平面简谐波的波函数
合集下载
10-02 平面简谐波的波函数
u
8m C B 5m 9m D
oA
x
1)以 A 为坐标原点,写出波动方程 ) 为坐标原点,
A = 3×10 m T = 0.5s = 0
2
2
λ = uT = 10 m
x y = (3 × 10 ) cos(4π t )m 5
10 – 2 平面简谐波的波函数
第十章 波动
2)以 B 为坐标原点,写出波动方程(首先要知道 点的振动方程) ) 为坐标原点,写出波动方程(首先要知道B点的振动方程 点的振动方程)
( 0 .01cm -1 ) x 2 ] = 2 π
λ = x2 x1 = 200 cm
周期为相位传播一个波长所需的时间 周期为相位传播一个波长所需的时间
π [(2.50s-1 )t1 (0.01cm-1 ) x1 ] = π [(2.50s-1 )t2 (0.01cm-1 ) x2 ]
x2 x1 = λ = 200 cm
第十章 波动
y(x,t) = Acos(ωt kx +)
质元的振动速度, 质元的振动速度,加速度
t x y(x,t) = Acos[2 π( ) +] T λ
角波数
k= 2π
y x v = = ωAsin[ω(t ) +] t u 2 y x 2 a = 2 = ω Acos[ω(t ) +] t u
y = A cos(ω t
O
2π
t=0 x=0
y ω
λ
x +)
π = 2
A
y y = 0, v = >0 t
t x π y = (1 . 0 m) cos[ 2 π ( ) ] 2.0s 2.0 m 2
10-2平面简谐波的波函数
x
O
x
A
理学院 物理系
大学物理
§10-2 平面简谐波的波函数
yO Acost
yO表示质点O在 t时刻离开平衡位置的距离.
考察波线上P点(坐标x), P点比O点的振
动t 落Δ后t 时刻t 的ux,位P移点,在由t此时得刻的位移是O点在
y A
u
P
x
O
x
A
理学院 物理系
大学物理
§10-2 平面简谐波的波函数
y
u
A
P
x
O
x
A
理学院 物理系
大学物理
§10-2 平面简谐波的波函数
故P点的振动方程(波动方程)为:
y
yo
(t
t)
A cos[ (t
x) u
]
对波动方程的各种形式,应着重从
物理意义上去理解从形式上看:波动是波形的传播.
理学院 物理系
大学物理
§10-2 平面简谐波的波函数
大学物理 §§1100--22 平平面简面谐波简的谐波函波数 的波函数
一 平面简谐波的波函数
波函数:用以描述波在传播过程中空间各点 x 的振
动 y 随时间 t 变化的表达式。 y Acos[(t x) ]
u
设有一平面简谐波沿 x轴正方向传播,
波速为u,坐标原点 O处质点的振动方程为
y A
u
P
uu
Acos[(t x ) ( x0 )]
理学u院 物理u系
大学物理
§10-2 平面简谐波的波函数
例4 一平面简谐波以速度 u 20 m s-1 沿直线传播,波线上点 A 的简谐运动方 程
yA 3102 cos(4 π t); ( y, t单位分别为m,s).
§12-2平面简谐波的波函数
x2 − x1 −1 u= = 250 cm ⋅ s t 2 − t1
轴正方向传播, 例2 一平面简谐波沿 O x 轴正方向传播,已知振 幅 A = 1.0m T = 2 . 0 s λ = 2.0m .在 t = 0 时坐 标原点处的质点位于平衡位置沿 O y 轴正方向运 动 .求 1)波函数 解:写出波函数的标准式
振动向右传播 滞后的时间
x ∆t = u
t 时刻点 P 的运动
=
t-x/u时刻点 的运动 时刻点O 时刻点
P点振动方程
yP
t
= yO
t−x u
x = A cos[ω (t − ) + ϕ0 ] u
点选取的任意性,得波函数即上式。 由P点选取的任意性,得波函数即上式。 太原理工大学物理系
方法之二
相位落后法
8m 5m 9m
−2
λ = 10 m
C B o A D 点 C 的相位比点 A 超前 AC −2 yC = 3 × 10 cos[4 π t + 2 π ]
x
点的坐标x= 带入波函数 将D点的坐标 =9m带入波函数 点的坐标
−2
λ 13 −2 = 3 × 10 cos[4 π t + π] 5
t 9 y D = 3 ×10 cos[2 π( − )](m) 0.5 10
12§12-2 平面简谐波的波函数 介质中任一质点( 介质中任一质点(坐标为 x)相对其平衡位置的 ) 位移( 位移(坐标为 y)随时间的变化关系,即 y ( x, t ) )随时间的变化关系, 称为波函数. 称为波函数.
y = y ( x, t )
各质点相对平 衡位置的位移 衡位置的位移 波线上各质点 平衡位置 平衡位置
10-02 平面简谐波的波函数
波程差
∆x21 = x2 − x1
∆ϕ = 2π ∆x
∆ϕ12 = ϕ1 −ϕ2 = 2π
x2 − x1
λ
= 2π
∆x21
λ
λ
9
10– 10 2 平面简谐波的波函数
第十章 波动
3 若 x, t 均变化,波函数表示波形沿传播方 均变化, 向的运动情况(行波) 向的运动情况(行波).
y
O
u
t
t + ∆t 时刻 时刻 p Q
x2 − x1 u= = 250 cm ⋅ s −1 t 2 − t1
19
第十章 波动 10– 10 2 平面简谐波的波函数 轴正方向传播, 例1 一平面简谐波沿 O x 轴正方向传播, 已知振 幅 A = 1.0m , = 2 . 0 s , = 2.0m . 在 t = 0 时坐标 T λ 原点处的质点位于平衡位置沿 O y 轴正方向运动 . 求 1)波动方程 ) 解 写出波动方程的标准式
Y u=0.08m/s P . 0.02
yo = Acos(ω t +ϕ)
ϕ =− π
2
X
-0.04
λ = 0.04 A = 0.04
1 ∴T = = u 2
u = 0.08
λ
3π x π ) y = 0.04cos[4π (t − ) − ] (m) yP = 0.04cos(4πt − 2 )(m16 0.08 2
13
10– 10 2 平面简谐波的波函数
第十章 波动
讨论 1)给出下列波函数所表示的波的传播方向 )给出下列波函数所表示的波的传播方向 和 x = 0 点的初相位. 点的初相位
2)平面简谐波的波函数为 y = A cos( Bt − Cx ) ) 为正常数,求波长、波速、 式中 A , B , C 为正常数,求波长、波速、波传播方 的两点间的相位差. 向上相距为 d 的两点间的相位差
平面简谐波的波函数标准形式
平面简谐波的波函数表达式
平面简谐波的波函数表达式是y=Asin(ωx+φ),其中A为振幅,2π/ω为周期,φ为初相
平面简谐波是最基本的波动形式。
平面传播时,若介质中体元均按余弦(或正弦)规律运动,就叫平面简谐波。
如果所传播的是谐振动,且波所到之处,媒质中各质点均做同频率、同振幅的谐振动,这样的波称为简谐波,也叫余弦波或正弦波。
如果简谐波的波面是平面,这样的简谐波称为平面简谐波。
平面简谐波传播时,介质中各质点都作同一频率的简谐振动,但在任一时刻,各点的振动相位一般不同,它们的位移也不相同,但根据波阵面的定义知道,
在任一时刻处在同一波阵面上的各点有相同的相位,它们离开各自的平衡位置有相同的位移。
简谐平面波都往往被简称为简谐波或者平面波,后者频繁在量子力学中使用。
本书的量子力学部分也会大量使用平面波这个简称,无论波动是几维的。
广义来说,平面波未必是简谐的,只需要等相位面都是平面即可:例如波长随空间变化,频率随时间变化也仍然是平面波。
而简谐波也未必是平面的,球面波也可以在径向也是简谐函数。
11-2 平面简谐波的波函数
-
x u
)=
Acos ω
t
-
x u
+
0
上页 下页 返回 退出
P处质点在时刻t 的位移为:
yP (t) =
Acos ω
t
-
x u
+
0
波 函 数
因此,波线上任一点在任一时刻的位移都能 由上式给出。此即所求的沿x 轴正方向前进 的平面简谐波的波函数。
沿x轴负方向传播的平面简谐波的波函数:
上页 下页 返回 退出
2
1
2
x2 x1
2
x
x、t 都变化:
实线:t1 时刻波形;虚线:t2 时刻波形
y
u
o
x
x x
上页 下页 返回 退出
当t=t1时,y
A
cos
t1
x u
0
当t=
t1+Δt时,y
A
cos
t1
t
x u
0
在t1和t1+Δt时刻,对应的位移用x1和x2表示,则
y(t1)
A cos
t1
x1 u
0
y
A cos
2
(
t
mx
)
0
y Acos(t mkx 0 )
k 2 角波数
y
y
A cos(t
Aei
(t
mx u
)0
m2 x
i (t
Ae
0
mk ) u
)
上页 下页 返回 退出
波动表式的意义:
x 一定:令x=x1,则质点位移y 仅是时间t 的函数。
即
y
A
cos
平面简谐波波函数
大学物理
波动学基础
第2讲 平面简谐波波函数
平面简谐波波函数
平面简谐波波函数
在均匀的、无吸收的介质中, 波源作简谐运动而形成 平面简谐波.
如何描述一维平面简谐波即建立波动表达式?其所表 示的物理意义是什么?
平面简谐波波函数
(一)波函数的建立 y = y(x,t )
任选参考点 O 为 x 轴的坐标原点, O 点处 质点的简谐运动方程 为
y
∆x
O x1
x2 x
y
=
A cos ω⎜⎛ t1 ⎝
−
x u
⎞ ⎟ ⎠
相位差为
∆ϕ
= ϕ1
−ϕ2
=
2π⎜⎛ t ⎝T
−
x1 λ
⎞ ⎟
−
2π⎜⎛
t
⎠ ⎝T
−
x2 λ
⎞ ⎟ ⎠
=
2π
x2
− λ
x1
波程差 ∆x = x2 − x1 相位差和波程差的关系: ∆ϕ = 2π ∆x
λ
平面简谐波波函数
(3)当 t , x 都变时, y = y(x, t), 表示所有质元在任意时刻 的位移情况.
解: 由图得
A = 2.5cm = 0.025m,λ = 40m,
T = 4s,ω = 2π = π s−1,u = λ = 10m ⋅s−1
y (cm )
T2
Tuv
20
5
x(m )
OP
波动表达式为
y
=
A
cos
⎡ ⎢ω ⎣
⎜⎛ t ⎝
−
x u
⎞ ⎟ ⎠
+
⎤ ϕ⎥
⎦
代入 t = 0, x = 0 , y = 0 ⇒ cosϕ = 0
波动学基础
第2讲 平面简谐波波函数
平面简谐波波函数
平面简谐波波函数
在均匀的、无吸收的介质中, 波源作简谐运动而形成 平面简谐波.
如何描述一维平面简谐波即建立波动表达式?其所表 示的物理意义是什么?
平面简谐波波函数
(一)波函数的建立 y = y(x,t )
任选参考点 O 为 x 轴的坐标原点, O 点处 质点的简谐运动方程 为
y
∆x
O x1
x2 x
y
=
A cos ω⎜⎛ t1 ⎝
−
x u
⎞ ⎟ ⎠
相位差为
∆ϕ
= ϕ1
−ϕ2
=
2π⎜⎛ t ⎝T
−
x1 λ
⎞ ⎟
−
2π⎜⎛
t
⎠ ⎝T
−
x2 λ
⎞ ⎟ ⎠
=
2π
x2
− λ
x1
波程差 ∆x = x2 − x1 相位差和波程差的关系: ∆ϕ = 2π ∆x
λ
平面简谐波波函数
(3)当 t , x 都变时, y = y(x, t), 表示所有质元在任意时刻 的位移情况.
解: 由图得
A = 2.5cm = 0.025m,λ = 40m,
T = 4s,ω = 2π = π s−1,u = λ = 10m ⋅s−1
y (cm )
T2
Tuv
20
5
x(m )
OP
波动表达式为
y
=
A
cos
⎡ ⎢ω ⎣
⎜⎛ t ⎝
−
x u
⎞ ⎟ ⎠
+
⎤ ϕ⎥
⎦
代入 t = 0, x = 0 , y = 0 ⇒ cosϕ = 0
大学物理 平面简谐波的波函数
此刻的波形.
y Acos[2 π x (2π t )] T
y(x,t) y(x ,t)(波具有空间的周期性)
波程差
x21 x2 x1
12
1 2
2π
x2 x1
2π
x21
2π
x
回目录
3若
x, t 均变化,波函数表示波形沿传播方向的运动情况(行波).
yu
t 时刻
x
O
x
t t 时刻
xx
x 0.5处m质点的振动方程
y 1.0cos(π t π)m
y
y/m
3
1.0
3*
2
4
4O
2
0
* 1.0
* 2.0
*
t /s
1 -1.0* 1
*
x 0.5 m 处质点的振动曲线
回目录
例2 一平面简谐波以速度
沿u直线传20播m,波线/ s上点 A 的简谐运动方
程
. yA 310 2 cos(4 π t)m
y Acos式(中Bt Cx)
A, B, C 为正常数,求波长、波速、波传播方向上相距为 的两点间的相位差.
d
y Acos(Bt Cx)
y Acos2 π ( t x )
T
2π
C
T 2π B
u B
TC
2π d dC回目录
二 波函数的物理意义
y Acos[(t x) ] Acos[2 π( t x ) ]
u
8m 5m 9m
C
B oA
Dx
1)以 A 为坐标原点,写出波函数
两种方法:时间推迟法和相位落后法
y 3102 cos[4 π(t x )]m 20
y Acos[2 π x (2π t )] T
y(x,t) y(x ,t)(波具有空间的周期性)
波程差
x21 x2 x1
12
1 2
2π
x2 x1
2π
x21
2π
x
回目录
3若
x, t 均变化,波函数表示波形沿传播方向的运动情况(行波).
yu
t 时刻
x
O
x
t t 时刻
xx
x 0.5处m质点的振动方程
y 1.0cos(π t π)m
y
y/m
3
1.0
3*
2
4
4O
2
0
* 1.0
* 2.0
*
t /s
1 -1.0* 1
*
x 0.5 m 处质点的振动曲线
回目录
例2 一平面简谐波以速度
沿u直线传20播m,波线/ s上点 A 的简谐运动方
程
. yA 310 2 cos(4 π t)m
y Acos式(中Bt Cx)
A, B, C 为正常数,求波长、波速、波传播方向上相距为 的两点间的相位差.
d
y Acos(Bt Cx)
y Acos2 π ( t x )
T
2π
C
T 2π B
u B
TC
2π d dC回目录
二 波函数的物理意义
y Acos[(t x) ] Acos[2 π( t x ) ]
u
8m 5m 9m
C
B oA
Dx
1)以 A 为坐标原点,写出波函数
两种方法:时间推迟法和相位落后法
y 3102 cos[4 π(t x )]m 20
大学物理平面简谐波的波函数精选精品文档
u
1m 0
λ10m 8 m 5 m 9 m
C
B oA
Dx
第十章 波动
21
物理学
第五版
选择进入下一节:
本章目录
6-1 机械波的几个概念
6-2 平面简谐波的波函数
6-3 波的能量 能流密度 6-4 惠更斯原理 波的衍射和干涉
6-5 驻波
6-6 多普勒效应
第十章 波动
22
x
A cos
t
2πx
第十章 波动
4
物理学
第五版
6-2 平面简谐波的波函数
波函数
yAcos(t[x)]
u
质点的振动速度,加速度
v y A si n (t [x)]
t
u
a 2 t2 y 2A co (ts[u x)]
第五版
6-2 平面简谐波的波函数
(3) x0.5m处质点的振动规律并作图
y1.0co2π s([t x)π] 2.0 2.0 2
x0.5m处质点的振动方程
ycoπst[π](m)
y
y/m
3
3
1.0
*
4O
2
0 2* 1.0 *4 2.0 * t / s
1 -1.0*1
*
x0.5m处质点的振动曲线
第十章 波动
15
物理学
第五版
6-2 平面简谐波的波函数
例2 一平面简谐波以速度u20ms-1
沿直线传播,波线上点 A 的简谐运动方 程
yA31 0 2co4π st)(; ( y, t单位分别为m,s).
平面简谐波的波函数
课堂练习 图示为 t = 1s 时的波形曲线,求波动方程。
提示 关键:求解原点o处质元初位相 o !
(t 0)
o
2
A
y
y(m)
0.08 m/s
0.04
(t 1)
t
25
(1
0)
2
5
o
2
2
5
9
10
o
P
0.20
x (m)
t 1s
答案: y
0.04 cos [2
5
(t
x ) 0.08
9 ]
10
(
t
x u
)
o
]
(t
x u
)
o
(t
t
x
x u
)
o
x ut
y
u
☻波速即为相位传播速度 o
( 相速 ) 。
☻行波或前进波。
x
ut
·7 ·
Chapter 14. 波的传播与叠加 §14. 2 平面简谐波的波函数
三、微分形式的平面波波动方程
对一般的平面波:
xoy系:y f (x, t) xoy系: y f (x)
y
A
cos
[
(t
x u
)
o
]
波函数亦称 波动方程 。
ut
Ao y(0 ,t )
Δt Ax
(x,t)
o
y(x,t) y
t o
·3 ·
Chapter 14. 波的传播与叠加 §14. 2 平面简谐波的波函数
波动方程 的几种标准形式: y
y
A
cos
[
(t
x u
提示 关键:求解原点o处质元初位相 o !
(t 0)
o
2
A
y
y(m)
0.08 m/s
0.04
(t 1)
t
25
(1
0)
2
5
o
2
2
5
9
10
o
P
0.20
x (m)
t 1s
答案: y
0.04 cos [2
5
(t
x ) 0.08
9 ]
10
(
t
x u
)
o
]
(t
x u
)
o
(t
t
x
x u
)
o
x ut
y
u
☻波速即为相位传播速度 o
( 相速 ) 。
☻行波或前进波。
x
ut
·7 ·
Chapter 14. 波的传播与叠加 §14. 2 平面简谐波的波函数
三、微分形式的平面波波动方程
对一般的平面波:
xoy系:y f (x, t) xoy系: y f (x)
y
A
cos
[
(t
x u
)
o
]
波函数亦称 波动方程 。
ut
Ao y(0 ,t )
Δt Ax
(x,t)
o
y(x,t) y
t o
·3 ·
Chapter 14. 波的传播与叠加 §14. 2 平面简谐波的波函数
波动方程 的几种标准形式: y
y
A
cos
[
(t
x u
平面简谐波的波函数
x t u 若点P的振动落后于点O,则波动方程为 y yo t t
y yo t t
2.已知任意一点Q的振动方程,求解波动方程 方法一 利用点Q的振动方程和距点O的距离求解O 点振动方程后,利用1中的方法求波动方程。 方法二 考察点P的振动相对于Q点是超前还是落后 的,直接利用 y yo t t 来求波动方程。
5
物理学
第五版
10-2 平面简谐波的波函数
二
波函数的物理含义
2π
2πx y A cos t
1 x一定, t 变化 令
x
y
则 y A cost
O
t
表示 x点处质点的振动方程( y — t 的关系)
y ( x, t ) y ( x, t T ) (波具有时间的周期性)
第十章 波动
6
物理学
第五版
10-2 平面简谐波的波函数
2πx 2 t 一定 x 变化 y A cos t 令 t C(定值) 2πx 则 y A cos 该方程表示 t 时刻波传播方向上各质点 的位移, 即 t 时刻的波形(y — x的关系)
波在某点的相位反映该点媒质的“运动状态”。
所以简谐波的传播也是媒质振动相位的传播。
设 t 时刻 x 处的相位经 dt 传到(x +dx)处,
x x d x 则应有 (t ) ( t d t) u u
dx —— 相速度(相速) u 于是得到 dt 即简谐波的波速就是相速。
第十章 波动
t x x0 u
11
物理学
第五版
平面简谐波的波函数
解 确定坐标原点的 Y
振动初相0
A
由图知:t=0时, A/2
u=100m /s
x=0处的质点位于
0
1
X(
A/2处 且向位移正方向运动
-A
m)
由图知:t=0时, x=1m处的质点位于平 衡位置处且向位移负方
向运动
第十章 波动
21
物理学
第五版
0
π 3
,
2.4m,
u 100(m/s)
T /u 0.024s
在 理学
第五版
左行波的波函数:
p点的相位超前于O点相位:
所以 p点的振动方程,也就是左行波的波函数为:
第十章 波动
6
物理学
第五版
波函数的几种常用形式
第十章 波动
7
物理学
第五版
演示实验安排
周三 第3节 7班 第4节 8班
第十章 波动
8
物理学
第五版
二 波函数的物理含义
1 x一定,t变化
解
确定坐标原点的振动初相0
由:t=0时,x=0处的质点位于-A/2处 且向位移的负方向运动,知
第十章 波动
18
物第理五例版学 4.一平面简谐波,波长为12m,沿 ox轴负向传播. 图(a)所示为x=1.0m处质点的振动曲线,求波动方 程。
解:t=0时此质点的相位
0.40 0.20
5.0
t/s
t=5s时质点第一次回到平
第十章 波动
28
物理学
第五版
(1/4) 2A2
o
EP Ek
Y
WpWk x = x0
Tt
y
第十章 波动
t
大学物理 平面简谐波的波函数
17
3)写出传播方向上点C、点D 的简谐运动方程
u
C
8m
y A 310 cos( 4 π t )m 10m 5m 9m
B
2
oA
D
x
AC
点 C 的相位比点 A 超前
cos( 4 π t 2 π )m 13 2 3 10 cos( 4 π t π)m 5 点 D 的相位落后于点 A AD 2 y D 3 10 cos( 4 π t 2 π )m 9 2 3 10 cos( 4 π t π)m 5
4
波动方程的其它形式
t x y ( x,t ) A cos[ 2 π( ) ] T λ y( x, t ) A cos(t kx )
质点的振动速度,加速度 角波数 k 2 π
(wave number)
y x v A sin[ (t ) ] t u
分析:
2 3 ( D) 2
( B)
,
由波形图可判定O点在该时刻的振动方向竖直向 上(如图示)
A x
3 由旋转矢量图可知此时的相位为 2
23
3.在下面几种说法中,正确的说法是: (C)
(A)波源不动时,波源的振动周期与波动的周期在数 值上是不同的。 (B)在波传播方向上的任一质点振动位相总是比波源 的位相超前。 (C)在波传播方向上的任一质点振动位相总是比波源 的位相滞后。 (D) 波源的振动速度与波速相同。
在t=1/v时刻:
1 v | x x2 2A sin 2 (1 ) 2A 4
即速度比为-1。
3 v | x x1 2A sin 2 (1 ) 2A 4
平面简谐波的波函数
y(0) Acos[t0 0 ] y
t=t0
2
( x2
x1 )
0
x
反映了波动的空间周期性 6
例题: P86 4.3.9
解:(1)该波函数为
y Acos(Bt Cx)
而波函数的一般形式为
y
A c os [ (t
x u
)
0
)]
Acos(t
2
x 0)
比较两式可得
振幅为 A
而 B 2 C 所以
周期为 T 2 2 B
频率为
1 T
B
2
波长为 2
C
波速为 u B
TC 7
(2)由波函数 y Acos(Bt Cx) 可得
传播方向上距离波源为 l 处一点的振动方程为
y Acos( Bt Cl )
(3)相距为 d 的两点的波动方程分别为
y1 Acos( Bt Cx ) y2 Acos( Bt Cx Cd )
y(t)
Acos[(t
x0 u
)
0
]
Acos[t 2
x0
0 ]
令
2
x0
0
则
y(t) Acos(t ) ——x0处质点的振动方程
y(x,t) → y(t)
3
y(t) Acos(t ) ——x0处质点的振动方程
x0处的质点,两个时刻的振动相位差
t2
t1
2
t2 t1 T
若 t2-t1=kT, k=1,2,…
练习: P87 4.3.12
相距为 d 的两点的相位差为
Cd
8
0
)
令 t0 0 则y(x)源自A c os (x u
6_2 平面简谐波的波函数
2
4)
8 2π 1.6π B C 2π 10 x x 22 C D 2π C D 2π 4.4π 10
y A cos 2π ( t x ) (向x 轴正向传播 T x y A cos ( t ) (向x 轴负向传播 u
y ( x, t ) y ( x , t ) (波具有空间的周期性)
距离原点O为x1和x2的两质点的相位分别为
x1 t x ) 2π ( 1) u T x t x 2 (t 2 ) 2 π ( 2 ) u T
1 (t
π t 1.0s波形方程 y 1.0 cos( 2 π x) 1.0 sin(π x)
y/m
1.0
o
-1.0
2.0
x/m
t 1.0 s 时刻波形图
3) x 0.5m
处质点的振动方程
y 1.0 cos(π t π)
y
3 1.0 2 0
y/m
3 * 2 * 4 *
4
O
1
y A x轴负向 u
t x y(x,t) A cos[ 2 π( ) ] T λ
2π 2 π , T
y ( x, t ) A cos(t kx )
角波数
u
T
k
2π
沿 x 轴正向传播的平面简谐波,已知距O点x0的Q点的振动规律为
1.0
x 0.5 m
-1.0 *1
* t /s 2.0 *
处质点的振动曲线
例3 一平面简谐波以速度 谐运动方程
u 20m / s 沿直线传播,波线上点 A 的简 y A (3102 ) cos(4 π t ) .
4)
8 2π 1.6π B C 2π 10 x x 22 C D 2π C D 2π 4.4π 10
y A cos 2π ( t x ) (向x 轴正向传播 T x y A cos ( t ) (向x 轴负向传播 u
y ( x, t ) y ( x , t ) (波具有空间的周期性)
距离原点O为x1和x2的两质点的相位分别为
x1 t x ) 2π ( 1) u T x t x 2 (t 2 ) 2 π ( 2 ) u T
1 (t
π t 1.0s波形方程 y 1.0 cos( 2 π x) 1.0 sin(π x)
y/m
1.0
o
-1.0
2.0
x/m
t 1.0 s 时刻波形图
3) x 0.5m
处质点的振动方程
y 1.0 cos(π t π)
y
3 1.0 2 0
y/m
3 * 2 * 4 *
4
O
1
y A x轴负向 u
t x y(x,t) A cos[ 2 π( ) ] T λ
2π 2 π , T
y ( x, t ) A cos(t kx )
角波数
u
T
k
2π
沿 x 轴正向传播的平面简谐波,已知距O点x0的Q点的振动规律为
1.0
x 0.5 m
-1.0 *1
* t /s 2.0 *
处质点的振动曲线
例3 一平面简谐波以速度 谐运动方程
u 20m / s 沿直线传播,波线上点 A 的简 y A (3102 ) cos(4 π t ) .
6-02 平面简谐波的波函数
写出波动式
t x π y 1.0 cos[ 2 π( ) ] (m) 2.0 2.0 2
t x y ( x,t ) A cos[ 2 π( ) ] T λ
2)求 t 1.0s 波形图.
t x π y 1.0 cos[ 2 π( ) ] 2.0 2.0 2
t 1.0s
2
3)写出传播方向上点C、点D 的简谐运动方 x 程 2 2 y 3 10 cos 4 π( t ) y A 3 10 cos4 π t 20
u
C
8m
5m
9m
10m
D
B
oA
2
x
把点 C 的坐标代入
13 yc 3 10 cos[ 4 π t π] 5
把点 D 的坐标代入
例1 已知波函数如下,求波长、周期和波速. y 5 cos π[2.50t 0.01x](cm).
解:(比较系数法). 把波动方程改写成
t x y A cos 2π ( ) T
比较得
2.50 0.01 y 5 cos 2 π[ t x] 2 2
2 T s 0.8 s 2.5 2cm 200 cm 0.01
y
u
x
x0
已知 x0点振动方程
O
x
y x0 A cos( t )
x x0 时间落后 u
x x0
任一点
x 比 x0
相位落后 2
任一点 x 振动方程——波函数
x x0 y A cos[ ( t ) ] u x x0 y A cos[ t 2 ]
y x v A sin[ (t ) ] t u 2 y x 2 a 2 A cos[ (t ) ] t u
平面简谐波波函数
平面简谐波的特点是,它的波形是一个不断振荡的正弦波,在时间t和空间x两个方向上都呈现出波动的特征。平面简谐波在许多物理学领域中都有广泛应用,例如电磁波、声波、光波等。
平面简谐波的波函数可以用数学工具,如幂级数或傅里叶级数来表示。这些工具可以帮助我们分析平面简谐波的特性,例如波长、周期、波速等。
平面简谐波(plane harmonic wave)是物理学中常用的一种波动形式。它是由两个正弦波叠加而成的,其中一个正弦波的波长和波速是定值,另一个正弦波的波长和波速是变化的。
平面简谐波的波函数可以用下面的公式表示:
f(x,,k是波数,ω是角速度,φ是相位。
平面简谐波的波函数可以用数学工具,如幂级数或傅里叶级数来表示。这些工具可以帮助我们分析平面简谐波的特性,例如波长、周期、波速等。
平面简谐波(plane harmonic wave)是物理学中常用的一种波动形式。它是由两个正弦波叠加而成的,其中一个正弦波的波长和波速是定值,另一个正弦波的波长和波速是变化的。
平面简谐波的波函数可以用下面的公式表示:
f(x,,k是波数,ω是角速度,φ是相位。
平面简谐波的波函数
方向传播。
若O点的振动方程为
y0 A cos( t 0 )
时间推迟方法
y A
u
P
x
O
A x
点O 的振动状态
y0 A cos( t 0 )
t x u
t ux 时刻点O 的运动
点P t 时刻点 P 的运动
P点在t时刻的位移为
y
A cos[ (t
x) u
0]
平面简谐波的波动方程
*若波以速度u 沿x轴负方向传 播, 则波函数为
能否写出波动表达式?形 式如何?
y
u
.P. x
x
y
A cos[ (t
x) u
0 ]
y A
u
P
x
O
A x
波函数的其它形式
y
A cos[ (t
x) u
0 ]
y
Acos[2 ( t
T
x
)
0 ]
y
A
cos[2
(
t
x
)
0 ]
y Acos(t kx 0 )
2 2 / T
u / T
k
2
角波数,为2π长度内所 包含的完整波形的个数
二、波函数的物理含义:
y
y
A
cos[(t0
x u
)
]
o
x
t t0
(3) 若x和t 都是变量,波函数表示波线上不同质点、不同时刻
的位移 (行波)
y Acos[(t x) ]
u
A:
(t
x u
)
ห้องสมุดไป่ตู้
0
B:
(t
t
x
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
也可以通过相位差来进行推导,则P点的振动在相位上比O点落后,故P点的振动为
不
难验证,以上两个方程实际上是同一个振动的两个不同的表述。它们都表示的是波线上(坐标为x)的任一点处质点的振动方程,这正是我们希望得到的沿x轴方向前进的平面简谐波的波动方程。
或
这是波动方程常用的形式。
3、振动曲线与波形曲线
为了弄清楚波动方程的物理意义,我们作进一步的分析。在波动方程中含有x和t两个自变量,如果x给定(即考察该处的质点),那么位移y就只是t的周期函数,这时这个方程表示x处质点在各不同时刻的位移,也就是该质点的振动方程,方程的曲线就是该质点的振动曲线。下图(a)中描出的即一列简谐波在x=0处质点的振动曲线。如果波动方程中的t给定,那么位移y将只是x的周期函数,这时方程给出的是t时刻波线上各个不同质点的位移。波动中某一时刻不同质点的位移曲线称为该时刻波的波形曲线,因而t给定时,方程就是该时刻的波形方程。下图(b)中描出的即是t=0时一列沿x方向传播的简谐波的波形曲线。无论是横波还是纵波,它们的波形曲线在形式上没有区别,不过横波的位移指的是横向位移,表现的是峰谷相间的图形;纵波的位移指的是纵向位移,表现的是疏密相间的图形。在一般情况下,波动方程中的x和t都是变量。这时波动方程具有它最完整的含义,表示波动中任一质点的振动规律:波动中任一质点的相位随时间变化,每过一个周期T相位增加,任一时刻各质点的相位随空间变化,距离波源每远一个
三、平面简谐波的波动方程
下面我们通过对相位的分析给出平面简谐波的波动方程。如下图所示,设有一列平面简谐波沿x轴的正方向传播,波速为u。取任意一条波线为x轴,设O为x轴的原点。假定O点处(即x=0处)质点的振动方程为
推导波动方程用图
现在考察波线上任意一点P的振动,设该点的坐标为x。如上所述,P点和O点振动的振幅和频率相同,而P点振动的相位比O点落后。O点到P点的波程为x,则P点的振动在时间上比O点落后,故P点的振动为
式中负号对应于正行波,正号对应于反行波。方程中的φ为原点初相。
2、波函数的其它形式
利用关系式和,可以将平面简谐波方程改写成多种形式:
我们讨论平面简谐波的时候,为了简单,往往直接把波的传播的方向作为x轴的方向,因而波动方程中x前面的符号就是负号。如果再取原点振动的位移到达正最大的时候作为计时起点,因而原点初相为零。于是波动方程化为比较简单的形式
4、波形曲线的平移就表示波的传播
不同时刻的波形曲线记录的是不同时刻各质点的位移图形,就象该时刻波的照片。而波动的图形是动态的,犹如这些照片的连续放映,表现为波形沿着波线以波速u向前推进,每一个周期T走一个波长l。在波动的分析中应用这样的形象模型,常常能较为直观地得出正确的判断。
读书时,我愿在每一个美好思想的面前停留,就像在每一条真理面前停留一样。——爱默生
设平面简谐波的周期为T,波长为λ,波速为u,对于波线上的两点,见下图所示,若B点比A点距离波源要远l,l称为A、B之间的波程,就是波由A点到B点所经历的路程。一个振动状态从A点传到B点需要一段时间Δt=l/u,即A点的振动到达某一状态后,要过Δt这么一段时间B点才到达这个状态,也就是说,B点的振动要比A点在时间上落后。
二、平面简谐波的特点
我们在上一知识点中知道,平面简谐波传播时,介质中各质点的振动频率相同。对于在无吸收的均匀介质中传播的平面波,各质点的振幅也相等。因而介质中各质点的振动仅相位不同,表现为相位沿波的传播方向依次落后,因此我们将重点讨论相位。根据波阵面的定义我们知道,在任一时刻处在同一波阵面上的各点有相同的相位,因而有相同的位移。因此,只要知道了任意一条波线上波的传播规律,就可以知道整个平面波的传播规律。
读书时,我愿在每一个美好思想的面前停留,就像在每一条真理面前停留一样。——爱默生
四、 平面简谐波的波函数
一、什么是波函数
在波动中,每一个质点都在进行振动,对一个波的完整的描述,应该是给出波动中任一质点的振动方程,这种方程称为波动方程(或波函数)。我们知道,简谐波(余弦波或正弦波)是最基本的波,特别是平面简谐波,它的规律更为简单。我们先讨论平面简谐波在理想的无吸收的均匀无限大介质中传播时的波动方程。
四、波函数的讨论坐标x为正值,如果x为负值,P点的相位应该比O点超前。把x带入波函数中,由于x是负值,这表示P点的相位确实比O点超前,可见方程的形式不会因考察点的位置而改变。
在上面的讨论中,我们设波是沿着x轴正向传播的,这称为正行波。若波逆着x轴传播(反行波),则图中的P点的相位应比O点超前,我们规定波速u始终取正值(速率),因而波函数表达式中x前面的负号应改为正号,因而简谐波的波动方程的一般形式(通式)为
平面简谐波的波程和相位差
由于A点和B点在进行同频率的简谐振动,按前面讨论过的两个同频率振动的相位差和时间差的关系,我们可以得到A点和B点的相位差
这表示B点距离波源比A点每远一个λ,相位落后一个2π。从上式我们容易判断,在同一波线上的两点,若它们的距离为整数个λ,则它们的振动同相;若它们的距离为半整数个λ,则它们的振动反相。
波长,相位落后一个2π。
(a)x=0处质点的振动曲线 (b)t=0时波的波形曲线
振动曲线和波形曲线
还应该注意波动方程、振动方程和波形方程在形式上的明显区别,以免引起概念上的混淆。波动方程描述波动中任一质点的振动规律,它有两个自变量,其函数形式表现为;振动方程描述某一点的运动,只有一个自变量t,函数形式表现为形式;波形方程表示的是某一时刻各质点的位移,也只有一个自变量,表现为形式。反映在曲线表示上,要注意振动曲线和波形曲线的区别。振动曲线是y-t曲线而波形曲线是y-x。振动曲线的(时间)周期是T,波形曲线的(空间)周期是波长l。在振动曲线中质点的相位随时间逐步增加,而在波形曲线中质点的相位是沿波的传播方向逐点减少。