Albert Einstein(爱因斯坦介绍
爱因斯坦

阿尔伯特·爱因斯坦(德语:Albert Einstein)是著名的德国犹太裔理论物理学家、思想家及哲学家。
[2]因为“对理论物理的贡献,特别是发现了光电效应”而获得1921年诺贝尔物理学奖,现代物理学的开创者、奠基人,相对论——“质能关系”的创立者,“决定论量子力学诠释”的捍卫者(振动的粒子)——不掷骰子的上帝。
他创立了代表现代科学的相对论,为核能开发奠定了理论基础,在现代科学技术和他的深刻影响下与广泛应用等方面开创了现代科学新纪元,被公认为是自伽利略、牛顿以来最伟大的科学家、物理学家。
1999年(己卯年)12月26日,爱因斯坦被美国《时代周刊》评选为“世纪伟人”。
阿尔伯特·爱因斯坦,出生在德国的一个犹太人家庭。
世界十大杰出物理学家之一,现代物理学的开山鼻祖、集大成者和奠基人,同时也是一位著名的思想家和哲学家。
爱因斯坦1900年毕业于苏黎世联邦理工学院,入瑞士国籍(原德国人)。
1905年获苏黎世大学哲学博士学位。
曾在伯尔尼专利局任职,在苏黎世工业大学、布拉格德意志担任大学教授。
1913年返德国,任柏林威廉皇帝物理研究所所长和柏林洪堡大学教授,并当选为普鲁士皇家科学院院士。
1933年爱因斯坦在英国期间,被格拉斯哥大学授予荣誉法学博士学位(LL.D)。
因受纳粹政权迫害,迁居美国,任普林斯顿高级研究所(Institute for Advanced Study)教授。
从事理论物理研究,1940年入美国国籍。
相对论是爱因斯坦在自己题为《论动体的电动力学》这篇论文中提出的。
在此之前,传说物理学的时空观是静止的、机械的、绝对的,空间、时间、物质和物质运动相互独立,彼此没有什么内在联系。
也就是说,物质只不过是孤立地处于空间的某一个位置,物质运动只是在虚无的、绝对的空间作位置移动,时间也是绝对的,它到处都是一样的,是独立于空间的不断流逝着的长流。
这就是牛顿古典力学的时空观。
爱因斯坦以极大的毅力和胆识,突破了传统物理学的束缚,猛烈地冲击形而上学的自然观。
世界名人爱因斯坦的简介

三一文库()〔世界名人爱因斯坦的简介〕导语:爱因斯坦是德国物理学家,相对论的奠基者,二十世纪两大最重要的物理学家之一。
下面是小编整理的相关爱恩斯坦的名人故事,欢迎查阅,谢谢!世界名人爱因斯坦的简介阿尔伯特·爱因斯坦(1879.3.14——1955.4.18),德国物理学家,相对论的奠基者,二十世纪两大最重要的物理学家之一。
他于1879年出生于德国乌尔姆市的一个犹太人家庭(父母均为犹太人),1900年毕业于苏黎世联邦理工学院,入瑞士国籍。
1905年获苏黎世大学哲学博士学位。
曾在伯尔尼专利局任职,在苏黎世工业大学担任大学教授。
1913年返德国,任柏林威廉皇帝物理研究所所长和柏林洪堡大学教授,并当选为普鲁士皇家科学院院士。
1933年爱因斯坦在英国期间,被格拉斯哥大学授予荣誉法学博士学位。
因为受到纳粹政权的迫害,脱离德国到美国,担任普林斯顿高等研究所教授,从事理论物理研究工作,1940年写了一篇着名论文,“我不信仰一个人格化的神“。
1955年4月18日,病逝于普林斯顿。
爱因斯坦为核能开发奠定了理论基础,在现代科学技术和他的深刻影响下与广泛应用等方面开创了现代科学新纪元,被公认为是继伽利略、牛顿以来最伟大的物理学家。
1999年12月26日,爱因斯坦被美国《时代周刊》评选为“世纪伟人”。
▲生平简介爱因斯坦生于德国乌尔姆一个经营电器作坊的小业主家庭,父母都是犹太人,父亲赫尔曼·爱因斯坦是一名不太成功的商人,母亲波林·科克是一位钢琴家。
五岁时对袖珍罗盘着迷,六岁开始练习拉小提琴。
爱因斯坦出生后的第二年,1880年全家迁居慕尼黑。
1894年,又全家迁至意大利米兰。
尽管爱因斯坦的语言能力不是很好,但爱因斯坦在就读小学和中学时,是一个顶级水平的学生。
随着爱因斯坦的长大,他在数学方面表现出特别的天赋。
1895年,爱因斯坦来到瑞士苏黎市投考苏黎世联邦理工学院,他的数学和物理考得很不错,但其他科目没有考好,该校校长赫尔岑推荐他去瑞士的阿劳州立中学学习一年。
爱因斯坦的简历

爱因斯坦的生平阿尔伯特·爱因斯坦(Albert.Einstein)1879年3月14日出生在德国西南的乌耳姆城,1896年进苏黎世工业大学师范系学习物理学,1900年毕业。
在学校中,他广泛的阅读了许多物理学大师的著作,培养了他的自学本领、分析问题的习惯和独立思考的能力。
1905年,爱因斯坦在科学史上创造了一个史无前例奇迹。
这一年他写了六篇论文,在三个领域做出了四个有划时代意义的贡献,他发表了关于光量子说、分子大小测定法、布朗运动理论和狭义相对论这四篇重要论文。
1915年最后建成了被公认为人类思想史中最伟大的成就之一的广义相对论以外,1916年在辐射量子方面提出引力波理论,1917年又开创了现代宇宙学。
1921年,爱因斯坦因为“光电效应定律的发现”这一成就而获得了诺贝尔物理学奖。
1955年4月18日死于美国新泽西州普林斯顿。
爱因斯坦的故事在四、五岁时,爱因斯坦有一次卧病在床,父亲送给他一个罗盘。
当他发现指南针总是指着固定的方向时,感到非常惊奇,觉得一定有什么东西深深地隐藏在这现象后面。
他一连几天很高兴的玩这罗盘,还纠缠着父亲和雅各布叔叔问了一连串问题。
尽管他连“磁”这个词都说不好,但他却顽固地想要知道指南针为什么能指南。
爱因斯坦的镜子爱因斯坦小时候是个十分贪玩的孩子。
他的母亲常常为此忧心忡忡,母亲的再三告诫对他来讲如同耳边风。
直到16岁的那年秋天,一天上午,父亲将正要去河边钓鱼的爱因斯坦拦住,并给他讲了一个故事,正是这个故事改变了爱因斯坦的一生。
“昨天,”爱因斯坦父亲说,“我和咱们的邻居杰克大叔清扫南边工厂的一个大烟囱。
那烟囱只有踩着里边的钢筋踏梯才能上去。
你杰克大叔在前面,我在后面。
我们抓着扶手,一阶一阶地终于爬上去了。
下来时,你杰克大叔依旧走在前面,我还是跟在他的后面。
后来,钻出烟囱,我发现一个奇怪的事情:你杰克大叔的后背、脸上全都被烟囱里的烟灰蹭黑了,而我身上竟连一点烟灰也没有。
”爱因斯坦的父亲继续微笑着说:“我看见你杰克大叔的模样,心想我肯定和他一样,脸脏得象个小丑,于是我就到附近的小河里去洗了又洗。
阿尔伯特. 爱因斯坦(Albert Einstein)

专利局小职员
主要科学贡献
1905年被称作爱因斯坦的“奇迹年” 1905年被称作爱因斯坦的“奇迹年”,这一年爱 年被称作爱因斯坦的 因斯坦在《德国物理学年鉴》 篇论文, 因斯坦在《德国物理学年鉴》上发表了5篇论文, 包括物理学方面三项重要的发展, 包括物理学方面三项重要的发展, 一个关于光的产生和转化的启发性观点》 《一个关于光的产生和转化的启发性观点》 《关于热的分子运动论所要求的静止液体中悬浮 小粒子的运动》 小粒子的运动》 论动体的电动力学》 《论动体的电动力学》 《物体的惯性是否与它所含的能量有关?》 物体的惯性是否与它所含的能量有关? 这一年他还完成了博士论文“ 这一年他还完成了博士论文“分子大小的新测定 方法” 获得博士学位。 方法”,获得博士学位。
他是一个怀 疑一切权威 的人, 的人,是一 个始终独立 思考的人。 思考的人。 他一生的追 求就是: 求就是:真、 善、美!
爱因斯坦生平及主要贡献
爱因斯坦( 爱因斯坦(Albert Einstein 1879-1955) 1879-1955)出生于德国乌尔姆 的一个犹太人家庭, 的一个犹太人家庭,幼年迁居慕 尼黑。爱因斯坦到了瑞士, 尼黑。爱因斯坦到了瑞士,进了 一所大学。 一所大学。 在学校他不能算一位好学生, 在学校他不能算一位好学生,一 般课都缺席, 般课都缺席,只专心阅读理论物 理学前沿的书。 理学前沿的书。 他能各门课都及格是得益于一个 朋友极好的课堂笔记。 朋友极好的课堂笔记。
世界物理年徽标
世界物理年徽标
世界物理年徽标的整个构 图是时-空中的光锥 空中的光锥。 图是时 空中的光锥。光锥 下部用红色,代表过去, 下部用红色,代表过去, 因为光谱红移代表物体远 离我们而去;上部用蓝色, 离我们而去;上部用蓝色, 代表未来, 代表未来,因为蓝移代表 迎向我们而来, 迎向我们而来,而且蓝色 是天空的颜色。 是天空的颜色。黄色和绿 色连接着过去与未来, 色连接着过去与未来,其 中绿色代表“绿灯行” 中绿色代表“绿灯行”, 即进步;黄色代表和平、 即进步;黄色代表和平、 伙伴关系、 伙伴关系、合作和团队精 神。整个徽标的图案代表 在过去的基础上通过技术 进步和国际合作共建光明 的未来。 的未来。
爱因斯坦介绍范文

爱因斯坦介绍范文爱因斯坦(Albert Einstein)被广泛认为是20世纪最伟大的科学家之一,他的贡献对于现代物理学和科学思维产生了深远的影响。
爱因斯坦不仅在理论物理学方面做出了革命性的贡献,而且他的智慧和见解也超越了纯粹的科学领域,涵盖了哲学、宗教和人类道德等众多领域。
爱因斯坦于1879年3月14日生于德国的乌尔姆市。
他是一个犹太人,成长在一个相对宽容的环境中。
他的父母认识到他的天赋,并鼓励他接触科学和数学。
在父亲的帮助下,爱因斯坦对科学充满了浓厚的兴趣,并在很小的时候就开始对数学和物理学进行独立研究。
1905年,爱因斯坦发表了他最著名的四篇论文之一,即狭义相对论论文。
在这篇论文中,他提出了著名的质能方程E=mc²,宣告了质能等价的理论基础。
这一发现可以说是爱因斯坦最为伟大的成就之一,并且对整个科学界造成了深远的影响。
爱因斯坦的质能方程不仅解释了质能的本质,而且揭示了时间和空间的相对性。
这一发现颠覆了牛顿力学的基础,提出了一个新的物理学框架,被后来的科学家广泛接受和进一步发展。
狭义相对论还解决了关于光速不变的问题,即光在任何惯性参考系中的速度都是恒定的。
1915年,爱因斯坦提出了广义相对论,它是狭义相对论的进一步发展。
广义相对论将引力解释为时空弯曲的结果,这对于揭示宇宙的本质和演化是至关重要的。
广义相对论不仅在理论上得到了验证,而且在实验上也得到了证实。
这一理论打开了宇宙学的大门,为现代宇宙学的发展奠定了基础。
除了他在物理学领域的突破性贡献外,爱因斯坦还深受人们的喜爱和钦佩,因为他对于人类道德、政治和宗教等问题提出了深思熟虑的见解。
他始终坚信人类的和平与正义的重要性,对战争和武力解决冲突的方式持高度批评态度。
他是一个坚定的国际主义者,积极参与了对和平的努力,并为世界核武器禁止奠定了基础。
此外,爱因斯坦还对宗教和科学之间的关系进行了深入思考。
尽管他被认为是一个无神论者,但他对于宇宙和人类存在的基本问题仍然持有广阔的思考。
爱因斯坦的个人简介

爱因斯坦的个人简介估计大部分的人都认识爱因斯坦,不认识的不用怕,看看他的简历,了解一下吧。
下面是店铺为你整理的爱因斯坦的个人简介,希望对你有用!阿尔伯特·爱因斯坦简介阿尔伯特·爱因斯坦(Albert.Einstein,1879年3月14日-1955年4月18日),犹太裔物理学家。
爱因斯坦1879年出生于德国乌尔姆市的一个犹太人家庭(父母均为犹太人),1900年毕业于苏黎世联邦理工学院,入瑞士国籍。
1905年,获苏黎世大学哲学博士学位,爱因斯坦提出光子假设,成功解释了光电效应,因此获得1921年诺贝尔物理奖,创立狭义相对论。
1915年创立广义相对论。
爱因斯坦为核能开发奠定了理论基础,开创了现代科学技术新纪元,被公认为是继伽利略、牛顿以来最伟大的物理学家。
1999年12月26日,爱因斯坦被美国《时代周刊》评选为“世纪伟人”。
阿尔伯特·爱因斯坦人物经历读书时期1888年(9岁),爱因斯坦入路易波尔德高级中学学习。
在学校受宗教教育,接受受戒仪式,弗里德曼是指导老师。
1889年(10岁),在医科大学生塔尔梅引导下,读通俗科学读物和哲学著作。
1891年(12岁),自学欧几里德几何,感到狂热的喜爱,同时开始自学高等数学。
1892年(13岁),开始读康德的著作。
1894年(15岁),爱因斯坦一家人移居意大利。
1895年(16岁),自学完微积分。
同年,爱因斯坦在瑞士理工学院的入学考试失败。
爱因斯坦开始思考当一个人以光速运动时会看到什么现象。
对经典理论的内在矛盾产生困惑。
1896年(17岁),获阿劳中学毕业证书。
10月29日,爱因斯坦迁居苏黎世并在瑞士理工学院就读。
1899年10月19日(20岁),爱因斯坦正式申请瑞士公民权。
1900年8月(21岁),爱因斯坦毕业于苏黎世联邦工业大学;12月完成论文《由毛细管现象得到的推论》,次年发表在莱比锡《物理学杂志》上并入瑞士籍。
1901年3月21日(22岁),取得瑞士国籍。
爱因斯坦简介

爱因斯坦简介爱因斯坦简介(一):阿尔伯特·爱因斯坦AlbertEinstein(АльбертЕйнштейн),出生在德国的一个犹太人家庭。
世界十大杰出物理学家之一,现代物理学的开山鼻祖、集大成者和奠基人,同时也是一位著名的思想家和哲学家。
爱因斯坦1900年毕业于苏黎世联邦理工学院,入瑞士国籍(原德国人)。
1905年获苏黎世大学哲学博士学位。
曾在伯尔尼专利局任职,在苏黎世工业大学、布拉格德意志担任大学教授。
1913年返德国,任柏林威廉皇帝物理研究所所长和柏林洪堡大学教授,并当选为普鲁士皇家科学院院士。
1933年爱因斯坦在英国期间,被格拉斯哥大学授予荣誉法学博士学位(LL。
D)。
因受纳粹政权迫害,迁居美国,任普林斯顿高级研究所(InstituteforAdvancedStudy)教授。
从事理论物理研究,1940年入美国国籍。
爱因斯坦简介(二):阿尔伯特·爱因斯坦(德语:AlbertEinstein)是著名的德国犹太裔理论物理学家、思想家及哲学家。
[2]正因“对理论物理的贡献,个性是发现了光电效应”而获得1921年诺贝尔物理学奖,现代物理学的开创者、奠基人,相对论——“质能关联”的创立者,“决定论量子力学诠释”的捍卫者(振动的粒子)——不掷骰子的上帝。
他创立了代表现代科学的相对论,为核能开发奠定了理论基础,在现代科学技术和他的深刻影响下与广泛应用等方面开创了现代科学新纪元,被公认为是自伽利略、牛顿以来最伟大的科学家、物理学家。
1999年(己卯年)12月26日,爱因斯坦被美国《时代周刊》评选为“世纪伟人”。
爱因斯坦简介(三):爱因斯坦简介阿尔伯特·爱因斯坦(Albert.Einstein)(1879-1955),美籍德国犹太人。
1921年诺贝尔物理学奖获得者。
他创立了代表现代科学的相对论,并为核能开发奠定了理论基础,在现代科学技术和它的深刻影响及广泛应用方面开创了现代科学新纪元,被公认为自伽利略、牛顿以来最伟大的科学家、思想家。
爱因斯坦的简介英文

爱因斯坦的简介英文阿尔伯特·爱因斯坦,犹太裔物理学家,被公认为是继伽利略、牛顿以来最伟大的物理学家,下面是店铺为你整理的爱因斯坦的简介英文,希望对你有用!阿尔伯特·爱因斯坦简介Albert Einstein (Albert.Einstein, March 14, 1879 - April 18, 1955), Jewish physicist.Einstein was born in 1891 in Ulm, Germany, a Jewish family (parents are Jews), 1900 graduated from the Zurich Federal Institute of Technology, into the Swiss nationality. In 1905, by the University of Zurich Ph.D., Einstein proposed photon hypothesis, successfully explained the photoelectric effect, so won the 1921 Nobel Prize in Physics, the creation of special relativity. In 1915 founded the general theory of relativity.Einstein laid the theoretical foundation for nuclear energy development, creating a new era of modern science and technology, is recognized as Galileo, Newton since the greatest physicist. December 26, 1999, Einstein was the United States, "Time magazine" named "century great man".阿尔伯特·爱因斯坦主要成就relativityThe creation of special relativity:As early as the age of 16, Einstein learned from the book that the light is moving rapidly with the speed of electromagnetic waves, linked to this, he would like to explore the so-called ether with the light of the problem. The name of the ether comes from Greece, to represent the basic elements that make up the objects of heaven. The 17th century Descartes and the subsequent Christian Huygens pioneered and developed the theory of ether,that the ether is the medium of light propagation, it is full of space, including vacuum, and can penetrate into the material. Unlike ether, Newton made the light particles say. Newton believes that the luminous body is emitted by a linear motion of particles of particles flow, particle flow impact of the retina caused vision. 18th century Newton's particles said the upper hand, the 19th century, it is volatile that accounted for an absolute advantage. The theory of ether is also greatly developed: the wave of the need for media transmission, light in the vacuum is the transmission of the media, also known as light ether. At the same time, the electromagnetism has been flourishing, through the Maxwell, Hertz and others efforts to form a mature electromagnetic phenomenon dynamics theory - electrodynamics, and from the theory and practice to prove that the light is a certain frequency range of electromagnetic waves , Thus unifying the wave theory of light and electromagnetic theory. The ether is not only the carrier of the light, but also the carrier of the electromagnetic field. Until the end of the nineteenth century, people tried to find the ether, but never found in the experiment ether, on the contrary, Michelson Morey experiment found that the ether is unlikely to exist.The development of electromagnetism was originally incorporated into the framework of Newtonian mechanics, but in interpreting the electromagnetic process of moving objects it was found that the relativity principle followed by Newtonian mechanics was inconsistent. According to Maxwell's theory, the velocity of electromagnetic waves in vacuum, that is, the speed of light is constant; however, according to Newton's method of velocity addition, the speed of light of different inertial lines is different. For example, two cars, one approaching to you, oneaway. You see the lights of the front car close to you, after a car light away. According to Galileo theory, the car coming to you will emit light with a speed greater than c (vacuum light velocity 3.0x10 ^ 8m / s), that is, the speed of the light in front of the vehicle = speed of light + speed; and the speed of light from the vehicle is less than The speed of the rear car light = speed of light - speed. But according to the speed of the two light the same, because in Maxwell's theory, the speed of the car does not affect the spread of light, that white regardless of how the car, the speed of light is equal to c. Maxwell and Galileo on the speed of the argument is clearly contrary!Einstein seems to be the one who will build a new physics building. Einstein carefully studied Maxwell's theory of electromagnetism, especially through the development and elaboration of electrodynamics by Hertz and Lorentz. Einstein firmly believes that the electromagnetic theory is completely correct, but there is a problem that makes him uneasy, this is the absolute reference to the presence of the ether. He read many of the works found that everyone tried to prove that the existence of the ether test is a failure. After studying Einstein found that, in addition to the absolute reference system and the electromagnetic field of the load, the ether in the Lorentz theory has no practical significance.Einstein loves to read philosophical works and absorb thought and nutrition from philosophy, and he believes in the unity and logical coherence of the world. The suspicion of the general validity of the causal law at David Hume in the Olympia Academy of Sciences has had an impact on Einstein. The principle of relativity has been widely proved in mechanics, but can not be established in electrodynamics, for the two theoretical systemsof physics in the logical inconsistency, Einstein raised doubts. In his view, the principle of relativity should be generally established, so the electromagnetic theory for each inertial system should have the same form, but here there is the problem of speed of light. Whether the speed of light is constant or variable, becomes the primary problem of whether the principle of relativity is universally established. At that time the physicists generally believed in the ether, that is, believe that there is an absolute reference system, which is affected by the concept of Newton's absolute space. At the end of the nineteenth century, Mach in the "development of mechanics", criticized the Newton's absolute view of time and space, which gave Einstein left a deep impression. One day in May 1905, Einstein and a friend Besso discussed this issue has been explored for ten years, Bezuo in accordance with the Marxist point of view to elaborate their views, the two discussed for a long time. Suddenly, Einstein realized what, back home after repeated thinking, and finally want to understand the problem. The next day, he came to the Peso family, said: Thank you, my problem solved. The original Einstein wanted to clear one thing: there is no absolute definition of time, time and the speed of the optical signal has an inseparable link. He found the key to unlock, after five weeks of hard work, Einstein to the special theory of relativity in front of people.June 30, 1905, the German "Yearbook of Physics" accepted the Einstein's paper "on the dynamic of electromagnetism", published in the same year in September issue. This paper is the first article on the theory of special relativity, which contains the basic idea and basic content of the special theory of relativity. The special theory of relativity is based on two principles: theprinciple of relativity and the principle of constant speed of light. Einstein's solution to the problem is that he believes in the principle of relativity. Galileo first clarified the idea of relativity, but he did not give a clear definition of time and space. Newton also established the relativity of the mechanical system, but defined the absolute space, absolute time and absolute movement, in this issue he is contradictory. And Einstein greatly developed the principle of relativity, in his view, there is no absolute static space, the same does not exist absolutely the same time, all the time and space are associated with the movement of the object together. For any frame of reference and coordinate system, there is only space and time belonging to this frame of reference and coordinate system.For all the inertial system, the use of the reference system of space and time to express the physical laws, their form is the same, this is the principle of relativity, strictly speaking, the principle of relativity in the narrow sense. In this article, Einstein did not discuss the constant speed of light as a basis for the basic principle, he proposed the same speed of light is a bold assumption, from the electromagnetic theory and the principle of relativity requirements put forward. This article is the result of Einstein's thinking about the issue of etherics and electrodynamics over the years. He has established a new time and space theory from the point of view of the relativity of the same time, and on the basis of the new space-time theory Electromynamics in a complete form, the ether is no longer necessary, the ether raft is not there.What is the reciprocity of the simultaneous? The two events in different places How can we know that it is happening at the same time? In general, we will confirm by signal. In order to knowthe simultaneity of the off-site events we have to know the speed of signal transmission, but how to measure this speed? We must measure the space distance between the two places and the time required for signal transmission, space distance measurement is very simple, The trouble is to measure the time, we must assume that each of the two has a good clock, from the two clocks of the reading can know the time of signal transmission. But how do we know the clocks in different places? The answer is that there is a need for a signal. If the signal in accordance with the previous ideas, it needs a new signal, so infinite back, off-site at the same time can not actually confirm. But one thing is clear, at the same time will be associated with a signal, or we say that these two things happen at the same time is meaningless.The optical signal may be the most appropriate signal for the clock, but the speed of light is not infinite, thus producing a novel conclusion, for the stationary observer at the same time two things, for the movement of the observer is not the same time. We envision a high-speed train that runs at speeds close to the speed of light. When the train passes through the platform, A stands on the platform, two lightning strokes in front of the eye, one at the front of the train, one at the back, and at the ends of the train and the corresponding parts of the platform, The distance between the two ends of the train is equal, the conclusion is that A is also seen two lightning. So for A, the two received optical signals propagate the same distance at the same time interval and arrive at the same time, both of which must occur at the same time, and they are simultaneous. But for the middle of the train inside the B, the situation is different, because B and high-speed train running together, so he will first intercept the front of the signal forwarded to him, and then received fromthe back of the optical signal. For the second thing, the two events are different. In other words, the simultaneity is not absolute, but depends on the observer's movement. This conclusion negates the absolute time and absolute spatial framework that is based on Newtonian mechanics.Relativity holds that the speed of light does not change in all inertial reference frames, it is the maximum velocity of the object movement. Due to the relativistic effect, the length of the moving object becomes shorter and the time of the moving object expands. But because of the problems encountered in daily life, the movement speed is very low (compared with the speed of light), do not see the relativistic effect.Einstein established the theory of relativity on the basis of the radical change of space and time, and pointed out that the quality increases with the increase of speed, and when the speed is close to the speed of light, the quality tends to infinity. He also gives the famous qualitative relationship: E = mc ^ 2, the qualitative relationship has played a guiding role in the later development of the atomic energy industry.The establishment of general relativity:In 1905, Einstein published the first article on the theory of special relativity (ie, "the dynamics of the dynamics"), and did not immediately aroused great repercussions. But the German physicist, Planck, took note of his essay that Einstein's work was comparable to that of Copernicus, and that relativity quickly became a subject of research and discussion, Einstein has also received the attention of academia.In 1907, Einstein listened to the proposal of the friend, submitted the famous paper to apply for the Federal University of the lecturer posts, but the answer is the paper can notunderstand. Although in the German physics Albert Einstein has been very famous, but in Switzerland, he was not a university faculty, many prestigious people began to injure him, in 1908, Einstein finally got the lecturer Of the post, and in the second year when the associate professor. In 1912, Einstein became a professor, in 1913, at the invitation of Planck as the newly established director of the Institute of Physics and the University of Berlin professor.During this period, Einstein, in considering the promotion of the relativity that had been established, had two questions that made him uneasy. The first is the gravitational problem, the special theory of relativity for mechanics, thermodynamics and electrodynamics of the physical law is correct, but it can not explain the gravitational problem. Newton's gravitational theory is superfluous, and the gravitational force between the two objects is transmitted instantaneously, that is, at an infinite velocity, which is contrary to the view of the relativistic field and the limit of the speed of light. The second is the problem of non-inertia, the special theory of relativity and the previous physical laws, are only applicable to the inertial system. But in fact it is difficult to find the real inertia. Logically, all natural laws should not be confined to the inertial system, must be considered non-inertial system. Narrative relativity is difficult to explain the so-called twins paradox, the paradox is that there is a pair of twin brothers, brother in the spacecraft near the speed of light to do cosmic voyage, according to the relativistic effect, high-speed movement of the clock slow, Come back, my brother has become very old, because the earth has gone through for decades. In accordance with the principle of relativity, spacecraft relative to the Earth's high-speed movement, the Earth is also high-speedmovement relative to the spacecraft, brother to see his brother become young, brother to see his brother should be young. This question simply can not answer. In fact, the narrow sense of relativity only deal with uniform linear motion, and brother to come back must go through a variable speed movement process, which is relativistic can not handle. Einstein is continuing to do the general theory of relativity when people are busy comprehending relatively specific relativity.In 1907, Einstein wrote a long article on the theory of relativity and the resulting conclusions on the theory of relativity, in which Einstein first mentioned the principle of equivalence, and since then, Einstein The idea of equivalence is evolving. Based on the natural law of inertial mass and gravitational mass as the basis of the equivalent principle, it is proposed that the uniform gravitational field in the infinite small volume can replace the reference frame of accelerating motion. Einstein and put forward a closed box saying: in a closed box of the observer, no matter what method can not determine whether he is still in a gravitational field, or in the absence of gravitational field in the space for accelerated movement , Which is the most commonly used to explain the principle of equivalence, and inertia quality and gravitational quality is equivalent to the principle of a natural reasoning.In November 1915, Einstein presented four papers to the Prussian Academy of Sciences. In these four papers, he proposed a new view of Mercury's recent point of advance and given the correct gravitational field equation. At this point, the basic problems of general relativity are solved, the general theory of relativity was born. In 1916, Einstein completed the long thesis "the basis of general theory of relativity", in this article, Einsteinfirst applied to the inertial system of relativity known as the special theory of relativity, will only for the inertial system of the same laws The principle is called the principle of narrow relativity, and further expresses the principle of general relativity: the law of physics must be established for any way in which the system of motion is established.Einstein's general theory of relativity holds that, due to the existence of matter, space and time will bend, and the gravitational field is actually a curved time and space. Einstein's theory of using the sun's gravity to bend the space is a good explanation for the 43 seconds that Mercury has been unable to explain in the past. The second largest predictor of general relativity is gravitational redshift, that is, in the strong gravitational field to the red side of the movement, 20 years, astronomers in astronomical observations confirmed this point. The third largest predictor of general relativity is that the gravitational field deflects the light and the gravitational field closest to the earth is the sun's gravitational field. Einstein predicted that distant stars would have a seven-second deflection if they swept through the sun. In 1919, under the encouragement of British astronomer Eddington, the British sent two expeditions to observe the total solar eclipse in two places. After careful study, the final conclusion was that the starlight did occur in the vicinity of the sun Seconds of deflection. The Royal Society and the Royal Astronomical Society officially read the observation report and confirm that the conclusion of general relativity is correct. "This is the most significant achievement of the theory of gravitation since the Newton era," said Einstein's theory of relativity, the greatest achievement of human thought, "said the famous physicist and president of the Royal Society,one". Einstein became a journalist, he wrote in 1916 a popular theory of relativity, "narrow and general theory of relativity", to 1922 has been republished 40 times, was translated into a dozen languages, widely spread.Relativistic significance:Since the establishment of the special theory of relativity and general relativity, it has been a long time, it has withstood the test of practice and history, is widely recognized as the truth. Relativity has a great influence on the development of modern physics and the development of modern human thought. Relativity from the logical thinking of the unity of the classical physics, so that the classic physics to become a perfect scientific system. On the basis of the theory of special relativity, the theory of relativity of the special relativity of Newtonian mechanics and Maxwell's electrodynamics system is unified. It is pointed out that they are obeying the principle of relativity and relativity, which is the covariance of Lorentz transformation. Newtonian mechanics is only a matter of low- A good approximation of law. On the basis of the generalized covariance, on the basis of the generalized covariance, the relationship between the local inertia length and the universal reference coefficient is established by the equivalent principle. The generalized covariant form of all physical laws is obtained, and the gravitational force Theory, and Newton gravitational theory is only its first approximation. This is fundamentally resolved before the physics is limited to the problem of inertia, from the logic to get a reasonable arrangement. Relativity examines the basic concepts of physics, time, space, material and movement, and gives a scientific and systematic view of time and space and material view, so that physics can become a perfect scientific system in logic.The special relativity gives the law of motion of the object under high speed motion, and suggests that the quality and energy are equivalent, and the qualitative relationship is given. These two outcomes are not obvious for low-speed macro objects, but in the study of microscopic particles showed extreme importance. Because the speed of micro-particles are generally faster, some close to even reach the speed of light, so the physics of particles can not be separated from the theory of relativity. The qualitative relationship not only creates the necessary conditions for the establishment and development of quantum theory, but also provides the basis for the development and application of nuclear physics.For Einstein's introduction of these new concepts, most of the physicists on earth, including the relativistic transformation of the founder of Lorentz, are unacceptable. Some people even said, "At that time the world only two and a half people understand the theory of relativity." The old method of thinking obstacles, so that this new physical theory until a generation after the majority of physicists are familiar with, even the Swedish Royal Academy of Sciences, in 1922 the Nobel Prize in Physics awarded to Einstein, only said "Because of his contribution to theoretical physics, but also because he found the law of the photoelectric effect." Einstein's Nobel Prize in physics awards even for Einstein's theory of relativity did not mention (Note: Relativity has not won the Nobel Prize, an important reason is the lack of a lot of facts to verify.)Photoelectric effectIn 1905, Einstein proposed photon hypothesis, successfully explained the photoelectric effect, so won the 1921 Nobel Prize in Physics.Light is irradiated onto the metal, causing the electrical properties of the material to change. This phenomenon of light transmission is called the photoelectric effect (Photoelectric effect).Photoelectric effect is divided into photoelectron emission, photoconductive effect and photovoltage effect. The former phenomenon occurs on the surface of the object, also known as external photoelectric effect. The latter two phenomena occur within the object, known as the photoelectric effect.Hertz discovered the photoelectric effect in 1887, and Einstein first succeeded in explaining the photoelectric effect (the effect that the metal surface emits electrons under the action of light, the electrons emitted are called photoelectrons). When the wavelength of light is less than a certain critical value, it can emit electrons, that is, the limit wavelength, and the frequency of the corresponding light is called the limit frequency. The critical value depends on the metal material, and the energy of the emitted electrons depends on the wavelength of the light and has nothing to do with the light intensity, which can not be explained by the fluctuation of light. There is also a contradiction with the volatility of light, that is, the instantaneous nature of the photoelectric effect, according to volatility theory, if the incident light is weak, the irradiation time is longer, the metal can accumulate enough energy, fly out of metal surface. The fact is that as long as the frequency of light is higher than the limit frequency of the metal, the brightness of the light, whether strong or weak, is almost instantaneous, and no more than ten negative nine. The correct explanation is that the light must be composed of a strictly defined energy unit (ie, photon or photon) associated with the wavelength.Photoelectric effect, the electron direction of the injection is not completely directional, but most are perpendicular to the metal surface, and the direction of light has nothing to do, just electromagnetic waves, but just high frequency oscillation of the orthogonal electromagnetic field, the amplitude is small, Electron emission direction.Conservation of energyE = mc ², material immortal law, that is the quality of the material immortal; energy conservation law, that is the material energy conservation.Although these two great laws have been discovered, but people think that this is the two irrelevant laws, each of the different laws of nature. Even some people think that material immortality is a law of chemistry, the law of conservation of energy is a physical law, they belong to different areas of science.Einstein believes that the quality of matter is a measure of inertia, energy is a measure of movement; energy and quality are not isolated from each other, but interrelated, inseparable. Changes in the quality of the object, will make the corresponding changes in energy; and changes in the energy of the object, but also the quality of the corresponding changes.In the special theory of relativity, Einstein put forward the famous qualitative formula: E = mc ^ 2 (where E represents energy, m represents how much quality, c represents the speed of light, the approximate value of 3 × 10 ^ 8m / s, which Indicating that energy can be created with reduced quality).Einstein's qualitative relationship formula, correctly explained the various nuclear reactions: take helium 4 (He4), its nuclei are composed of two protons and two neutrons. The quality of the helium 4 nucleus is equal to the sum of two protonsand two neutron masses. In fact, this arithmetic is not established, the quality of helium nuclei than two protons, two neutron masses and the sum of 0.0302u (atomic mass units)! Why is this? Because when the two deuterons (each deuterium Nucleus contains one proton, one neutron) is aggregated into a helium 4 nucleus, the release of a large number of atomic energy. When generating 1 g of helium 4 atoms, about 2.7 x 10 ^ 12 Joules of atomic energy are released. Because of this, the quality of the helium 4 nucleus is reduced.This example vividly shows that when two deuterium nuclei are polymerized into one helium-4 nucleus, it seems that the mass is not conserved, that is, the mass of the helium-4 nuclei is not equal to the sum of the two deuteron masses. However, with the mass-energy relationship formula, the loss of helium 4 nuclei is exactly the same as the mass that is reduced by the release of atomic energy during the reaction.Einstein from the height of the update, clarified the material immortality law and the law of the law of conservation of energy, pointed out that the close relationship between the two laws, so that human understanding of nature and a step further.Cosmic constantEinstein, in proposing the theory of relativity, introduced the cosmological constant (in order to explain the existence of a static universe with a material density of zero, he introduced a term proportional to the gauge tensor in the gravitational field equation, denoted by the symbol Λ. The constant is very small, and the scale of the galaxy is negligible. Only in the cosmic scale, Λ can be meaningful, so called cosmic constant, the so-called fixed value of the anti-gravitational value) into his equation. He believes that there is an anti-gravity, with gravity balance, topromote the universe is limited and static. When Hubble showed the astronomical observations of the expanding universe to Einstein, Einstein said, "This is the biggest mistake my life has ever committed.The universe is inflated. Hubble and so that the anti-gravity is not there, due to the gravity between the galaxies, to promote the expansion of more and more slowly. There is a twisting force between the galaxies that causes the universe to expand, that is, dark energy. 7 billion years ago, they "defeated" the dark matter, become the master of the universe. The latest research shows that the dark matter and dark energy account for about 96% of the universe, based on the mass composition (only the actual quality, not the virtual matter). It seems that the universe will continue to accelerate the expansion until the disintegration of death. (There are other claims, controversial). Although the cosmic constant exists, the value of the gravitational force is far more than the gravitational force. "I finally understand why he (Einstein) liked this theory so much that he still studied cosmological constants for many years, and cosmological constant is still one of the biggest questions of physics today," Linde said in a funny manner.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Albert EinsteinWho is the greatest person in the 20th century?Time selected from 100 people.Of the 100 chosen, Albert Einstein was chosen as the Person of the Century, on the grounds that he was the preeminent scientist in a century dominated by science.While Franklin D. Roosevelt and Mahatma Gandhi are runners-up. The editors of Time believed the 20th century "will be remembered foremost for its science and technology", and Einstein "serves as a symbol of all the scientists—such as Heisenberg, Bohr, Richard Feynman, ...who built upon his work".This year, Albert Einstein has gone for 60 years.But we will always remember him, for he started a new era of modern science,change our views of time and space.Early Life and EducationAlbert Einstein was born in the German Empire on 14 March 1879.The Einsteins were non-observant Ashkenazi Jews. Albert attended a Catholic elementary school from the age of 5 for three years. At the age of 8, he was transferred to the Luitpold Gymnasium (now known as the Albert Einstein Gymnasium), where he received advanced primary and secondary school education until he left Germany seven years later.In 1895, at the age of 16, Einstein sat the entrance examinations for the Swiss Federal Polytechnic in Zürich (later the Eidgenössische Technische Hochschule ETH). He failed to reach the required standard in the general part of the examination, but obtained exceptional grades in physics and mathematics. On the advice of the principal of the Polytechnic, he attended the Argovian cantonal school (gymnasium) in Aarau, Switzerland, in 1895–96 to complete his secondary schooling. In January 1896, with his father's approval, he renounced his citizenship in the German Kingdom of Württemberg to avoid military service.In September 1896, he passed the Swiss Matura with mostly good grades, including a top grade of 6 in physics and mathematical subjects, on a scale of 1–6. Though only 17, he enrolled in the four-year mathematics and physics teaching diploma program at the Zürich Polytechnic.Theory of relativity and E = mc²Einstein's "Zur Elektrodynamik bewegter Körper" ("On the Electrodynamics of Moving Bodies") was received on 30 June 1905 and published 26 September of that same year. It reconciles Maxwell's equations for electricity and magnetism with the laws of mechanics, by introducing major changes to mechanics close to the speed of light. This later became known as Einstein's special theory of relativity. Consequences of this include the time-space frame of a moving body appearing to slowdown and contract (in the direction of motion) when measured in the frame of the observer. This paper also argued that the idea of a luminiferous aether—one of the leading theoretical entities in physics at the time—was superfluous.In his paper on mass–energy equivalence, Einstein produced E = mc2 from his special relativity equations.Einstein's 1905 work on relativity remained controversial for many years, but was accepted by leading physicists, starting with Max Planck.general relativityGeneral relativity (GR) is a theory of gravitation that was developed by Albert Einstein between 1907 and 1915. According to general relativity, the observed gravitational attraction between masses results from the warping of space and time by those masses. General relativity has developed into an essential tool in modern astrophysics. It provides the foundation for the current understanding of black holes, regions of space where gravitational attraction is so strong that not even light can escape.As Albert Einstein later said, the reason for the development of general relativity was that the preference of inertial motions within special relativity was unsatisfactory, while a theory which from the outset prefers no state of motion (even accelerated ones) should appear more satisfactory.In 1921, Einstein was awarded the Nobel Prize in Physics for his explanation of the photoelectric effect, as relativity was considered still somewhat controversial.World War II and the Manhattan ProjectIn July 1939, a few months before the beginning of World War II in Europe,Albert Einstein was asked to lend his support by writing a letter, with Szilárd, to President Roosevelt, recommending the U.S. pay attention and engage in its own nuclear weapons research for German scientists might win the race to build an atomic bomb, and to warn that Hitler would be more than willing to resort to such a weapon. President Roosevelt could not take the risk of allowing Hitler to possess atomic bombs first.The U.S. entered the "race" to develop the bomb, drawing on its "immense material, financial, and scientific resources" to initiate the Manhattan Project. It became the only country to successfully develop an atomic bomb during World War II.For Einstein, "war was a disease ... [and] he called for resistance to war." By signing the letter to Roosevelt he went against his pacifist principles. In 1954, a year before his death, Einstein said to his old friend, Linus Pauling, "I made one great mistake in my life—when I signed the letter to President Roosevelt recommending that atom bombs be made; but there was some justification—the danger that the Germans would make them ..."Supporter of civil rightsEinstein was a passionate, committed antiracist and joined National Association for the Advancement of Colored People (NAACP) in Princeton, where he campaigned for the civil rights of African Americans. He considered racism America's "worst disease,"seeing it as "handed down from one generation to the next." As part of his involvement, he corresponded with civil rights activistW. E. B. Du Bois and was prepared to testify on his behalf during his trial in 1951.:565 When Einstein offered to be a character witness for Du Bois, the judge decided to drop the case.In 1946 Einstein visited Lincoln University in Pennsylvania where he was awarded an honorary degree. Lincoln was the first university in the United States to grant college degrees to blacks,including Langston Hughes and Thurgood Marshall. To its students, Einstein gave a speech about racism in America, adding, "I do not intend to be quiet about it." A resident of Princeton recalls that Einstein had once paid the college tuition for a black student,and black physicist Sylvester James Gates states that Einstein had been one of his early science heroes, later finding out about Einstein's support for civil rights.In the period before World War II, the New York Times published a vignette in their "The Talk of the Town" feature saying that Einstein was so well known in America that he would be stopped on the street by people wanting him to explain "that theory". He finally figured out a way to handle the incessant inquiries. He told his inquirers "Pardon me, sorry! Always I am mistaken for Professor Einstein." Einstein has been the subject of or inspiration for many novels, films, plays, and works of music.He is a favorite model for depictions of mad scientists and absent-minded professors; his expressive face and distinctive hairstyle have been widely copied and exaggerated. Time magazine's Frederic Golden wrote that Einstein was "a cartoonist's dream come true".。