网格中的勾股定理应用(定)

合集下载

勾定理算法

勾定理算法

勾股定理算法的那些事儿嘿,小伙伴们,今天咱们来聊聊一个超级实用又好玩的数学知识点——勾股定理。

别一听这名字就觉得高大上,其实啊,它就像咱们生活中的一把小尺子,能帮咱们解决不少实际问题呢!一、勾股定理是啥?勾股定理,简单来说,就是一个直角三角形里,两个直角边的平方和等于斜边的平方。

用数学式子表示就是:a²+b²=c²,这里的a和b是直角三角形的两个直角边,c是斜边。

听起来有点抽象是吧?别急,咱们举个例子来说明。

比如说,你有一个直角三角形,一条直角边长3厘米,另一条直角边长4厘米,那你就可以用这个定理来算斜边的长度。

怎么算呢?就是3²+4²=9+16=25,然后开方,得到斜边c 的长度是5厘米。

二、勾股定理的由来勾股定理可不是咱们现代人突发奇想出来的,它可是有着悠久的历史呢!在中国古代,人们就称直角三角形为勾股形,直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理。

在西方,最早提出并证明此定理的是公元前6世纪古希腊的毕达哥拉斯学派,所以也有人称它为毕达哥拉斯定理。

据说啊,毕达哥拉斯发现勾股定理的方式特别有意思,他是通过观察一个正方形里的直角三角形,然后利用图形的面积关系来证明的。

是不是觉得很有趣呢?三、勾股定理的算法应用勾股定理不仅仅是一个数学公式,它在实际生活中也有着广泛的应用。

咱们来看看下面这几个例子:1. 在网格中的应用想象一下,你有一个正方形网格纸,每个小正方形的边长都是1厘米。

那你就可以在这个网格上画出各种各样的直角三角形,然后用勾股定理来算它们的斜边长度。

比如说,你画了一个直角三角形,它的两个直角边分别跨越了3个小正方形和4个小正方形,那你就可以算出它的斜边跨越了5个小正方形,因为3²+4²=5²嘛!2. 在最短距离中的应用勾股定理还能帮我们找到两点之间的最短距离呢!比如说,你有一个圆锥形的冰淇淋蛋筒,侧面展开后是一个半圆。

勾股定理的十五种应用题型梳理

勾股定理的十五种应用题型梳理

勾股定理知识点及其十五种应用归纳梳理知识点概括一:直角三角形与勾股定理直角三角形三边的性质:1、 直角三角形的两个锐角互余2、 直角三角形斜边的中线,等于斜边的一半3、 直角三角形中30°角所对的边是斜边的一半勾股定理概念:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c +=适用范围:勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,因而在应用勾股定理时,必须明了所考察的对象是直角三角形。

勾股定理的证明:勾股定理的证明方法很多,常见的是拼图的方法①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理二:勾股数勾股数概念:能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数。

常见的勾股数:如3,4,5;6,8,10;5,12,13;7,24,25等扩展:用含字母的代数式表示n 组勾股数1)221,2,1n n n -+(2,n ≥n 为正整数);2)2221,22,221n n n n n ++++(n 为正整数)3)2222,2,m n mn m n -+(,m n >m ,n 为正整数)。

注意:每组勾股数的相同整数倍,也是勾股数 应用1 勾股定理理解三角形例题1 在⊙O 中,直径AB =15,弦DE ⊥AB 于点C .若OC :OB =3 :5,则DE 的长为( ) A .6 B .9 C .12 D .15【解析】如图所示:∵直径AB =15,∴BO =7.5,∵OC :OB =3:5,∴CO =4.5∵DE ⊥AB ,∴DC 6,∴DE =2DC =12,选C变式1 如图,在Rt △ACB 中,900.5C sinB ∠=︒=,,若6AC =,则BC 的长为( )A .8B .12C .D .【解析】∵s i nB =AC AB=0.5,∴AB =2AC ,∵AC =6,∴AB =12,∴BC ,选C 变式2 如图,Rt △ABC 中,∠ACB = 90°,AB = 5,AC = 3,把Rt △ABC 沿直线BC 向右平移3个单位长度得到△A 'B 'C ' ,则四边形ABC 'A '的面积是 ( )A .15B .18C .20D .22【解析】在Rt △ACB 中,∠ACB =90°,AB =5,AC =3,由勾股定理可得: ∵Rt △A ’C ’B ’是由Rt △ACB 平移得来,A ’C ’=AC =3,B ’C ’=BC =4 ∴A'C'B 11S =A'C'B'C'=34622⋅⋅⨯⨯=△,又∵BB ’=3,A ’C ’= 3,∴ABB'A'S BB'A 'C'339=⨯=⨯=四边形 ∴A'C'B'ABC'A'ABB'A'S S S =96=15=++△四边形四边形,选A变式3 某几何体的三视图及相关数据(单位:cm )如图所示,则该几何体的侧面积是( )A .2652cm πB .260cm πC .265cm πD .2130cm π【解析】由三视图可判断出该几何体为圆锥,圆锥的高为12cm ,底部圆的半径为5cm ,∴圆锥母线长为:l cm ,又∵S =R l π⋅⋅圆锥侧,将R =5cm ,=13l cm 代入,∴2S ==65()R l cm ππ⋅⋅圆锥侧,选C应用2 勾股定理与网格问题例题2 如图,在3×3的网格中,每个小正方形的边长均为1,点A ,B ,C 都在格点上,若BD 是△ABC 的高,则BD 的长为( )A B C D【解析】由勾股定理得:AC S △ABC =3×3﹣111121323222⨯⨯-⨯⨯-⨯⨯=72∴1722AC BD ⋅=BD 7=,∴BD D . 变式4 如图,在45⨯的正方形网格中,每个小正方形的边长都是1,△ABC 的顶点都在这些小正方形的顶点上,那么sin ACB ∠的值为( ).A B C .35 D .45【解析】如图,过点A 作AD BC ⊥于点D ,则90ADC ∠=︒∴5AC ==,∴4sin 5AD ACB AC ∠==,选D 变式5 如图所示,ABC ∆的顶点在正方形网格的格点上,则tan A 的值为( )A .12B .2C .2D .【解析】如图,取格点E ,连接BE ,由题意得:90AEB =︒∠,BE =,AE ,∴1tan =2BE A AE ==,选A 应用3 利用勾股定理解决折叠问题例题3 如图,把某矩形纸片ABCD 沿EF ,GH 折叠(点E 、H 在AD 边上,点F ,G 在BC 边上),使点B 和点C 落在AD 边上同一点P 处,A 点的对称点为A '、D 点的对称点为D ,若90FPG ,A EP △为8,D PH △的面积为2,则矩形ABCD 的长为( )A.10 B .C .10 D .+【解析】∵四边形ABC 是矩形,∴AB =CD ,AD =BC ,设AB =CD =x ,由翻折可知:P A ′=AB =x ,PD ′=CD =x ,∵△A ′EP 的面积为8,△D ′PH 的面积为2,又∵90FPG ,∠A ′PF =∠D ′PG =90°,∴∠A ′P D ′=90°,则∠A ′PE +∠D ′PH =90°,∴∠A ′PE =∠D ′HP , ∴△A ′EP ∽△D ′PH ,∴A ′P 2:D ′H 2=8:2,∴A ′P :D ′H =2:1,∵A ′P =x ,∴D ′H =12x ,∵S △D ′PH =12D ′P ·D ′H =12A ′P ·D ′H ,即11222x x ⋅⋅=,∴x (负根舍弃),∴AB =CD D ′H =DH ,D ′P =A ′P =CD ,A ′E =2D ′P ,∴PE =PH =,∴AD =D变式6 如图,对折矩形纸片ABCD ,使AD 与BC 重合,得到折痕EF ;把纸片展平后再次折叠,使点A 落在EF 上的点A '处,得到折痕BM ,BM 与FF 相交于点N .若直线B A ’交直线CD 于点O ,BC =5,EN =1,则OD 的长为( )A B C D 【解析】∵EN =1,∴由中位线定理得AM =2由折叠的性质可得A ′M =2,∵AD ∥EF ,∴∠AMB =∠A ′NM∵∠AMB =∠A ′MB ,∴∠A ′NM =∠A ′MB ,∴A ′N =2,∴A ′E =3,A ′F =2过M 点作MG ⊥EF 于G ,∴NG =EN =1,∴A ′G =1(微信公众号:数学第六感)由勾股定理得MG =,∴BE =DF =MG∴OF :BE =2:3,解得OF OD B 变式7 如图,三角形纸片ABC ,点D 是BC 边上一点,连接AD ,把ABD △沿着AD 翻折,得到△AED ,DE 与AC 交于点G ,连接BE 交AD 于点F .若DG GE =,3AF =,2BF =,△ADG 的面积为2,则点F 到BC 的距离为( )A B C D【分析】首先求出△ABD 的面积.根据三角形的面积公式求出DF ,设点F 到BD 的距离为h ,根据12•BD •h =12•BF •DF ,求出BD 即可解决问题.∴S △ADG =S △AEG =2,∴S △ADE =4 由翻折可知,ADB ≌ADE ,BE ⊥AD ,∴S △ABD =S △ADE =4,∠BFD =90°,∴12•(AF +DF )•BF =4∴12•(3+DF )•2=4,∴DF =1,∴DB设点F 到BD 的距离为h ,则12•BD •h =12•BF •DF ,∴h ,选B 应用4 利用勾股定理证明线段的平方关系例题4 如图,在△ABC 中,AD ,BE 分别是BC ,AC 边上的中线,且AD ⊥BE ,垂足为点F ,设BC =a ,AC =b ,AB =c ,则下列关系式中成立的是( )A .a 2+b 2=5c 2B .a 2+b 2=4c 2C .a 2+b 2=3c 2D .a 2+b 2=2c 2【解析】设EF =x ,DF =y ,∵AD ,BE 分别是BC ,AC 边上的中线,∴点F 为△ABC 的重心,AF =AC =b ,BD =a ,∴AF =2DF =2y ,BF =2EF =2x ,∵AD ⊥BE ,∴∠AFB =∠AFE =∠BFD =90°,在Rt △AFB 中,4x 2+4y 2=c 2,①在Rt △AEF 中,4x 2+y 2=b 2,②;在Rt △BFD 中,x 2+4y 2=a 2,③②+③得5x 2+5y 2=(a 2+b 2),∴4x 2+4y 2=(a 2+b 2),④①﹣④得c 2﹣(a 2+b 2)=0,即a 2+b 2=5c 2.选A .变式8 对角线互相垂直的四边形叫做“垂美”四边形,现有如图所示的“垂美”四边形ABCD ,对角线AC BD 、交于点O .若24AD BC ==,,则22AB CD +=__________.【解析】∵四边形ABCD 是垂美四边形,∴AC ⊥BD∴∠AOD =∠AOB =∠BOC =∠COD =90°,由勾股定理得,AD 2+BC 2=AO 2+DO 2+BO 2+CO 2AB 2+CD 2=AO 2+BO 2+CO 2+DO 2,∴AD 2+BC 2=AB 2+CD 2,∵AD =2,BC =4∴22AB CD +=AD 2+BC 2=22+42=20变式9 如图,在△ABC 中,90,ACB AC BC ∠=︒=,点P 在斜边AB 上,以PC 为直角边作等腰直角三角形PCQ ,90PCQ ∠=︒,则222,,PA PB PC 三者之间的数量关系是_____.【解析】过点C 作CD ⊥AB ,交AB 于点D ,∵△ACB 为等腰直角三角形,CD ⊥AB ,∴CD =AD =DB ,∵P A 2=(AD -PD )2=(CD -PD )2=CD 2-2CD •PD +PD 2,PB 2=(BD +PD )2=(CD +PD )2=CD 2-2CD •PD +PD 2,∴P A 2+PB 2=2CD 2+2PD 2=2(CD 2+PD 2),在Rt △PCD 中,由勾股定理可得PC 2=CD 2+PD 2,∴P A 2+PB 2=2PC 2,应用5 利用勾股定理解决实际问题:求梯子滑落高度例题5 如图,一个梯子AB 长2.5米,顶端A 靠在墙AC 上,这时梯子下端B 与墙角C 距离为1.5米,梯子滑动后停在DE 的位置上,测得BD 长为0.5米,则梯子顶端A 下落了( )米.A .0.5B .1C .1.5D .2【解析】在Rt △ABC 中,AB =2.5米,BC =1.5米,故AC 米.在Rt △ECD 中,AB =DE =2.5米,CD =(1.5+0.5)米,故EC 米, 故AE =AC ﹣CE =2﹣1.5=0.5米.选A .变式10 如图所示,一架梯子AB 长2.5米,顶端A 靠在墙AC 上,此时梯子下端B 与墙角C 的距离为1.5米,当梯子滑动后停在DE 的位置上,测得BD 长为0.9米.则梯子顶端A 沿墙下移了______米.【解析】由题意得: 2.5AB =米, 1.5BC =米∴在Rt ACB ∆中,AC 2=AB 2-BC 2=2.52-1.52=4,∴AC =2米,∵BD =0.9米,∴CD =2.4米.∵ED AB =∴在Rt ECD ∆中,EC 2=ED 2-CD 2=2.52-2.42=0.49,∴EC =0.7米,∴AE =2-0.7=1.3米.变式11 如图,墙面AC 与地面BC 垂直,一个梯子AB 长2.5 米,顶端A 靠在墙AC 上,这时梯子下端B 与墙角C 距离为1.5米,梯子滑动后停在DE 的位置上,测得BD 长为0.9米,则梯子顶端A 下落了_____米.【分析】要求下滑的距离,显然需要分别放到两个直角三角形中,运用勾股定理求得AC 和CE 的长即可【解析】在Rt △ACB 中,AC 2=AB 2-BC 2=2.52-1.52=4,∴AC =2,∵BD =0.9,∴CD =2.4.在Rt △ECD 中,EC 2=ED 2-CD 2=2.52-2.42=0.49∴.EC =0.7∴AE =AC -EC =2-0.7=1.3应用6 利用勾股定理解决实际问题:求旗杆高度例题6 从电线杆离地面8米处拉一根长为10m 的缆绳,这条缆绳在地面的固定点距离电线杆底部有( ). A .2 B .4 C .6 D .8【分析】首先根据题意画出图形,得到一个直角三角形.根据勾股定理,即可解答.【解析】由题意得,在Rt △ABC 中,AC =8,AB =10,所以BC =6.选C变式12 如图,小华将升旗的绳子拉到竖直旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8m 处,此时绳子末端距离地面2m ,则绳子的长度为____m .【解析】设绳子长度为xm ,则AC AD xm ==,(2)AB x m =-,8BC m =,在Rt ABC 中,222AB BC AC +=,即222(2)8x x -+=,解得:17x =,绳子的长度为17m .应用7 利用勾股定理解决实际问题:求蚂蚁爬行距离例题7 如图,圆柱的高为8cm ,底面半径为6πcm ,一只蚂蚁从点A 沿圆柱外壁爬到点B 处吃食,要爬行的最短路程是( )A .6cmB .8cmC .10cmD .12cm【解析】底面圆周长为6212ππ=cm ,底面半圆弧长为6cm ,展开图如图所示,连接AB ,∵BC =8cm ,AC =6cm ,∴22226810AB AC BC ,选C 变式13 如图,有一只小鸟从小树顶飞到大树顶上,它飞行的最短路程是( )A .13米B .12米C .5米D 米【解析】如图所示,过D 点作DE ⊥AB ,垂足为E ,∵AB =13,CD =8,又∵BE =CD ,DE =BC ,∴AE =AB −BE =AB −CD =13−8=5,∴在Rt △ADE 中,DE =BC =12,∴22222512169,AD AE DE =+=+= ∴AD =13(负值舍去) 故小鸟飞行的最短路程为13m ,选A应用8 利用勾股定理解决实际问题:求大树折断前的高度例题8“折竹抵地”问题源自《九章算术》中,即:今有竹高一丈,末折抵地,去本四尺,问折者高几何?意思是:一根竹子,原高一丈,一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部4尺远(如图),则折断后的竹子高度为多少尺?(1丈=10尺)()A.3B.5C.4.2D.4【解析】设折断处离地面的高度OA是x尺,根据题意可得:x2+42=(10-x)2解得:x=4.2,答:折断处离地面的高度OA是4.2尺,选C变式14《九章算术》是我国古代一部著名的数学专著,其中记载了一个“折竹抵地”问题:今有竹高一丈,末折抵地,去本三尺,问折者高几何?其意思是:有一根与地面垂直且高一丈的竹子(1丈=10尺),现被大风折断成两截,尖端落在地面上,竹尖与竹根的距离为三尺.问折断处高地面的距离为()A.5.45尺B.4.55尺C.5.8尺D.4.2尺【分析】设折断后的竹子的高为x尺,根据勾股定理列出方程求解即可.【解析】设折断后的竹子高AC为x尺,则AB长为(10﹣x)尺,根据勾股定理得:AC2+BC2=AB2,即:x2+32=(10﹣x)2,解得:x=4.55,选B.变式15如图,一根竖直的木杆在离地面3.1m处折断,木杆顶端落在地面上,且与地面成38°角,则木杆折断之前高度约为__________.(参考数据:sin380.62,cos380.79,tan380.78︒≈︒≈︒≈)【解析】如图: 3.1,38AC B =∠=︒∴ 3.15sin 0.62AC AB B ===,∴木杆折断之前高度()3.158.1AC AB m =+=+=,故答案为8.1m 应用9 利用勾股定理解决实际问题:求水杯中筷子长度问题例题9 我国古代数学著作《九章算术》记载了一道有趣的问题.原文是:今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问水深、葭长各几何.译为:有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺,如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,水的深度与这根芦苇的长度分别是多少?设芦苇的长度是x 尺.根据题意,可列方程为( )A .22210(1)x x +=+B .222(1)5x x -+=C .2225(1)x x +=+D .222(1)10x x -+=【解析】设芦苇的长度是x 尺,如下图,则()1OA x =-,5AB =,OB x =在Rt AOB 中,222OA AB OB +=,即()22215x x -+=,选B变式16如图,将一根长12cm的筷子置于底面半径为3cm,高为8cm的圆柱形杯子中,则筷子露在杯子外面的长度h至少为_______cm.【解析】如图所示,筷子、圆柱的高、圆柱的直径正好构成直角三角形,∵圆柱杯子的底面半径为3cm,高为8cm,∴筷子在圆柱里面的最大长度cm∴筷子露在杯子外面的长度至少为12-10=2cm变式17无盖圆柱形杯子的展开图如图所示.将一根长为20cm的细木筷斜放在该杯子内,木筷露在杯子外面的部分至少有__________cm.【解析】=15,则木筷露在杯子外面的部分至少有:20−15=5(cm).故答案为5.应用10利用勾股定理解决实际问题:解决航海问题例题10如图,快艇从A地出发,要到距离A地10海里的C地去,先沿北偏东70°方向走了8海里,到达B 地,然后再从B地走了6海里到达C地,此时快艇位于B地的().A.北偏东20°方向上B.北偏西20°方向上C.北偏西30°方向上D.北偏西40°方向上【解析】∵AC=10海里,AB=8海里,BC=6海里,根据勾股定理的逆定理可知222=AB BC AC +,∴∠ABC =90°,∵∠DAB =70°,AD ∥BE ,∴∠ABE =110°,则∠CBE =110°-90°=20°,即点C 在点B 的北偏西20°方向上,选B变式18 如图,海中有一小岛A ,它周围10.5海里内有暗礁,渔船跟踪鱼群由西向东航行.在B 点测得小岛A 在北偏东60°方向上,航行12海里到达D 点,这时测得小岛A 在北偏东30°方向上.如果渔船不改变航线继续向东航行,那么渔船还需航行_____海里就开始有触礁的危险.【解析】只要求出A 到BD 的最短距离是否在以A 为圆心,以10.5海里的圆内或圆上即可,如图,过A 作AC ⊥BD 于点C ,则AC 的长是A 到BD 的最短距离,∵∠CAD =30°,∠CAB =60°,∴∠BAD =60°﹣30°=30°,∠ABD =90°﹣60°=30°,∴∠ABD =∠BAD , ∴BD =AD =12海里,∵∠CAD =30°,∠ACD =90°,∴CD =12AD =6海里,由勾股定理得:AC (海里),如图,设渔船还需航行x 海里就开始有触礁的危险,即到达点D ′时有触礁的危险,在直角△AD ′C 中,由勾股定理得:(6﹣x )2+(2=10.52,解得x =4.5渔船还需航行 4.5海里就开始有触礁的危险.变式19 一艘轮船在小岛A 的北偏东60︒方向距小岛60海里的B 处,沿正西方向航行3小时后到达小岛的北偏西45︒的C 处,则该船行驶的速度为_____海里/小时.【解析】如图,过点A 作AD BC ⊥于点D ,由题意得:60,45BAD CAD ∠=︒∠=︒,60AB =海里, 在Rt ABD △中,9030B BAD ∠=︒-∠=︒,60AB =海里,1302AD AB ∴==海里,BD = 在Rt ACD △中,45CAD ∠=︒,Rt ACD ∴△是等腰直角三角形,30CD AD ∴==海里,(30BC CD BD ∴=+=+海里,则该船行驶的速度为(103BC =+海里/小时, 应用11 利用勾股定理解决实际问题:求河宽 例题11 如图,为了测量池塘的宽度DE ,在池塘周围的平地上选择了A 、B 、C 三点,且A 、D 、E 、C 四点在同一条直线上,90C ∠=︒,已测得100m AB =,60m BC =,20m AD =,10m EC =,则池塘的宽度DE ( )A .80mB .60mC .50mD .40m【解析】在Rt △ABC 中,AC 80m所以DE =AC −AD −EC =80−20−10=50m ,选C变式20 一条河的宽度处处相等,小强想从河的南岸横游到北岸去,由于水流影响,小强上岸地点偏离目标地点200m ,他在水中实际游了520m ,那么该河的宽度为( )A .440mB .460mC .480mD .500m【解析】根据已知数据,运用勾股定理求得AB 480m ,答:该河流的宽度为480m .选C变式21 如图,为了求出湖两岸A 、B 两点之间的距离,观测者从测点A 、B 分别测得90BAC ∠=︒,又量得9AC m =,15BC m =,则A 、B 两点之间的距离为( )A .10mB .11mC .12mD .13m【解析】90BAC ∠=︒,9AC m =,15BC m =,()12AB m ∴===,选C . 应用12 利用勾股定理解决实际问题:求台阶上的地毯长度例题12 地面上铺设了长为20cm ,宽为10cm 的地砖,长方形地毯的位置如图所示.那么地毯的长度最接近多少?( )A .50cmB .100cmC .150cmD .200cm【解析】观察图像可知,地毯长可以看做是10个等腰直角三角形的斜边长度之和则斜边=∴长方形地毯的长为:=≈141.4cm ,选C变式22 在高5m ,长13m 的一段台阶上铺上地毯,台阶的剖面图如图所示,地毯的长度至少需要( )A .13mB .5mC .12mD .17m【解析】由勾股定理,12AC ===,则地毯总长为12+5=17(m ),选D 变式23 一个三级台阶,它的每一级的长宽和高分别为20、3、2,A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿着台阶面爬到B 点最短路程为( )A B .25 C .30 D .35【解析】如图所示,∵三级台阶平面展开图为长方形,长为20,宽为(2+3)×3∴蚂蚁沿台阶面爬行到B 点最短路程是此长方形的对角线长AB .由勾股定理得:2AB =220+()2[233]+⨯=225,解得25AB =,选B 应用13 利用勾股定理解决实际问题:判断是否超速例题13 如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪A 处的正前方30m 的C 处,过了2s 后,测得小汽车与车速检测仪间的距离为50m ,则这辆小汽车的速度是__m /s .【解析】在Rt △ABC 中,AC =30m ,AB =50m ,据勾股定理可得:BC (m ) 故小汽车的速度为v=402=20m /s 变式24 《中华人民共和国道路交通管理条例》规定,小汽车在城市街道上的行驶速度不得超过70km /h .如图所示,一辆小汽车在一条城市街道沿直道向B 处行驶.某一时刻刚好行驶到路对面车速检测仪A 正前方30m 处的点C ,过了2s 后,测得小汽车与车速检测仪之间的距离AB 为50m ,这辆小汽车________.(填“超速”或“不超速”)【解析】在Rt ABC ∆中,2222250301600BC AB AC =-=--,所以40m BC =. 因此,小汽车的速度为()4020m/s 2=.20m/s 72km/h 70km/h => 故这辆小汽车超速.变式25 如图,小明家(A )在小亮家(B )的正北方,某日,小明与小亮约好去图书馆(D ),一小明行走的路线是A →C →D ,小亮行走的路线是B →C →D ,已知3km AB =,4km BC =,5km CD =,90ABC ∠=︒,已知小明骑自行车速度为a km /分钟,小亮走路,速度为0.1km 分钟。

八年级数学下册【勾股定理】4种简单应用

八年级数学下册【勾股定理】4种简单应用

八年级数学下册【勾股定理】4种简单应用一、勾股定理在网格中的应用例1、已知正方形的边长为1,(1)如图a,可以计算出正方形的对角线长为根号2.①分别求出图(b),(c),(d)中对角线的长_.②九个小正方形排成一排,对角线的长度(用含n的式子表示)为_.分析:借助于网格,构造直角三角形,直接利用勾股定理.二、勾般定理在最短距离中的应用例2、如图,已知C是SB的中点,圆锥的母线长为10cm,侧面展开图是一个半圆,A处有一只蜗牛想吃到C处的食物,它只能沿圆锥曲面爬行.请你求出蜗牛爬行的最短路程.分析在求解几何图形两点间最短距离的问题时,将几何体表面展开,求展开图中两点之间的距离,展开过程中必须要弄清楚所要求的是哪两点之间的距离,以及它们在展开图中的相应位置.点评在求立体几何图形的问题时,一般是通过平面展开图,将其转化成平面图形问题,然后求解.三、勾股定理在生活中的应用例3、如图,学校有一块长方形花园,有较少数同学为了避开拐角走“捷径”,在校园内走出了一条“路”.请同学们算一算,其实这些同学仅仅少走多少步路,却踩伤了花草.(假设1步为0.5m)点评:走“捷径”问题为出发点是常遇到情况,在考查勾股定理的同时,融入了环保教育:少走几步路,就可以留下一片期待的绿色.四、勾股定理在实际生活中的应用例4 小华想知道自家门前小河的宽度,于是按以下办法测出了如下数据:小华在河岸边选取点A,在点A的对岸选取一个参照点C,测得∠CAD=30°,小华沿河岸向前走30m 选取点B,并测得∠CBD=60°.请根据以上数据,用你所学的数学知识,帮小华计算小河的宽度.点评:此题考查直角三角形的应用,解答本题的关键在于画出示意图,将问题转化为解直角三角形的问题.。

10 专题 勾股定理(逆定理)与网格画图

10 专题 勾股定理(逆定理)与网格画图

专题 勾股定理(逆定理)与网格画图
【方法归纳】通过网格运用勾股定理及其逆定理来研究三角形或四边形的形状.
1.如图,每个小正方形的边长为1,A ,B ,C 是小正方形的顶点,则∠ABC 的度数为 .
2.如图,每个小正方形的边长都是1,在图中画一个三角形,使它的三边长分别是3,22,5,且三角形的三个顶点都在格点上.
3.如图,每个小正方形的边长都是1,在图中画一个边长为5的正方形,且正方形的四个顶点在格点上.
4.在图中以格点为顶点画一个等腰三角形,使其内部已标注的格点只有3个.
5.如图,在4个均由16个小正方形组成的网格正方形中,各有一个格点三角形,那么这4个三角形中,与众不同的是 中的三角形,图4中最长边上的高为 . A
C
B
第2
题图第3题图
第4
题图
6.如图,正方形网格中的每个小正方形边长都为1,每个小正方形的顶点叫格点,以格点为顶点分别按下列要求画图:
7.如图,在5×5的正方形网格中,每个小正方形的边长均为1,线段AB 的端点在格点上.
(1)图1中,以AB 为腰的等腰三角形有 个,画出其中的一个,并直接写出其
边长.
(2)图2中,以AB 为底边的等腰三角形有 个,画出其中一个,并直接写出其底边上的高.
图4图3图2图
1图2
图1图2图1
A
B A B。

勾股定理的应用(六)在网格图形中的应用

勾股定理的应用(六)在网格图形中的应用

祖π数学
新人教 八年级下册
之高分速成 1
【题型6】网格中的勾股定理
1.如图,正方形网格中,每个小正方形的边长为1,则网格上的三角形ABC 中,边长为无理数的边数是( )
A.0
B.1
C.2
D.3
2.如图,正方形网格中的△ABC ,若小方格边长为1,则△ABC 是( )
A.直角三角形
B.锐角三角形
C.钝角三角形
D.以上答案都不对
3.如图,小方格都是边长为1的正方形,则四边形ABCD 的面积是 ( )
A.25
B.12.5
C.9
D.8.5
(第1题) (第2题) (第3题)
4.如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫格点,以格点为顶点分别按下列要求画三角形:
①使三角形的三边长分别为3;
②使三角形为钝角三角形且面积为4(在图乙中画一个即可).


B C
A B C。

单元整体教学的一次尝试——“勾股定理(第1课时)”的课堂实录

单元整体教学的一次尝试——“勾股定理(第1课时)”的课堂实录

案例赏析2023年12月下半月㊀㊀㊀单元整体教学的一次尝试勾股定理(第1课时) 的课堂实录◉江苏省无锡市连元英和双语实验学校㊀王㊀俊㊀㊀摘要:新课标指出,数学教学需要推进单元整体教学设计,体现数学知识之间的内在逻辑关系,加强学习内容与核心素养表现的关联,促进学生对教学内容的整体理解和把握,逐步培养学生的核心素养.本文中基于一线教师的视角来尝试单元整体教学,以苏科版八年级上册 勾股定理 起始课的课堂教学实录及评析,体现单元整体教学理念.关键词:单元整体教学;章起始课;勾股定理㊀㊀作为单元的起始课,对整章知识起着统领与导向作用.做好单元整体教学,需要教师很好地做到三个理解(理解教材,理解学生,理解教学),然后落实到每个具体的教学活动环节,整体设计,再分步骤实施,在整个过程中培养学生的核心素养.下面结合 勾股定理第一课时 的课堂实录及分析,来探讨一下单元整体教学.1教材分析勾股定理(第1课时) 教学目标主要有两个:(1)经历探索勾股定理的过程,发展合情推理的能力,体会数形结合的思想;(2)能应用勾股定理求直角三角形中未知边的长.前者需要花时间让学生去探索,所以设计了让学生在纸上多次操作验证㊁观看视频等活动,引导学生去发现勾股定理蕴含的数与形的关系,以及学会如何发现与探索,形成学习的能力,这也是本课重点.2设计思路与意图本节课分六个环节来具体实施:(1)导入直角三角形边角的内部关系,让学生建立形与数之间的对应关系.(2)利用面积割补法解决问题,实现直角三角形面积与边边关系的转化,初步感受三边关系;进一步在网格中验证其他直角三角形中相同结论的存在,实现特殊到一般的探索.(3)运用类比思想,技能迁移,验证锐角三角形和钝角三角形中是否有同样的三边关系.这既是对前面勾股定理探索过程的再一次经历,而且是主动经历,也引出大胆猜想(勾股定理的逆定理),为后续学习作铺垫.(4)关于勾股定理的课外知识介绍,在传播数学文化的同时,激发学生的兴趣.(5)利用勾股定理完成练习.(6)师生小结,为下一课时作铺垫.3课堂实录及分析3.1导入直角三角形,建立对应关系师:特殊的图形其边角具备特殊的内部关系,例如,直角三角形,我们已经学过它的内角之间的关系是什么呢?生1:两锐角互余.师:除了角与角之间的关系,我们还能研究直角三角形各元素的什么关系呢生2:边边关系,边角关系.师:很好.关于直角三角形的边角关系我们留待初三去探讨.这一章,我们将探索直角三角形边与边的内部关系.你已经知道直角三角形的边有什么样的关系呢生3:两边之和大于第三边.师:很好.可是这一事实对所有三角形都适用,作为特殊的直角三角形,是否有更特殊的边边关系呢?3.2利用面积割补法实现面积与边边关系的转化在下列网格中,将小方格边长看作1,完成下列问题:图1㊀㊀备用图图1中,四边形A B MN是什么形状?你会计算它的面积吗?有哪些方法?生1和生2上黑板讲解 割 与 补 两种方法.师:刚刚两位同学发现不能直接利用边长的平方832023年12月下半月㊀案例赏析㊀㊀㊀㊀求正方形面积后,采用了割补法将面积进行转化,这一转化思想在后续第五章 函数 中也会经常用到.下面请大家利用割补法,完成探索部分的第1,2题.3.3运用类比思想,迁移技能图2师:利用上面预习中的方法,计算图2中正方形A B MN ㊁正方形B C D E ㊁正方形A C F G 的面积,其面积依次是,猜想它们之间有何关系?生1:分别算出三个正方形的面积,得出9+16=25.教师板书S 1+S 2=S 3后,追问:线段A B ,B C ,A C 之间有何关系?生2继续转化,直至写出B C 2+A C 2=B A 2(板书).师:大家通过数量关系,利用面积实现了边边关系的转化.这很好地体现了转化思想和数形结合思想(板书).那么,大家能否用语言组织一下B C 2+A C 2=B A 2这一结论呢?生3:直角三角形的两直角边的平方和等于斜边的平方.是否所有的直角三角形都具备这样的三边关系呢?如何验证?师:对于所有直角三角形,都能在网格中利用面积法来验证 直角边的平方和等于斜边的平方 这一结论.3.4介绍勾股定理,传播数学文化师:其实,我们不仅可以在网格中探索这一结论,还可以利用现代化实验来验证.下面请同学们观看视频实验(以直角三角形三边为边往外作正多边形探索面积的变化),进一步提出猜想 以直角三角形的两直角边为边长的两个正多边形的面积和等于以斜边为边长的正多边形的面积.3.5利用勾股定理完成练习黑板上出示问题,用勾股定理小试牛刀.学生通过小组合作来回答:在әA B C 中,已知øC =90ʎ及两边的长如下,求第三边:①a =3,b =4;②a =3,c =5;③b =40,c =41.(学生合作探究过程略.)如图3,锐角三角形和钝角三角形的三边是否也具备这样的关系呢模仿前面的方法,思考并探索.如果不符合,三边又有怎样的关系?图3师:刚刚我们发现并在网格中验证了勾股定理的正确性,大家有没有想过,勾股定理是否也适用于锐角三角形和钝角三角形呢(教师停留几秒.)生1:不一定,有可能 师:怎么才能确定呢?生2:画一画,验一验,像刚刚那样画图验证.师:请大家在网格纸中加以验证,并组内讨论.学生尝试画图并组内讨论(大部分同学还是可以独立完成的).师:结论是什么呢?生4:锐角三角形中是B C 2+A C 2>B A 2,钝角三角形中是B C 2+A C 2<B A 2.师:同学们很厉害!看来勾股定理确实只适用于直角三角形.我们又可以做怎样的大胆猜想呢?生5:反过来,如果三边满足B C 2+A C 2=B A 2,可以得到әA B C 是直角三角形.师:确实,这就是勾股定理的逆定理(板书),这也是第三课时我们将要去深入研究的.师:同学们通过在网格中构建图形,或者用实验去演示,发现了勾股定理.其实,早在五百多年前,就有古人研究并发现了勾股定理.老师介绍毕达哥拉斯定理和我国的勾股弦以及勾3股4弦5 的历史.(展示毕达哥拉斯邮票图片,板书.)师:下面我们就用这个发现,去解决问题吧.利用勾股定理,完成书本第79页练习1,2.3.6师生小结师:通过上面的练习,我们再次发现,有了勾股定理,就能实现直角三角形图形内部的数量关系,解决三角形边边关系,这正是勾股定理的重要应用(板书),这也为以后用代数方法解决几何问题提供了有效的工具.4对单元整体设计的认识单元整体教学是一种教学理念,目的是让教师从高处俯视教学的每一个触角,将它们用一条无形的线串联起来,形成一个有机整体.在实施 单元整体 教学的过程中,教师要注重对教学内容进行结构化整合,探索㊁铺设适合发展学生核心素养的路径.根据新课程标准的要求,尤其要重视数学结果的探索和形成过程.漫漫教学路,教师唯有不断探索创新,才能与时俱进,与学生共成长.只有教师有整体的的眼光㊁更大的视野,才能引领学生一起走进数学的世界,打开数学之门.Z93。

勾股定理的证明及其应用

勾股定理的证明及其应用

勾股定理的证明及其应用第一章前言勾股定理是几何学中的明珠,所以它充满魅力,千百年来,人们对它的证明趋之若骛,其中有著名的数学家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。

也许是因为勾股定理既重要又简单,更容易吸引人,才使它成百次地反复被人研究,反复被人论证。

1940 年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑,其中收集了367 种不同的证明方法。

实际上还不止于此,有资料表明,关于勾股定理的证明方法已有500 余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法。

这是任何定理的证明无法比拟的。

在这数百种证明方法中,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常著名。

在国外,尤其在西方,勾股定理通常被称为毕达哥拉斯定理.这是由于他们认为最早发现直角三角形具有“勾2+股2=弦2”这一性质并且最先给出严格证明的是古希腊的数学家毕达哥拉斯(Pythagoras ,约公元前580 -公元前500 ).实际上,在更早期的人类活动中,人们就已经认识到这一定理的某些特例.除我国在公元前1000 多年前发现勾股定理外,据说古埃及人也曾利用“勾三股四弦五”的法则来确定直角.但是,这一传说引起过许多数学史家的怀疑.比如,美国的数学史家M •克莱因教授曾经指出:我们也不知道埃及人是否认识到毕达哥拉斯定理.我们知道他们有拉绳人(测量员),但所传他们在绳上打结,把全长分成长度为3、4、5 的三段,然后用来形成直角三角形之说,则从未在任何文件上得到证实.”不过,考古学家们发现了几块大约完成于公元前2000 年左右的古巴比伦的泥版书,据专家们考证,其中一块上面刻有如下问题:“一根长度为30 个单位的棍子直立在墙上,当其上端滑下6 个单位时,请问其下端离开墙角有多远?”这是一个三边为3:4:5 三角形的特殊例子;专家们还发现,在另一块版板上面刻着一个奇特的数表,表中共刻有四列十五行数字,这是一个勾股数表:最右边一列为从1 到15 的序号,而左边三列则分别是股、勾、弦的数值,一共记载着15 组勾股数.这说明,勾股定理实际上早已进入了人类知识的宝库.勾股定理同时也是数学中应用最广泛的定理之一。

勾股定理的应用(二)

勾股定理的应用(二)

所以卡车能通过隧道.
书本P62复习题第4题
分析:DB=OD-OB,求BD,可以先求OD,必先求
OC,最先求出OA.
在Rt△AOB中,
AB2 BO2 2.52 0.72 2.4 OA _______________________ . C 2.5
A
在Rt△COD中, OC=OA-AC=2.4-0.4=2
分析 只需利用勾股定理看哪一
个矩形的对角线满足要求.
A
图1
B
解 (1) 图1中AB长度为2 2 .
练习: 蚂蚁沿图中的折线从A点爬到D点,一共爬 了多少厘米?(小方格的边长为1厘米) A
3
B
4
12
E
5
G
C
6
F
8
D
4.如图所示,公路MN和公路PQ在P处交汇, ∠QPM=30°,在A处有一所中学,AP=160米, 假设拖拉机行驶时周围100米以内会受到噪声的影 响,那么拖拉机在公路MN上以每秒8米的速度从 N往M方向行驶时,学校是否受到噪声影响?若受 到影响,影响的时间有多长?并说明理由. [提示:直角三角形中, 30°角所对的直角边 等于斜边的一半。]
A
D

CD OD OC
2 2
2
CD OD 2 OC 2
2.5 1.5
2 2
1.5m C 2(m) 分析:隧道宽度是足够的,所以卡车能 否通过,只要看卡车位于隧道中线一 因为2>1.8,高 侧时,其右侧高度是否小于( CD ). 度上有0.2米的余量, 如何求CD呢?
O
.
连接OD,得到RtΔOCD
点C重合在一起,EF为折痕,若AB=8,BC=4.

人教版八下数学17.1 课时3 利用勾股定理作图或计算教案+学案

人教版八下数学17.1 课时3 利用勾股定理作图或计算教案+学案

人教版八年级下册数学第17章勾股定理17.1 勾股定理课时3 利用勾股定理作图或计算教案【教学目标】1.会运用勾股定理确定数轴上表示实数的点及解决网格问题;2.灵活运用勾股定理进行计算,并会运用勾股定理解决相应的折叠问题.【教学重点】会运用勾股定理确定数轴上表示实数的点及解决网格问题.【教学难点】灵活运用勾股定理进行计算,并会运用勾股定理解决相应的折叠问题.【教学过程设计】一、情境导入[过渡语] 上一节课,我们学会了利用勾股定理解决生活中的实际问题.本节课我们将继续研究勾股定理的综合运用.我们知道数轴上的点有的表示有理数,有的表示无理数,你能在数轴上找到表示的点吗?表示的点呢?[设计意图] 在七年级时,学生只能找到数轴上的表示有理数的点,而对于表示像,这样的无理数的点却找不到.学习了勾股定理后,这样的问题就可以得到解决.由旧入新,开门见山导入新课.[过渡语]同学们,我们一起来欣赏一幅图片:这个美丽的图案是怎么画出来的呢?它依据的是什么数学知识?[设计意图] 以图案导入,在直观形象的图案欣赏中吸引了学生的注意力,加上巧妙设问,为新课的展开做好了铺垫.二、合作探究1.利用勾股定理证明HL定理[过渡语]让我们一起来探究下面的问题:在八年级上册中,我们曾经通过画图得到结论:斜边和一条直角边对应相等的两个直角三角形全等.学习了勾股定理后,你能证明这一结论吗?师生共同画图,写出已知、求证.引导学生关注画图的过程,思考哪些元素相等.已知:如图所示,在Rt△ABC和Rt△A'B'C'中,∠C=∠C'=90°,AB=A'B',AC=A'C'.求证:Rt△ABC≌Rt△A'B'C'.〔解析〕要证明Rt△ABC≌Rt△A'B'C',难以找到锐角对应相等,只有找第三边相等,发现可以根据勾股定理得到BC=,B'C'=,容易得到BC=B'C'.证明:在Rt△ABC和Rt△A'B'C'中,∠C=∠C'=90°,根据勾股定理,得:BC=,B'C'=.又AB=A'B',AC=A'C',∴BC=B'C'.∴△ABC≌△A'B'C'(SSS).2.利用勾股定理在数轴上表示无理数思路一[过渡语]下面我们回到导入一的问题,一起来看:我们知道数轴上的点有的表示有理数,有的表示无理数,你能在数轴上找到表示的点吗?表示的点呢?学生回忆以前的作法,并运用勾股定理计算,长为的线段是两条直角边的长都为1的直角三角形的斜边.学生尝试在数轴上找到表示的点.OB是以数轴的单位长度为边的正方形的对角线,以数轴的原点为圆心、OB长为半径画弧,交数轴正半轴于点A,则点A表示的数是.小组交流讨论:找到长为的线段所在的直角三角形.教师可指导学生寻找长为,……这样的包含在直角三角形中的线段.逐步引导学生得出,由于在数轴上表示的点到原点的距离为,所以只需画出长为的线段即可.设c=,两直角边为a,b,根据勾股定理得a2+b2=c2,即a2+b2=13,若a,b为正整数,则13必须分解为两个平方数的和,即13=4+9,a2=4,b2=9,则a=2,b=3.所以长为的线段是直角边长为2,3的直角三角形的斜边.学生在数轴上画出表示的点.教师根据巡视情况指导步骤如下:(1)在数轴上找到点A,使OA=3;(2)作直线l垂直于OA,在l上取一点B,使AB=2;(3)连接OB,以原点O为圆心、以OB为半径作弧,弧与数轴交于点C,则点C即为表示的点.学生自由作图,教师适当指导.利用勾股定理作出长为,,……的线段,按照同样方法,在数轴上画出表示,,……的点.[设计意图]利用勾股定理和数轴上的点表示实数,将数与形进一步联系在一起,渗透数形结合思想,加深对勾股定理、数轴和实数的理解.思路二引导学生观察图案发现:图形由若干个直角三角形形成,是根据我们所学的勾股定理来完成的.最后教师总结画图的方法:先构造出直角边长为1的等腰直角三角形,并以前一个三角形的斜边及长度为1的线段为直角边,以此向外画直角三角形,就可以得到问题中的图案了.提问:我们知道是两条直角边的长都为1的直角三角形的斜边的长,可是在数轴如何表示出?如何表示出呢?学生根据观察的结果思考在数轴上如何表示出,.教师根据情况指点.追问:你能在数轴上找出表示的点吗?学生讨论:利用勾股定理把长为的线段看成一个直角三角形的斜边,那么两条直角边长分别是哪两个正整数?学生发现()2=22+32后,尝试作图,教师讲解,师生再共同完成.作法:在数轴上找到点A,使OA=3;过点A作直线l垂直于OA,在l上取一点B,使AB=2,连接OB,以原点O为圆心、以OB为半径作弧,弧与数轴交于点C,则点C 即为表示的点.[设计意图]通过观察感知,讨论分析,规范作图,一步紧扣一步,让学生明白如何利用勾股定理在数轴上找到表示无理数的点.[知识拓展]在数轴上表示无理数时,将在数轴上表示无理数的问题转化为画长为无理数的线段问题.第一步:利用勾股定理拆分出哪两条线段长的平方和等于所画线段(斜边)长的平方,注意一般其中两条线段的长是整数;第二步:以数轴原点为直角三角形斜边的顶点,构造直角三角形;第三步:以数轴原点为圆心,以斜边长为半径画弧,即可在数轴上找到表示该无理数的点.3.例题讲解(补充)如图所示,∠B=∠D=90°,∠A=60°,AB=4,CD=2.求四边形ABCD的面积.学生讨论:如何构造直角三角形?比较发现:可以连接AC,或延长AB,DC交于F,或延长AD,BC交于E,根据本题给定的角应选后两种,进一步根据本题给定的边选第三种较为简单.解:延长AD,BC交于E,如图所示.∵∠A=60°,∠B=90°,∴∠E=30°.∴AE=2AB=8,CE=2CD=4,∴BE2=AE2-AB2=82-42=48,BE==4.DE2=CE2-CD2=42-22=12,DE==2.∴S四边形ABCD=S△ABE-S△CDE= AB·BE- CD·DE=6.[解题策略]不规则图形的面积,可转化为特殊图形求解,本题通过将图形转化为直角三角形的方法,把四边形面积转化为三角形面积之差.三、课堂小结师生共同回顾本节课所学主要内容:1.用勾股定理在数轴上表示无理数,构造长为无理数的线段放在直角三角形中,有时是直角边,有时是斜边.2.求不规则图形的面积,应用割补法把图形分解为特殊图形,四边形中常常通过作辅助线构造直角三角形,以利用勾股定理.【板书设计】17.1 勾股定理课时3 利用勾股定理作图或计算1.利用勾股定理证明HL定理2.利用勾股定理在数轴上表示无理数3.例题讲解例题.【教学反思】在课堂教学中注重数学与生活的联系,注重数学知识的应用,从学生认知规律和接受水平出发,循序渐进地引入新课,成功地引导学生会将长为无理数的线段看成一个直角三角形的斜边,再按照尺规作图的要求,在数轴上找出表示无理数的点.由于学生尺规作图的能力较差,学生在确定了作图思路之后,却难以按照尺规作图的步骤完成作图.教师指导在数轴上找出表示无理数的点,示范作图步骤.教学中,根据学生的基础情况,适当进行复习,帮助学生解决学习中的困难.人教版八年级下册数学第17章勾股定理17.1 勾股定理课时3 利用勾股定理作图或计算学案【学习目标】1.会运用勾股定理确定数轴上表示实数的点及解决网格问题;2.灵活运用勾股定理进行计算,并会运用勾股定理解决相应的折叠问题.【学习重点】会运用勾股定理确定数轴上表示实数的点及解决网格问题.【学习难点】灵活运用勾股定理进行计算,并会运用勾股定理解决相应的折叠问题.【自主学习】一、知识回顾1.我们知道数轴上的点与实数一一对应,有的表示有理数,有的表示无理数.你能在数轴上分别画出表示3,-2.5的点吗?2.求下列三角形的各边长.二、合作探究知识点1:勾股定理与数轴呢?(提示:可以构造直角三角形想一想 1.你能在数轴上表示出2的点吗?2作出边长为无理数的边,就能在数轴上画出表示该无理数的点.)2.长为13的线段能是这样的直角三角形的斜边吗,即是直角边的长都为正整数?3.13.(1)在数轴上找到点A,使OA=______;(2)作直线l____OA,在l上取一点B,使AB=_____;(3)以原点O为圆心,以______为半径作弧,弧与数轴交于C点,则点C即为表示______的点.要点归纳:利用勾股定理表示无理数的方法:(1)利用勾股定理把一个无理数表示成直角边是两个正整数的直角三角形的斜边.(2)以原点为圆心,以无理数斜边长为半径画弧与数轴存在交点,在原点左边的点表示是负无理数,在原点右边的点表示是正无理数.类似地,利用勾股定理可以作出长2,3,5为线段,形成如图所示的数学海螺.【典例探究】例1如图,数轴上点A所表示的数为a,求a的值.易错点拨:求点表示的数时注意画弧的起点不从原点起,因而所表示的数不是斜边长.【跟踪检测】1.如图,点A表示的实数是()A. 3B. 5C. 3D.5--2.如图,矩形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴于点M,则点M表示的数为()A.2B.5 1C.10 1D.53.你能在数轴上画出表示17的点吗?知识点2:勾股定理与网格综合求线段长【典例探究】第1题图第2题图例2 在如图所示的6×8的网格中,每个小正方形的边长都为1,写出格点△ABC 各顶点的坐标,并求出此三角形的周长.方法总结:勾股定理与网格的综合求线段长时,通常是把线段放在与网格构成的直角三角形中,利用勾股定理求其长度.例3 如图,在2×2的方格中,小正方形的边长是1,点A、B、C都在格点上,求AB边上的高.方法总结:此类网格中求格点三角形的高的题,常用方法是利用网格求面积,再用面积法求高.【跟踪检测】1.如图是由4个边长为1的正方形构成的田字格,只用没有刻度的直尺在这个田字格中最多可以作出多少条长度为5的线段?2.如图,在5×5正方形网格中,每个小正方形的边长均为1,画出一个三角形的长分别为2,2,10.知识点3:勾股定理与图形的计算【典例探究】例4 如图,折叠长方形ABCD的一边AD,使点D落在BC边的F点处,若AB=8cm,BC=10cm,求EC的长.方法总结:折叠问题中结合勾股定理求线段长的方法:(1)设一条未知线段的长为x(一般设所求线段的长为x);(2)用已知线数或含x的代数式表示出其他线段长;(3)在一个直角三角形中应用勾股定理列出一个关于x的方程;(4)解这个方程,从而求出所求线段长.变式题如图,四边形ABCD是边长为9的正方形纸片,将其沿MN折叠,使点B落在CD边上的B′处,点A的对应点为A′,且B′C=3,求AM的长.【跟踪检测】1.如图,四边形ABCD中∠A=60°,∠B=∠D=90°,AB=2,CD=1,求四边形ABCD 的面积.三、知识梳理利用勾股定理作图或计算在数轴上表示出无理数的点利用勾股定理解决网格中的问题通常与网格求线段长或面积结合起来利用勾股定理解决折叠问题及其他图形的计算通常用到方程思想四、学习中我产生的疑惑【学习检测】1.如图,在边长为1个单位长度的小正方形组成的网格中,点A、B都是格点,则线段AB的长度为()A.5B.6C.7D.25BA2.小明学了利用勾股定理在数轴上作一个无理数后,于是在数轴上的2个单位长度的位置找一个点D,然后点D做一条垂直于数轴的线段CD,CD为3个单位第1题图第2题图第3题图长度,以原点为圆心,以到点C的距离为半径作弧,交数轴于一点,则该点位置大致在数轴上()A.2和3之间B.3和4之间C.4和5之间D.5和6之间3.如图,网格中的小正方形边长均为1,△ABC的三个顶点均在格点上,则AB边上的高为_______.4.边长分别为2cm和3cm的长方形的一条对角线长为_______cm.5.如果等腰直角三角形的斜边长为_______cm,那么这个三角形的面积是_______cm2.6. 一个直角三角形的三边为三个连续偶数,则它的三边长分别为_______.7. 如图,A是数轴上一点,以OA为边长作正方形ABCO,以OB为半径作半圆交数轴于P1、P2两点.(1)当点A表示的数是1时,P1表示的数是_______,P2表示的数是_______;(2) 当点A表示的数是2时,P1表示的数是_______,P2表示的数是_______.8. 边长为3的正方形的一条对角线长是_______.9.如图,在四边形ABCD中,AB=AD=8cm,∠A=60°,∠ADC=150°,已知四边形ABCD的周长为32cm,求△BCD的面积.10. 如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,求重叠部分△AFC的面积.11.长为4 m的梯子搭在墙上与地面成45°角,作业时调整为60°角,则梯子的顶端沿墙面升高了多少米?12.问题背景:在△ABC中,AB、BC、AC三边的长分别为5103a、、,求这个三角形的面积.王琼同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.(1)求△ABC的面积;a a a(a>0),请利用图②的正方形网格(每(2)若△ABC三边的长分别为5,22,17个小正方形的边长为a)画出相应的△ABC,并求出它的面积.图①图②13.如图所示,以数轴的单位长度线段为边作一个正方形,以表示数2的点为圆心,正方形对角线长为半径画半圆,交数轴于点A和点B,则点A表示的数是,点B表示的数是.14.如图所示,在Rt△AOB中,OB=1,AB=2,以原点O为圆心,OA为半径画弧,交数轴负半轴于点P,则点P表示的实数是.15.如图所示,4×4方格中每个小正方形的边长都为1.(1)直接写出图(1)中正方形ABCD的面积及边长;(2)在图(2)的4×4方格中,画一个面积为8的格点正方形(四个顶点都在方格的格点上),并把图(2)中的数轴补充完整,然后用圆规在数轴上表示实数.。

第2讲 利用勾股定理解决坐标系和网格问题(解析版)

第2讲 利用勾股定理解决坐标系和网格问题(解析版)

2020-2021学年人教版八年级下册第17章《勾股定理》同步练习【第2讲:利用勾股定理解决坐标系和网格问题】一、选择题:1.在平面直角坐标系中,已知点P的坐标是(3,4),则OP的长为()A.3 B.4 C.5 D【答案】C【分析】画图,根据勾股定理求解.【详解】如图所示:∵P(3,4),5.故选C.【点睛】本题考查的是勾股定理及坐标与图形性质,根据题意画出图形,利用数形结合求解是解答此题的关键.2.如图,在平面直角坐标系中,点A的坐标为(4,0),点B的坐标为(0,3),以点A为圆心,AB长为半径画弧,交x轴的负半轴于点C,则点C的坐标为()A.(1,0)B.(-1,0)C.(-5,0)D.(5,0)【答案】B【分析】直接利用勾股定理得出AB 的长,再利用圆的性质得出CO 的长,即可得出答案.【详解】∵点A 的坐标为(4,0),点B 的坐标为(0,3),∴3BO =,4AO =,∴5AB =.∵以点A 为圆心,AB 长为半径画弧,交x 轴的负半轴于点C ,∴541CO =-=,则点C 的坐标为(-1,0).故选B .【点睛】本题考查勾股定理,正确得出CO 的长是解题关键.3.如图,点P 是以A 为圆心,AB 为半径的圆弧与数轴的交点,则数轴上点P 表示的实数是( )A .-2B .-2.2C .D .【答案】D【解析】【分析】在三角形AOB 中,利用勾股定理求出AB 的长,即可确定出AP 的长,得到P 表示的实数.【详解】在Rt△AOB 中,OA=1,OB=3,根据勾股定理得:,∴OP=AP -1,则P 表示的实数为+1.故选D .【点睛】本题考查了勾股定理,以及实数与数轴,熟练掌握勾股定理是解题的关键.4.如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为8cm,则正方形a 、b 、c 、d 、e 、f 、g 面积的和是( )cm 2.A .64B .81C .128D .192【答案】D【分析】根据勾股定理可知,S g = S e +S f =S a +S b +S c +S d ,求出最大正方形的面积即可求解.【详解】解:根据勾股定理知,S g = S e +S f ,S e =S a +S b , S f = S c +S d ,∴S g = S e +S f =S a +S b +S c +S d ,∵最大的正方形的面积为S g =(8×8)cm 2=64cm 2,∴正方形a 、b 、c 、d 、e 、f 、g 面积的和是64×3=192cm 2,故选D .【点睛】本题考查了勾股定理,一个直角三角形的斜边的平方等于另外两边的平方和,这里边的平方的几何意义就是以该边为边的正方形的面积.5.如果3,a ,5是勾股数,则a 的值是( )A .4BC .4.4或34 【答案】A【分析】满足a 2+b 2=c 2的三个正整数,称为勾股数,依此得到a .【详解】解:∵3,a ,5是勾股数,∴22235a =+或22253a =-)或a=4故选A .【点睛】本题考查了勾股数,掌握勾股数是正整数是解题关键.6.如图,以直角三角形的三边a ,b ,c 为边,向外分别作半圆、等腰直角三角形和正方形..上述三种情况中,面积关系满足S 1+S 2=S 3,的图形个数是( )A .0B .1C .2D .3【解析】【分析】根据直角三角形a、b、c为边,应用勾股定理,可得a2+b2=c2.(1)第一个图形中,首先根据圆的面积的求法,表示出3个半圆的面积;然后根据a2+b2=c2,可得S1+S2=S3;(2)第二个图形中,首先根据等腰直角三角形的面积的求法,表示出3个等腰直角三角形的面积;然后根据a2+b2=c2,可得S1+S2=S3;(3)第三个图形中,首先根据正方形的面积的求法,表示出3个正方形的面积;然后根据a2+b2=c2,可得S1+S2=S3.【详解】(1)S1=π8a2,S2=π8b2,S2=π8c2,,∵a2+b2=c2,∴π8a2+π8b2=π8c2,∴S1+S2=S3.(2)S1=14a2,S2=14b2,S2=14c2,∵a2+b2=c2,∴14a2+14b2=14c2,∴S1+S2=S3.(3)S1=a2,S2=b2,S2=c2,∵a2+b2=c2,∴S1+S2=S3.综上,可得面积关系满足S1+S2=S3的图形有3个.故选D.【点睛】(1)此题主要考查了勾股定理的应用,要熟练掌握,解答此题的关键是要明确:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.(2)此题还考查了等腰直角三角形、圆以及正方形的面积的求法,要熟练掌握.7.如图,Rt△ABC中,∠C=90°,AC=3,BC=4,分别以AB、AC、BC为边在AB同侧作正方形ABEF、ACPQ、BCMN,四块阴影部分的面积分别为S1、S2、S3、S4.则S1-S2+S3+S4等于()A.4 B.6 C.8 D.10【答案】B【解析】本题先根据正方形的性质和等量代换得到判定全等三角形的条件, 再根据全等三角形的判定定理和面积相等的性质得到S 1、S 2、3S 、4S 与△ABC 的关系, 即可表示出图中阴影部分的面积和.本题的着重点是等量代换和相互转化的思想.【详解】解:如图所示, 过点F 作FG⊥AM 交于点G, 连接PF.根据正方形的性质可得: AB=BE, BC=BD,∠ABC+∠CBE=∠CBE+∠EBD=90o ,即∠ABC=∠EBD.在△ABC 和△EBD 中,AB=EB ,∠ABC=∠EBD, BC=BD所以△ABC≌△EBD(SAS),故S 4=ABC S ,同理可证,△KME≌△TPF,△FGK≌△ACT,因为∠QAG=∠AGF=∠AQF=90o , 所以四边形AQFG 是矩形, 则QF//AG, 又因为QP//AC, 所以点Q 、P, F 三点共线, 故S 3+S 1=AQF S , S 2=AGF S . 因为∠QAF+∠CAT=90o ,∠CAT+∠CBA=90o ,所以∠QAF=∠CBA, 在△AQF 和△ACB 中, 因为∠AQF=∠ACB,AQ=AC,∠QAF=∠CAB所以△AQF≌△ACB(ASA), 同理可证△AQF ≌△BCA,故S 1﹣S 2+S 3+S 4=ABC S = 12 ⨯3 ⨯4 =6,故本题正确答案为B.【点睛】本题主要考查正方形和全等三角形的判定与性质.8.在直线l 上依次摆放着七个正方形,已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S 1,S 2,S 3,S 4,则S 1+S 2+S 3+S 4=( )A .4B .5C .6D .7【答案】A 【解析】解:由勾股定理的几何意义可知:S 1+S 2=1,S 2+S 3=2,S 3+S 4=3,S 1+S 2+S 3+S 4=4,故选A .点睛:勾股定理包含几何与数论两个方面,几何方面,一个直角三角形的斜边的平方等于另外两边的平方和.这里,边的平方的几何意义就是以该边为边的正方形的面积.9.如图,在一个由4×4个小正方形组成的正方形网格中,阴影部分面积与正方形ABCD 的面积比是( )A .3:4B .5:8C .9: 16D .1:2【答案】B【分析】 利用割补法求出阴影部分面积,即可求出阴影面积与正方形ABCD 面积之比.【详解】 解:阴影部分面积为214413=166=102-⨯⨯⨯-,正方形ABCD 面积为16,∴阴影部分面积与正方形ABCD 的面积比是10∶16=5∶8.故选B【点睛】在网格问题中,一般求图形面积可以采用割补法进行.10.如图,在正方形网格中,每个小正方形的边长均为1,△ABC 的三个顶点均在格点上,则BC 边上的高为( ).ABCD.【答案】C 【分析】根据题意可求得AB ,AC ,BC 的长,作AD⊥BC 于D ,根据勾股定理就不难得到AD 的长了.【详解】根据题意得BC = ∴△ABC 为一等腰三角形,作AD⊥BC 于D ,∴BD=,2=即BC边上的高为2故选C【点睛】解答本题要充分利用正方形的性质,注意在正方形中的特殊三角形的应用.二、填空题11.如图,∠C=∠ABD=90°,AC=4,BC=3,BD=12,则AD=____________ .【答案】13【解析】分析:先根据勾股定理求出AB的长,再根据勾股定理求出AD的长.详解:在直角三角形ABC中,AC=4,BC=3,根据勾股定理,得=在Rt△ABD中,BD=12,根据勾股定理,得=13.故答案为13.点睛:本题考查了勾股定理的应用,能运用勾股定理进行计算是解本题的关键.12.在平面直角坐标系中,已知点()A、)B,点C在坐标轴上,且8AC BC+=,写出满足条件的所有点C的坐标______.【答案】()0,3,()0,3-,()4,0,()4,0-【分析】本题考查了勾股定理与两点间距离公式,需要分类讨论:①当点C位于x轴上时,根据线段间的和差关系即可求出点C坐标;②当点C在y轴上时,根据两点间距离公式和勾股定理构成方程式,解答即可【详解】解:①当点C位于x轴上时,设点C坐标为(x,0),则8x x+=,解得x=4或x=-4;②当点C 在y 8=,解得y=±3综上所述,满足条件的所有点C 的坐标为(4,0)(-4,0)(0,3)(0,-3)【点睛】本题的关键是掌握两点间距离公式和勾股定理13.若A(8,4)和点B(5,k )间的距离是5,则k =____.【答案】8或0【分析】根据两点的距离公式解答即可.【详解】根据两点的距离公式得(8-5)2+(k-4)2=52,解得k=8或0,故答案为:8或0.【点睛】此题考查直角坐标系中点与点间距离的计算公式,勾股定理,正确掌握计算公式是解题的关键.14.在平面直角坐标系中,坐标轴上到点()6,8P -的距离等于10的点共有______个. 【答案】3【分析】本题考查的是两点间距离公式,利用两点间距离公式,进行分类讨论:设一点为Q (x ,0)或(y ,0),根据两点间距离公式得到方程,分别解方程即可确定Q 点坐标【详解】解:设这一点为Q ,坐标轴上点Q 到点P 的距离等于10,若点Q 在x 轴上,设Q (x ,0)则10PQ =,解得x=0或x=-12,此时Q 点坐标为(0,0),(-12,0);若点Q 在y 轴上,设Q (0,y )则10PQ =,解得y=0或y=16,此时Q 点坐标为(0,0),(0,16)所以坐标轴上到点P (-6,8)的距离等于10的点有(0,0),(-12,0),(0,16),故答案为3【点睛】本题的关键是掌握两点间的距离公式,进行分类讨论15.如图,已知在Rt ABC △中,90ACB ∠=︒,4AB =,分别以AC ,BC 为直径作半圆,面积分别记为1S ,2S ,则1S +2S 的值等于____.【答案】2π【分析】首先把1S 与2S 的表达式列出来,然后求和时根据勾股定理可得到与斜边AB 平方的关系,然后得到1S +2S 的值.【详解】2121==228AC C S A ππ⎛⎫⋅⋅⋅ ⎪⎝⎭,2221=2=28BC B S C ππ⎛⎫⋅⋅ ⎪⎝⎭⋅ 则1S +2S =()2222888AC BC AC BC πππ⋅+⋅=⋅+ 在直角三角形ABC 中有:222AC BC AB +=则1S +2S =()222=162888AC BC AB ππππ⋅+⋅=⨯=故答案为:2π【点睛】本题考查了勾股定理的综合应用,解题关键在于通过勾股定理建立好两个半圆的面积与斜边的联系.16.在一次“寻宝”游戏中,“寻宝”人找到了如图所示的两个标志点A (2,3)、B (4,1),已知AB 两点,则“宝藏”点的坐标是 .【答案】(1,0)或(5,4)【分析】根据两点间的距离公式列方程组求解即可.【详解】解:设宝藏的坐标点为C (x ,y ),根据坐标系中两点间距离公式可知,AC=BC ,=两边平方,得(x ﹣2)2+(y ﹣3)2=(x ﹣4)2+(y ﹣1)2,化简得x ﹣y=1;,所以(x ﹣2)2+(y ﹣3)2=10; 把x=1+y 代入方程得,y=0或4,即x=1或5,所以“宝藏”C 点的坐标是(1,0)或(5,4).故答案为(1,0)或(5,4).17.如图,3×3网格中一个四边形ABCD ,若小方格正方形的边长是1,则四边形ABCD 的周长_______【答案】【分析】由于小方格正方形的边长为1,由勾股定理根据图形可以分别求出AD,CD,AB,BC,然后就可以求出四边形ABCD的周长.【详解】解:由于小方格正方形的边长为1,由勾股定理从图中知,四边形ABCD.【点睛】解答本题的关键是熟练掌握网格的特征,灵活选择合适的直角三角形运用勾股定理.⨯的正方形网格中,每个小正方形的边长均为1,则AB,AC,AD,三条线段中,长18.如图,在26度最接近5的线段是______.【答案】AC【分析】根据题意找到AC、AB、AD所在的直角三角形,根据勾股定理即可求得.【详解】根据题意得:=,==因为所以长度最接近5的线段是AC.故答案为AC【点睛】此题考查了勾股定理的应用.要注意格点三角形的三边的求解方法:借助于直角三角形,用勾股定理求解.19.如图,由四个边长为1的小正方形构成一个大正方形,连接小正方形的三个顶点,可得到△,则△中边上的高是 .【答案】2【分析】求出三角形ABC 的面积,再根据三角形的面积公式即可求得BC 边上的高.【详解】解:由题意知,小四边形分别为小正方形,所以B 、C 为EF 、FD 的中点,S △ABC =S 正方形AEFD -S △AEB -S △BFC -S △CDA =1113221211122222⨯-⨯⨯-⨯⨯-⨯⨯= =∴△ABC 中BC 边上的高是322⨯= 故答案为:220.观察下列式子:当2n =时,224a =⨯=,2213b =-=,2215c =+=,3,4,5是一组勾股数; 当3n =时,236a =⨯=,2318b =-=,23110c =+=,6,8,10是一组勾股数; 当4n =时,248a =⨯=,24115b =-=,24117c =+=,8,15,17是一组勾股数……根据以上规律,用含n (2n ≥的整数)的代数式表示具备上述特点的勾股数a = _______,b = _______,c =_______.【答案】2n ; 21n -; 21n +.【分析】分析题中所给式子,即可得出a =2n ,b =n 2−1,c =n 2+1.【详解】根据以上规律,用含n (2n ≥的整数)的代数式表示具备上述特点的勾股数:a =2n ,b =n 2−1,c =n 2+1.【点睛】此题主要考查了数据变化规律以及勾股数,根据所给式子得出a 、b 、c 与n 的关系是解题关键.三、解答题21.如图所示,3AC =,2BC =,5AD =,求正方形BEFD 的面积.【答案】12BEFD S =正方形.【分析】在Rt ABC ∆中根据勾股定理计算出AB 2的长度,在Rt ABD ∆中根据勾股定理计算出BD 2,从而得出正方形BEFD 的面积.【详解】在Rt ABC ∆中,根据勾股定理,得22222329413AB AC BC =+=+=+=.在Rt ABD ∆中,根据勾股定理,得222251312BD AD AB =-=-=. 所以212BEFD S BD ==正方形.【点睛】本题考查用勾股定理计算线段的长度,在本题中利用勾股定理计算线段的长度时,可只求线段的平方.22.如图,Rt△ABC 中,∠C=90°,AD 平分∠CAB,DE⊥AB 于E ,若AC=6,BC=8,CD=3.(1)求DE 的长;(2)求△ADB 的面积.【答案】(1)DE=3;(2)ADB S 15∆=.【分析】(1)根据角平分线性质得出CD=DE,代入求出即可;(2)利用勾股定理求出AB的长,然后计算△ADB的面积.【详解】(1)∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=DE,∵CD=3,∴DE=3;(2)在Rt△ABC中,由勾股定理得:AB10===,∴△ADB的面积为ADB11S AB DE1031522∆=⋅=⨯⨯=.23.如图,点E在正方形ABCD内,AE=6,BE=8,AB=10.试求出阴影部分的面积S.【答案】76【解析】试题分析:先判断△ABE是直角三角形,再用正方形的面积-直角△ABE的面积即可求解.试题解析:在△ABE中,∵AE=6,BE=8,AB=10,62+82=102,∴△ABE是直角三角形,∴S阴影部分=S正方形ABCD﹣S△ABE=AB2﹣×AE×BE=100﹣×6×8=76.24.如图,△ABC的三个顶点的坐标分别为A(0,2),B(4,0),C(6,4),求△ABC的周长与面积.【答案】10【分析】根据直角坐标系的特点及勾股定理即可求出各边的长,即可求出周长与面积.【详解】解:∵A(0,2),B (4,0),C (6,4),BCAC,∴△ABC 的周长=AB+BC+AC==∵AB 2+BC2=AC 2,∴△ABC 为直角三角形,∠ABC=90°, ∴△ABC的面积=1102⋅=.【点睛】此题主要考查直角坐标系的应用,解题的关键是熟知勾股定理进行求解.25.已知,如图,点A (a ,b ),B (c ,d )在平面直角坐标系中的任意两点,且AC⊥x 轴于点C ,BD⊥x 轴于点D .(1)CD= ,|DB ﹣AC|= ;(用含a ,b ,c ,d 的代数式表示)(2)请猜想:A ,B 两点之间的距离 ;(3)利用猜想,若A (﹣2,5),B (4,﹣4),求AB 两点之间的距离.【答案】(1),c a b d -- ;(2;(3)【分析】(1)CD 的长为A 、B 两点的横坐标之差的绝对值;|DB ﹣AC|为A 、B 两点的纵坐标之差的绝对值;(2)作垂线构造直角三角形,利用勾股定理推出距离公式;(3)利用(2)的公式计算.【详解】解:(1)CD=|c ﹣a|,|DB ﹣AC|=|b ﹣d|;(2)如图,过点B 作BE ⊥AD 与点E , AE a c =-,BE bd =-, 由勾股定理,AB ==(3)根据上一问的公式,=. 【点睛】本题考查了两点间的距离公式,需要注意的是在用坐标表示线段长度的时候要加上绝对值.26.已知:整式()()22212A n n -=+,整式0B >.尝试: 化简整式A .发现: 2A B =,求整式B .联想:由上可知,222212B n n +=(﹣)(),当n >1时2,1,2,n n B -为直角三角形的三边长,如图.填写下表中B 的值:【答案】尝试:221()A n =+;发现:21=B n +;联想:17,37. 【分析】先根据完全平方公式和整式的混合运算法则求出A ,进而求出B ,再把n 的值代入即可解答.【详解】A=(n 2﹣1)2+(2n )2=n 4﹣2n 2+1+4n 2=n 4+2n 2+1=(n 2+1)2.∵A=B 2,B >0,∴B=n 2+1,当2n=8时,n=4,∴n 2+1=42+1=17;当n 2﹣1=35时,n 2+1=37.故答案为:17;37.【点睛】本题考查了勾股数的定义.掌握勾股数的定义是解答本题的关键.。

人教版八年级下册数学《勾股定理》说课复习(第2课时勾股定理的应用)

人教版八年级下册数学《勾股定理》说课复习(第2课时勾股定理的应用)
求证:AD2-AB2=BD·
CD.
A
证明:过A作AE⊥BC于E.
∵AB=AC,∴BE=CE.
在Rt △ADE中,AD2=AE2+DE2.
在Rt △ABE中,AB2=AE2+BE2.
AD2-AB2= DE2- BE2
= (DE+BE)·( DE- BE)
= (DE+CE)·( DE- BE)
=BD·
CD.
10km
藏宝点B的距离是________.
课程讲授
构造直角三角形解决实际问题
例4
一辆装满货物的卡车,其外形高2.5米,宽1.6米,要
开进厂门形状如图所示的某工厂,问这辆卡车能否通过该
工厂的厂门?说明理由.
解:在Rt△OCD中,∠CDO=90°,由
C
A
O
勾股定理,得
CD= OC 2 OD 2 1 0.82 0.6(米).
CH=0.6+2.3=2.9(米)>2.5(米).
D
B
2.3米
2
答:卡车能通过厂门.
M
2米
H
N
课程讲授
2
构造直角三角形解决实际问题
练一练:
(中考·安顺)如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米,
一只小鸟从一棵树的树顶飞到另一棵树的树顶,小鸟至少飞行( B )
A.8米
B.10米
C.12米
练一练:
如图是一个滑梯示意图,若将滑道AC水平放置,则刚好与AB
一样长.已知滑梯的高度 CE=3m, CD=1m,试求滑道AC的长.
解:设滑道AC的长度为xm,则AB的长度为xm,
AE的长度为(x-1)m,

14.2.3 勾股定理的应用(网格作图与计算问题)(华东师大版)(共21张PPT)

14.2.3 勾股定理的应用(网格作图与计算问题)(华东师大版)(共21张PPT)

的直线建一图书室,本社区有两所学校所在的位置在点C和点D
处,CA⊥AB于A,DB⊥AB于B,已知AB=25km,C该建在距点A多少km处,才能使它 到两所学校的距离相等?

AE
B


D
C
小结
这节课我学到了什么? 我的收获是…… 我还有……的疑惑
P 123
八年级(上)
华东师大版第14章 勾股定理
温故知新
你能灵活地
运用直角三
B
角形的性质
解决问题吗?
c
a
∠A+∠B=90°
A
b
C
a2 b2 c2
(Ⅰ)直角三角形的两锐角互余;
(Ⅱ)直角三角形两直角边的平方和等于斜边的平方。
探究发现
问题1:如图,在3×3的正方形网格中,每个小正方形的边长都为1,请
在给定网格中按下列要求画出图形:
(2)当点Q在边BC上运动时,出发几秒钟后,△PQB是等腰三角形? (3)当点Q在边CA上运动时,求能使△BCQ是等腰三角形的运动时间。
C
C
Q
Q
B
PA
B
PA
备用图
一个人一天也不能没有理想,凭侥幸、 怕吃苦、没有真才实学,再好的理想也 不能实现不了。
学以致用
例 2 如图大正方形的面积为13,小正方形的面积为1,求 a b2 的值。
c
a
b
a2 b2 c2 13 4 1 ab 13 1 12
2
数学活动室
1.在一棵树的10米高的D处有两只猴子,其中一只猴子爬下树走 到离树20米的池塘A处,另一只爬到树顶后直接跃向池塘A处,如 果两只猴子所经过的距离相等,试问这棵树有多高?

勾股定理的典型应用举例

勾股定理的典型应用举例

勾股定理的典型应用举例勾股定理,在数学中有着非常重要的应用。

下面就举例说明。

1、拼图中用勾股定理例1、(温州市)在直线l 上依次摆放着七个正方形(如图所示)。

已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S 1、S 2、S 3、S 4,则S 1+S 2+S 3+S 4=_______。

解析:设面积为S 1的正方形的边长AB=x ,面积为S 2的正方形的边长DE=y ,面积为S 3的正方形的边长PQ=m ,面积为S 4的正方形的边长ST=n ,我们易证△BAC ≌△CDE ,△GFH ≌△HMO ,△QPR ≌△RTS ,所以,根据勾股定理,得:x 2+y 2=BC 2=1,y 2+z 2=GH 2=2,z 2+m 2=QR 2=3,x 2+y 2+y 2+z 2+z 2+m 2=1+2+3,x 2+y 2 +z 2+m 2+(z 2+y 2)=1+2+3,x 2+y 2 +z 2+m 2+(z 2+y 2)=1+2+3,x 2+y 2 +z 2+m 2=4,即S 1+S 2+S 3+S 4=4。

2、正方形网格上用勾股定理例2、在5×5的正方形网格上,如图2,在三角形ABC 中,三角形的三边的长分别为a ,b ,c ,则a 、b 、c 的大小的关系是 :A a <b <cB c <a <bC c <b <aD b <a <c (04广州)分析 :假设每个正方形的边长为1,分别在三个阴影三角形中,根据勾股定理,得:AC=b=,=+2215AB=c==,2232+13BC=a==231+10所以,b <a <c ,因此,D 是正确的。

解:选D 。

例3、在5×5的正方形网格上,如图3,在三角形ABC 中,三角形的三边的长分别为a ,b ,c ,则点B 到AC 的距离是 。

分析:直接求这个距离,比较不容易,如果通过求三角形ABC 的面积,后利用面积公式求就容易多了。

勾股定理全章知识点总结大全

勾股定理全章知识点总结大全

勾股定理全章知识点总结大全一.基础知识点:1:勾股定理直角三角形两直角边a、b的平方和等于斜边c的平方。

(即:a2+b2=c2)要点诠释:勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用:(1)已知直角三角形的两边求第三边(在ABC∆中,90∠=︒,则c,Cb,a)(2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边(3)利用勾股定理可以证明线段平方关系的问题2:勾股定理的逆定理如果三角形的三边长:a、b、c,则有关系a2+b2=c2,那么这个三角形是直角三角形。

要点诠释:勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时应注意:(1)首先确定最大边,不妨设最长边长为:c;(2)验证c2与a2+b2是否具有相等关系,若c2=a2+b2,则△ABC是以∠C为直角的直角三角形(若c2>a2+b2,则△ABC是以∠C为钝角的钝角三角形;若c2〈a2+b2,则△ABC 为锐角三角形)。

(定理中a,b,c及222+=只是一种表现形式,不可认为是唯一的,如若三a b c角形三边长a,b,c满足222+=,那么以a,b,c为三边的三角形是直角三a c b角形,但是b为斜边)3:勾股定理与勾股定理逆定理的区别与联系区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理;联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关。

4:互逆命题的概念如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。

如果把其中一个叫做原命题,那么另一个叫做它的逆命题。

5:勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理常见方法如下:方法一:,4EFGH S S S ∆+=正方形正方形ABCD 2214()2ab b a c ⨯+-=,化简可证. 方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+ 大正方形面积为222()2S a b a ab b =+=++ 所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证 6:勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25;9,12,15;8,15,17;9,40,41;12,16,20等③用含字母的代数式表示n 组勾股数:221,2,1n n n -+(2,n ≥n 为正整数);2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数)二、规律方法指导 1.勾股定理的证明实际采用的是图形面积与代数恒等式的关系相互转化证明的。

中考数学复习:专题4-12 网格中的勾股定理

中考数学复习:专题4-12 网格中的勾股定理

专题12 网格中的勾股定理【专题综述】网格题型是近几年的常考题型,也是近期各地中考考试的一个热点。

正方形网格中的每一个角都是直角,所以在正方形网格中的计算都可以归结为求任意两个格点之间的长度问题,一般情况下都是设每一个小正方形的边长为1,然后应用勾股定理来进行计算。

【方法解读】一、面积问题例1 如图1所示,在一个有4×4个小正方形组成的正方形网格中,阴影部分的面积与正方形ABCD的面积比是()A、3:4B、5:8C、9:16D、1:2【举一反三】如图,在正方形网格(图中每个小正方形的边长均为1)中,△ABC的三个顶点均在格点上,则△ABC的周长为,面积为.【来源】山东省青岛市第四中学八年级数学上册:1.1探索勾股定理同步练习二、长度问题例2 如图2所示,在△ABC 中,三边a 、b 、c 的大小关系是( )A 、a <b <cB 、c <a <bC 、c <b <aD 、b <a <c【举一反三】勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。

中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦。

我国西汉《周髀算经》中周公与商高对话中涉及勾股定理,所以这个定理也有人称商高定理,勾股定理在西方被称为毕达哥拉斯定理,相传是古希腊数学家兼哲学家毕达哥拉斯于公元前550年发现的。

我们知道,可以用一个数表示数轴上的一个点,而每个数在数轴上也有一个点与之对应。

现在把这个数轴叫做x 轴,同时,增加一个垂直于x 轴的数轴,叫做y 轴,如下图。

这样,我们可以用一组数对来表示平面上的一个点,同时,平面上的一个点也可以用一组数对来表示,比如下图中A 点的位置可以表示为(2,3),而数对(2,3)所对应的点即为A 。

若平面上的点M ()11,x y ,N ()22,x y ,我们定义点M 、N 在x 轴方向上的距离为: 12x x -,点M 、N 在y 轴方向上的距离为: 12y y -。

2022年华师大版《勾股定理的应用》公开课教案

2022年华师大版《勾股定理的应用》公开课教案

第1课时勾股定理的应用〔1〕【根本目标】1.会用勾股定理解决较综合的问题.2.树立数形结合的思想.【教学重点】勾股定理的综合应用.【教学难点】勾股定理的综合应用.一、创设情景,导入新课如图,在5×5的正方形网格中,每个小正方形的边长都为1,请在给定网格中按以下要求画出图形:〔1〕从点A出发画一条线段AB,使它的另一个端点B在格点〔即小正方形的顶点〕上,且长度为22;〔2〕画出所有的以〔1〕中的AB为边的等腰三角形,使另一个顶点在格点上,且另两边的长度都是无理数.二、师生互动,探究新知如图,滑竿在机械槽内运动,∠ACB为直角,滑竿AB长2.5米,顶点A在AC上运动,量的滑竿下端B距C点的距离为1.5米,当端点B向右移动0.5米时,求滑竿顶端A下滑多少米?【分析】滑竿在下滑中它的长度是不变的,先在直角三角形ACB中利用勾股定理求出AC的长,然后再在直角三角形ECD中利用勾股定理求出CE的长,即可求出AE的长.【教师点拨】勾股定理在实际生活中有着广泛的应用,他的前提是直角三角形,在求解时常运用题目中的条件构造直角三角形,而构造直角三角形方式有两种:一是根据条件中的直角构造,二是作垂线构造.三、随堂练习,稳固新知完成练习册中本课时对应的课后作业局部.四、典例精析,拓展新知例如图是一个外轮廓为矩形的机器零件平面示意图,根据图中的尺寸〔单位:mm〕,计算两圆孔中心A和B的距离.【分析】显然△ABC是直角三角形,根据示意图可求出AC和BC的长,从而根据勾股定理可以求出AB的长.解:由示意图可知AC=150-60=90(mm),BC=180-60=120(mm)答:两圆孔中心A和B的距离为150mm.五、运用新知,深化理解.完成教材P123习题14.2中的第5题.六、师生互动,课堂小结这节课你学习了什么?有何收获?有何困惑?与同伴交流,在学生交流发言的根底上,教师归纳总结.完成练习册中本课时对应的课后作业局部.本课时所学内容是用勾股定理解决简单的实际问题〔或数学问题〕.在实际生活中,很多问题可以用勾股定理解决,而解决这类问题都需要将其转化为数学问题,也就是通过构造直角三角形来完成.教学时应注意如何构造直角三角形,找出两个量,求出第三个量,或者利用勾股定理建立几个量之间的关系,解决问题时注意让学生动手,画出图形,从而建立直角三角形模型.本节课中由勾股定理解决立体图形上的最短路径问题,比拟抽象,注意化“曲〞为“平〞,让学生动手操作,真正建立立体图形与平面图形之间的联系.第2课时 与面积相关的等可能事件的概率1.了解与面积有关的一类事件发生概率的计算方法,并能进行简单计算;(重点) 2.能够运用与面积有关的概率解决实际问题.(难点)一、情境导入学生甲与学生乙玩一种转盘游戏.如图是两个完全相同的转盘,每个转盘被分成面积相等的四个区域,分别用数字“1〞“2〞“3〞“4〞表示.固定指针,同时转动两个转盘,任其自由停止,假设图①指针所指数字为奇数,那么甲获胜;假设图②指针所指数字为偶数,那么乙获胜;假设指针指向扇形的分界线,那么重转一次.在该游戏中乙获胜的概率是多少?二、合作探究探究点一:与面积有关的概率如图,AB 、CD 是水平放置的轮盘(俯视图)上两条互相垂直的直径,一个小钢球在轮盘上自由滚动,该小钢球最终停在阴影区域的概率为( )A.14B.15C.38D.23解析:根据题意,AB 、CD 是水平放置的轮盘上两条互相垂直的直径,即圆面被等分成4个面积相等的局部.分析图示可得阴影局部面积之和为圆面积的14,可知该小钢球最终停在阴影区域的概率为14.应选A.方法总结:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件A ,然后计算阴影区域的面积在总面积中占的比例,这个比例即事件A 发生的概率.一儿童行走在如以下图的地板上,当他随意停下时,最终停在地板上阴影局部的概率是( )A.13B.12C.34D.23解析:观察这个图可知阴影区域(3块)的面积占总面积(9块)的13,故其概率为13.应选A.方法总结:当某一事件A 发生的可能性大小与相关图形的面积大小有关时,概率的计算方法是事件A 所有可能结果所组成的图形的面积与所有可能结果组成的总图形面积之比,即P (A )=事件A 所占图形面积总图形面积.概率的求法关键是要找准两点:(1)全部情况的总数;(2)符合条件的情况数目.二者的比值就是其发生的概率.探究点二:与面积有关的概率的应用如图,把一个圆形转盘按1∶2∶3∶4的比例分成A 、B 、C 、D 四个扇形区域,自由转动转盘,停止后指针落在B 区域的概率为________.解析:∵一个圆形转盘按1∶2∶3∶4的比例分成A 、B 、C 、D 四个扇形区域,∴圆形转盘被等分成10份,其中B 区域占2份,∴P (落在B 区域)=210=15.故答案为15.三、板书设计1.与面积有关的等可能事件的概率 P (A )=错误!2.与面积有关的概率的应用本课时所学习的内容多与实际相结合,因此教学过程中要引导学生展开丰富的联想,在日常生活中发现问题,并进行合理的整合归纳,选择适宜的数学方法来解决问题。

勾股定理的应用(必考题)

勾股定理的应用(必考题)

1、如图:(1)你能得到关于a,b,c的一个等式吗?写出你的过程.(2)请用一句话描述你的发现:在直角三角形中,______(3)请应用你学到的新知识解决下面这个问题:将一根长为30cm的筷子置于底面直径为5cm,高12cm的圆柱形的空水杯中,则露出杯子外面的长度最短是______cm,最长是______ cm.如果把圆柱体换成一个长,宽,高分别为6,8,24的无盖长方体盒子.那么这根筷子露出盒子外面的长度最短是______cm.2、某楼梯的侧面视图如图所示,其中AB=6。

5米,BC=2。

5米,∠C=90°,楼梯的宽度为6米,因某种活动要求铺设红色地毯,则在AB段楼梯所铺地毯的面积应为.3、如图所示,一只小蚂蚁从棱长为1的正方体的顶点A出发,经过每个面的中心点后,又回到A点,蚂蚁爬行最短程S满足()A.5<S≤6B.6<S≤7C.7<S≤8D.8<S≤94、如图,已知:Rt△ABC中,∠C=90°,AC=BC=2,将一块三角尺的直角顶点与斜边AB的中点M重合,当三角尺绕着点M旋转时,两直角边始终保持分别与边BC、AC交于D,E两点(D、E不与B、A重合).(1)试说明:MD=ME;(2)求四边形MDCE的面积.5、小明在测量学校旗杆的高度时发现,旗杆的绳子垂到地上还多一米,当他把绳子拉直并把绳子的下端触地时,绳子离开旗杆5米,求旗杆的高度.6、印度数学家什迦逻(1141年—1225年)曾提出过“荷花问题”:平平湖水清可鉴,面上半尺生红莲.出泥不染亭亭立,忽被强风吹一边,离开原处二尺远,花贴湖面像睡莲.能算诸君请解题,湖水如何知深浅?7、如图,在每个小方格的面积为1的4×4的方格纸上画一个正方形ABCD,使正方形ABCD的面积为5,并计算正方形的边长和周长.8、在下列4×4各图中,每个小正方形的边长都为1,请在每一个图中分别画出一条线段,且它们的长度均表示不等的无理数.表示:______9、自动门开启的连动装置如图所示,∠AOB为直角,滑杆AB为定长100cm,端点A,B可分别在OA,OB上滑动,当滑杆AB的位置如图所示时,OA=80cm、若端点A向上滑动10cm,则端点B滑动的距离()A.大于10cm B.等于10cm C.小于10cm D.不能确定10、如图,在长15米,宽8米的长方形ABCD花园内修一条长13米的笔直小路EF,小路出口一端E选在AD边上距D点3米处,另一端出口F应选在AB边上距B点几米处?11、如图,把一块三角形(△ABC)土地挖去一个直角三角形(∠ADC=90°)后,测得CD=6米,AD=8米,BC=24米,AB=26米.求剩余土地(图中阴影部分)的面积.12、距沿海某城市A的正南方向km的B处有一台风中心.根据海事预报,以台风中心为圆心,250km为半径的圆形区域内会受到台风影响.该台风中心现在正以15km/h的速度沿北偏东45°方向往C移动,问:该城市是否会受到这次台风的影响?请说明理由.13、如图,设A城气象站测得台风中心在A城正西方向300千米的B处,正向北偏东60°的BF方向移动,距台风中心200千米的范围内是受台风影响的区域,那么A城是否受到这次台风的影响?为什么?14、如图,南北方向PQ以东为我国领海,以西为公海,晚上10时28分,我边防反偷渡巡逻101号艇在A处发现其正西方向的C处有一艘可疑船只正向我沿海靠近,便立即通知下在PQ上B处巡逻的103号艇注意其动向,经检测,AC=10海里,AB=6海里,BC=8海里,若该船只的速度为12.8海里/小时,则可疑船只最早何时进入我领海?15、如图,铁路AB的一边有C、D两村庄,DA⊥AB于A,CB⊥AB于B,已知AB=25km,DA=15km,CB=10km,现要在铁路上建一个农产品收购站E,并使DE=CE.则农产品收购站E应建在距点A多少千米处?16、如图,三个村庄A、B、C之间的距离分别为AB=15km,BC=9km,AC=12km.已知A、B两村之间已修建了一条笔直的村级公路AB,为了实现村村通公路,现在要从C村修一条笔直公路CD直达AB.已知公路的造价为10000元/km,求修这条公路的最低造价是多少?17、如图所示,一根长2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

D D D
H
(备用图)
3
D 30° H
(备用图)
3
问题:
在△ABC中,已知AB= 5 ,BC= 10 ,AC= 13 , 求这个三角形的面积. 小明同学这样思考:解答这个题时,先建立一个正方形网格 (每个小正方形的边长为1),再在网格中画出这个格点三角形 (即三角形三个顶点都在小正方形的顶点处)这样就不用求三角 形的高,而借用网格就能计算出三角形的面积了.
B
C
A
知识方面:
பைடு நூலகம்
勾股定理、特殊直角三角形 (等腰直角三角形、含30 °的直角三角形) 通过网格能画一些线段、几何图形; 能借助网格求线段的长、几何图形的面积 分类讨论思想、方程思想、构造法
B
技能方面:
思想方法:
模型意识:
C
A
H
B A
C
思维拓展:
我们把上述求三角形面积的方法叫构图法. 若△ABC三边长分别为 5a , 8a , 17a (a>0), 请利用图②的正方形网格(每个小正方形边长是a)画 出相应的△ABC,并写出它的面积 .
2 2 2
B A C
探索创新:
2 4m 2 4n 2 , 若△ABC三边长分为 m 2 16n, 2 9m 2 4n( m>0,n>0,且m≠n)试用构图法求这个 三角形面积.
5 2
的等腰直角三角形
5 5
C
10
A
5
10
B
我们一起来画三角形:
如图,是一个4×4网格图,点A、点B都在格点上, 要求格点上再找一点C,使得△ABC为直角三角形。 (画出所有符合要求的C点)
C1 C4 B A C5 C2
A作为直角顶点
B作为直角顶点
C3
C作为直角顶点
我们一起来画三角形:
在△ABC中, ∠ ACB=90°,BC=AC=2, ,找 点D,使得点D、点B位于AC的异侧,且△ACD为等腰 直角三角形,并求出线段BD的长。
我们一起回顾一下:
直角三角形三边有怎样的等量关系?勾股定理
a b c
2 2
2
b
c a
直角三角形两直角边的平方和 等于斜边的平方。
柯桥区柯岩中学
费玉英
我们一起来画线段:
在网格中画3条线段长度分别为 5 , 10 , 13 . (每个小正方形的边长为1)
5
10
13
我们一起来画三角形:
在4×4网格图中,画一个面积为 (每个小正方形的边长为1)
相关文档
最新文档