电动力学试卷及问题详解1A
电动力学习题解答1
电动力学习题解答若干运算公式的证明ϕψψϕϕψψϕϕψψϕϕψ∇+∇=∇+∇=∇+∇=∇c c c c )()()(f f f f f f f ⋅∇+⋅∇=⋅∇+⋅∇=⋅∇+⋅∇=⋅∇ϕϕϕϕϕϕϕ)()()()()(c c c c f f f f f f f ⨯∇+⨯∇=⨯∇+⨯∇=⨯∇+⨯∇=⨯∇ϕϕϕϕϕϕϕ)()()()()(c c c c )()()(g f g f g f ⨯⋅∇+⨯⋅∇=⨯⋅∇c c )()(g f f g ⨯∇⋅-⨯∇⋅=c c)()(g f g f ⨯∇⋅-⋅⨯∇=)()()(g f g f g f ⨯⨯∇+⨯⨯∇=⨯⨯∇c cg f f g g f f g )()()()(∇⋅-⋅∇+⋅∇-∇⋅=c c c cg f f g g f f g )()()()(∇⋅-⋅∇+⋅∇-∇⋅=)()()(c c g f g f g f ⋅∇+⋅∇=⋅∇)()(c c g f f g ⋅∇+⋅∇=(利用公式b a c b a c c b a )()()(⋅+⨯⨯=⋅得)f g f g g f g f )()()()(∇⋅+⨯∇⨯+∇⋅+⨯∇⨯=c c c cf g f g g f g f )()()()(∇⋅+⨯∇⨯+∇⋅+⨯∇⨯=第一章 电磁现象的普遍规律1. 根据算符∇的微分性与向量性,推导下列公式:B A B A A B A B B A )()()()()(∇⋅+⨯∇⨯+∇⋅+⨯∇⨯=⋅∇ A A A A )()(221∇⋅-∇=⨯∇⨯A解:(1))()()(c c A B B A B A ⋅∇+⋅∇=⋅∇B A B A A B A B )()()()(∇⋅+⨯∇⨯+∇⋅+⨯∇⨯=c c c cB A B A A B A B )()()()(∇⋅+⨯∇⨯+∇⋅+⨯∇⨯=(2)在(1)中令B A =得:A A A A A A )(2)(2)(∇⋅+⨯∇⨯=⋅∇,所以 A A A A A A )()()(21∇⋅-⋅∇=⨯∇⨯即 A A A A )()(221∇⋅-∇=⨯∇⨯A2. 设u 是空间坐标z y x ,,的函数,证明:u uf u f ∇=∇d d )( , uu u d d )(A A ⋅∇=⋅∇, uu u d d )(A A ⨯∇=⨯∇ 证明: (1)z y x z u f y u f x u f u f e e e ∂∂+∂∂+∂∂=∇)()()()(z y x zu u f yu u f x u u f e e e ∂∂+∂∂+∂∂=d d d d d du uf zu y u xuu f z y x ∇=∂∂+∂∂+∂∂=d d )(d d e e e(2)zu A yu A xu A u z y x ∂∂+∂∂+∂∂=⋅∇)()()()(A zu u A y u u A x u u A z y x ∂∂+∂∂+∂∂=d d d d d d uu zu yu x u uA uA uA z y x z z y y x x d d )()d d d d d d (A e e e e e e ⋅∇=∂∂+∂∂+∂∂⋅++=(3)uA uA uA z u y u x u uu z y x zyxd /d d /d d /d ///d d ∂∂∂∂∂∂=⨯∇e e e A zx y y z x x y z y u u A x u u A x u u A z u u A z u u A y u u A e e e )d d d d ()d d d d ()d d d d (∂∂-∂∂+∂∂-∂∂+∂∂-∂∂=z x y y z x x y z yu A xu A xu A zu A zu A yu A e e e ])()([])()([])()([∂∂-∂∂+∂∂-∂∂+∂∂-∂∂=)(u A ⨯∇=3. 设222)'()'()'(z z y y x x r -+-+-=为源点'x 到场点x 的距离,r 的方向规定为从源点指向场点。
《电动力学》郭硕鸿_第三版_答案.
1. 根据算符∇的微分性与矢量性推导下列公式B A B A A B A B B A rr r r r r r r r r )()()()()(∇⋅+×∇×+∇⋅+×∇×=⋅∇ AA A A A r r r r r )(21)(2∇⋅−∇=×∇×解1BA B A A B A B B A vv v v v v v v v v )()()()()(∇⋅+×∇×+∇⋅+×∇×=⋅∇首先算符∇是一个微分算符其具有对其后所有表达式起微分的作用对于本题∇将作用于BA vv 和又∇是一个矢量算符具有矢量的所有性质因此利用公式b a c b c a b a c vv v v v v v v v )()()(⋅−⋅⋅=××可得上式其中右边前两项是∇作用于Av 后两项是∇作用于Bv2根据第一个公式令AvB v可得证2. 设u 是空间坐标xy z 的函数证明.)()()(duA d u u A du Ad u u A u dudf u f rr rr ×∇=×∇⋅∇=⋅∇∇=∇证明1ududfe z u du df e y u du df e du df e z u f e y u f e x u f u f z y x x u z y x ∇=∂∂⋅+∂∂⋅+⋅=∂∂+∂∂+∂∂=∇∂∂r r r r r r )()()()(2du A d u zu dz u A d y u du u A d x u du u A d z u z A y u A x u A u A z y x z y x rr r r r r r r ⋅∇=∂∂⋅+∂∂⋅+∂∂⋅=∂∂+∂∂+∂∂=⋅∇)()()()()()()(3=∂∂−∂∂+∂∂−∂∂+∂∂−∂∂=∂∂∂∂∂∂=×∇z x yy z x x y z z y u x z y xe y A x A e x A z A e z A y A u A u A A zy x e e e u A r r r r rr r r r r r r r r rr )()()()()()()(duA d u e y u du A d x udu A d e x u du A d z u du A d e z u du A d y u du A d z x y y z x x y z r r r r r r r r r r ×∇=∂∂−∂∂+∂∂−∂∂+∂∂−∂∂=)()()(3. 设2'2'2')()()(z z y y x x r −+−+−=为源点'x 到场点x 的距离r 的方向规定为从源点指向场点1 证明下列结果并体会对源变数求微商(''''ze y e x e z y x∂∂+∂∂+∂∂=∇r r r 与对场变数求微商)(ze y e x e z y x∂∂+∂∂+∂∂=∇r r r 的关系 )0.(0,0,11,3'333''≠=−∇=⋅∇=×∇−=−∇=∇=−∇=∇r rr r r r r r r r r r r r r r r r r r (最后一式在人r 0点不成立见第二章第五节)2求均为常矢量及其中及000,)],sin([)]sin([),(,)(,,E k a r k E r k E r a r a r r rr r r r r r r r r r r r r r ⋅×∇⋅⋅∇⋅∇∇⋅×∇⋅∇证明3)()()('''=∂−∂+∂−∂+∂−∂=⋅∇z z z y y y x x x r r 0'''=−−−∂∂∂∂∂∂=×∇z z y y x x z y x e e e r z y xr r r r ])'()'()')][(()[()(z y x z y x z z y y x x e z z e y y e x x e ze y e x e a e a e a r a v r v v v v v v v r v −+−+−∂∂+∂∂+∂∂⋅++=∇⋅ ])'()'()')[((z y x z yxe z z e y y e x x za y a x a v r v −+−+−∂∂+∂∂+∂∂= ae a e a e a z z y y x x vvvv=++=ar a r r a r a r a vv v r v v v v v v ⋅∇⋅+×∇×+∇⋅+×∇×=⋅∇)()()()()( a a r a r r a v r v v v v v ⋅⋅+×∇×+∇⋅=)()()( ar a r a vvv v v ⋅∇⋅+×∇×+=)()())(sin()](sin([)]sin([000E r k E r k r k E rr r r r r r r r ⋅∇⋅+⋅⋅∇=⋅⋅∇0])sin()sin()sin([E e r k z e r k y e r k x z y x r r r r r r r r r ⋅∂∂+⋅∂∂+⋅∂∂= ))(cos())(cos(0E k r k E e k e k e k r k z z y y x x r r r r rr r r r r ⋅⋅=++⋅=000)sin()]sin([)]sin([E r k E r k r k E rr r r r r r r r ×∇⋅+×⋅∇=⋅×∇4. 应用高斯定理证明∫∫×=×∇SVfS d f dV r r r 应用斯托克斯Stokes 定理证明∫∫=∇×LSl d S d φφr r证明1)由高斯定理∫∫⋅=⋅∇SVgS d g dV r r r即∫∫++=∂∂+∂∂+∂∂S zz y y x x V zy x dS g dS g dS g dV z g y g x g )( 而dVk f yf x j f x f z i f z f y dV f x y z x y z V ])()()[(r r r r ∂∂−∂∂+∂∂−∂∂+∂∂−∂∂=×∇∫∫ ∫−∂∂+−∂∂+−∂∂=dVi f j f zk f i f y j f k f x y x x z z y )]()()([r r r r r r 又])()()[(k S d f dS f j dS f dS f i dS f dS f f S d y Sx x y x z z x z y y z Sr rr r r ∫∫−+−+−=× ∫−+−+−=zy x y x z x z y dS i f j f dS k f i f dS j f k f )()()(rr r r r r 若令if j f H k f i f H j f k f H y x Z x z y z y x rr r r r r −=−=−=,, 则上式就是∫∫⋅=⋅∇SVH S d dV H r r r,高斯定理则证毕2)由斯托克斯公式有∫∫⋅×∇=⋅SlSd f l d f r r r r∫∫++=⋅lz z y y x x ldl f dl f dl f l d f )(rr ∫∫∂∂−∂∂+∂∂−∂∂+∂∂−∂∂=⋅×∇S zx y y z x x y z S dS f y f x dS f x f z dS f z f y S d f )()()(r r 而∫∫++=lz k y j x i ldl dl dl l d )(φφφφr∫∫∂∂−∂∂+∂∂−∂∂+∂∂−∂∂=∇×S y x x z z y S k dS x dS y j dS z dS x i dS y dS z S d r r r r )()()(φφφφφφφ ∫∂∂−∂∂+∂∂−∂∂+∂∂−∂∂=zy x dS i yj x dS k x i z dS j z k y )()()(rr r r r r φφφφφφ若令k z j y i x f f f φφφ===,,则证毕5. 已知一个电荷系统的偶极矩定义为,),()('''∫=VdV x t x t P r r r ρ利用电荷守恒定律0=∂∂+⋅∇tJ ρr 证明P r 的变化率为∫=V dV t x J dtPd ''),(r r r证明∫∫∇−=∂∂=∂∂V V dV x j dV x t tP '''''''r r r r r ρ ∫∫∫⋅∇−=⋅∇−⋅∇−=∇−=∂∂V x V x dVj x j dV j x j x dV x j tP '''''''''''''''')((])()([)(r r r r r∫∫⋅−=Sx Sd j x dV j r r '若)0(,0)(,==⋅∞→∫S j S d j x S rr r 则 同理∫∫=∂∂=∂∂'')(,)(dVj t dV j t z z y y ρρr r 即∫=V dV t x j dtPd ''),(r r r6. 若m r是常矢量证明除R 0点以外矢量3R R m A r r r ×=的旋度等于标量3RR m r r ⋅=ϕ的梯度的负值即ϕ−∇=×∇A r其中R 为坐标原点到场点的距离方向由原点指向场点证明mr m r r m r m R m R R m A vv v v v v v v ])1[()]1([1)(1)()]1([)(3∇⋅∇−∇⋅∇−∇∇⋅+∇⋅∇=∇××−∇=××∇=×∇)0(,1)(≠∇∇⋅=r rm vr m m r r m r m R R m 1)()()1()]1([)]1([)(3∇∇⋅−×∇×∇−∇×∇×−=∇⋅−∇=⋅∇=∇vv v v v v ϕ rm m r 1)(])1[(∇∇⋅−=∇⋅∇−vvϕ−∇=×∇∴A v7有一内外半径分别为r 1和r 2的空心介质球介质的电容率为ε使介质内均匀带静止自由电荷f ρ求1 空间各点的电场2极化体电荷和极化面电荷分布解1∫∫=⋅dV S d D f Sρrr , (r 2>r>r 1)f r r r D ρππ)(3443132−=⋅即)(,3)(123313r r r r r r r E f >>−=∴rr ερ 由)(,)(342313200r r r r Q S d E f f S >−==⋅∫ρεπεr r )(,3)(2303132r r r rr r E f >−=∴r r ρε 01时E r r r <2)EE E P e r r r r )(00000εεεεεεχε−=−=)(3]3)([)()(3310331300r rr r r r r r E P f f P r r r r r −⋅∇−−=−⋅∇−−=⋅∇−−=⋅−∇=∴ρεεερεεεεερ f f ρεεερεεε)()03(300−−=−−−=nn P P P 21−=σ考虑外球壳时r r 2 n 从介质1指向介质2介质指向真空2=n Pfr r f n P r r r rr r r P ρεερεεεσ32313203313013)1(3)(2−−=−−===r 考虑到内球壳时r r 23)(133130=−−−==r r f P rrr r rρεεεσ8内外半径分别为r 1和r 2的无穷长中空导体圆柱沿轴向流有恒定均匀自由电流J f 导体的磁导率为µ求磁感应强度和磁化电流解fS f I S d D dtd I l d H =⋅+=⋅∫∫rr r r 当0,0,1===<B H I r r f rr 故时 当r 2>r>r 1时)(2212r r j S d j rH l d H f Sf l−=⋅==⋅∫∫ππr r r r r j r r r r r r j B ff rr v ×−=−=22122122)(2)(µµ 当r>r 2时)(22122r r j rH f −=ππ r j r r r B frr r ×−=2212202)(µ )2()1())()(2212000rr r r j H H M J f M M−××∇−=−×∇=×∇=×∇=r r r r r µµµµµχ )(,)1()1(2100r r r j H f <<−=×∇−=r r µµµµ指向介质从介质21(),(12n M M n Mr r rr−×=α 在内表面上0)2)1(,012212021=−−===r r rr r M M µµ故)(,012r r M n M ==×=rr rα在上表面r r 2时)1(22)(0212221211222−−−=×−×−=×−=−×===µµαr f r r fr r Mj rr r r j r r r r r M n M n rr r rrr r r rf j rr r r 2212202)1(−−−=µµ9证明均匀介质内部的体极化电荷密度P ρ总是等于体自由电荷密度f ρ的倍)1(0εε−−证明ff P E E P ρεεερεεεεεερ)1()()()(0000−−=−−=⋅∇−−=−⋅−∇=⋅−∇=r r r 10证明两个闭合的恒定电流圈之间的相互作用力大小相等方向相反(但两个电流元之间的相互作用力一般并不服从牛顿第三定律)证明1线圈1在线圈2的磁场中的受力 ∫×=23121222024l r r l d I B v v v πµ21112B l d I F d v v v×=∫∫∫∫××=××=∴12123121221210312122211012)(4)(4l l l l r r l d l d I I r r l d I l d I F v r vvv v v πµπµ )()(41221312123121212210∫∫⋅−⋅=l l l d l d r r r r l d l d II v v v v v v πµ12线圈2在线圈1的磁场中受的力同1可得∫∫⋅−⋅=21)()(41232121321212121021l l l d l d r r r r l d l d I I F v v v v v v v πµ2分析表达式1和21式中第一项为0)1()(21221212221212231212123121212=−⋅==⋅=⋅∫∫∫∫∫∫∫l l l l l l r l d r dr l d r r l d l d r r l d l d 一周v v v v v v v v 同理对2式中第一项 ∫∫=⋅210)(3212121l l r r l d l d v v v ∫∫⋅−==∴12)(421312122102112l l l d l d r r II F F v v rv v πµ11. 平行板电容器内有两层介质它们的厚度分别为l 1和l 2电容率为21εε和今再两板接上电动势为Ε的电池求1 电容器两板上的自由电荷密度f ω2 介质分界面上的自由电荷密度f ω若介质是漏电的电导率分别为21σσ和当电流达到恒定时上述两问题的结果如何解在相同介质中电场是均匀的并且都有相同指向则,)00f 2211212211==−=−Ε=+σεε介质表面上E E D D E l E l n n故122112122121,εεεεεεl l E l l E +Ε=+Ε=又根据fn n D D σ=−21 n 从介质1指向介质2在上极板的交面上 121f D D σ=− D 2是金属板故D2即12212111εεεεεσl l D f +== 而02=f σ)0(,'1'1'2'2'13=−=−=D D D D D f 是下极板金属故σ 13122121ff l l σεεεεεσ−=+−=∴ 若是漏电并有稳定电流时222111,σσjE j E r r r r == 又 ===Ε=+积稳定流动电荷不堆,2121222111j j j j j l j l n nrrr σσ 得+Ε==+Ε==+Ε==1221122212212111221121:,σσσσσσσσσσl l j E l l j E l l j j 即12212`13σσσεσl l D f +Ε==上1221122σσσεσl l D f +Ε−=−=下Ε+−=−=1221121232σσσεσεσl l D D f 中12. 证明1 当两种绝缘介质得分界面上不带面自由电荷时电场线的曲折满足1212tan tan εεθθ=其中21εε和分别为两种介质的介电常数21θθ和分别为界面两侧电场线与法线的夹角2当两种导电介质内流有恒定电流时分界面上电场线曲折满足1212tan tan σσθθ=其中21σσ和分别为两种介质的电导率证明(1)根据边界条件112212sin sin ,0)(θθE E E E n ==−×即vv 由于边界面上0=fσ故)(12=−⋅D D n v vv 即111222cos cos θεθεE E = 12121122,εεθθεθεθ==∴tg tg tg tg 即有(2)根据E J vv σ=可得电场方向与电流密度同方向由于电流I 是恒定的故有1221cos cos θθj j =即122211cos cos θσθσE E =而0)(12=−×E E n v vv 即 1122sin sin θθE E = 故有2121σσθθ=tg tg 13试用边值关系证明在绝缘介质与导体的分界面上在静电情况下导体外的电场线总是垂直于导体表面在恒定电流的情况下导体内电场线总是平行于导体表面证明1导体在静电条件下达到静电平衡01导体内E v∴ 而 0)(12=−×E E n v vv 02=×∴E n vv故0E v垂直于导体表面3导体中通过恒定电流时导体表面0=fσ∴导体外0,022==D E vv即 而 0:,0)(10112=⋅=⋅==−⋅E n D n D D n f v vv v v v v εσ即 01=⋅∴E n vv 导体内电场方向和法线垂直即平行于导体表面14内外半径分别为a 和b 的无限长圆柱形电容器单位长度电荷为fλ板间填充电导率为σ的非磁性物质1 证明在介质中任何一点传导电流与位移电流严格抵消因此内部无磁场2求f λ随时间的衰减规律3 求与轴相距为r 的地方的能量耗散功率密度4求长度为l 的一段介质总的能量耗散功率并证明它等于这段的静电能减少率1 证明由电流连续性方程0=∂∂+⋅∇t J f ρr 据高斯定理 D f r⋅∇=ρ 0=∂⋅∂∇+⋅∇∴tDJ rr 即0=∂∂⋅∇+⋅∇tDJ rr 0.0)(=∂∂+∴=∂∂+⋅∇∴t DJ t D J r r r r 即传到电流与位移电流严格抵消(2)解由高斯定理得∫∫=⋅dl dl r D f λπrr 2 rf r f e r E e r D rr r r πελπλ2,2==∴ 又ED E J t D J rr r r rr εσ===∂∂+,,0 t e E E tEE εσεσ===∂∂+∴0,0r r r r rt r r f e e re r r rεσπελπελ−=∴220电动力学习题解答 第一章 电磁现象的普遍规律tf f e εσλλ−=∴03解re r t t D J ft f πλεσπλεσ2)2(0⋅=∂∂−=∂∂−=−r r 能量耗散功率密度σπελσρ222)2(1rJ J f ==5解 单位体积rdrl dV π2⋅= ∫==b a f f abl rdr l r P ln22)2(222πεσλπσπελr 静电能 abl dr r l dV E D W f b a f baln2212212122⋅⋅==⋅=∫∫πελπελr r 减少率 ab l t a b l t W f ff ln2ln 222πεσλλπελ=∂∂⋅−=∂∂−1. 一个半径为R 的电介质球极化强度P=K2r r电容率为(1) 计算束缚电荷的体密度和面密度(2) 计算自由电荷体密度(3) 计算球外和球内的电势(4) 求该带电介质球产生的静电场总能量解(1)2222/)11(rK r rr r K r r K P P −=⋅∇+⋅∇−=⋅∇−=⋅−∇=r r r r ρ RP P P n )(12rr r −⋅−=σ 又球外无极化电荷02=P r RK rr K n P n RRp /21=⋅=⋅=r r rr σ(2) 由公式 E D rr ε= PE D rr r +=0εεεε−=P D r r200)(rKP D f εεεεεερ−=⋅∇−=⋅∇=r r`(3)对于球外电场由高斯定理可得∫=⋅0εQs d E rr外 022002sin )(4εϕθθεεεερπ∫∫∫∫⋅−==⋅∴d drd r r KdV r E f 外r r r )(300r rεεεε−∴KRE 外同理可得球内电场20r rK Er r ⋅−εε内球外电势外外r)(rd 00εεεεϕ−⋅∴∫∞∞KRE r rrR ln)(rd rd 000rεεεεεεϕ−+−⋅⋅∫∫∞K KE E RR球内电势内外内rr r r42022020r2rr r r 2121内内内εεεεεεεεωK K K E D rr r r ⋅⋅⋅⋅⋅∴ ∫∫∫∫−⋅−⋅∴2022202)2d drd sin r r )(21d εεπεϕθθεεεωK R K V W 内内∫∫∫∫−⋅⋅−⋅=2002224200222)(2d drd sin r r 1)(21dεεεπεϕθθεεεεωRK R K V W R 外外200))(1(2εεεεπε−+=∴K R W W W 外内2 在均匀外电场中置入半径为0R 的导体球试用分离变数法球下列两种情况的电势1导体球上接有电池使球与地保持电势差;0φ2 导体球上带总电荷Q.解1当导体球上接有电池与地保持电势差0φ时以地为电势零点本问题的定解条件如下φφ内R=0R02外ϕ∇R>0R 且 =−==∞→0000cos φϕϕθϕR R R R E 外外0ϕ是未置入导体球前坐标原点的电势根据有关的数理知识可解得)cos R Ran 1n nnnn θϕ外P b ∑∞由于00cos ϕθϕ外R E R −=∞→即021210210cos )(cos cos )(cos cos a ϕθθθθθϕ+−=+++++∞→∞=+∞=∑∑R E P RbR b R b P R a R a R n n n n n n nn 外故而有)1(0),1(0,,0100>=>=−==n b n a E a a n n ϕθθϕϕcos b cos 21000Rb R R E +∴外又020100000cosb cos ,0φθθϕϕφϕ=+−====R b R R E R R R R 即外外故而又有=+−=+∴0cos cos 201000000θθφϕR b R E R b 得到 20010000,)(R E b R b =−=ϕφ最后得定解问题的解为)(cos )(cos 03000000R R RR E R R R E >+−++−=θϕφϕθϕ外2当导体球上带总电荷Q 时定解问题存在的方式是=∂∂−+>∇<∇∫∞→→)(ds (Rcos )(0)(00s0R 000R 0R 02020R R Q R E R R R R R 原点的电势是未置入导体球前坐标有限外外内外内外内φεφφϕϕθφφφφ解得满足边界条件的解是∑=0n n n n cos R 内θϕP a ∑=0n n1n n00cos R Rcos 外θθϕϕP b E由于∞→R 外ϕ的表达式中只出现了)1(0cos cos (1>=n b P n 项故θθθθϕϕcos b cos 21000Rb R R E +∴外又有0R R =外ϕ是一个常数导体球是静电平衡C R b R R E R R =+−==θθϕϕcos b cos 201000000外301201000cos cos R E b R b R E ==+−∴即θθθθϕϕcos cos 230000RR E R b R E ++外 又由边界条件Q 外∫∂∂−sds rφε 004πεQ b =∴,000R 4R R Q <−∴ϕπεϕ内023000Rcos cos R 4R R E RR E Q>+外θθπεϕ3均匀介质球的中心置一点电荷fQ 球的电容率为ε球外为真空试用分离变数法求空间电势把结果与使用高斯定理所得结果比较提示空间各点的电势是点电荷f Q 的电势RQ πε4f与球面上的极化电荷所产生的电势的叠加后者满足拉普拉斯方程解一. 高斯法在球外0R R >,由高斯定理有fP f Q Q Q Q s d E =+=⋅∫总rr 0ε对于整个导体球而言束缚电荷)0=P Q 204R Q E f πε=∴r积分后得是积分常数外C C RQ .(40f +πεϕ又由于0,0=∴=∞→C R 外ϕ)(400R R RQ f >=∴πεϕ外在球内0R R <,由介质中的高斯定理∫=⋅fQ s d D r r 又24,R Q E E D f πεε=∴=rrr积分后得到是积分常数内22f.(4C C RQ +πεϕ由于20f 44,0C R Q R Q f R R +==πεπεϕϕ故而有外内).(4400002R R R Q R Q C f f<−=∴πεπε)(44400f0ff R R R Q R Q RQ <−∴πεπεπεϕ内二. 分离变量法本题所求的电势是由点电荷f Q 与介质球的极化电荷两者各自产生的电势的叠加且有着球对称性因此其解可写作'4ϕπεϕ+=R Qf 由于'φ是球对称的其通解为R b a+='ϕ由于球心有f Q 的存在所以有∞→内R ϕ 即a4内RQ f πεϕ在球外有外0R ∞→ϕ 即Rb 4f 外R Q πεϕ 由边界条件得0f 0fRb4a 4,0R R Q R Q R ++πεπεϕϕ即外内20f20020f 0R4b 4,RR 0R Q R R Q R πεεεπεεϕεϕε−=−∂∂∂∂即外内)11(4a),11(400f 0εεπεεπε−−=∴R Q Q b f<−>∴00f00f f 00f ,444,R 4R R R Q R Q R Q R R Q πεπεπεϕπεϕ内外4 均匀介质球电容率为1ε的中心置一自由电偶极子fP r球外充满了另一种介质电容率为2ε求空间各点的电势和极化电荷分布提示同上题'431φπεφ+⋅=RR P f r r ,而'φ满足拉普拉斯方程解RR∂∂=∂∂外内φεφε21又内∑+−=∂∂l 1l 0l 31f 11l 4cos 2(0P R A R P R R πεθεφε∑−−=∂∂外l2l 0l301f 221l (4cos 2(0P R B R P RR πεθεφε比较系数)(cos θl P B00A30113012312113,24242R B A R B R A R ff=−−=+及επερεεπρ得)2(4)(2,)2(4)(22112113211211εεπερεεεεπερεε+−=+−=f fB R A 比较的系数)(cos 2θP 40224221,32R B A R B R A=ε及011(012=+R A ε所以0,022==B A 同理)3,2(,0L ===l B A l l 最后有)(,)2(4)(24cos )2(4)(2403211213132112131R R R RR R R R R R f f f f <+⋅−+⋅=+−+⋅εεπερεεπερθεεπερεεπερφrrr rr r内)(,)2(43)2(4)(24cos )2(4)(2403213211213122112131R R RR RRRRRRR f f f f f >+⋅=+⋅−+⋅=+−+⋅εεπρεεπερεεπερθεεπερεεπερφr r rrr r r r 外球面上的极化电荷密度n P P n n P r,21−=σ从2指向1如果取外法线方向则nn n n p P P )])[()])[(0102内外球外φεεφεεσ∇−−∇−=−= 0)()(0102R RRR内外∂∂−+∂∂−−=φεεφεε]cos )2(4)2(2)(2)2(4cos )(6)[()2(4cos 6)(32112121321200132102θρεεπεεεεεεεπθρεεεεεεπθρεεf f f R R R ++−−−+−−−+−−= θρεεπεεεεθρεεπεεεεεεεcos )2(2)(3cos )2(4)(6)(632112103211012201f f R R +−−=+−+−=求极化偶极子l q P f r r=可以看成两个点电荷相距l 对每一个点电荷运用高斯定理就得到在每个点电荷旁边有极化电荷 ))(1(,)1(1010f P f P q q q q −−=−−=εεεε两者合起来就是极化偶极子 f P P P r r )1(1−=εε5.空心导体球壳地内外半径为R 1和R 2球中心置一偶极子Pr球壳上带电Q 求空间各点电势和电荷分布解+⋅=∞====∇→→∞→为有限值0'1'1301022332,4,0,0r r r r r P C φφπεφφφφφr r=∂∂+∂∂−+⋅====∫∑∫∑===−+013301223131212)(cos 4,),(cos εφφθπεφφφφθφQdS rdS r P r A r r P CC CP r B R r R r l ll f R r R r l l l rr2φ=+++=+++CR A A R P C P R B R B R B f L L θπεθθcos 4cos cos 110210232222120即)4.3.2(0),3.2.1(0,0cos )4(,2111200L L =====+==l A l B R P R A C R B A l l f θπε∑∑+−−=−−=∂∂++−=+−=∂∂+−L L θφθπεθπεθφcos 2)1(cos 2cos 4cos 2311210231310113101R B R B P r B l r A R P P R lA R P r l l l f L l l f 又则∫∫∫====∂∂−02121210210344B R B R dS R B dS R B dS r ππφ000sin cos 4sin cos 22002131020*******=+=−+−=∂∂∫∫∫∫∫ππππϕθθθπεϕθθθπεφd d R R P d d R R P dS r f f 故∫∫==∂∂+∂∂−00134επφφQB r dS r 3101200004,4,4R P A R Q A Q B f πεπεπε−===最后有<<=>=<+⋅−⋅=)(,4)(,4)(,44421202203120310201R r R R QR r r Q R r R QR r P r r P f πεφπεφπεπεπεφr r r r 电荷分布在r R 1的面上313131104cos 4cos 2cos 1R P R P R P r f f f Pπθπθπθφεσ−=−+−=∂∂=在r R 2面上223042R Qr P πφεσ=∂∂−=6在均匀外电场0E r中置入一带均匀自由电荷f ρ的绝缘介质球ε求空间各点的电势解=∇++∑+061)(cos )('2'21φφρεφθφr P r B r A f l l l ll内外内φ是由高斯定理解得的f ρ的作用加上0E r的共同作用'0,cos →∞→−=r r r E φθφ外有限++∑∑+)(cos 61)(cos cos 210θρεφθθφl l e f l l l P r c r P r B r E 内外:)0R r =外内φφ++++23022010000cos P R BR B R B R E θ ++++22020120cos 610P R c R c c R f θρε即000206R B c R f =+ερ012100R c R B R E =+20232R c R B =rr ∂∂=∂∂外内φεφε∑+−−+−=∂∂)1(cos (200l l l R P B l E rθεφ外]L +++= +=∂∂∑−202101002cos 3)(cos 3P R c c R P R lc R r f l l l f εθερθερφ内LL+−−−−2423123cos2cos PRBRBRBEεθεεθε即23RBRfερ−=3112RBECεεε−−=LL42232RBRCεε−=解方程得fRBρε303−=)6131(20εερ+−=fRC33123REREB++−=εεε123εεε+−=EC及2232CRRCεε−=即0)32(2=+RRCεε022==BC同理0==llBC LL3,2=l得<+±>+−+±22223233,cos236131(6,cos)2(3cos3cosRrrERrRrrRErRErRrEfffθεεεεερερφθεεεθερθφ内外7在一个很大的电解槽中充满电导率为2σ的液体使其中流着均匀的电流0fδ今在液体中置入一个电导率为1σ的小球求稳衡时电流和电荷分布讨论21σσ>>及12σσ>>两种情况的电流分布特点先求空间电势∇∇22外内φφ外内φφRr=因为)(Rrnn=外内δδ稳恒电流认为表面无电流堆积即nn流出流入=故rr222221外内φσφσ=并且δδ=∞→r外即θφcosrEr−=∞→外()02Ej fσ=有限内∞→rφ可以理解为在恒流时0→r的小封闭曲面流入流出这时的解即为>+−+<022121300000212,cos )2(cos ,cos 23R r rR E r E R r r E θσσσσθφθσσσφ外内求内外电场)22sin 12222(φθφθθφφφe r e r e E r rr rΦ++−=−∇=)sin (cos 23)22122(0212θθθθσσσθφφe e E e r re E r r r r rr r−+=+内内内ze E r021223σσσ+=[]θθθθσσσσθθe e r R E e e E E r r rr r r sin cos 2)2()sin (cos 212133000++−+−外[]θθθθθσσσσθθe e e rR E e e E r r r rr r r r sin cos cos 3)2()sin (cos 212133000+−+−+−−+−+30302121300cos 3)2(r E e r E R E r v v θσσσσ求电流 根据内内E j vr1σ 外外E j v v2σ 及 =⋅=r f f e r r r E rr r j E j r vr v v v5025020cos )(0θσσ得])(3[2,2335302121211000rj rrr j R j j j j f f f r rr r r r −⋅=σσσσσσσ内外内)(2cos 3)()(2121000120σσσσθεεεω−+=−=−=E E E E E n n n n f 内外8.半径为0R 的导体球外充满均匀绝缘介质ε导体球接地离球心为a 处)(0R a >置一点电荷f Q 试用分离变数法求空间各点电势证明所得结果与镜像法结果相同提示).()(cos )(1cos 211022a R P aR a aR a R rn n n>=−+=∑∞=θθ解1分离变数法由电势叠加原理球外电势''f,4φφπεφ+RQ 外是球面上感应电荷产生的电势且满足定解条件 ==>=∇=∞→00)(,00''2R r r R r 外φφφ根据分离变数法得)(,)(cos 001'R r P r B l l l l>=∑∞=+θφ ∑∞=++−+∴0122f )(cos cos 214l l l lP rB ar r a Q θθπεφ外*)(,)(cos )(cos )(14010a r P rB P a r a Q l ll ln n n f <+=∑∑∞=+∞=θθπε 又0)(cos ])(4[100=+=∑∞=+=n l l oll fR r P R B a R a Q θπεφ外即 0)(4,...,04,0410201000=+=+=++l ll f f fR B a R a Q R B a R a Q R B a Q πεπεπε,4,4,41203100aQ a R B a Q a R B a Q R B fl l l f O fπεπεπε+−=−=−=∴代入*式得解2镜像法如图建立坐标系本题具有球对称性设在球内0r 处有像电荷'Q ,'Q 代替球面上感应电荷对空间电场的作用由对称性'Q 在O f Q 的连线上先令场点P 1在球面上根据边界条件有常数即=−==+fQ Q Q Q f Q Q r r r Q r Q f f'''',0将'Q 的位置选在使∆'Q P 1O∆f Q P 1O,则有常数aR r r fQ Q 0'=为达到这一目的令'Q 距圆心为r 0则 aR r a R R r 200000,==并有aQ R Q aR Q Q r r f f Q Q f0'0''−===−=常数这样满足条件的像电荷就找到了空间各点电势为).(],cos 2)(cos 2[414422020222'1a r aR r a R r aQ R ar r a Q r Qr Q fff >++−−+=+=θθπεπεπεφ外将分离变数法所得结果展开为Legend 级数可证明两种方法所求得的电势相等9接地的空心导体球的内外半径为R 1和R 2在球内离球心为a(a<R 0)处置一点电荷Q 用镜像法求电势导体球上的感应电荷有多少分布在内表面还是外表面解球外的电势及导体内电势恒为0而球内电势只要满足即可内01r =R φ因此做法及答案与上题同解略cos 2cos 2[412124121220θθπεφa R R aR R a QR Ra a R Q−+−−+=内因为球外0=φ故感应电荷集中在内表面并且为Q.R 1R2P210.上题的导体球壳不接地而是带总电荷Q 0,或使其有确定电势0ϕ试求这两种情况的电势又问0ϕ与Q 0是何种关系时两种情况的解是相等的解由于球壳上有自由电荷Q 0并且又是导体球壳故整个球壳应该是等势体其电势用高斯定理求得为2004R Q Q πε+所以球壳内的电势将由Q 的电势像电荷aQR 1−的电势及球壳的电势叠加而成球外电势利用高斯公式就可得故>+=<++−+−−+==)(,4)].(cos 2cos 2[412001202124121220R R RQ Q R R R Q Q a R R aR R a QR Ra a R Q πεφθθπεφφ外内或>=<+−+−−+==)(,).(cos 2cos 2[41202102124121220R R r R R R a R R a R R a QR Ra a R Q φφφθθπεφφ外内当20004R Q Q πεφ+=时两种情况的解相同11在接地的导体平面上有一半径为a 的半球凸部如图半球的球心在导体平面上点电荷Q 位于系统的对称轴上并与平面相距为bb>a 试用电象法求空间电势解如图利用镜像法根据一点电荷附近置一无限大接地导体平板和一点电荷附近置一接地导体球两个模型可确定三个镜像电荷的电量和位置rb r Q Q rba r Qb a Q rb a r Q b a Q rr r−=−=−===−=33222211,,,θθθπεφcos 2cos 21cos 21[4224222220R b a ba Rb aRb b R Rb b R Q +++++−−+=O),20(],cos 22242a R R b a ba Rb a><≤−++πθθ12. 有一点电荷Q 位于两个互相垂直的接地导体平面所围成的直角空间内它到两个平面的距离为a 和b 求空间电势解可以构造如图所示的三个象电荷来代替 两导体板的作用−++−+−−−+−+−=222022200)()()(1)()()(1[4b z a y x x b z a y x x Q πεφ )0,()()()(1)()()(122202220>++++−+−+++−−z y b z a y x x b z a y x x 13.设有两平面围成的直角形无穷容器其内充满电导率为的液体取该两平面为xz 面和yz 面在x 0,y 0,z 0和x 0,y 0,-z 0两点分别置正负电极并通以电流I 求导电液体中的电势解本题的物理模型是由外加电源在A B 两点间建立电场使溶液中的载流子运动形成电流I,当系统稳定时是恒定场即0=∂∂+⋅∇t j ρr 中对于恒定的电流可按静电场的方式处理于是在A 点取包围A 的包围面∫=⋅nQ s d E εr r 而又有σ⋅=⋅=∫E i s d i I rr r r }∫⋅=⇒sd E I r r σ1∴有σεεσ111I Q QI =⇒=对BQ σε1I Q Q B −=−=又在容器壁上,0=n j r即元电流流入容器壁由Ej r rσ=有0=n j r时=n E r∴可取如右图所示电像B(x 0,y 0,z 0)y14.画出函数dx x d )(δ的图说明)()(x P rr δρ∇⋅−=是一个位于原点的偶极子的电荷密度解=∞≠=0,0,0)(x x x δx x x x dx x d x ∆−∆+=→∆)()(lim )(0δδδ10)(0=≠dxxd x δ时2=∆∞−=>∆=→∆x dxx d x x 0lim )(,0x a 00δ时 +∞=∆∞−=<∆→∆xdx x d x b x 0lim )(,0)0δ15证明1)0).((1)(>=a x a ax δδ若a<0,结果如何20)(=x x δ证明1根据∑−=)(()](['kk x x x x φδφδ所以ax ax )()(δδ=2从)(x δ的定义可直接证明有任意良函数f(x),则)()(x F x x f =⋅也为良函数∫=⋅==0)()()(0x x x f dx x x x f δ16一块极化介质的极化矢量为)('x P r r 根据偶极子静电势的公式极化介质所产生的静电势为∫⋅=V dV r rx P '3'4)(πεϕr r r 另外根据极化电荷公式,)(''P n x P P P r r r r r r ⋅=⋅−∇=σρ及极化介质所产生的电势又可表为∫∫⋅+⋅∇−=S V r Sd x P dV r x P 0'''0''4)(4)(πεπεϕr r r r r 试证明以上两表达式是等同的证明∫∫∇⋅=⋅=VVdV rx P dV r r x P '''0'3'01)(41)(41r r rr r πεπεϕ 又有r P r P r P p 11)1('''∇⋅+⋅∇=∇r r r 则][41])([41'''''''''0∫∫∫∫⋅+⋅∇−=⋅∇+⋅∇−=S V V V S d r P dV r P dV r P dV r P r r r r r πεπεϕ ][41][41'0'''0∫∫∫∫+=⋅+⋅∇−=S P V P S V dS r dV rdS r n P dV r P r s rr r σρπεπε刚好是极化体电荷的总电势和极化面电荷产生的总电势之和17证明下述结果并熟悉面电荷和面偶极层两侧电势和电场的变化1 在面电荷两侧电势法向微商有跃变而电势是连续的2 在面偶极层两侧电势有跃变 P n rr ⋅=−0121εϕϕ而电势的法向微商是连续的各带等量正负面电荷密度σ±而靠的很近的两个面形成面偶极层而偶极矩密度.)lim 0l P l r rσσ→∞→=证明1如图可得,20εσss E ∆⋅=∆⋅ 022,200210=−=−=∴z z E εσεσφφεσ面z e E n r r 01112εσφ==∂∂ )(20222z e E nr −==∂∂εσφ 02211εσφφ=∂∂−∂∂∴n n 2)可得ze E r r 0εσ= 00012limlim εεσφφP n l n l E l l r r r r r r ⋅=⋅=⋅=−∴→→ 又EnE n r r =∂∂=∂∂21,φφ++z12lr.012=∂∂−∂∂∴nn φφ18.一个半径为R 0的球面在球坐标20πθ<<的半球面上电势为0ϕ在πθπ<<2的半球面上电势为0ϕ−求空间各点电势提示=−===+−=⋅⋅−⋅⋅⋅⋅⋅−+∫)(,)1()(,0)0(1)1(,12)()()(642)1(531211011偶数奇数n n P P n x P x P dx x P n n n n n n n 解=∞<=∇∇∞→→0022r r 外内外内φφφφ≤<−<≤===πθπφπθφθφ2,20,)(000f R r ∑=)(cos θφl l l P r A内 这是内φ按球函数展开的广义傅立叶级数l l r A 是展开系数∫∫⋅−+=+==−πθθθφθθφ011]sin )(cos [212]cos )(cos [21200d P l d P l f R A l R l R l ll 内内]sin )(cos sin )(cos [21220200∫∫+−+=πππθθθφθθθφd P d P l l l ])()([212100010∫∫−−+=dx x P dx x P l l l φφ ∫∫+−+=−10010)()([212dxx P dx x P l l l φ由)()1()(x P x P l ll −=−则])()()1[(2121010100∫∫+−+=+dx x P dx x P l R A l ll φ∫+−+=+1010)(]1)1[(212dxx P l l l φ当l 为偶数时00=ll R A 当l 为奇数时有101101010012)()()12()(]1)1[(212+−+=+−+=−++∫l x P x P l dx x P l R A l l l l ll φφ ])1(642)2(531)1()1(642531)1[(2121−⋅⋅⋅⋅⋅−⋅⋅⋅⋅⋅−−+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅−−=−+l l l ll l φ ])1(642)2(531)1()1(642531)1[(2121−⋅⋅⋅⋅⋅−⋅⋅⋅⋅⋅−++⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅−=−−l l l ll l φ )12()1(642)2(531)1()11()1(642)2(531)1(210210++⋅⋅⋅⋅⋅−⋅⋅⋅⋅⋅−=++−⋅⋅⋅⋅⋅−⋅⋅⋅⋅⋅−=−−l l l l ll l l l φφ则 )12()1(642)2(531)1(2100++⋅⋅⋅⋅⋅−⋅⋅⋅⋅⋅−=−l l l R A l ll φ∑<++⋅⋅⋅⋅⋅−⋅⋅⋅⋅⋅−=−)(),(cos ))(12()1(642)2(531)1(00210R r l P R rl l l l l l 取奇数内θφφ∑+)(cos 1θφl l lP r B 外又)12()1(642)2(531)1(])(cos [212211110++⋅⋅⋅⋅⋅−⋅⋅⋅⋅⋅−=+=−−+∫l l l P l r B l l R l lφθφ外即∑>++⋅⋅⋅⋅⋅−⋅⋅⋅⋅⋅−=+−)(),(cos ))(12()1(642)2(531)1(01021R r l P rR l l l l l l 为奇数外θφ。
电动力学试题及其答案(1)
电动力学(A) 试卷班级 姓名 学号一、填空题(每空2分,共32分)1、已知矢径r,则 r = 。
2、已知矢量A和标量φ,则=⨯∇)(A φ 。
3、区域V 内给定自由电荷分布 、 ,在V 的边界上给定或,则V 内电场唯一确定。
4、在迅变电磁场中,引入矢势A和标势φ,则E= , B= 。
5、麦克斯韦方程组的微分形式 、 、、 。
6、电磁场的能量密度为 w = 。
7、库仑规范为 。
8、相对论的基本原理为 , 。
9、电磁波在导电介质中传播时,导体内的电荷密度= 。
10、电荷守恒定律的数学表达式为 。
二、判断题(每题2分,共20分)1、由0ερ=⋅∇E 可知电荷是电场的源,空间任一点,周围电荷不但对该点的场强有贡献,而且对该点散度有贡献。
( )2、矢势A沿任意闭合回路的环流量等于通过以该回路为边界的任一曲面的磁通量。
( )3、电磁波在波导管内传播时,其电磁波是横电磁波。
( )4、任何相互作用都不是瞬时作用,而是以有限的速度传播的。
( )5、只要区域V 内各处的电流密度0=j,该区域内就可引入磁标势。
( )6、如果两事件在某一惯性系中是同时发生的,在其他任何惯性系中它们必不同时发生。
( )7、在0=B的区域,其矢势A 也等于零。
( )8、E 、D 、B 、H四个物理量均为描述场的基本物理量。
( )9、由于A B⨯∇=,矢势A 不同,描述的磁场也不同。
( )10、电磁波的波动方程012222=∂∂-∇E tv E适用于任何形式的电磁波。
( )三、证明题(每题9分,共18分)1、利用算符 的矢量性和微分性,证明0)(=∇⨯⋅∇φr式中r为矢径,φ为任一标量。
2、已知平面电磁波的电场强度i t z cE E )sin(0ωω-=,求证此平面电磁波的磁场强度为j t z cc E B )sin(0ωω-=四、计算题(每题10分,共30分)1、迅变场中,已知)cos(0t rK A A ω-⋅= , )cos(0t r K ωφφ-⋅= ,求电磁场的E和B 。
电动力学试题及参考答案
电动力学试题及参考答案一、填空题(每空2分,共32分)1、已知矢径r,则 r = 。
2、已知矢量A 和标量φ,则=⨯∇)(Aφ 。
3、区域V 内给定自由电荷分布 、 ,在V 的边界上给定 或 ,则V 内电场唯一确定。
4、在迅变电磁场中,引入矢势A 和标势φ,则E= ,B= 。
5、麦克斯韦方程组的微分形式 、 、 、 。
6、电磁场的能量密度为 w = 。
7、库仑规范为 。
8、相对论的基本原理为 , 。
9、电磁波在导电介质中传播时,导体内的电荷密度 = 。
10、电荷守恒定律的数学表达式为 。
二、判断题(每题2分,共20分)1、由0ερ=⋅∇E 可知电荷是电场的源,空间任一点,周围电荷不但对该点的场强有贡献,而且对该点散度有贡献。
( )2、矢势A沿任意闭合回路的环流量等于通过以该回路为边界的任一曲面的磁通量。
( ) 3、电磁波在波导管内传播时,其电磁波是横电磁波。
( ) 4、任何相互作用都不是瞬时作用,而是以有限的速度传播的。
( )5、只要区域V 内各处的电流密度0=j,该区域内就可引入磁标势。
( )6、如果两事件在某一惯性系中是同时发生的,在其他任何惯性系中它们必不同时发生。
( )7、在0=B的区域,其矢势A 也等于零。
( )8、E 、D 、B 、H四个物理量均为描述场的基本物理量。
( )9、由于A B⨯∇=,矢势A 不同,描述的磁场也不同。
( )10、电磁波的波动方程012222=∂∂-∇E tv E 适用于任何形式的电磁波。
( )三、证明题(每题9分,共18分)1、利用算符 的矢量性和微分性,证明0)(=∇⨯⋅∇φr式中r为矢径,φ为任一标量。
2、已知平面电磁波的电场强度i t z c E E )sin(0ωω-=,求证此平面电磁波的磁场强度为j t z cc E B )sin(0ωω-=四、计算题(每题10分,共30分)1、迅变场中,已知)cos(0t r K A A ω-⋅= , )cos(0t r K ωφφ-⋅= ,求电磁场的E 和B。
电动力学习题集答案-1
电动力学第一章习题及其答案1. 当下列四个选项:(A.存在磁单级, B.导体为非等势体, C.平方反比定律不精确成立,D.光速为非普适常数)中的_ C ___选项成立时,则必有高斯定律不成立.2. 若a为常矢量, k z z j y y i x x r )'()'()'(-+-+-=为从源点指向场点的矢量,k E,0为常矢量,则)(2a r ⋅∇=a r a r a r a r a r r r dr dr ⋅=⋅=⋅∇=⋅∇=⋅∇22))()(222,()r r r r r zy x k j i z z y y x x k j i r=++=-+-+-++=∇∂∂∂∂∂∂z'-z y'-y x'-x 222)'()'()'(⎪⎪⎪⎭⎫ ⎝⎛=-+-+-=-+-+-==-+-+--∂∂-∂∂--+-+--∂∂r z z z r y y yr x x z z y y x x x x x z z y y x x z z y y x x z z y y x x )'(222)'(222)'()'()'()'(2)'(2222)'()'()'(,)'()'()'(,)'()'()'(222同理,=⨯∇r 0'''=---∂∂∂∂∂∂z z y y x x e e e z y x xx x , 3)z'-(z )y'-(y )x'-(x =++=⋅∇∂∂∂∂∂∂z y x r ,)()(=⨯∇⋅=⨯⋅∇r a r a ,0)(3211=⨯=⨯=⨯∇+⨯∇=⨯∇∇r r r r r r r r r rrr,a k j i r a za ya xa z y x =++=⋅∇∂∂∂∂∂∂)]z'-(z [)]y'-(y [)]x'-(x [)(,r r rr r rrr r r r 23113=+⋅-=⋅∇+⋅∇=⋅∇ ,=⨯∇⋅∇)(A __0___. =⋅⋅∇)]sin([0r k E )cos(0r k E k ⋅⋅, 当0≠r 时,=⨯∇)/(3r r __0__. =⋅∇⋅)(0r k i e E )exp(0r k i E k i ⋅⋅, =⨯∇)]([r f r _0_. =⋅∇)]([r f r dr r df r r f )()(3+3. 矢量场f的唯一性定理是说:在以s 为界面的区域V 内,若已知矢量场在V 内各点的旋度和散度,以及该矢量在边界上的切向或法向分量,则f在V内唯一确定.4. 电荷守恒定律的微分形式为0=∂∂+⋅∇tJ ρ,若J为稳恒电流情况下的电流密度,则J满足0=⋅∇J.5. 场强与电势梯度的关系式为,ϕ-∇=E.对电偶极子而言,如已知其在远处的电势为)4/(30r r P πεϕ ⋅=,则该点的场强为()⎪⎪⎭⎫ ⎝⎛-⋅=350341r P rr r P Eπε.6. 自由电荷Q 均匀分布于一个半径为a 的球体内,则在球外)(a r >任意一点D的散度为 0,内)(a r <任意一点D的散度为 34/3a Q π.7. 已知空间电场为b a rrb r r a E ,(32 +=为常数),则空间电荷分布为______.)](4[)](423[)](42[)1(1120420320220023r b rar b r r r r a r b rrr r r a r b r r a E r b rr a E r r r δπερδπεδπεεερ+=⇒+⋅-=+∇⋅-⋅∇=∇-⋅∇=⋅∇=⇒∇-=⇒-=∇ 8. 电流I 均匀分布于半径为a 的无穷长直导线内,则在导线外)(a r >任意一点B的旋度的大小为 0 , 导线内)(a r <任意一点B的旋度的大小为20/a Iπμ.9. 均匀电介质(介电常数为ε)中,自由电荷体密度为f ρ与电位移矢量D的微分关系为f D ρ=⋅∇ , 束缚电荷体密度为Pρ与电极化矢量P 的微分关系为P P ρ-=⋅∇,则P ρ与f ρ间的关系为fP ρρεεε0--=.10. 无穷大的均匀电介质被均匀极化,极化矢量为P,若在介质中挖去半径为R 的球形区域,设空心球的球心到球面某处的矢径为R,则该处的极化电荷面密度为R R P /⋅-.11. 电量为q的点电荷处于介电常数为ε的均匀介质中,则点电荷附近的极化电荷为q )1/(0-εε.12. 某均匀非铁磁介质中,稳恒自由电流密度为f J,磁化电流密度为M J ,磁导率μ,磁场强度为H ,磁化强度为M ,则=⨯∇H f J ,=⨯∇M M J ,M J 与f J 间的关系为()f M J J1/0-=μμ.13. 在两种电介质的分界面上,E D ,所满足的边值关系的形式为()f D D n σ=-⋅12,RR P P P P n n P ⋅-=--=--=)0cos ()(12θ()012=-⨯E E n.14. 介电常数为ε的均匀各向同性介质中的电场为E . 如果在介质中沿电场方向挖一窄缝,则缝中电场强度大小为E . 15. 介电常数为ε的无限均匀的各项同性介质中的电场为E ,在垂直于电场方向横挖一窄缝,则缝中电场强度大小为,/0sin 00011201212εεθεετττE E E E E E E E D D n n =⇒⎩⎨⎧===⇒⎩⎨⎧=-=-缝缝. 16. 在半径为R 的球内充满介电常数为ε的均匀介质,球心处放一点电荷,球面为接地导体球壳,如果挖去顶点在球心的立体角等于2的一圆锥体介质,则锥体中的场强与介质中的场强之比为_1:1_.1:1:021221112=⇒===⇒==E E E E E E D D n n ττ17. 在半径为R 的球内充满介电常数为ε的均匀介质,球心处放一点电荷,球面为接地导体球壳,如果挖去顶点在球心的立体角等于2的一圆锥体介质,锥体处导体壳上的自由电荷密度与介质附近导体壳上的自由电荷密度之比为εε/0.εεσσεσεσεεττ::0021201201221112=⇒=⇒=⇒⎩⎨⎧=====D D E E E E D D n n 内球面上 18. 在两种磁介质的分界面上, B H,所满足的边值关系的矢量形式为()fH H n α=-⨯12,()012=-⋅B B n.19. 一截面半径为b 无限长直圆柱导体,均匀地流过电流I ,则储存在单位长度导体内的磁场能为__________________.,2202220b Ir b r B I r B πμππμπ=⇒=⋅ πμπμπμπμμμππ161640402122120442043204222200022I b b I b dr r I b br I b rdr rdr B W =====⎰⎰⎰20. 在同轴电缆中填满磁导率为21,μμ的两种磁介质,它们沿轴各占一半空间。
电动力学考试题a
电动力学考试题(A) Array一、填空题(每题2分,共20分)1、一个电荷周围的空间存在着一种特殊的物质,称为_____。
2、电荷只直接激发其____的场,而远处的场则是通过场本身的内部作用传递出去的。
3、矢势A的___才有物理意义,而每点上的A值没有直接的物理意义。
4、静磁场是有旋无源场,磁感应线总是____曲线。
5、规范不变性是决定相互作用形式的一条基本原理。
传递这些相互作用的场称为______。
6、相对论主要是关于_____的理论。
7、洛伦兹变换反映了相对论的______。
8、在相对论的时空结构中,若S2=0,这类型的间隔称为____间隔。
9、相对性原理要求表示物理规律的方程具有______。
10、四维势矢量Aμ=(A,i /c)的第___维分量表示了标势。
二、判断题(对的打V ,不对的打×)(每题3分,共15分)1、只有在静电情况下,远处的场才能以库仑定律形式表示出来。
()2、静磁场是无源有旋场。
()3、矢势A的环量才有物理意义,而每点上的A值也有一定的物理意义。
()4、变化着的电场和磁场互相激发,形成在空间中传播的电磁波。
()5、相对论主要是关于物体运动的理论。
()三、简答证明题(每题5分,共25分)1、位于坐标原点的点电荷的密度为:2、写出静电势在介质分界面上的边值关系。
3、波矢量K的物理意义是:4、矩形波导管的长宽分别为2厘米和1厘米,则可存在的电磁波的最大波长为:5、证明是矢量。
四、计算题(共40分)1、已知为常矢。
求:(5分)2、半径为R0的导体球置于均匀外电场E0中,写出求解静电势的定解条件。
(7分)3、证明两平行无穷大理想导体平面之间可以传播一种偏振的TEM电磁波。
(8分)4、求一个沿z轴作简谐振动的带电粒子Q的辐射场(z=z0e-iωt)。
(10 分)5、一把直尺相对于坐标∑系静止,直尺与x轴交角θ。
今有一观察者以速度υ沿x轴运动,他看到直尺与x轴交角θ'有何变化?(10 分)。
《电动力学》期末考试(A卷)
《电动力学》期末考试(A 卷)
姓名 学号
一、判断题,对的写(是),错的写(否)。
每题2分,共20分)
1、电磁理论一条最基本的实验定律为电荷守恒定律,其微分形式为: /j t ρ∇⋅=∂∂。
( ) 2、磁场强度 H 是个辅助物理量,它与磁感应强度 B 的普遍关系为 0()B H M μ=+。
( ) 3、静电场是保守场,任意两点的势差与电场的关系为 1122E dl ϕϕ-=⋅⎰. ( )
4、在稳恒电流电路中,电流密度满足方程 0j ∇⋅= 。
( )
5、平面电磁波中,电场能量密度和磁场能量密度相等,总的能量密度为 2w E ε= 。
( ) 6、在一个无穷长矩形波导管中,如果传播方向为 z 方向,电场 0z E = 为横场,那么磁场也为横场。
( ) 7、在研究辐射问题时,常用用小区域展开,所谓小区域是指它的线度 l ,波长为 λ,以及观察点与源点距
离 r 之间满足关系: ,l r λ。
( ) 8、当具有连续谱的电磁波投射到电子上时,时只有当电磁波的频率与电子的固有振动频率相等或者接
近时才能被强烈吸收。
( ) 9、在相对论中,时间先后是相对的。
在某一惯性系中, A 事件比 B 事件先发生。
在另一惯性系中,
A 事件就可能比
B 事件迟发生。
( ) 10、在相对论中,粒子能量、动量以及静止质量的关系为
: W = ( )。
电动力学导论-例题A
5cm ,当它进入此波导时,可能以那些波型传播?
六﹑证明各向同性的线性磁介质内部,在稳流情况下,磁化电流 J M 总等于自由
1 电流 J f 的 倍。 0
第 2 页
a ),
四﹑真空中有一电荷量分别为 q 、2q 和 q 的三个点电荷在同一条直线 z 轴上,其间距离都是 a ,若原点位于电荷 2 q 所在处,求在
r a 区域,
分别在(1)点电荷近似(2)电偶极近似(3)电四极近似下该带电体系的 电势。
五﹑一矩形波导的尺寸为 a
7 cm, b 3cm, 电磁波在真空中的波长为
别是什么? 6. 什么是横电波、横磁波和横电磁波?矩形波导内可传播哪一种波型的电 磁波?
二﹑均匀外电场 E0 中,置入一个半径为 R 0 的导体球,导体球上带总电荷为 Q ,
求导体球外的电势分布。
共
2 页
第 1 页
三﹑在接地的导体平面上有一半径为 a 的半球凸部(如图所示) ,半球的球心在 导体平面上,点电荷 Q 位于系统的对称轴上,并与平面相距为 b ( b 求空间 P 点电势。
电动力学(I)
一﹑简述题
例题 A
1. 由真空中的麦克斯韦方程组导出电荷守恒定律。 2. 写出电磁场能量守恒定律的积分形式,并说明每一项的物理意义。 3. 写出静电场中电场、电势在两介质分界面上的边值关系。 4. 在金属导体中电磁波的能量主要是电场能量还是磁场能量?在真空或绝 缘介质中情况又如何?
5. 平面电磁波在导体中传播时,复波矢 k i 实部和虚部的物理意义分
电动力学试卷习题包括答案.docx
精品文档电动力学期末考试物理学专业级班《电动力学》试卷B题号一二三四五总分得分得分评卷人一.填空(每空1 分,共 14 分)1. a 为常矢量,则( a r ),( a ) r =2.能量守恒定律的积分式是-s d = f dV + dwdV ,它的物理意义是_____________________ dt3. B =▽ A , 若 B 确定,则 A _______(填确定或不确定), A 的物理意义是4.在某区域内能够引入磁标势的条件是5.电四极矩有几个独立分量?答:6.金属内电磁波的能量主要是电场能量还是磁场能量?答:7.良导体条件是 ________________8.库仑规范辅助条件为 ____________;洛伦兹规范辅助条件为 ____________,在此条件下,达朗贝尔矢势方程为________________________________9.爱因斯坦提出了两条相对论的基本假设:⑴相对性原理: _______________________________________________________________________⑵光速不变原理: ____________________________________________________________________得分评卷人二.单项选择(每题 2 分,共 26 分)1.导体的静止条件归结为以下几条 , 其中错误的是 ( )A.导体内部不带电 , 电荷只能分布于导体表面B.导体内部电场为零C.导体表面电场线沿切线方向D. 整个导体的电势相等2.下列表述正确的个数是()⑴单位张量和任一矢量的点乘等于该矢量⑵反称张量 T 与矢量f点乘有 f T T f⑶并矢 AB 等于并矢 BAA. 0 个B. 1个C. 2个D. 3个3.对于均匀带电的长形旋转椭球体,有()A.电偶极矩不为零,电四极矩也不为零B.电偶极矩为零,电四极矩不为零C.电偶极矩为零,电四极矩也为零D.电偶极矩不为零,电四极矩为零4.有关复电容率i的描述正确的是()A.实数部分代表位移电流的贡献,它不能引起电磁波功率的耗散;虚数部分是传导电流的贡献,它引起能量耗散B.实数部分代表传导电流的贡献,它不能引起电磁波功率的耗散;虚数部分是位移电流的贡献,它引起能.精品文档量耗散C.实数部分代表位移电流的贡献,它引起电磁波功率的耗散;虚数部分是传导电流的贡献,它不能引起能量耗散D.实数部分代表传导电流的贡献,它引起电磁波功率的耗散;虚数部分是位移电流的贡献,它不能引起能量耗散5.已知矢势A A, 则下列说法错误的是 ( )A. A 与 A 对应于同一个磁场 BB. A 和 A 是不可观测量 , 没有对应的物理效应C.只有 A 的环量才有物理意义 , 而每点上的 A 值没有直接物理意义由磁场 B 并不能唯一地确定矢势A6.波矢量k i, 有关说法正确的个数是()⑴矢量和的方向不常一致⑵为相位常数,为衰减常数⑶只有实部才有实际意义A. 0个B. 1个C. 2个D. 3个7.频率为30109HZ的微波,在0.7cm0.6cm 的矩形波导管中,能以什么波模传播?()A.TE01B.TE10C.TE10及 TE01D.TE118.( A B)()A. A (B) B (A)B. A (B) B (A)C. B (A) A (B)D.(A)B9.平面电磁波的特性描述如下:⑴电磁波为横波, E 和 B 都与传播方向垂直⑵ E 和 B 互相垂直, E× B 沿波矢 K 方向⑶ E 和 B 同相,振幅比为 v以上 3 条描述正确的个数为()A. 0 个B. 1个C. 2个D. 3个10.谐振腔的本征频率表达式为( m )2( n )2( p )2mnpl 1l 2l 3若 l1l 2l 3,则最低频率的谐振波模为()A. (0,1,1)B. (1,1,0)C. (1,1,1)D. (1,0,0)11.相对论有着广泛的实验基础, 下列实验中不能验证相对论的是( )A.碳素分析法测定地质年代B.横向多普勒效应实验C.高速运动粒子寿命的测定D. 携带原子钟的环球飞行试验12.根据相对论理论下列说法中正确的个数为()⑴时间和空间是运动着的物质存在的形式⑵离开物质及其运动,就没有绝对的时空概念⑶时间不可逆地均匀流逝,与空间无关⑷同时发生的两个事件对于任何惯性系都是同时的⑸两事件的间隔不因参考系的变换而改变A. 1个B. 2个C. 3个D. 4个13.学习电动力学课程的主要目的有下面的几条, 其中错误的是 ( ) .精品文档A.掌握电磁场的基本规律 , 加深对电磁场性质和时空概念的理解B.获得本课程领域内分析和处理一些基本问题的初步能力, 为以后解决实际问题打下基础C.更深刻领会电磁场的物质性 , 加深辩证唯物主义的世界观D.物理理论是否定之否定 , 没有绝对的真理 , 世界是不可知的得分评卷人三.证明(每题 6 分,共 12 分)1.写出介质中的麦克斯韦方程组,并从麦克斯韦方程组出发证明均匀介质内部的体极化电荷密度p 总是等于体自由电荷密度f的(10 )倍。
电动力学试卷及答案1A
电动力学期末考试物理学 专业 级 班 《电动力学》 试卷A一.填空(每空1分,共14分)1. a 、k 及0E为常矢量,则)]sin([0r k E= , )]sin([0r k E =2. 能量守恒定律的积分式是-d s = dV f +dV w dt d ,它的物理意义是____________________3. 反射波电场与入射波电场反相,这现象称为反射过程中的4. 平面波e x t kx E E ˆ)cos(0 ,ey t kx C E B ˆ)cos(0 ,则动量密度B E g0 的周期平均值为 ;若这平面波垂直投射于一平板上,并全部被吸收,则平板所受的压强为5. 波矢量i k ,其中相位常数是 ,衰减常数是6.电容率 = +i,其中实数部分 代表______电流的贡献,它不能引起电磁波功率的耗散,而虚数部分是______电流的贡献,它引起能量耗散。
7.频率为91030 HZ 的微波,在0.7cm 0.4cm 的矩形波导管中,能以什么波模传播?答: 8. 洛伦兹规范辅助条件为____________ ;达朗贝尔方程的四维形式是 9. 洛伦兹变换矩阵为二. 单项选择(每题2分,共26分)R m R mA. ▽ A =▽B. ▽ A =-▽C. A=▽ D. 以上都不对2.设区域V 内给定自由电荷分布)(x ,在V 的边界S 上给定电势 /s 或电势的法向导数n/s,则V 内的电场( ) A. 唯一确定 B.可以确定但不唯一 C.不能确定 D.以上都不对 3.对于均匀带电的立方体,有( ) A.电偶极矩不为零,电四极矩也不为零 B.电偶极矩为零,电四极矩不为零 C.电偶极矩为零,电四极矩也为零 D.电偶极矩不为零,电四极矩为零4.电四极矩是无迹对称张量,它有几个独立分量?( ) A. 9个 B. 6个 C. 5个 D. 4个5.一个处于x点上的单位点电荷所激发的电势)(x 满足方程( ) A. 0)(2 xB. 021)( xC. )(1)(02x x xD. )(1)(02x x6.在某区域内能够引入磁标势的条件是( ) A.磁场具有有旋性 B.有电流穿过该区域 C.该区域内没有自由电流D.该区域是没有自由电流分布的单连通区域7.1959年,Aharonov 和Bohm 提出一新的效应(简称A-B 效应),此效应说明( ) A.电场强度E 和磁感应强度B 可以完全描述电磁场 B.电磁相互作用不一定是局域的C.管内的B 直接作用到管外的电子上,从而引起干涉条纹移动D. A 具有可观测的物理效应,它可以影响电子波束的相位,从而使干涉条文发生移动 8.金属内电磁波的能量主要是( ) A. 电场能量B. 磁场能量C. 电场能量和磁场能量各一半D. 一周期内是电场能量,下一周期内则是磁场能量,如此循环 9.良导体条件为( ) A.1 B.<<1 C.>>1 D.1 10.平面电磁波的特性描述如下:⑴ 电磁波为横波,E 和B 都与传播方向垂直 ⑵ E 和B 互相垂直,E ×B 沿波矢K 方向 ⑶ E 和B 同相,振幅比为v 以上3条描述正确的个数为( )A. 0个B. 1个C. 2个D. 3个 11.谐振腔的本征频率表达式为)()()(321222L pL nL mmnp若LLL 321,则最低频率的谐振波模为( )A. (0,1,1)B. (1,1,0)C. (1,1,1)D. (1,0,0)12.相对论有着广泛的实验基础,下列实验中不能验证相对论的是( ) A. 碳素分析法测定地质年代 B. 横向多普勒效应实验 C. 高速运动粒子寿命的测定 D.携带原子钟的环球飞行试验13.根据相对论理论下列说法中正确的个数为( ) ⑴时间和空间是运动着的物质存在的形式 ⑵离开物质及其运动,就没有绝对的时空概念 ⑶时间不可逆地均匀流逝,与空间无关⑷同时发生的两个事件对于任何惯性系都是同时的 ⑸两事件的间隔不因参考系的变换而改变 A. 1个 B. 2个 C. 3个 D. 4个三.证明(每题6分,共12分)1.证明:⑴当两种绝缘介质的分界面上不带面自由电荷时,电场线的曲折满足1212tan tan其中1和2分别为两种介质的介电常数,1和2分别为界面两侧电场线与法线的夹角⑵当两种导电介质内流有恒定电流时,分界面上电流线曲折满足1212tan tan其中 1和2分别为两种介质的电导率2.有一旋转椭球状的均匀带电体,试证明其电四极矩能有形式c c c D 2000000四.简答(每题4分,共16分)1.静电场能量可以表示为dv 21,在非恒定情况下,场的总能量也能这样完全通过电荷或电流分 布表示出来吗?为什么?2.写出推迟势,并解释其物理意义。
电动力学考试题和答案
电动力学考试题和答案一、选择题(每题2分,共20分)1. 电场强度的定义式为:A. E = F/qB. E = FqC. E = qFD. E = F/Q答案:A2. 电场线的方向是:A. 从正电荷指向负电荷B. 从负电荷指向正电荷C. 从无穷远处指向电荷D. 从电荷指向无穷远处3. 电势差的定义式为:A. U = W/qB. U = WqC. U = qWD. U = W/Q答案:A4. 电容器的电容定义式为:A. C = Q/UB. C = U/QC. C = QVD. C = UV答案:A5. 电流强度的定义式为:B. I = qtC. I = qVD. I = Vq答案:A6. 欧姆定律的公式为:A. V = IRB. V = R/IC. V = I/RD. V = R*I答案:A7. 磁场强度的定义式为:A. B = F/IB. B = FID. B = Vq答案:A8. 洛伦兹力的公式为:A. F = qvBB. F = BqvC. F = qBvD. F = Bvq答案:C9. 磁通量的定义式为:A. Φ = B*AB. Φ = A*BC. Φ = B/AD. Φ = A/B答案:A10. 法拉第电磁感应定律的公式为:A. E = -dΦ/dtB. E = dΦ/dtC. E = Φ/tD. E = tΦ答案:A二、填空题(每题2分,共20分)1. 电场强度的单位是______。
答案:伏特/米(V/m)2. 电势的单位是______。
答案:伏特(V)答案:法拉(F)4. 电流强度的单位是______。
答案:安培(A)5. 电阻的单位是______。
答案:欧姆(Ω)6. 磁场强度的单位是______。
答案:特斯拉(T)7. 磁通量的单位是______。
答案:韦伯(Wb)8. 电感的单位是______。
答案:亨利(H)答案:假想10. 磁场线是______的线。
答案:闭合三、计算题(每题10分,共60分)1. 一个点电荷Q = 2 × 10^-6 C,距离该点电荷r = 0.1 m处的电场强度是多少?答案:E = kQ/r^2 = (9 × 10^9 N·m^2/C^2) × (2 × 10^-6 C) / (0.1 m)^2 =1.8 × 10^4 N/C2. 一个电容器C = 4 μF,两端电压U = 12 V,求该电容器的电荷量Q。
电动力学第三版题解
r ex r ∂ ∇ × A(u ) = r∂x Ax (u )
r ey ∂ r ∂y Ay (u )
r ez r r r r r r ∂ ∂ A A ∂ ∂Ax r A ∂ A ∂ A r r ∂ y y x z z =( − )e x + ( − )e y + ( − )e z = ∂ ∂ ∂ ∂ ∂ ∂ ∂ z y z z x x y r Az (u )
S
若 S → ∞, 则 ( xj ) ⋅ dS = 0, ( j 同理
(
r ∂ρ ) ∂t
∫
r
r
r
S
= 0)
y
= ∫ j y dV ' , (
r ∂ρ ) z = ∫ j z dV ' ∂t
即
r r r dP = ∫ j ( x ' , t )dV ' V dt
r r r r r m ×R m⋅R r 的旋度等于标量 ϕ = 的梯 6. 若 m 是常矢量 证明除 R 0 点以外 矢量 A = R3 R3
首先 算符 ∇ 是一个微分算符 其具有对其后所有表达式起微分的作用 对于本题
v v ∇ 将作用于 A和B
又 ∇ 是一个矢量算符 因此 具有矢量的所有性质
利用公式 c × ( a × b ) = a ⋅ (c ⋅ b ) − (c ⋅ a )b 可得上式 后两项是 ∇ 作用于 B
v
v
v
v v v
v v v
而 dl φ = (φ i dl x + φ j dl y + φ k dl z )
l l
∫
r
∫
-3-
电动力学习题解答
第一章
电磁现象的普遍规律
2017-2018学年《电动力学》期末考试 A卷
以一个过来人的身份,winbender 学长特地为学弟学妹们提供此试卷,祝愿大家期末考试顺利!贵州师范大学2017-2018学年第二学期期末考试试卷(A 卷)考试性质: 闭卷 课程名称: 《电动力学》 命题人: 赢本德一、填空题:(共30分,每空2分)1、电荷守恒定律的微分形式是_________________________。
2、静电场的散度方程为 ,此式也是高斯定理的微分形式,它说明静电场为 场。
3、在细直导线上,恒定电流所激发磁场的毕奥-萨伐尔定律的表达式为 。
4、解决静电场的问题有分离变量法、镜像法和格林函数法,这些方法都以 为依据。
5、在两介质的分界面上,静电势所满足的边值关系是 。
6、在线性均匀介质中,如果已知ρ和ϕ,则静电场的总能量为 。
7、时谐电磁波是指以一定频率随时间作 振荡的电磁波。
8、平面电磁波的特性有:(1)电磁波是横波,E 和B 都与传播方向垂直;(2)E 和B 互相垂直,B E ⨯沿波矢方向k; (3) 。
9、光从光密介质射向光疏介质,当入射角增大到某一角度,使折射角达到90时,折射光完全消失,只剩下反射光的现象称为 。
10、良导体的条件是 ;对于高频率的电磁波,电磁场以及和它相互作用的高频电流只集中在表面很薄的一层内,这种现象称为 。
11、推迟势的物理意义是 。
12、运动的时钟具有 效应;而间隔具有 性。
二、简答题:(共20分,每题10分)13、写出真空中的麦克斯韦方程组的微分形式,并说明其对应的物理意义。
14、写出两种规范条件的表达式,它们各有什么特点。
三、证明题:(共20分,每题10分) 15、设u 是空间坐标z y x ,,的函数,证明u du dfu f ∇=∇)(16、证明:若物体相对于一个参考系的运动速度c u <|| ,则对任一参考系也有c u <'||.四、计算题:(共30分,每题10分)17、有一内外半径为1r 和2r 的空心介质球,介质的电容率为ε.使介质内均匀带静止自由电荷密度f ρ,求空间各点的电场强度。
电动力学答案L1
(3)静电t情an况θ1:导E体1t 内E2nEv1
σ1 =0
稳恒电∴流情E2况t =:E对1t绝=缘0 介,质即,导体σ 外= 的0 ,电场Jv2线=总0 是垂直于导体表面。
1-14
∴ J1n = J 2n = 0
解(1)由边值关系
即导体内只有平行于导体表面的电场。
evn
×
(
v H
2
−
v H1
)
=
=
Q
S
ε0
∴E
=
Q 4πε0r 2
,即
v E
=
Q 4πε0r 3
rv
∫ ∫ r < a 时,
v E
⋅
v dS
=
4π
r
2
E
=
1
ρdV = 1 ⋅ ρ ⋅ 4 π r3
S
ε0 V
ε0 3
r
a
=
∴
v E
1⋅ Q
ε0 =
(4 3)π Qrv
4πε 0 a 3
a3
⋅
4π 3
r3
=
1 ε0
⋅
Qr 3 a3
求散度、旋度
∴∇ × Bv
=
−
∂Bθ ∂z
evr
+
1 r
∂ ∂r
(rBθ )evz
=
μ0I 2πR12
1 r
∂r 2 ∂r
evz
=
μ0I πR12
evz
=
μ0 Jv
R1
<
r
<
R2 时, B
=
Bθ
=
μ0I 2πr
2
r
电动力学试题库一及答案
福建师范大学物理与光电信息科技学院20___ - 20___ 学年度学期____ 级物理教育专业《电动力学》试题(一)试卷类别:闭卷考试时间:120分钟______________________ 学号____________________一.判断以下概念是否正确,对的打(√),错的打(×)(共15分,每题3分)1.电磁场也是一种物质,因此它具有能量、动量,满足能量动量守恒定律。
( )2.在静电情况,导体内无电荷分布,电荷只分布在表面上。
()3.当光从光密介质中射入,那么在光密与光疏介质界面上就会产生全反射。
()4.在相对论中,间隔2S在任何惯性系都是不变的,也就是说两事件时间先后关系保持不变。
()5.电磁波若要在一个宽为a,高为b的无穷长矩形波导管中传播,其角频率为22⎪⎭⎫⎝⎛+⎪⎭⎫⎝⎛≥bnamμεπω()二.简答题。
(每题5分,共15分)1.写出麦克斯韦方程组,由此分析电场与磁场是否对称?为什么?2.在稳恒电流情况下,有没有磁场存在?若有磁场存在,磁场满足什么方程?3.请画出相对论的时空结构图,说明类空与类时的区别.三.证明题。
(共15分)从没有电荷、电流分布的麦克斯韦方程出发,推导真空中的E 、B的波动方程。
四.综合题。
(共55分) 1.内外半径分别为1r 和2r 的无穷长空心导体圆柱,沿轴向流有稳恒均匀自由电流f j,导体的磁导率为μ,求磁感应强度和磁化电流。
(15分)2.有一个很大的电解槽中充满电导率为2σ的液体,使其中流着均匀的电流f j ,今在液体中置入一个电导率为1σ的小球,求稳恒时电流分布和面电荷分布。
(分离变量法)(15分)3.有带电粒子沿z 轴作简谐振动ti ez z ω-=0,设c z <<ω0,求它的辐射场E、B和能流S 。
(13分)- - . 4.一辆以速度v 运动的列车上的观察者,在经过某一高大建筑物时,看见其避雷针跳起一脉冲电火花,电光迅速传播,先后照亮了铁路沿线的两铁塔。
郑州大学2007级电动力学期末考试试题A
1.电荷激发电场,电流激发磁场;电荷是电场的源,电流是磁场的源。
(×)2. 磁场强度公式对铁磁质也适用。
(√)3.静电场总能量可以通过电荷分布和电势表示出来,即,由此可见的物理意义是表示空间区域的电场能量密度。
(×)9. 狭义相对论中若两事件在同一地点发生,则两事件的同时是相对的。
(×)10. 狭义相对论时钟延缓效应是相对效应。
惯性系上看到固定于上的时钟变慢;反过来,惯性系上看到固定于上的时钟变快。
(×)1.由算苻的微分性和矢量性可导出公式。
(2分)2.电荷守恒定律的微分形式是。
(2分)3. 电磁场(电场强度和磁场强度分别用和表示)在真空中传播,空间某点处的能流密度为,该点的动量密度为。
(每空1分,共2分)6. 四维电磁势= ,四维电流密度= ,电磁势所满足的达朗伯方程的明显协变形式为。
(6分)7. 静止μ子的平均寿命是秒,在实验室中,从高能加速器出来的μ子以0.8c(c 为真空中光速)运动。
在实验室中观察,则这些μ子的平均寿命是,1.在均匀介质内部的体极化电荷密度ρP总是等于体自由电荷密度ρf的( A )A. 倍B. 倍C. 倍D. -倍2.镜像法的理论基础是(D )A.场方程的边界条件B.Maxwell方程组C.唯一性定理D.唯一性定理和场的叠加原理3.下列说法正确的是(C )A.空间任一点的场强是由该点的电荷密度决定的。
B.空间任一点的场强的散度是由所有在场的电荷q决定的。
C.空间任一点的场强的散度只与该点的电荷密度有关。
D.空间某点,则该点,可见该点也必为零。
4. 矢势的旋度等于,即,则(C )A. 有旋场一定是无源场B. 有旋场一定是有源场C. 有旋场可能是有源场,也可能是无源场D. 有旋场一定是有势场5.单色平面电磁波的电场表示式表示电场是(A )A. 沿z轴正方向以速度传播的行波B. 沿z轴负方向以速度传播的行波C. 沿z轴正方向以加速度传播的行波D. 沿z轴负方向以加速度传播的行波分数评卷人四、简答题:(每题4 分,共20 分)1. 写出介质中的麦克斯韦方程组(微分形式),它们是建立在哪些实验规律的基础上的?2. 请表述静电场的唯一性定理。
11 电动力学习题参考解答
2 (1) ∇ × (ϕ A) = ∇ϕ × A + ϕ∇ × A , (2) ∇ × (∇ × A) = ∇ (∇ ⋅ A) − ∇ A
r
r
r
r
r
r
r r r r r ∇× (ϕ A) = ∇ϕ × (ϕ A) + ∇ A × (ϕ A) = ϕ ∇ϕ × A + ∇A × (ϕ A) r 其中 ∇ϕ 或 ∇ A 分别表示只对 ϕ 或 A 作用。由于 ∇ A 对标量函数只能取梯度,故 r r ∇ A × (ϕ A) = (∇ Aϕ ) × A
同理可以得到磁感应强度满足的波动方程
2
③
④
r r 1 ∂2 B ∇ B− 2 2 =0 c ∂t
1.1.4 证 明 在 均 匀 介 质 中 极 化 电 荷 密 度 与 自 由 电 荷 密 度 满 足 关 系 式
ρ p = −(1 − ε 0 / ε ) ρ f 。 r r r r r uv 证 将 D = ε 0 E + P 代入散度方程 ∇ ⋅ D = ρ f ,并考虑 D = ε E ,有 r r r ε r r ε ρ f = ∇ ⋅ D = ∇ ⋅ (ε 0 E ) + ∇ ⋅ P = 0 ∇ ⋅ D + ∇ ⋅ P = 0 ρ f − ρ P ε ε
为了解决这个矛盾,将电场强度的旋度方程修改为
②
r r ∂B r ∇× E = − − Jm ∂t
由此可以推出磁流守恒定律(即连续性方程)
③
r ∂ρ m + ∇ ⋅ Jm = 0 ∂t
们就得到有磁单极时的麦克斯韦方程组
④
因为麦克斯韦方程组中的另外两个方程在引入磁荷后不出现矛盾,所以不必修改。这样我
r r r r r ∂D r r ∂B r − Jm , ∇ × H = +J ∇ ⋅ D = ρ , ∇ ⋅ B = ρm , ∇ × E = − ∂t ∂t
电动力学试卷及问题详解1B
电动力学期末考试物理学 专业 级 班 《电动力学》 试卷B一.填空(每空1分,共14分)1. a为常矢量,则=⋅∇)(r a , r a )(∇⋅= 2. 能量守恒定律的积分式是-⎰⋅σd s =⎰⋅dV f ν +dV w dtd ⎰,它的物理意义是_____________________3. B =▽⨯A ,若B确定,则A _______(填确定或不确定),A 的物理意义是4. 在某区域能够引入磁标势的条件是5. 电四极矩有几个独立分量?答:6.金属电磁波的能量主要是电场能量还是磁场能量?答: 7.良导体条件是________________8. 库仑规辅助条件为____________;洛伦兹规辅助条件为____________,在此条件下,达朗贝尔矢势方程为________________________________9. 爱因斯坦提出了两条相对论的基本假设:⑴ 相对性原理:_______________________________________________________________________ ⑵ 光速不变原理:____________________________________________________________________二. 单项选择(每题2分,共26分)1. 导体的静止条件归结为以下几条,其中错误的是( ) A. 导体部不带电,电荷只能分布于导体表面 B. 导体部电场为零C. 导体表面电场线沿切线方向D. 整个导体的电势相等2.下列表述正确的个数是( )⑴单位量和任一矢量的点乘等于该矢量⑵反称量T与矢量f 点乘有 f T T f ⋅-=⋅ ⑶并矢B A 等于并矢A BA. 0个B. 1个C. 2个D. 3个3.对于均匀带电的长形旋转椭球体,有( ) A.电偶极矩不为零,电四极矩也不为零 B.电偶极矩为零,电四极矩不为零 C.电偶极矩为零,电四极矩也为零 D.电偶极矩不为零,电四极矩为零 4.有关复电容率ωσεεi+='的描述正确的是( ) A. 实数部分ε代表位移电流的贡献,它不能引起电磁波功率的耗散;虚数部分是传导电流的贡献,它引起能量耗散C. 实数部分ε代表位移电流的贡献,它引起电磁波功率的耗散;虚数部分是传导电流的贡献,它不能引起能量耗散D. 实数部分ε代表传导电流的贡献,它引起电磁波功率的耗散;虚数部分是位移电流的贡献,它不能引起能量耗散5.已知矢势ψ∇+='A A,则下列说法错误的是( )A. A 与A '对应于同一个磁场BB. A 和A'是不可观测量,没有对应的物理效应C. 只有A 的环量才有物理意义,而每点上的A值没有直接物理意义 由磁场B并不能唯一地确定矢势A6.波矢量αβi k +=,有关说确的个数是( ) ⑴矢量α和β 的方向不常一致⑵α为相位常数,β 为衰减常数 ⑶只有实部β才有实际意义A. 0个B. 1个C. 2个D. 3个7.频率为91030⨯HZ 的微波,在0.7cm ⨯0.6cm 的矩形波导管中,能以什么波模传播?( ) A. 01TE B. 10TE C. 10TE 及01TE D. 11TE8.=⨯⋅∇)(B A( )A.)()(A B B A ⨯∇⋅+⨯∇⋅B.)()(A B B A ⨯∇⋅-⨯∇⋅C.)()(B A A B⨯∇⋅-⨯∇⋅ D. B A ⨯⋅∇)(9. 平面电磁波的特性描述如下:⑴ 电磁波为横波,E 和B 都与传播方向垂直 ⑵ E 和B 互相垂直,E ×B 沿波矢K 方向 ⑶ E 和B 同相,振幅比为v以上3条描述正确的个数为( )A. 0个B. 1个C. 2个D. 3个 10.谐振腔的本征频率表达式为 232221)()()(l p l n l m mnp ++=μεπω 若321l l l ≤≤,则最低频率的谐振波模为( )A. (0,1,1)B. (1,1,0)C. (1,1,1)D. (1,0,0)11.相对论有着广泛的实验基础,下列实验中不能验证相对论的是( ) A. 碳素分析法测定地质年代 B. 横向多普勒效应实验C. 高速运动粒子寿命的测定D.携带原子钟的环球飞行试验12.根据相对论理论下列说法中正确的个数为( ) ⑴时间和空间是运动着的物质存在的形式 ⑵离开物质及其运动,就没有绝对的时空概念 ⑶时间不可逆地均匀流逝,与空间无关⑷同时发生的两个事件对于任何惯性系都是同时的 ⑸两事件的间隔不因参考系的变换而改变A. 掌握电磁场的基本规律,加深对电磁场性质和时空概念的理解B. 获得本课程领域分析和处理一些基本问题的初步能力,为以后解决实际问题打下基础C. 更深刻领会电磁场的物质性,加深辩证唯物主义的世界观D. 物理理论是否定之否定,没有绝对的真理,世界是不可知的三.证明(每题6分,共12分)1.写出介质中的麦克斯韦方程组,并从麦克斯韦方程组出发证明均匀介质部的体极化电荷密度p ρ总是等于体自由电荷密度f ρ的)1(0εε--倍。
电动力学试题及其答案
一、填空题(每空2分,共32分)1、已知矢径r,则 r = 。
2、已知矢量A和标量φ,则=⨯∇)(A φ 。
3、区域V 内给定自由电荷分布 、 ,在V 的边界上给定 或,则V 内电场唯一确定。
4、在迅变电磁场中,引入矢势A 和标势φ,则E= ,B= 。
5、麦克斯韦方程组的微分形式 、 、 、 。
6、电磁场的能量密度为 w = 。
7、库仑规范为 。
8、相对论的基本原理为 , 。
9、电磁波在导电介质中传播时,导体内的电荷密度 = 。
10、电荷守恒定律的数学表达式为 。
二、判断题(每题2分,共20分)1、由0ερ=⋅∇E 可知电荷是电场的源,空间任一点,周围电荷不但对该点的场强有贡献,而且对该点散度有贡献。
( )2、矢势A沿任意闭合回路的环流量等于通过以该回路为边界的任一曲面的磁通量。
( )3、电磁波在波导管内传播时,其电磁波是横电磁波。
( )4、任何相互作用都不是瞬时作用,而是以有限的速度传播的。
( )5、只要区域V 内各处的电流密度0=j,该区域内就可引入磁标势。
( )6、如果两事件在某一惯性系中是同时发生的,在其他任何惯性系中它们必不同时发生。
( )7、在0=B 的区域,其矢势A也等于零。
( ) 8、E、D 、B 、H四个物理量均为描述场的基本物理量。
( ) 9、由于A B⨯∇=,矢势A 不同,描述的磁场也不同。
( )10、电磁波的波动方程012222=∂∂-∇E tv E 适用于任何形式的电磁波。
( )三、证明题(每题9分,共18分)1、利用算符 的矢量性和微分性,证明 0)(=∇⨯⋅∇φr式中r为矢径,φ为任一标量。
2、已知平面电磁波的电场强度i t z c E E )sin(0ωω-=,求证此平面电磁波的磁场强度为j t z cc E B )sin(0ωω-=四、计算题(每题10分,共30分)1、迅变场中,已知)cos(0t r K A A ω-⋅= , )cos(0t r K ωφφ-⋅= ,求电磁场的E 和B。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电动力学期末考试物理学 专业 级 班 《电动力学》 试卷A一.填空(每空1分,共14分)1. a 、k及0E 为常矢量,则)]sin([0r k E⋅⋅∇= , )]sin([0r k E ⋅⨯∇=2. 能量守恒定律的积分式是-⎰⋅σd s =⎰⋅dV f ν +dV w dtd ⎰,它的物理意义是____________________3. 反射波电场与入射波电场反相,这现象称为反射过程中的4. 平面波e x t kx E E ˆ)cos(0ω-= ,ey t kx C E B ˆ)cos(0ω-= ,则动量密度B E g⨯=0ε的周期平均值为 ;若这平面波垂直投射于一平板上,并全部被吸收,则平板所受的压强为5. 波矢量αβi k +=,其中相位常数是 ,衰减常数是 6.电容率ε'=ε+iωσ,其中实数部分ε代表______电流的贡献,它不能引起电磁波功率的耗散,而虚数部分是______电流的贡献,它引起能量耗散。
7.频率为91030⨯HZ 的微波,在0.7cm ⨯0.4cm 的矩形波导管中,能以什么波模传播?答: 8. 洛伦兹规范辅助条件为____________ ;达朗贝尔方程的四维形式是 9. 洛伦兹变换矩阵为二. 单项选择(每题2分,共26分)1. 若m为常矢量,矢量R R m A 3 ⨯=标量RR m 3⋅=φ,则除R=0点外,A 与φ应满足关系( ) A. ▽⨯A =▽φ B. ▽⨯A =-▽φ C. A=▽φ D. 以上都不对2.设区域V 内给定自由电荷分布)(x ρ,在V 的边界S 上给定电势φ/s 或电势的法向导数n∂∂φ/s,则V 内的电场( ) A. 唯一确定 B.可以确定但不唯一 C.不能确定 D.以上都不对3.对于均匀带电的立方体,有( ) A.电偶极矩不为零,电四极矩也不为零 B.电偶极矩为零,电四极矩不为零 C.电偶极矩为零,电四极矩也为零 D.电偶极矩不为零,电四极矩为零4.电四极矩是无迹对称张量,它有几个独立分量?( ) A. 9个 B. 6个 C. 5个 D. 4个5.一个处于x '点上的单位点电荷所激发的电势)(x ψ满足方程( )B. 021)(ε-=ψ∇xC. )(1)(02x x x'--=ψ∇δεD. )(1)(02x x'-=ψ∇δε6.在某区域内能够引入磁标势的条件是( ) A.磁场具有有旋性 B.有电流穿过该区域 C.该区域内没有自由电流D.该区域是没有自由电流分布的单连通区域7.1959年,Aharonov 和Bohm 提出一新的效应(简称A-B 效应),此效应说明( ) A.电场强度E 和磁感应强度B 可以完全描述电磁场 B.电磁相互作用不一定是局域的C.管内的B 直接作用到管外的电子上,从而引起干涉条纹移动D. A 具有可观测的物理效应,它可以影响电子波束的相位,从而使干涉条文发生移动 8.金属内电磁波的能量主要是( ) A. 电场能量 B. 磁场能量C. 电场能量和磁场能量各一半D. 一周期内是电场能量,下一周期内则是磁场能量,如此循环 9.良导体条件为( )A.εωσ≥1 B. εωσ<<1 C. εωσ>>1 D. εωσ≤110.平面电磁波的特性描述如下:⑴ 电磁波为横波,E 和B 都与传播方向垂直 ⑵ E 和B 互相垂直,E ×B 沿波矢K 方向 ⑶ E 和B 同相,振幅比为v以上3条描述正确的个数为( )A. 0个B. 1个C. 2个D. 3个 11.谐振腔的本征频率表达式为 )()()(321222L pL nL mmnp ++=μεπω若LLL 321≥≥,则最低频率的谐振波模为( )A. (0,1,1)B. (1,1,0)C. (1,1,1)D. (1,0,0)12.相对论有着广泛的实验基础,下列实验中不能验证相对论的是( ) A. 碳素分析法测定地质年代 B. 横向多普勒效应实验C. 高速运动粒子寿命的测定D.携带原子钟的环球飞行试验13.根据相对论理论下列说法中正确的个数为( ) ⑴时间和空间是运动着的物质存在的形式 ⑵离开物质及其运动,就没有绝对的时空概念 ⑶时间不可逆地均匀流逝,与空间无关⑷同时发生的两个事件对于任何惯性系都是同时的 ⑸两事件的间隔不因参考系的变换而改变 A. 1个 B. 2个 C. 3个 D. 4个三.证明(每题6分,共12分)1.证明:⑴当两种绝缘介质的分界面上不带面自由电荷时,电场线的曲折满足 εεθθ1212tan tan =其中ε1和ε2分别为两种介质的介电常数,θ1和θ2分别为界面两侧电场线与法线的夹角⑵当两种导电介质内流有恒定电流时,分界面上电流线曲折满足σσθθ1212tan tan =其中σ1和σ2分别为两种介质的电导率2.有一旋转椭球状的均匀带电体,试证明其电四极矩能有形式⎪⎪⎪⎭⎫ ⎝⎛--=c c c D 2000000四.简答(每题4分,共16分)1.静电场能量可以表示为⎰=dv ρϕω21,在非恒定情况下,场的总能量也能这样完全通过电荷或电流分 布表示出来吗?为什么?3.解释什么是电磁场的规范变换和规范不变性?4.推导洛伦兹变换的三个基本假定是什么?五.解答(每题8分,共32分)1. 写出介质中的麦克斯韦方程组,并从麦克斯韦方程组出发,求电导率为σ,电容率为ε的均匀介质内部自由电荷量的密度ρ与时间t 的关系。
2.一个半径为a 的不接地导体球的中心与坐标原点重合,球上总电荷为零,两个电量均为q 的点电荷置于x 轴上x=b,x=-c 处(b 、c 均大于a)求 a. 球外空间的电势b. x=b 处的电荷受到的作用力3.在均匀外电场中置入半径为0R 的导体球,导体球上接有电池使球与地保持电势差0Φ,试用分离变数法求电势。
4.有一根长棒相对惯性系S以1/2C的速度沿X轴水平向右运动,棒上有一个小虫也以1/2C的速度(相对棒)从左端向右爬,到头后立即以相等的速度返回,设棒长为L,且与X轴平行,求1).在棒上的观测者看来,小虫回到起点需要多长时间?2).在S系的观测者看来,小虫回到起点要用多长时间?3).计算出上面两个时间的关系电动力学期末考试物理学 专业 级 班 《电动力学》 试卷A参考答案一.填空(每空1分,共14分)1. )cos(0r k E k ⋅⋅;)cos(0r k E k ⋅⨯2. 单位时间通过界面流入V 内的能量等于场对V 内电荷做功的功率与V 内电磁场能量增加率之和。
3. 半波损失4. z e CE ˆ2200ε;2200E ε 5. β ;α6.位移;传导 7.10TE8. 012=∂∂+⋅∇tc A ϕ; □μμμJ A 0-= 9.⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-γβγβγγ000100001000i i二. 选择(每题2分,共26分)1.B2.A3.B4.C5.C6.D7.D8.B9.C 10.D 11.B 12.A 13.C三.证明(每题6分,共12分) 1.………3分………3分2.解: 由对称性⎰⎰⎰===0zxdV yzdV xydV 因此0312312===D D D …………3分又由对称性及0332211=++D D D 知33221121D D D -==…………3分令c D D ==2211,则电四极矩能有形式⎪⎪⎪⎭⎫ ⎝⎛--=c c c D 2000000四.简答(每题4分,共16分)1. 答:不能,非恒定情况下,电磁场相互激发,其形式就是独立于电荷分布之外的电磁波运动,场的总能量不可能完全通过电荷或电流分布表示出来。
2.答:⎰'-'=V d r c r t x t x 04),(),(περϕV d r crt x J t x A '-'=⎰),(4),(0πμ 电荷产生的物理作用不能够立刻传至场点,而是在较晚时刻才传到场点,所推迟的时间r/c 正是电磁作用从源点传至场点所需的时间。
3.答:规范变换:tA A A ∂∂-'→∇+='→ψϕϕψ, 规范不变性:当势作规范变换时,所有物理量和物理规律都应该保持不变4.答:1。
时空各相同性、均匀 2。
相对性原理 3。
光速不变原理五.解答(每题8分,共32分)1.解:tBE ∂∂-=⨯∇ ,t D J H ∂∂+=⨯∇,ρ=⋅∇D ,0=⋅∇B ……………4分又E J σ=,E D ε=代入0=∂∂+⋅∇t J ρ 中有,0=∂∂+tρρεσ,解得t e t εσρρ-=)0()(……………4分2.解:两个镜像电荷,再球心放一个平衡电荷……………3分a.])()()()()([4122222222222222222zy c x qz y ca x q ca z y x q c ab a z y b a x q ba z yb x q+++++++-+++++++--+++-=πεϕ……………3分b. ])(1)()([422222202c b ca b c ab c a b a b a b b a q F +++-+++--=πε……………2分3.解:……………2分……………2分……………2分……………2分4.解:1)cL cLc L t t t 42/12/121=+='∆+'∆='∆ ……………3分 2)222111c v L c v t t -+'∆=∆,222221)(cvL c vt t --+'∆=∆,148)2/1(14143222221-=-=-'∆=∆+∆=∆c L c c c cL c v t t t t ……3分3)2222211cv t c v x c vt t -'∆=-'∆+'∆=∆,其中c v 2/1=……………2分。