灭绝。

7.2.2 山猫与野兔生长关系系统动力学模型及仿真分析_系统工程:原理与实务_[共3页]

7.2.2 山猫与野兔生长关系系统动力学模型及仿真分析_系统工程:原理与实务_[共3页]

175 第7章 系统工程应用综合案例 7.2.2 山猫与野兔生长关系系统动力学模型及仿真分析
1.系统动力学流程图
假定RABBIT—野兔数(只),水平变量(只);RNBR—野兔纯出生率(只/年);INRAB—模拟开始时的野兔数(50000只);TRNBF—野兔纯出生率因子;RDEN—野兔密度;CC—自然容纳野兔的能力(只);RKL—山猫捕食野兔的速率(只/年);RTRA—野兔被人猎捕率(只/年);FRABTR—野兔被人猎捕系数(1/年);TRKPL—每头山猫一年内捕食的野兔数(只/头·年,由表函数给出);TLNBF—山猫纯出生率因子;LYNX—山猫数(头);INLYNX—模拟开始时的山猫数(1 150头);LNBR—山猫纯出生率(头/年);RDDIC —山猫生存底线;LTRAP—山猫饿死率(由表函数给出);LSUBR—山猫的生存状况因子;FLNXTR—山猫被人猎捕系数(头/年)。

则野兔与山猫系统动力学流程如图7-2所示。

图7-2 野兔与山猫系统动力学流程图
2.系统动力学模型
L RABBIT.K = RABBIT.J + (DT ) ×(RNBR.K- RTRAP- RKL )
N INRAB =50000
R RNBR.K = RABBIT.K ×TRNBF
R RDEN.K = RABBIT.K/CC
C CC = 1000
R RTRA. KL = RABBIT.K×FRABTR
R RKL.KL = LYNX.K ×TRKPL
L LYNX.K = LYNX .J + (DT )×(LNBR.KL-LTRAP-FLNXTR.KL )
N INLYNX=1150。

饿狼追兔问题数学建模

饿狼追兔问题数学建模

饿狼追兔问题数学建模数学建模饿狼追兔问题摘要本文研究饿狼追兔问题,是在给定狼兔相对位置,以及兔子巢穴位置的情况下求解的,狼的速度是兔子速度两倍,在不考虑其他任何因素的情况下研究狼能否追上兔子的问题。

首先,我们对问题进行了适当的分析,然后根据已知条件建立了狼的运动轨迹微分模型。

其次,根据建好的模型,运用MATLAB编程,然后仿真画出了饿狼和野兔的运动轨迹图。

再次,用解析方法将建立的模型求解,并给出该问题的结论,准确的回答题目。

最后,用数值方法求解,将所求与前面所求进行对比,也给出结论,回答题目。

并将两种方法做相应比较。

结论:野兔可以安全回巢关键词:算法高阶常微分方程§1.1问题的提出在自然界中,各种生物都有它的生活规律,它们钩心斗角,各项神通,在饿狼追野兔的工程中,饿狼的速度是野兔的二倍,但是野兔有自己的洞穴,野兔在跑到自己洞穴之前被狼捉住,野兔就将会成为饿狼的囊中之物;如果野兔在饿狼捉住自己之前跑回到自己的洞穴,那么野兔就保住小命,得以生还。

图1-1-1为饿狼追野兔的两条曲线,其中绿线表示野兔,图中的箭头表示的是野兔的奔跑方向,野兔从远点开始沿y轴正方向运动,其洞穴在坐标为(0,60)的位置;红线为饿狼的运动轨迹,,图中的剪头表示饿狼追逐野兔的方向,饿狼从坐标为(100,0)的方向追逐野兔,饿狼的速度是野兔速度的二倍。

建立数学模型需研究一下几个问题:(1)设野兔的速度我v0,饿狼的速度为v1,野兔的奔跑方向是沿y轴正方向奔跑,而饿狼的方向是一直指向野兔的方向,即饿狼的运动的轨迹某一时候的切线指向同一时刻的野兔的位置。

建立饿狼追野兔的运动轨迹微分模型。

(2)根据建立的饿狼运动轨迹得微分模型,作出饿狼与野兔的运动轨迹图形。

(3)用解析方法求解,即根据第二步作出的饿狼渔业突地运动轨迹图形,分析兔子能否安全回到巢穴,即野兔的运动曲线与饿狼的运动曲线的交点是在点(0,60)-野兔巢穴的上面还是下面。

数学建模论文野兔生长问题

数学建模论文野兔生长问题

野兔生长问题摘要本文根据已知的野兔连续十年的统计情况,探讨野兔的合理的存活率并推测当前的发展趋势,针对不同情况给出方法推算出野兔数量的走向的目的。

首先,充分利用给出的前两年来野兔的数量变化,分析近两年来的野兔群落的情况,建立一个线性方程组的数学模型,通过求解方程组得出不同年份野兔的数量的数学关系,并且求出了平均增长率为:1.718%;所以通过一些比例之间的关系得到这个野兔群落的T=10的数量(见表1)。

然后,建立一个种群增长的差分方程模型,求出的野兔生长规律。

求解当前野兔对应的Leslie矩阵的特征根,发现该特征根大于1,根据Leslie矩阵的稳定性理论知道:如果不进行避孕注射该野兔种群将无限增长(如果环境允许);据此,利用Leslie矩阵稳定的充要条件求出应该保持多大的繁殖率才能使种群保持稳定,求解的主要思路是:特征根取为1、把繁殖率当成未知数,将此时的各年龄段的存活率代入方程⑥即可。

最后,只需将野兔的存活率代入那个以繁殖率为未知数的方程(方程⑥),求出在哪些年内野兔的增长有异常现象,。

考虑到求解的数据比较多,采取计算机模拟的方法来确定移走野兔后所需要进行避孕的母兔头数为了检验计算机模拟的正确性,用理论去验证。

问题重述位于某国的国家公园中栖息着近10000头野兔。

管理者要求有一个健康自由的环境以便观察这个10000头野兔的数量变化情况。

管理者逐年统计了野兔的数量,发现在过去的10年中,野兔的生长变化并不稳定,呈现波浪式起伏,根据这些信息我们需要解决以下问题:1. 探讨年龄在1岁到10岁之间的野兔的合理的存活率的模型,推测这个野兔群落的当前的年龄结构。

2. 知道哪些环境和内部因素对野兔生长数量的影响,并测算出各个影响的程度如何。

3. 探求偶然突发事件对野兔生长数量的巨大影响和它的规律性。

4. 根据野兔的生长变化,对野兔的生长特点进行分析。

问题假设1、假设野兔的性别比近似认为1:1,并且采用措施维持这个性别比;2、假设母兔可以怀孕的年龄为1岁—6岁、最高年龄为10岁,10岁的死亡率为100%,并且6—10岁的野兔的只数呈线性递减;3、假设野兔在各年龄段中的分布率不变,即年龄结构不变,并采用各种措施维持这一结构;4、假设兔子的内部因素对其生存率的影响不大5、假设0岁野兔能够活到1岁的比例为75%;6、假设各个环境因素对野兔生长的影响是互不影响的。

模型建立与求解

模型建立与求解

模型建立与求解正如我们所知道的,模型的建立是能否求出答案的重要步骤,是不可缺少的一步,模型的建立与求解是非常关键的一步,我们根据模型的合理假设,在这基础上做出合理的模型建立,进一步求出模型,我们根据模型的合理假设做出了一下的模型建立:对于种群的解决方法,我们一般采用LOGISTIC方法,这种模型方法也是对生物种群求解的普遍方法,不仅科学而且求出得答案也较准确。

我们知道LOGISTIC模型的曲线是单调增长的曲线,而从图表中,我们可以看出事实并不是这样的,在后面几年野兔的增长,却出现了下滑的趋势,所以我们应该根据事实并结合LOGISTIC模型来求解,求得T=10时的野兔数量。

野兔的数量的增长变化并不是太符合LOGISTIC模型,所以我们不能在整个时间进行拟合,分开时间来进行拟合,所以我们应该选取每个单调区间,进行分析。

第一区间为T=0 时1,T=1 时2.31969,T=2时4.50853,T=3 时6.90568。

(从T=0到3,我们可以看出此区间为单调增区间)我们称为第一单调增区间。

第二区间为T=3时6.90568 ,T=4时6.00512,T=5 时5.56495 T=6 时5.32807(从T=3-6时,我们可以看出此区间为单调的减区间)我们称为第一单调减区间。

第二单调增区间T=6 时5.32807 ,T=7时7.56101,T=8时8.9392 T=9 9.5817(从T=6-9时的数据我们可以看出此区间为单调增区间)我们称为第二单调增区间。

于是我们将T=0-9分成了3个大的区间,对每个区间进行模拟拟合,于是我们可以对每个区间进行LOGISTIC分析,从而得到结论。

建立野兔生长的LOGISTIC模型。

我们先假设在一个小的单位时间间隔内新出生的兔子百分比为b,类似的兔子死亡率的百分比为c。

换句话,新的兔子数P(t+Δ t)是原有兔子数P(t)加上在Δ t 时间内新增兔子数减去死亡兔子数,即P(t+Δ t)=P(t)+bP(t)Δ t-cP(t)Δ t有上述假设可知,在一个时间段内兔子数的平均变化率与兔子的数量成正比例。

数学建模案例分析2生态系统--差分方程方法建模.

数学建模案例分析2生态系统--差分方程方法建模.

§2生态系统一、一阶常系数线性差分方程其通解是对应齐次方程的通解加上原方程的一个特解。

的算法是待定系数法。

(1)次多项式(2)指数函数二、应用举例设想在一个长满了青草的小荒岛上栖息繁衍着一群野兔。

开始时共有野兔只,我们来研究其数目随时间变化的规律。

假设第年野兔的数目用表示。

记第0年的野兔数为。

(1)先作如下的假设:下一年野兔的净增加数目和上一年的数目成正比,且比例系数是一个常数,记为。

这种假设是很合理的,因为在野兔的食物——青草非常充足的条件下,一年内新出生的野兔数和成年母兔数成正比,而成年母兔数又和野兔总数成正比,因而一年内新出生的野兔数和野兔总数成正比。

另一方面,一年内死亡的野兔数大体也和野兔总数成正比。

这样,第年野兔的净增加数(出生数减去死亡数)和上一年野兔的数目成正比,即可以列出方程:移项整理后得到方程(1)这里。

这是一阶常系数齐次线性差分方程。

可以计算出第年的野兔总数为。

这个描述野兔数目的模型是否合理呢?假设,,计算对应的值列表如下:0 1 2 3 4 8 10 15 20 50100 140 196 274 384 1 475 2 893 15 576 83 668 20(亿这是一个按指数增长的量,由表中数据我们发现,50年后野兔的总数为20亿!也许有人会认为太大,但是对于一年可以生育2~3次的兔子来说不应该算太大。

问题可能出在这个小岛上青草是否能够支持这么多的野兔生存下来?其实,这个模型最严重的缺陷就是没有反映野兔生存资源对野兔种群的约束。

于是我们要改进模型。

(2)进一步的模型设想小荒岛上的青草最多可以养活只野兔。

是自然资源所能承担的野兔的最大容量。

我们修改关于野兔数目的假设如下:下一年野兔的数目和上一年的数目成正比,比例数,即与上一年的野兔数目有关。

这样我们得到方程(2)我们先来看看假设的合理性。

方程(2)等价于(3)方程左端是前后两年野兔数目的比值。

当与之差是一个较大的数时,说明自然资源还有较大的能力支持野兔种群的扩大,下一年的野兔总数可以有一个较大的增长。

野兔生长问题

野兔生长问题

数学建模一周论文(论文题目)姓名1:学号:姓名2:学号:姓名3:学号:专业:班级:指导教师:年月日摘要:根据某地区野兔连续十年统计量的曲线分布和野兔增长的一般规律,先找出野兔增长中的异常点,然后排除异常点,建立野兔增长的理论模型,然后应用理论于实际,基于现实问题进行运用和对t=10的推测。

首先,利用三次样条插值做出其原始图像,在假设条件下,遵循自然规律分析图像,找出并去除t=4,t=5,t=6这三个异常点;然后,利用微分方程分析法,先对t 到tt∆+年兔子增量和增长率a的关系进行分析,列出其微分方程,考虑到自然因素对野兔增长的影响,在前模型的基础上增加竞争项2bx-,重新建立模型;对其进一步分析并用原始值与理论之进行比较,进一步发现其中的问题:曲线不能很好地反映断层后野兔的增长趋势;最后,为了更好地反映t=7以后的野兔的增长规律,提出分段表示其增长趋势的思路:把异常点所在的年份作为“断层”,在其两侧分别采用微分方程对其建模,在异常点采用了多次连续“断层”的拟合方法对其求解,即先用三次多项式拟合其断层,并进一步对其函数,特别是其两端进行修正,以保证整个函数的连续性。

从而画出分段函数的图像,得出该地区野兔的生长规律,并以此预测第十年野兔的数量。

最后,函数以分段形式表示如下:()()(())771555.09688.235624.09949.1)3402.09285.2(4439.00255.030971.02885.15059.10234586.40<<⎪⎪⎪⎩⎪⎪⎪⎨⎧≥+++-++≤≤+=--ttexxxtet ytt并由此计算出t=10年时野兔的数量为y= 10.6864万只。

关键字:微分方程分析法竞争项多次连续“断层”的拟合1问题的重述测T=10 时野兔的数量。

2问题的分析在自然界中野兔的增长受很多因素的影响,水、食物、或是自然灾害等都会对其产生一定的影响,这其中水和食物会对其产生恒久的制约作用,但不会影响其大体的增长趋势,它会使野兔增长到一定数量之后因为彼此的竞争而使其数量趋于一个稳定值;自然灾害则有可能对其产生致命的打击,导致其增长产生异常现象,而我们在研究其生长问题时应将其排除在外。

狐狸与野兔-数学建模

狐狸与野兔-数学建模

实验报告一.实验名称:狐狸与野兔二.实验内容:在一个封闭的大草原生长着狐狸和野兔,设t 时刻它们的数量分别为y(t)和x(t),已知满足下列微分方程组 :kx xy x dtdxxy x dt dxy xy dt dy--=-=-=02.0402.049.0001.0 (k>=0) (1).建立上述微分方程的轨迹线方程: F(x,y)=0 dx/dt=f(x,y)(2).在什么情况下狐狸和野兔数量出现平衡状态(3).建立另一个微分方程来分析人们对野兔进行捕猎会产生什么后果?对狐狸进行捕猎又会产生什么后果?三.实验目的:学习熟悉Mathmatica 的使用,理解人口模型与捕猎问题的建模与求解过程,了解在捕猎过程中两种生物的数量的变化以及其是怎么样达到平衡的.四.问题分析与建模方向: 用matlab 求解人们对野兔进行捕猎的问题。

当封闭(即不考虑人类因素)时:xy x dtdx y xy dt dy02.049.0001.0-=-=运用matlab 直接求解 当有人类干涉时:x k xy x dtdxy k y xy dtdy1202.049.0001.0--=--=)(人们对兔子进行捕猎,是人类捕猎狐狸的速度是人类捕猎野兔的速度022121==k k k k(只对狐狸进行捕猎的情况类此)在一小段时间内△y=△t(0.001xy-0.9y) △x=△t(4x-0.02xy) 则y=y+△y=y+△t(0.001xy-0.9y) x=x+△x=x+△t(4x-0.02xy)运用循环连续求解画出狐狸y,野兔x 与时间t 的曲线图五.算法与求解function sim_hulituzi_ex x0=920; y0=180; a=0.001; b=-0.9; c=4;e=20;f=0.5;delta_t=0.01;x=x0;y=y0;k=0;vec_t=delta_t:delta_t:100for cur_t=vec_t,k=k+1;y=y+(a*x*y+b*y-f*y)*delta_t;x=x+(c*x+d*x*y-e*x)*delta_t;vx(k)=x;vy(k)=y;if vx(end)<1 | vy(end)<1,disp (sprintf('结束时间:t=%10.2f,x=%6.0f,y=%6.0f',cur_t,x,y)) breakendendt=[0,delta_t:delta_t:cur_t]len1=length(t)len2=length([x0,vx])plot(t,[x0,vx],'r-*',t,[y0,vy],'k-o')xlabel('t(unit:day)')hold ontext(t(end)+delta_t*2,vx(end),'X') text(t(end)+delta_t*2,vy(end),'Y') hold offfigureplot(vx,vy,'-*')xlabel('Troop X')xlabel('Troop Y')六.结果以上情况为该草原在自然状况的图形关系,y为兔子,x为狐狸(狐狸初始为180,兔子为92)。

数学建模实验项目八狐狸与野兔问题

数学建模实验项目八狐狸与野兔问题

数学建模实验项目八狐狸与野兔问题数学建模实验项目八狐狸与野兔问题一、实验目的:1、认识微分方程的建模过程;2、认识微分方程的数值解法。

二、实验要求:1、熟练应用Matlab 的符号求解工具箱求解常微分方程;2、掌握机理分析建立微分方程的方法和步骤;3、提高Matlab 的编程应用技能。

三、实验内容及要求(狐狸与野兔问题)在一个封闭的大草原里生长着狐狸和野兔,设t 时刻它们的数量分别为y(t)和x(t),已知满足以下微分方程组 0.0010.940.02dy xy y dt dx x xy dt =-=- (1)建立上述微分方程的轨线方程;(2)在什么情况下狐狸和野兔数量出现平衡状态?(3)建立另一个微分方程来分析人们对野兔进行捕猎会产生什么后果?对狐狸进行捕猎又会产生什么后果?四、实验步骤及过程1.建立一个名为“0*级计算第08次作业*******”(********表示自己的学号)的文件夹。

2. 打开Matlab 软件,练习实验指定的内容。

3. 将所得结果保存到文件夹中,并上存到天空教室。

莆田学院期末考试试卷2011 ——2012 学年第 2学期课程名称:数学建模适用年级/专业: 09数学试卷类别开卷(√ )闭卷()学历层次本科考试用时《考生注意:答案要全部抄到答题纸上,做在试卷上不给分》...........................答题正文要求:(1)写清建模分析过程、建立的模型、模型求解及其结果、并对结果给予简单的分析;(2)要求每人独立完成一份;(3)试卷打印格式参照教务处有关规定执行;(4)在下列二题中选做一题。

一、借贷问题某地银行对个人住房25年贷款期限的贷款条件通常为:年利率为0.12,而且是月均等额还款。

小叶夫妇要买房还缺6万元,正在考虑到银行去错6万元。

正在这时,小叶夫妇看到一个借贷公司的针对银行贷款条件的广告,说他们可以在年利率0.12的前提下,帮你提前三年还清借款,但是,(1)每半个月还一次款(2)由于每半个月就要开一张收据,文书工作多了,要求顾客预付三个月的还款。

数学建模--野兔

数学建模--野兔

辽宁工程技术大学数学建模课程成绩评定表学期2014-2015学年1学期姓名高显利李浩申李金胜专业工程管理班级14-工中职一班课程名称数学建模论文题目航空机票超订票问题评定标准评定指标分值得分知识创新性20理论正确性20内容难易性15结合实际性10知识掌握程度15书写规范性10工作量10总成绩100评语:任课教师林清水时间2015年11月15日备注摘要当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析在规律等工作的基础上,用数学的符号和语言,把它表述为数学式子,也就是数学模型,然后用通过计算得到的模型结果来解释实际问题,并接受实际的检验。

这个建立数学模型的全过程就称为数学建模。

关键词种群繁殖野兔数学建模稳定收获异常现象 Logistic模型生态学 MATLAB程序根据题目:在某地区野兔数量在连续十年统计数量(单位十万)如下:分析该数据,得出野兔的生长规律。

并指出在哪些年野兔的增长有异常现象。

对于这种种群生态学问题,我们可以用Logistic(逻辑斯蒂方程)模型来模拟。

Logistic模型是种群生态学的核心理论之一。

它可以用来描述种群生长规律,利用它可以表征种群的数量动态。

之所以选择该模型来研究野兔生长问题,是因为,该模型考虑并概括了,种群发展所遇到的各种外界条件,也就是说,它模拟了真实情况。

通过建立Logistic模型,我们小组得出T=10时,野兔数量为9.84194(十万)只。

该结果比较符合客观规律。

利用Logistic模型可以表征种群的数量动态;如鱼类种群的增长,收获与时间关系的确定。

实习目的学会用logistic模型来表达,用logistic模型来表达增长性问题。

问题重述1、兔子的自然死亡。

2、兔子天敌的种群变化。

3、各种疾病的蔓延。

4、人类的捕杀与破坏问题剖析野兔生长问题。

野兔在自然条件不变下,野兔的种群应该保持不变。

然而通过读数据的观察发现。

狼兔问题的数学建模

狼兔问题的数学建模

狼追兔子的问题1.1 摘要:数学建模可以使抽象的问题用数学符号和语言清楚的表达出来。

针对此题是高阶常微分方程问题。

此例问题虽然问法多样,但解法基本一致,这道题狼和兔子在运动过程中属微分方程模型与一阶常微分方程。

狼追兔子问题来源很久,早在几百年前就有人在研究他,由于数学的发展水平不是很高和软件的局限,所以没有研究透彻。

如今随着数学学科的发展和应用软件的飞速发展,对于这个的研究已进入新阶段。

由于狼要盯着兔子追,所以狼行走的是一条曲线,且在同一时刻,曲线上狼的位置与兔子的位置的连线为曲线上该点处的切线。

建立二者的运动微分方程,计算它们的运动轨迹,用软件MATLAB求解微分方程模型。

计算出兔子是否安全回到自己的巢穴。

1.1.1 问题的来源及意义:(一) 问题重述与分析: 现有一只兔子,一只狼,兔子位于狼的正西100米处。

假设兔子与狼同时发现对方并一起起跑,兔子往正北60米处的巢穴跑,而狼在追兔子,已知兔子、狼是匀速跑且狼的速度是兔子的两倍。

问题是兔子能否安全回到巢穴?(二)题起源于导弹跟踪问题,与狼追兔子问题在解决方法上是大致一样的。

导弹跟踪的研究对于再军事上有很重要的意义。

将导弹跟踪问题能简化为狼追兔子问题,都是高阶常微分方程模型,要涉及常微分方程,学会在实际问题中运用数学方法建模和求解。

1.1.2问题的分析:饿狼追兔问题一阶微分方程初值问题数值解。

兔子它的洞在距离它现在吃草处正北方的60米处,在兔子的正东面100米处有一头饿狼正潜伏着观察兔子多时了兔子发现了狼的存在.兔子拼命的沿直线向洞逃跑,兔子知道不赶快进洞命休已,狼和兔子同时启动并且死死盯着兔子扑去.兔子跑的虽然快,但狼的速度是兔子速度的2倍.假如兔子和狼都匀速运动. 为了研究狼是否能够追上兔子,可以先考虑求出狼追兔子形成的追击曲线,然后根据曲线来确定狼是否能够追上兔子。

1.1.3 模型假设:狼在追击过程中始终朝向兔子;狼追击兔子的轨迹看作是一条光滑的曲线,即将动点P ),(y x 的轨迹看作一条曲线,曲线方程表示为)(x y y =。

兔子的数量 建模

兔子的数量 建模

数学建模一周论文论文题目:野兔生长问题姓名1:李坤鹏学号:1020560132姓名2:方扬学号:1020560113姓名3:谭小丁学号:1020560114专业:材料化学班级:10205601指导教师:樊健秋2012年06年08 日摘要本题研究的是某地区的野兔生长问题,题目已给出连续十年的统计数据,分析数据可得野兔的生长规律。

题目要求指出哪些年野兔的增长有异常现象并预测T=10时野兔的数量。

假设野兔生长的条件是在无外界干扰的完美条件下(即不考虑外界因素对野兔繁殖的影响),该种群的成长曲线应该为对数型增长。

但依题意可知,野兔增长先是成对数增长后来趋于平缓,变化幅度不断降低,这说明野兔生长并不是处于理想的情况下的,考虑到自然的各种原因,诸如,环境条件因为兔群激增而变得恶劣,天气的变化,天敌的增多等等。

对于这种种群生态学问题,我们可以用Logistic(逻辑斯蒂方程)模型来模拟。

Logistic模型是种群生态学的核心理论之一,它可以很好的表示生物种群的生长规律,动态的表示生物种群的增减情况,例如兔子。

由于野兔生长问题相对简单,其涉及的内容和有求也相对较少,并且该问题概过了种群在生态中生长问题。

根据逻辑斯蒂方程,以及建立一只双曲线右支可以预测出在T=10时,野兔数量为10.8156十万只。

关键字:logistic生物模型预测生长规律预测数量一、问题的重述在某地区野兔的数量在连续十年的统计数量(单位十万)如下分析该数据,得出野兔的生长规律。

并指出在哪些年内野兔的增长有异常现象,预测T=10 时野兔的数量。

首先,野兔是生长在自然环境中的。

自然很复杂,存在着许多影响种群发展的因素。

我们知道,假如给野兔一个理想的环境,野兔数量是呈对数增长的。

现实情况中,种群一般是呈S型增长的,从题中表格看出,野兔的数量并不是单一地增长,T=1,2.31969;T=3,6.90568;T=4,6.00512;T=5,5.56495,呈类J 型增长,说明兔子数量不多受内外因素的因数影响不明显。

数学建模课件(兔子和山猫问题)

数学建模课件(兔子和山猫问题)
4/15/2012 5
当兔子数目较多时,山猫捕食就相对比较容易一 些,因此山猫便增长得较快一些,而当兔子数目较少 时,山猫捕食就较费劲,山猫增长的就较慢。为此, 我们设山猫受兔子数目下的影响因素率为bts,,而兔子 受山猫数目下的影响因素率为bst,(∵山猫与兔子之 间为捕食关系,∴它们之间的相互影响率互为相反数, 该影响率与山猫对兔子的捕食量有关) 我们设兔子被山猫捕食情况下的数目为Mt(t),而山 猫在捕食兔子情况下的数目为MS(t),综合,我们可得出 它们各自受对方影响下的个体增长率为: dMs =bts×Nt×Ns dt
兔 山 子 猫 数 数 目 目
t
t
t
t
在总体上模型下的状况
粉 红 色 为 兔 子 数 目 目 数 猫 山 为 色 绿 浅

4/15/2012
的模型
10
问题的进一步分析
该模型是建立在理想的情况下的,因此 有一定的局限性,主要表现在将生育率、 死亡率等平均到每一个个体上,没有考虑 到动物不同性别的数量差异,也没有考虑 到生育率的时滞性和不同年龄时生育率的 变化(群体中不同年龄的生物数一般是不 同的)。此外,自然增长率r和生存极限数 K与很多因素都有关,难以确定,这也给 该模型的应用带来了一定的困难。
数学建模课件
采矿03---1班 杨坤 学号:0301010114
4/15/2012
1
一.问题的提出
在加拿大的草原上地带 生长着许多兔子,同时还有 许多大山猫,大山帽依靠吃 兔子生活,不考虑其它动物 的干扰,建立数学模型描述 大山猫和兔子的相互作用, 并分析它们的变化。
4/15/2012 2
二.问题的分析与符号的说明
通过以上问题,我们可以得 知兔子和大山猫之间的关系为捕食 关系,因此双方的数目就彼此影响 着,因此,我们可以得出,兔子的 总数和山猫的数目都受两部分的影 响,一部分是自身之间资源的竞争, 另一部分是对方的数目的影响。因 此我们假设:某时刻时,兔子的数 目为Nt(t), 山猫的数目为Ns (t)。

数学建模之狼追击兔子的问题

数学建模之狼追击兔子的问题

案例:狼追击兔子的问题1.1 狼追击兔子问题的建模1.1.1 问题重述与分析狼追兔子问题是欧洲文艺复兴时代的著名人物达.芬奇提出的一个数学问题。

当一个兔子正在它的洞穴南面60码处觅食时,一只恶狼出现在兔子正东的100码处。

当两只动物同时发现对方以后,兔子奔向自己的洞穴,狼以快于兔子一倍的速度紧追兔子不放。

狼在追赶过程中所形成的轨迹就是追击曲线。

狼是否会在兔子跑回洞穴之前追赶上兔子?为了研究狼是否能够追上兔子,可以先考虑求出狼追兔子形成的追击曲线,然后根据曲线来确定狼是否能够追上兔子。

1.1.2 变量说明1v :兔子的速度(单位:码/秒)r :狼与兔子速度的倍数;2v :狼的速度(单位:码/秒),显然有21v rv = t :狼追击兔子的时刻(t=0时,表示狼开始追兔子的时刻)1s :在时刻t ,兔子跑过的路程(单位:码),11()s s t = 2s :在时刻t ,狼跑过的路程(单位:码),22()s s t =Q11(,)x y :表示在时刻t 时,兔子的坐标 P(,)x y :表示在时刻t 时,狼子的坐标1.1.3 模型假设1、1、狼在追击过程中始终朝向兔子;2、2、 狼追击兔子的轨迹看作是一条光滑的曲线,即将动点P (,)x y 的轨迹看作一条曲线,曲线方程表示为()y y x =。

1.1.4 模型建立(一)建模准备以t =0时,兔子的位置作为直角坐标原点,兔子朝向狼的方向为x 轴正向; 则显然有兔子位置的横坐标10x =。

对狼来说,当x =100,y =0,即1000x y == 在t =0刚开始追击时,狼的奔跑方向朝向兔子,此时即x 轴负方向, 则有1000x y ='=(二)建立模型1、追击方向的讨论由于狼始终朝向兔子,则在狼所在位置P (,)x y 点过狼的轨迹处的切线方向在y 轴上的截据为1y。

设切线上的动点坐标为(X ,Y ),则切线方程为()Y y y X x '-=- (1)在(1)中,令X =0,则截据Y y y x '=-。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学建模--野兔数学建模2辽宁工程技术大学数学建模课程成绩评定表学期2014-2015学年1学期姓名高显利李浩申李金胜专业工程管理班级14-工中职一班课程名称数学建模论文题目航空机票超订票问题评定标准评定指标分值得分知识创新性20理论正确性20内容难易性15结合实际性10知识掌握程度15书写规范性10工作量10总成绩100评语:任课教师林清水时间2015年11月15日备注摘要当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言,把它表述为数学式子,也就是数学模型,然后用通过计算得到的模型结果来解释实际问题,并接受实际的检验。

这个建立数学模型的全过程就称为数学建模。

关键词种群繁殖野兔数学建模稳定收获异常现象 Logistic模型生态学 MATLAB程序根据题目:在某地区野兔数量在连续十年统计数量(单位十万)如下:分析该数据,得出野兔的生长规律。

并指出在哪些年内野兔的增长有异常现象。

对于这种种群生态学问题,我们可以用Logistic(逻辑斯蒂方程)模型来模拟。

Logistic 模型是种群生态学的核心理论之一。

它可以用来描述种群生长规律,利用它可以表征种群的数量动态。

之所以选择该模型来研究野兔生长问题,是因为,该模型考虑并概括了,种群发展所遇到的各种外界条件,也就是说,它模拟了真实情况。

通过建立Logistic模型,我们小组得出T=10时,野兔数量为9.84194(十万)只。

该结果比较符合客观规律。

利用Logistic模型可以表征种群的数量动态;如鱼类种群的增长,收获与时间关系的确定。

实习目的学会用logistic模型来表达,用logistic模型来表达增长性问题。

问题重述1、兔子的自然死亡。

2、兔子天敌的种群变化。

3、各种疾病的蔓延。

4、人类的捕杀与破坏问题剖析野兔生长问题。

野兔在自然条件不变下,野兔的种群应该保持不变。

然而通过读数据的观察发现。

野兔的数量并不是单一地增长,T=3,6.90568;T=4,6.00512;T=5,5.56495;T=6,5.32807。

第四年到第七年,这三年野兔的数量不增反降,说明其间有影响野兔生长的因素存在。

我们探讨了其中的因素:1、兔子的自然死亡。

2、兔子天敌的种群变化。

3、各种疾病的蔓延。

4、人类的捕杀与破坏。

考虑到上述因素,野兔的生长就不能完全用一个Logistic模型来模拟模型假设上述野兔生长问题,我们假设:1、假设兔子不受到人类活动影响2、假设兔子没有收到传染性疾病影响3、假设兔子天敌不变那它是可以用logistic模型来模拟的分析与建立模型对于生物模型,首先考虑的是logistic模型,考虑到logistic模型的增长曲线是单调的,而题目所给的数据中有一段是下降的,这是反常的情况,而正常情况应当是单调上升的。

考虑到可能在这段时间内有使野兔减少的因素。

不能在整个时间段进行拟合,我们应当在每个单调区间上进行拟合。

模型求解对于logistic 连续模型,设微分方程为)1(d d bx ax tx-=,0)0(x x =, )0,/1,0(00>≠x b x (1)其中参数a ,b 需要通过拟合得到。

(1) 的解为)exp(11)(0at b x b t x -⎪⎪⎭⎫⎝⎛-+=. (2)设已知连续三年的数据)(),(),(321t x t x t x ,其中01223>=-=-T t t t t ,则由(2)得方程组⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=--⎪⎪⎭⎫⎝⎛-+=--⎪⎪⎭⎫ ⎝⎛-+=-⎪⎪⎭⎫ ⎝⎛-+3102101101)2exp(11)exp(11)exp(1x aT at b x b x aT at b x b x at b x b (3)这三个方程中有三个未知量0,,x b a 可以解出a,b 如下: 将(3)中第一式代入第二、三式消去x 0, 得⎪⎪⎩⎪⎪⎨⎧-=-⎪⎪⎭⎫ ⎝⎛--=-⎪⎪⎭⎫ ⎝⎛-b x aT b x b x aT b x 31211)2exp(11)exp(1 (4)消去a 后得b 满足的方程2231111⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-b xb x b x (5)解得)2()(31213223122x x x x x x x x x x b -+-=. (6)代入(4) 的第一式得a 满足的方程Tx x x x x x a ⎪⎪⎭⎫ ⎝⎛--=)()(ln 231123 (3)结论1、在T=0 到T=3 之间增长规律为logistic 模型:)1.01(d d x x tx-=. 2、在T=3 到T=6 之间增长规律有异常情况, 但仍为logistic 模型:)2.01(5.0d d x x tx-=.3、在T=6 到T=9 之间增长规律恢复为logistic 模型:)1.01(d d x x tx-=.4、在T=10 时, 在正常情况下, 野兔数量为 9.84194(或9.84193)(十万)只.模型检验本模型在模拟野兔的生长方面通过不同的时期段进行拟合,较为充分的体现在不同环境下的生长的情况,能够根据不同的环和情况,选择不同的阶段的模型来对野兔的生长情况进行模拟!这样对野兔的繁衍有着更好的监控提供依据和科学的预测!但是本模型也不是完全能够模拟,智能提供较为全面的拟合,一旦环境改变为模型没有包括的情况则此时的模型就不可以对野兔的生长进行有效的拟合,简而言之就是不可以用此模型来预测野兔的繁衍!在这种情况情况下只能抽样等的实验方法才可确定。

模型的优缺点优点:1.针对`“野兔生长”问题,成功地建立解决这类难题的数学模型,并可立即运用到实践中去;2.仅用2个特征参数即圆满解决了较为复杂的分类问题。

而且模型假设条件少,因而能准确地反映实际情况,可靠性高;3.采用解析法分析,逐渐深入,提高了准确性;4.突出特征,假设合理,避免了在一些细节问题上的纠缠;5.采用局部地区的野兔为样本,便于操作,省时省力,可操作性高;6.采用四个假设,不多不少,恰好能满足题目要求;7.分区间拟合,准确度高;8.利用Logistic模型可以表征种群的数量动态。

9. 能够根据不同的环和情况,选择不同的阶段的模型来对野兔的生长情况进行模拟10.对野兔的繁衍有着更好的监控提供依据和科学的预测缺点:1.变量不是很足,影响准确度;2.数学模式单一,不能很好的对所研究的题目进行表达;3.野兔样本数量不够,所研究的范围不够宽广;4.所取样本有局限性,并不能很精确的代表整个野兔群的生长状况;5. 本模型也不是完全能够模拟,智能提供较为全面的拟合;6.环境改变为模型没有包括的情况则此时的模型就不可以对野兔的生长进行有效的拟合;7.不能在整个时间段进行拟合,要在每个单调区间上进行拟合;模型的改进方向及推广1、模型的推广:(1)本文解决问题的模型都是比较简单的,但是这并不影响得到的结果的准确性,因为这些简单的模型都有很强的理论依据;(2)在求解第二问的时候,充分利用Leslie矩阵稳定性理论来求解应该让多少母野兔进行避孕注射,这些理论在差分方程中都是经典的理论,经得起许多事实的考验;(3)第三问的求解中运用了计算机模拟方法来模拟移出野兔属于哪个年龄段,这样不仅求解方便、简洁(只需要把算法程序写好就可以得到结果),得到的结果与实际也更接近;(4)第三问用计算机模拟得到数据后,又用理论去验证,这样使得结果更具有说服力;2、模型需要改进的地方:(1)因为假设了野兔性别是严格地1:1关系,而实际中不一定那么地严格是这样,所以如果能够把各个年龄段野兔的性别比例分别计算,那么模型的结果可能更接近实际;(2)在进行计算机模拟时,最开始的随机数的产生个数只有几十个,这几十个随机数不能很好的反映各个年龄段的野兔所占的比重,这样势必会对结果造成一定的误差. (3)环境改变为模型没有包括的情况则此时的模型就不可以对野兔的生长进行有效的拟合。

(4)本模型也不是完全能够模拟,智能提供较为全面的拟合。

分析不确定因素的影响(1)最初一两年避孕母野兔发情期增多,与未避孕母野兔产生竞争求偶的公野兔,使部分能怀孕的母野兔不能怀孕。

而避孕的母野兔每月发情一次,会扰乱了正常求偶的母野兔,这样会造成未避孕母野兔的繁殖率出现下降,避孕的母野兔数量应该减少。

(2)随着时间的增长,如果持续使用避孕药,会使野兔的年龄结构发生变化,野兔的结构呈老龄化,所以随着时间的增长,要保证野兔群的稳定,避孕药的使用量必定会逐年减少直至禁用。

对数学建模的理解数学模型(Mathematical Model)是一种模拟,是用数学符号、数学式子、程序、图形等对实际课题本质属性的抽象而又简洁的刻划,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略。

数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识。

这种应用知识从实际课题中抽象、提炼出数学模型的过程就称为数学建模(Mathematical Modeling)。

不论是用数学方法在科技和生产领域解决哪类实际问题,还是与其它学科相结合形成交叉学科,首要的和关键的一步是建立研究对象的数学模型,并加以计算求解。

数学建模和计算机技术在知识经济时代的作用可谓是如虎添翼。

数学建模应用数学是研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和各种各样的应用问题紧密相关的。

数学的特点不仅在于概念的抽象性、逻辑的严密性,结论的明确性和体系的完整性,而且在于它应用的广泛性,自从20世纪以来,随着科学技术的迅速发展和计算机的日益普及,人们对各种问题的要求越来越精确,使得数学的应用越来越广泛和深入,特别是在21世纪这个知识经济时代,数学科学的地位会发生巨大的变化,它正在从国家经济和科技的后备走到了前沿。

经济发展的全球化、计算机的迅猛发展,数理论与方法的不断扩充使得数学已经成为当代高科技的一个重要组成部分和思想库,数学已经成为一种能够普遍实施的技术。

培养学生应用数学的意识和能力已经成为数学教学的一个重要方面。

编辑本段意义数学建模数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并"解决"实际问题的一种强有力的数学手段。

数学建模就是用数学语言描述实际现象的过程。

这里的实际现象既包涵具体的自然现象比如自由落体现象,也包含抽象的现象比如顾客对某种商品所取的价值倾向。

这里的描述不但包括外在形态,内在机制的描述,也包括预测,实验和解释实际现象等内容。

我们也可以这样直观地理解这个概念:数学建模是一个让纯粹数学家(指只懂数学不懂数学在实际中的应用的数学家)变成物理学家,生物学家,经济学家甚至心理学家等等的过程。

相关文档
最新文档