(完整版)平行四边形性质及判定总结

合集下载

平行四边形的判定与性质

平行四边形的判定与性质

平行四边形的判定与性质判定方式平行四边形的判定可以根据其定义和性质进行确认。

下面是一些常用的判定方式:1.对边平行判定:若一个四边形的对边两两平行,则该四边形为平行四边形。

1.对边平行判定:若一个四边形的对边两两平行,则该四边形为平行四边形。

1.对边平行判定:若一个四边形的对边两两平行,则该四边形为平行四边形。

2.同位角相等判定:若一个四边形的对边平行,并且同位角相等,则该四边形为平行四边形。

2.同位角相等判定:若一个四边形的对边平行,并且同位角相等,则该四边形为平行四边形。

2.同位角相等判定:若一个四边形的对边平行,并且同位角相等,则该四边形为平行四边形。

3.对角线平分判定:若一个四边形的对角线相互平分,并且对角线所在的两个三角形全等,则该四边形为平行四边形。

3.对角线平分判定:若一个四边形的对角线相互平分,并且对角线所在的两个三角形全等,则该四边形为平行四边形。

3.对角线平分判定:若一个四边形的对角线相互平分,并且对角线所在的两个三角形全等,则该四边形为平行四边形。

性质平行四边形具有以下性质:1.对边相等性质:平行四边形的对边长度相等。

1.对边相等性质:平行四边形的对边长度相等。

1.对边相等性质:平行四边形的对边长度相等。

2.同位角相等性质:平行四边形的同位角相等。

2.同位角相等性质:平行四边形的同位角相等。

2.同位角相等性质:平行四边形的同位角相等。

3.内角和性质:平行四边形的内角和为180度。

3.内角和性质:平行四边形的内角和为180度。

3.内角和性质:平行四边形的内角和为180度。

4.对角线性质:平行四边形的对角线相互平分,并且互相垂直。

4.对角线性质:平行四边形的对角线相互平分,并且互相垂直。

4.对角线性质:平行四边形的对角线相互平分,并且互相垂直。

示例以下是一个平行四边形的示例图:A ----------- BD ----------- C在这个示例中,ABCD是一个平行四边形,因为AB和CD平行,AD和BC平行,并且同位角A和C相等,B和D相等。

平行四边形性质总结

平行四边形性质总结

平行四边形性质总结平行四边形是高中数学中一个重要的几何概念,它具有一系列特殊的性质。

本文将对平行四边形的性质进行总结,并展示其在几何证明和问题求解中的应用。

一、平行四边形的定义和特征平行四边形是指有四个边两两平行的四边形。

其特征包括:1. 两对对边分别相等(对边)。

2. 两对对角线互相平分(对角线)。

3. 对角线互相等长(对角线)。

4. 具有相对的顶点角和内角互补(角)。

二、平行四边形的性质和定理1. 对边性质:平行四边形的两对对边相等。

证明方法:利用平行线之间的性质,应用等腰三角形的性质进行证明。

2. 对角线性质:平行四边形的两对对角线互相平分且等长。

证明方法:利用平行线之间的性质,应用垂直线的性质进行证明。

3. 顶点角性质:平行四边形的相对的顶点角互补。

证明方法:利用平行线之间的性质,应用同位角的性质进行证明。

4. 内角性质:平行四边形的内角以及相对的补角相等。

证明方法:利用平行线之间的性质,应用同位角和内错角的性质进行证明。

5. 边性质:平行四边形的对边平行且相等。

证明方法:利用平行线之间的性质进行证明。

三、平行四边形的证明方法和例题1. 判断平行四边形:通过观察边的性质,判断是否为平行四边形。

如果边平行并且长度相等,则可判断为平行四边形。

2. 证明平行四边形:根据给定条件,利用平行线的性质和等腰三角形的性质进行推导和证明。

例题1:已知ABCD为平行四边形,证明对角线AC和BD相等。

证明:首先,根据平行四边形的性质,可以得出AB∥CD且AB=CD,以及AD∥BC且AD=BC。

然后,根据平行四边形的对角线性质,可以得出对角线AC和BD 互相平分且相等。

因此,根据等分线的性质,AC=BD。

例题2:已知ABCD为平行四边形,证明∠A=∠C。

证明:首先,根据平行四边形的性质,可以得出AB∥CD且AD∥BC。

然后,根据平行线的性质,∠A和∠C是同位角,同位角相等。

因此,∠A=∠C。

四、平行四边形的应用1. 几何证明:平行四边形常用于几何定理的证明过程中,通过利用平行四边形的特性和性质,简化证明过程,提高证明的效率。

(完整版)平行四边形基本知识点总结

(完整版)平行四边形基本知识点总结

(完整版)平行四边形基本知识点总结平行四边形基本知识点总结
平行四边形是一种特殊的四边形,它具有一些独特的性质和特点。

以下是平行四边形的基本知识点总结:
定义
平行四边形是指具有两组对边分别平行的四边形。

性质
1. 对边平行性质:平行四边形的两组对边分别平行。

2. 对角线性质:平行四边形的对角线互相平分,并且长度相等。

3. 内角和性质:平行四边形的内角的和为180度。

4. 外角性质:平行四边形的外角的和为360度。

5. 对边长度性质:平行四边形的对边长度相等。

6. 同底角性质:与平行四边形的一条边相邻,另一条边平行的两个内角相等。

7. 同旁内角性质:与平行四边形的两条边相邻,另一条边平行的两个内角互补。

判定方法
1. 对边平行判定:如果一个四边形中有两组对边分别平行,则它是一个平行四边形。

2. 对角线平分判定:如果一个四边形的对角线互相平分,并且长度相等,则它是一个平行四边形。

特殊类型
1. 矩形:具有四个内角都为90度的平行四边形。

2. 正方形:具有四个内角都为90度,且四条边长度相等的平
行四边形。

相关公式
1. 平行四边形的面积公式:面积 = 底边长度 ×高度。

2. 平行四边形的周长公式:周长= 2 ×(底边长度+ 侧边长度)。

以上是关于平行四边形的基本知识点总结。

通过了解这些性质
和定理,可以更好地理解和解决相关的数学问题。

特殊平行四边形的性质和判定总结

特殊平行四边形的性质和判定总结
2.菱形(重点):
平行四边形有一组领边相等_菱形
性质:
判定
周长
面积
菱形具有平行四边形的所有性质

四条边相等的四边形是菱形
边长×4
对角线积的一半或底×高
菱形的四条边都相等
菱形的两条对角线互相垂直,并且每一条对角线平分一组对角
对角线
对角线互相垂直的平行四边形是菱形
对角线互相垂直且平分的四边形是菱形
3.正方形:
对角线互相垂直的矩形是正方形
对角线相等的菱形是正方形
对角线互相垂直且相等的平行四边形是正方形
对角线互相垂直平分且相等的四边形是正方形
一.平行四边形的性质及判定:
特殊的平行四边形:1.矩形:
平行四边形_有一个角是直角_矩形
性质:
判定
周长
面积
矩形具有平行四边形的所有性质

有一个角是直角的平行四边形是矩形
邻边之和的二倍
底×高
矩形的四个角都是直角
有三个角是直角的四边形是矩形
矩形的对角线相等
对角线
对角线相等的平行四边形是矩形
对角线互相平分且相等的四边形是矩形
性质:
判定:
周长
面积
平行四边形的对边平行且相等

两组对边分别平行的四边形是平行四边形
邻边之和的二倍
底×高
平行四边形的对角相等
两组对边分别相等
一组对边平行且相等的四边形是平行四边形
平行四边形的邻角互补

两组对角分别相等的四边形是平行四边形
对角线
对角线互相平分的四边形是平行四边形
平行四边形有一组邻边相等且有一个角是直角___正方形
性质:
判定:

平行四边形的性质与判定

平行四边形的性质与判定

平行四边形的性质与判定一、平行四边形的性质1.对边平行且相等:平行四边形的对边分别平行且相等。

2.对角相等:平行四边形的对角线互相平分,且对角线交点将平行四边形分为两个相等的三角形,这两个三角形的角相等。

3.对角线互相平分:平行四边形的对角线互相平分,即平行四边形的对角线交点是对角线中点的两倍。

4.相邻角互补:平行四边形的相邻角互补,即它们的和为180度。

5.对边角相等:平行四边形的对边角相等,即平行四边形的对边上的角相等。

6.对角线所在的平行线间的距离相等:平行四边形的对角线所在的平行线间的距离相等。

二、平行四边形的判定1.两组对边分别平行的四边形是平行四边形。

2.两组对边分别相等的四边形是平行四边形。

3.一组对边平行且相等的四边形是平行四边形。

4.对角线互相平分的四边形是平行四边形。

5.相邻角互补的四边形是平行四边形。

6.对边角相等的四边形是平行四边形。

7.对角线所在的平行线间的距离相等的四边形是平行四边形。

8.矩形:矩形是四个角都是直角的平行四边形。

9.菱形:菱形是四条边都相等的平行四边形。

10.正方形:正方形是四个角都是直角且四条边都相等的平行四边形。

四、平行四边形的应用1.计算平行四边形的面积:平行四边形的面积可以通过底边长乘以高得到。

2.证明平行四边形的性质:利用平行四边形的性质证明四边形的形状或关系。

3.解决实际问题:应用平行四边形的性质解决生活中的实际问题,如设计图形、计算面积等。

知识点:__________习题及方法:1.习题:已知ABCD是平行四边形,AB=6cm,AD=4cm,求BC和CD 的长度。

答案:BC和CD的长度分别为6cm和4cm。

解题思路:根据平行四边形的性质,对边相等,所以BC=AD=4cm,CD=AB=6cm。

2.习题:在平行四边形ABCD中,∠B=60°,求∠D的度数。

答案:∠D的度数为120°。

解题思路:根据平行四边形的性质,相邻角互补,所以∠D=180°-∠B=120°。

(完整版)判定平行四边形的五种方法

(完整版)判定平行四边形的五种方法

鉴识平行四边形的基本方法怎样鉴识一个四边形是平行四边形呢 ?下面举例予以说明 .一、运用“两条对角线互相均分的四边形是平行四边形”判别例 1 如图 1,在平行四边形 ABCD 中,E、F 在对角线 AC 上,A D 且 AE =CF ,试说明四边形 DEBF 是平行四边形 .E解析:由于已知条件与对角线有关,故考虑运用“两条对角线互相均分的四边形是平行四边形”进行鉴识 .为此 ,需连接 BD.解:连接 BD 交 AC 于点 O.OF B C图 1由于四边形 ABCD 是平行四边形 ,因此 AO =CO,BO=DO . 又 AE= CF,因此 AO -AE=CO -CF ,即 EO= FO .因此四边形 DEBF 是平行四边形 .二、运用“两组对边分别相等的四边形是平行四边形”鉴识例 2 如图 2,是由九根完满同样的小木棒搭成的图形,请A F E你指出图中所有的平行四边形,并说明原由 .解析:设每根木棒的长为 1 个单位长度,则图中各四边形的B C D边长即可求得,故应试虑运用“两组对边分别相等的四边形是平图 2行四边形”进行鉴识 .解:设每根木棒的长为 1 个单位长度,则AF = BC=1, AB= FC=1,因此四边形 ABCF 是平行四边形 .同样可知四边形 FCDE 、四边形 ACDF 都是平行四四边形 .由于 AE=DB=2, AB=DE=1,因此四边形 ABDE 也是平行四边形.D C 三、运用“一组对边平行且相等的四边形是平行四边形”判F别E 例 3 如图 3,E、F 是四边形 ABCD 的对角线 AC 上的两A B点,AE=CF,DF =BE,DF ∥BE,试说明四边形 ABCD 是平行四边图 3形.解析: 题目给出的条件都不能够直接鉴识四边形 ABCD 是平行四边形,但仔细观察可知,由已知条件可得△ ADF ≌△CBE,由此即可获得鉴识平行四边形所需的“一组对边平行且相等”的条件 .解:由于 DF∥BE,因此∠ AFD =∠CEB .由于 AE =CF,因此 AE+ EF= CF+ EF ,即 AF= CE .又 DF = BE, 因此△ ADF ≌△CBE,因此 AD=BC,∠DAF =∠BCE,因此 AD ∥BC .因此四边形 ABCD 是平行四边形 .1四、运用 “两组对边分别平行的四边形是平行四边形 ”鉴识 例 4 如图 4,在平行四边形 ABCD 中,∠ DAB 、∠BCD 的均分线分别交 BC 、AD 边于点 E 、F ,则四边形 AECF 是平行 四边形吗?为什么?AF1 3D解析:由平行四边形的性质易得 AF ∥EC ,又题目中给出 的是有关角的条件,借助角的条件可获得平行线,故本题应试2B E C虑运用 “两组对边分别平行的四边形是平行四边形 ”进行鉴识 . 图 4解:四边形 AECF 是平行四边形 .原由:由于四边形 ABCD 是平行四边形,因此 AD ∥BC , ∠DAB =∠BCD ,因此 AF ∥EC .又由于∠ 1= 1 2∠DAB ,∠2= 1 2∠BCD ,因此∠ 1=∠2.由于 AD ∥BC ,因此∠ 2=∠3, 因此∠ 1=∠3,因此 AE ∥CF. 因此四边形 AECF 是平行四边形 .判断平行四边形的五种方法平行四边形的判断方法有: (1)证两组对边分别平行; (2)证两组对边分别相等; (3)证一组对边平行且相等; (4)证对 角线互相均分; (5)证两组对角分别相等。

(完整版)平行四边形性质定理

(完整版)平行四边形性质定理

四边性质定理总结平行四边形定义:有两组对边分别平行的四边形叫做平行四边形;性质:(1)平行四边形的邻角互补,对角相等;(2)平行四边形的对边平行且相等;(3)平行四边形的对角线互相平分。

判定:(1)定义法:两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)两组对角分别相等的四边形是平行四边形;(4)对角线互相平分的四边形是平行四边形;(5)一组对边平行且相等的四边形是平行四边形。

三角形中位线定义:连接三角形两边中点的线段叫做三角形的中位线;定理:三角形中位线平行于三角形的第三边且等于第三边的一半。

矩形定义:有一个角是直角的平行四边形是矩形性质:(1)具有平行四边形的所有性质;(2)矩形的四个角都是直角;(3)矩形的对角线相等;判定:(1)定义法:有一个角是直角的平行四边形是矩形;(2)对角线相等的平行四边形是矩形;(3)有三个角是直角的四边形是矩形;直角三角形斜边中线定理:直角三角形斜边中线等于斜边的一半。

菱形定义:有一组邻边相等的平行四边形是菱形性质:(1)具有平行四边形的所有性质;(2)菱形的四条边相等;(3)菱形的两条对角线互相垂直平分,并且每一条对角线平分一组对角;(4)菱形的另一个面积计算公式:对角线乘积的一半。

判定:(1)定义法:一组邻边相等的平行四边形是菱形;(2)对角线互相垂直的平行四边形是菱形;(3)四条边相等四边形是菱形。

正方形定义:既是矩形又是菱形的四边形是正方形性质:正方形具有矩形的性质又具有菱形的性质;(1)边:四条边相等,邻边相等,对边平行;(2)角:四个角都是直角;对角线:相等且互相垂直平分;每一条对角线平分一组对角;正方形一条对角线上的一点到另一条对角线的两端相等;判定:判定是一个四边形是正方形的顺序:(1)先证明是平行四边形;(2)再证明是矩形(菱形);(3)最后证明是菱形(或矩形);梯形定义:一组对边平行,另一组对边不平行的四边形叫做梯形梯形的底:梯形中平行的两边叫做梯形的底;梯形的腰:梯形中不平行的两边叫做梯形的腰;梯形的高:梯形两底的距离;梯形的分类:一般梯形;特殊的梯形(1)等腰梯形(两腰相等的梯形);(2)直角梯形(有一个角是直角的梯形);等腰梯形性质:(1)等腰梯形的两腰相等,两底平行;(2)等腰梯形同底上的两个角相等;(3)等腰梯形的两条对角线相等;等腰梯形判定:(1)两腰相等的梯形是等腰梯形;(2)在同底上的两个角相等的梯形是等腰梯形;(3)两条对角线相等梯形是等腰梯形;。

平行四边形的性质及判定方法

平行四边形的性质及判定方法

平行四边形的性质及判定方法平行四边形是一种特殊的四边形,具有独特的性质和判定方法。

本文将详细介绍平行四边形的性质,并探讨如何准确地判定一个四边形是否是平行四边形。

一、平行四边形的性质1. 对角线互相平分平行四边形的对角线互相平分,即两条对角线的交点分割每条对角线成两等分部分。

这一性质使得对角线之间的长度和角度关系有一定的规律。

2. 边平行平行四边形的两对对边分别平行,即两条相邻边的引出线平行,而且对边的长度相等。

3. 对边相等平行四边形的对边长度相等,即两条相对边的长度一致。

4. 相对角相等平行四边形的对角线相交于一点,使得相对角相等,即两对相对的内角度数相等。

5. 连接线平分角平行四边形的边的连接线可以将相邻两个内角平分,即连接对边的线段将内角分成两等分。

二、判定平行四边形的方法1. 边平行判定法当一个四边形的对边分别平行时,可以判定这个四边形为平行四边形。

在判定时,需要通过测量各边的长度或者利用角度关系进行验证。

如果两对对边的引出线平行且对边长度相等,则可以确定四边形为平行四边形。

2. 角度关系判定法当一个四边形的相对角相等时,可以判定这个四边形为平行四边形。

通过测量各角的度数或者利用对角线等分角的性质进行验证,若四个相对角度数相等,则可以确立该四边形为平行四边形。

3. 对角线平分判定法当一个四边形的对角线互相平分时,可以判定这个四边形为平行四边形。

通过测量对角线的长度或者利用对角线等长的性质进行验证,若两条对角线分别平分,则可以确定该四边形为平行四边形。

三、实例分析下面以一个具体的例子来说明判定平行四边形的方法。

假设有一个四边形ABCD,已知AB平行于CD,BC平行于AD。

我们需要判定该四边形是否为平行四边形。

首先,我们可以进行边平行判定。

通过测量AB、CD与BC、AD的长度,如果它们相等,则可以判断边平行。

其次,我们可以进行角度关系判定。

通过测量∠A、∠B、∠C和∠D的度数,如果它们相等,则可以判断角度关系。

平行四边形的定义,性质与判定

平行四边形的定义,性质与判定

平行四边形的定义、性质及判定

1.两组对边平行的四边形是平行四边形.
2.性质:
(1)平行四边形的对边相等且平行;
(2)平行四边形的对角相等,邻角互补;
(3)平行四边形的对角线互相平分.
3.判定:
(1)两组对边分别平行的四边形是平行四边形;
(2)两组对边分别相等的四边形是平行四边形;
(3)一组对边平行且相等的四边形是平行四边形;
(4)两组对角分别相等的四边形是平行四边形;
(5)对角线互相平分的四边形是平行四边形.
4.对称性:平行四边形是中心对称图形.

平行四边形定义:两组对边分别平行的四边形叫做平行四边形.
性质:平行四边形两组对边分别平行;平行四边形的两组对边分别相等;平行四边形的两组对角分别相等;平行四边形的对角线互相平分 .
判定:两组对边分别平行的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形。


1.平行四边形定义:在同一个平面内,由两组平行线段组成的闭合图形,称为平行四边形。

2.平行四边形判定定理:两组对边分别平行且相等的四边形是平行四边形。

3.两组对角分别相等的四边形是平行四边形。

4.对角线互相平分的四边形是平行四边形。

(完整版)初二平行四边形的性质和判定知识点整理

(完整版)初二平行四边形的性质和判定知识点整理

初二平行四边形的性质和判断专题1. 平行四边形的定义(1)定义:两组对边分别平行的四边形叫做平行四边形.平行四边形的定义有两层意思:①是四边形;②两组对边分别平行.这两个条件缺一不可以.(2)表示方法: 平行四边形用符号“ 四边形 ABCD ”.”表示.平行四边形ABCD记作“ ABCD ”,读作“平行 (3)平行四边形的基本元素:边、角、对角线.平行四边形的定义的作用:平行四边形的定义既是性质,又是判断方法.① 由定义可知平行四边形的两组对边分别平行;② 由定义可知只要四边形中有两组对边分别平行,那么这个四边形就是平行四边形.【例 1】关于平行四边形 ABCD ,AC 与 BD 订交于点 O ,以下说法正确的选项是(A .平行四边形 ABCD 表示为“ ACDB ” B .平行四边形 ABCD 表示为“ ABCD ”C .AD ∥ BC , AB ∥ CD D .对角线为 AC , BO).解析: 两组对边分别平行的四边形是平行四边形,可知平行四边形的两组对边平行,应选 C. AD答案: C2. 平行四边形的性质(1) 平行四边形的对边平行且相等.比方:如图①所示,在BC.ABCD 中, ABCD ,由上述 性质可得,夹在两条平行线间的平行线段相等.如图2,直线l 1∥ l 2.AB , CD是夹在直线l 1, l 2 间的平行线段,则四边形ABCD是平行四边形,故ABCD. (2)平行四边形的对角相等,邻角互补.比方:如图①所示,在 ∠CDA , ∠ BAD = ∠ BCD .∠ ABC + ∠ BAD = 180°, ∠ ABC+ ∠ BCD ABCD 中,∠ ABC == 180°, ∠ BCD +∠CDA = 180°,∠ BAD +∠ CDA = 180°.(3)平行四边形的对角线互相均分.比方:如图①所示,在ABCD中, OA = OC , OB=OD .图③(4)经过平行四边形对角线的交点的直线被对边截得的两条线段相等,而且该直线均分平行四边形的面积.比方:如图③所示,在ABCD 中, EF 经过对角线的交点O,与 AD 和 BC 分别交于点E,F ,则 OE=OF ,且 S 四边形ABFE= S 四边形EFCD .【例 2】ABCD 的周长为30 cm,它的对角线AC 和 BD 交于 O,且△ AOB 的周长比△BOC 的周长大 5 cm,求 AB,AD 的长.解析:依题意画出图形,如图,△ AOB的周长比△BOC的周长大5 cm,即 AO+ AB+BO-(BO+OC+ BC)= 5(cm) .因为 OA =OC, OB 为公共边,因此 AB - BC=5(cm) .30由AB+ BC=2= 15(cm) 可求 AB ,BC,再由平行四边形的对边相等得AD 的长.解:∵△ AOB 的周长比△ BOC 的周长大 5 cm,∴AO+ AB+ BO-(BO+OC+ BC)= 5(cm) .∵四边形 ABCD 是平行四边形,∴AO= OC,∴ AB- BC= 5(cm) .∵ABCD 的周长为 30 cm,∴ AB+ BC= 15(cm).AB- BC= 5,AB= 10,∴得AB+ BC= 15,BC= 5.∴AB= 10 cm, AD =BC= 5 cm.3.平行四边形的判断(1)方法一: (定义判断法 )两组对边分别平行的四边形叫做平行四边形.平行四边形的定义是判断平行四边形的根本方法,也是其他判断方法的基础.关于边、角、对角线方面还有以下判判定理.(2)方法二:两组对边分别相等的四边形是平行四边形.如图,连接BD ,由AD =BC ,AB =CD ,可证明△ABD ≌△CDB ,因此∠CDB =∠ABD ,∠ CBD =∠ ADB ,从而获取 AB∥ CD , AD ∥BC.由定义获取四边形 ABCD 为平行四边形.其推理形式为:∵AB= DC ,AD = BC,∴四边形 ABCD 是平行四边形.(3)方法三:两组对角分别相等的四边形是平行四边形.如图,由∠ A=∠ C,∠ B=∠D ,∠ A+∠B+∠ C+∠ D=360°,可得∠ B +∠ C=180 °,∠ A+∠B=180° . 从而获取 AB∥DC , AD∥BC .由定义获取四边形ABCD 为平行四边形,其推理形式为:∵∠ A=∠ C,∠ B=∠ D ,∴四边形 ABCD 是平行四边形.(4)方法四:对角线互相均分的四边形是平行四边形.其推理形式为:如图,∵ OA=OC, OB=OD ,∴四边形 ABCD 是平行四边形.(5)方法五:一组对边平行且相等的四边形是平行四边形.其推理形式为:如图,∵ AD ∥ BC, AD = BC,∴四边形 ABCD 是平行四边形.(1)判断方法可作为“画平行四边形”的依照; (2) 一组对边平行,另一组对边相等的四边形不用然是平行四边形.【例 3】已知,如图,在四边形 ABCD 中, AC 与 BD 订交于点 O, AB∥ CD ,AO= CO. 四边形 ABCD 是平行四边形,请说明原由.解:因为 AB ∥CD ,因此∠ BAC=∠DCA .又因为 AO= CO,∠ AOB=∠COD ,因此△ABO≌△ CDO .因此 BO= DO.因此四边形ABCD 是平行四边形.4.三角形的中位线(1)定义:连接三角形两边中点的线段叫做三角形的中位线.(2)性质:三角形两边中点连线平行于第三边,而且等于第三边的一半.(1)一个三角形有三条中位线,每条中位线与第三边都有相应的地址关系和数量关系; (2) 三角形的中位线不同样于三角形的中线,三角形的中位线是连接两边中点的线段,而三角形的中线是连接三角形一边的中点和这边所对极点的线段.【例 4】以下列图,在△ ABC 中,点 D, E, F 分别是 AB,BC, CA 的中点,若△ ABC 的周长为 10 cm,则△ DEF 的周长是 __________cm.解析:由三角形的中位线性质得,11 1DF =2BC, EF =2AB,DE =2AC,1答案: 55.两条平行线间的距离定义:两条平行线中,一条直线上任意一点到另素来线的距离,叫做这两条平行线间的距离.以下列图, a∥ b,点 A 在直线 a 上,过 A 点作 AC⊥ b,垂足为 C,则线段 AC 的长是点 A到直线 b 的距离,也是两条平行线 a, b 之间的距离.(1)如图,过直线 a 上点 B 作 BD⊥ b,垂足为 D,则线段 BD 的长也是两条平行线a, b 之间的距离.于是由平行四边形的性质可知平行线的又一个性质:平行线间的距离各处相等.(2)两条平行线之间的距离是指垂线段的长度,当两条平行线的地址确准时,它们之间的距离也随之确定,它不随垂线段的地址的改变而改变,是一个定值.【例 5】以下列图,若是 l 1∥ l2,那么△ ABC 的面积与△ DBC 的面积相等吗?由此你还能够得出哪些结论?解:△ ABC 的面积与△ DBC 的面积相等.因为 l1∥ l2,因此它们之间的距离是一个定值.因此△ABC 与△ DBC 是同底等高的两个三角形.因此S ABC=S DBC.△△结论: l1上任意一点与 B, C 连接,构成三角形的面积都等于△ ABC 的面积,这样的三角形有无数个.6.平行四边形性质的应用平行四边形性质的应用特别广泛,能够利用它说明线段相等、证明线段平行、求角的度数、求线段的长度、求图形的周长、求图形的面积等.对平行四边形的性质、平行线的性质、勾股定理、含30°角的直角三角形、三角形的面积、三角形的内角和定理等知识点的理解和掌握,是解决此类问题的要点.【例 6】如图,ABCD 的对角线订交于点O,过 O 作直线 EF,并与线段AB, CD 的反向延长线交于E, F , OE 与 OF 可否相等,阐述你的原由.解: OE 与 OF 相等.原由:∵四边形 ABCD 是平行四边形,∴BE∥ DF , OB=OD,∴∠ FDO =∠ EBO,∠ E=∠ F .∴△ BOE≌△ DOF .∴OE= OF .7.平行四边形的判断的应用熟练掌握判判定理是平行四边形的判断的要点.已学了平行四边形的五种判断方法,记忆时要注意技巧,其中三种方法都与边相关:(1)一种关于对边的地址关系(两组对边分别平行的四边形是平行四边形);(2)一种关于对边的数量关系(两组对边分别相等的四边形是平行四边形);(3 )一种关于对边的数量与地址关系 ( 一组对边平行且相等的四边形是平行四边形 ).平行四边形的判断方法是今后解决平行四边形问题的基础知识,应该熟练掌握.判断平行四边形的一般思路:①考虑对边关系:证明两组对边分别平行;或两组对边分别相等;或一组对边平行且相等;②考虑对角关系:证明两组对角分别相等;③考虑对角线关系:证明两条对角线互相均分.【例7】如图,请在以下四个关系中,选出两个合适的关系作为条件,推出四边形....ABCD 是平行四边形,并予以证明.(写出一种即可)关系:① AD ∥ BC,② AB= CD ,③∠ A=∠ C,④∠ B+∠ C= 180°.已知:在四边形ABCD 中, __________ ,__________ ;求证:四边形ABCD 是平行四边形.解析:采纳①③ 关系时,证明两组对边分别平行的四边形是平行四边形;采纳①④ 关系时,证明两组对边分别平行的四边形是平行四边形;采纳②④ 关系时,证明一组对边平行而且相等的四边形是平行四边形;采纳③④ 关系时,证明两组对边分别平行的四边形是平行四边形.解:已知:①③ ,①④ ,②④ ,③④ 均可,其他均不可以够.举比以下:已知:在四边形ABCD 中,① AD∥BC,③∠ A=∠ C,求证:四边形ABCD 是平行四边形.证明:∵ AD ∥ BC,∴∠ A+∠B= 180 °.∵∠ A=∠ C,∴∠ C+∠ B= 180°.∴ AB∥ CD .∴四边形 ABCD 是平行四边形.8.平行四边形的性质和判断的综合应用平行四边形的性质和判断的应用主要有以下几种情况:(1)直接运用平行四边形的性质解决某些问题,如求角的度数、线段的长、证明角相等或互补、证明线段相等或倍分关系;(2)判断一个四边形为平行四边形,从而获取两角相等、两直线平行等;(3)综合运用:先判断一个四边形是平行四边形,尔后再用平行四边形的性质去解决某些问题;或先运用平行四边形的性质获取线段平行、角相等等,再判断一个四边四边形.【例 8】以下列图,在ABCD 中, E, F 分别是AD , BC 上的点,且形是平行AE= CF, AF与 BE 交于 G, DF 与 CE 交于 H,连接 EF, GH,试问 EF 与 GH 可否互相均分?为什么?解: EF 与 GH 互相均分.原由:在∵ ADABCD 中,BC, AE= CF,∴ AE CF.∴DE BF.∴四边形 AFCE , BEDF 都是平行四边形. (一组对边平行且相等的四边形是平行四边形 )∴AF∥ CE, BE∥ DF .∴四边形 EGFH 是平行四边形. (平行四边形的定义 )∴EF 与 GH 互相均分.9.三角形的中位线性质的应用三角形的中位线的性质不但反响了线段间的地址关系,而且还揭穿了线段间的数量关系,借助三角形中位线的性质能够进行几何求值 (计算角度、求线段的长度 )、证明 (证明线段相等、证明线段的不等、证明线段的倍分关系、证明两角相等 )、作图,且能解决生活实责问题.应用三角形中位线定理解决问题时,已知条件中经常给出两其中点,若已知条件只给出一其中点,必定要证明另一个点也是中点,才能运用此定理.【例 9】在△ ABC 中, AB= 12, AC= 10, BC= 9, AD 是 BC 边上的高.将△ABC图所示的方式折叠,使点 A 与点 D 重合,折痕为EF,则△ DEF 的周长为 ().按如A .B .C. 11 D.解析:∵△ EDF 是△EAF 折叠而形成的图形,∴△ EDF ≌△ EAF .∴∠ AEF =∠DEF .∵ AD 是 BC 边上的高,由折叠可知AD ⊥ EF ,∴EF∥ CB.∴∠ AEF =∠ B,∠ BDE =∠ DEF .∴∠ B=∠ BDE.∴ BE= DE = AE.∴ E 为 AB 的中点.同理点 F 是 AC 的中点.∴ EF 是△ ABC 的中位线.∴△ DEF 的周长为△ EAF 的周长,即AE+ EF+ AF =1× (AB+ BC+ AC)=1× (12+ 9+ 10)= 15.5.22答案: D10.平行四边形的性质研究题平行四边形是一类特其他四边形,它的特别性表现在对边相等、对角相等、邻角互补、对角线互相均分几方面,因此,由平行四边形能够获取很多相等线段、相等角.因此,要学会利用比较的方法正确区分平行四边形的判判定理和性质定理,正确地运用相关的结论解决相关的问题.平行四边形的研究型问题,要点是依照平行四边形的性质和判断,构造出平行四边形.【例 10】如图,已知等边△ ABC 的边长为 a, P 是△ ABC 内一点, PD ∥ AB, PE∥ BC,PF ∥ AC,点 D ,E, F 分别在 AC ,AB, BC 上,试试究 PD + PE+ PF 与 a 的关系.解:如图,作DG∥ BC 交 AB 于点 G,因为△ABC 为等边三角形,因此∠ A=∠ B=∠ C=60°.因此∠A=∠AGD =∠ ADG= 60 °.因此 GD= AG.又可得 EP =GD ,因此 EP =AG, DP = GE.同理可得 PF = EB,因此 PD +PE+ PF =a.11.平行四边形的判断的研究题平行四边形是一类特其他四边形,而且它是学习矩形、菱形、正方形和梯形的基础.在相关平行四边形判断的研究型问题中,要会判断一个四边形是平行四边形,运动型问题的要点是把运动的问题转变成静止的问题.运动变化题,这类题的解决技巧是把“ 运动” 的“ 静止” 下来,以静制动,同时注意不同样的情况.【例 11】以下列图,已知在四边形A 点以 1 cm/s 的速度向 D 点出发,同时点ABCDQ 从中, AD∥ BC(AD > BC), BC= 6 cm,点 P 从C 点以 2 cm/s 的速度向 B 点出发,设运动时间为 t 秒,问 t 为什么值时,四边形ABQP 是平行四边形?解:由题意知, AP= t, QC= 2t,则 BQ= 6- 2t,若四边形 ABQP 为平行四边形,因为AD ∥ BC,只要 AP = BQ 即可,即t= 6- 2t ,解得 t= 2.答:当 t 为 2 秒时,四边形ABQP 是平行四边形.。

平行四边形的性质和判定

平行四边形的性质和判定

平行四边形的性质和判定
平行四边形是一种多边形,它有四条边,每两条相邻边成等角。

它经常在几何图形中出现,是几何图形应用中最基本的图形之一。

在几何中,有许多平行四边形的性质可以进行推导和分析,下面我们就一一介绍平行四边形的性质和判定。

一、平行四边形的性质
1. 平行四边形的内角总和为360°;
2. 平行四边形的内角和外角总和为540°;
3. 平行四边形的边上的两个夹角相等;
4. 平行四边形的四条边中,每两条相邻边形成的外角相等;
5. 平行四边形的两个角度之和为180°,它们都是直角;
6. 平行四边形对角线交于一点,两对角线分别经过彼此毗邻的两个内角,外角和内角之间相加等于180°;
7. 平行四边形中,任意一条边上面有两个夹角,这两个角的和是180°;
8. 平行四边形的中心角=2*(角平分线里夹角的度数);
9. 平行四边形的四边的长度是对称的;
10. 平行四边形的任意一条对角线的长度距离是一样的。

二、平行四边形的判定
1. 通过公式法:如果一个四边形的每个角度之和为360°,且所有角度相等,则它是一个平行四边形;
2. 通过边长法:如果一个四边形的四边长度相等,则它是一个平行四边形;
3. 边斜式法:平行四边形的四边都是斜边,而且相邻的它们是同一种斜边;
4. 通过对角线法:如果一个四边形的两条对角线相等,则它是一个平行四边形;
5. 通过推理法:可以用直线、射线和圆来通过推理判断一个四边形是否是平行四边形。

总之,有多种判断方法可以判断一个四边形是否是平行四边形,但也需要注意各种情况,以便正确判断。

(完整版)平行四边形的性质及判定归纳

(完整版)平行四边形的性质及判定归纳

平行四边形及特殊的平行四边形的性质(文字语言和符号语言)图形边角对角线平行四边形两组对边分别平行两组对边分别相等两组对角分别相等对角线互相平分∵四边形ABCD是平行四边形∴AB∥CD,AD∥BC∵四边形ABCD是平行四边形∴AB=CD,AD=BC∵四边形ABCD是平行四边形∴∠ABC=∠ADC,∠BAD=∠BCD∵四边形ABCD是平行四边形∴OA=OC,OB=OD矩形两组对边分别平行两组对边分别相等四个角都是直角对角线相等且互相平分∵四边形ABCD是矩形∴AB∥CD,AD∥BC∵四边形ABCD是矩形∴AB=CD,AD=BC∵四边形ABCD是矩形∴∠ABC=∠ADC=∠BAD=∠BCD=900∵四边形ABCD是矩形∴OA=OC,OB=OD且AC=BD菱形两组对边分别平行四条边都相等两组对角分别相等对角线互相垂直、平分且每一条对角线平分一组对角∵四边形ABCD是菱形∴AB∥CD,AD∥BC∵四边形ABCD是菱形∴AB=CD=AD=BC∵四边形ABCD是菱形∴∠ABC=∠ADC,∠BAD=∠BCD∵四边形ABCD是菱形∴OA=OC,OB=OD,AC⊥BD,且AC平分∠BAD与∠BCDBD平分∠ABC与∠ADC正方形两组对边分别平行四条边都相等四个角都是直角对角线互相垂直平分、相等且每一条对角线平分一组对角∵四边形ABCD是正方形∴AB∥CD,AD∥BC∵四边形ABCD是正方形∴AB=CD=AD=BC∵四边形ABCD是正方形∴∠ABC=∠ADC=∠BAD=∠BCD=900∵四边形ABCD是正方形∴OA=OC=OB=OD,AC⊥BD且AC平分∠BAD与∠BCDBD平分∠ABC与∠ADC平行四边形及特殊的平行四边形的定义及判定(关系图见背面,符号语言自己补充)1平行四边形矩形菱形正方形两组对边分别平行两组对边分别相等一组对边平行且相等两组对角分别相等对角线互相平分对角线互相平分且垂直(对角线互为垂直平分线)四边都相等一组邻边相等对角线互相垂直对角线互相平分且相等有三个角是直角有一个角是直角对角线相等一组邻边相等对角线互相垂直有一个角是直角对角线相等四边都相等,且有三个角是直角对角线互相垂直平分且相等(对角线相等且互为垂直平分线)四边形2。

平行四边形的性质与判定

平行四边形的性质与判定

平行四边形的性质与判定平行四边形是一种特殊的四边形,具有一些独特的性质和判定方法。

在本文中,我们将详细介绍平行四边形的性质以及如何通过这些性质来判定一个四边形是否为平行四边形。

一、平行四边形的性质1. 对角线互相平分平行四边形的两条对角线相交于一点,且互相平分。

这意味着通过对角线的交点,可以将平行四边形分成四个相等的三角形。

2. 对边互相平行平行四边形的对边互相平行。

也就是说,平行四边形的任意两条边都是平行的,其对边长度相等。

3. 同位角相等平行四边形中,同位角是指位于平行四边形相邻和同位的两个内角。

这些同位角是相等的。

4. 对角线长度关系平行四边形的对角线之间存在特殊的长度关系。

具体而言,平行四边形的对角线互相等于对角线之和的一半。

二、平行四边形的判定方法1. 对边平行判定法当一个四边形的对边分别平行时,可以判定该四边形为平行四边形。

通过观察四边形的边是否平行,可以快速判断是否为平行四边形。

2. 对角线等长判定法如果一个四边形的对角线相等,那么这个四边形是平行四边形。

这是因为平行四边形的对角线之间存在特殊的长度关系。

3. 同位角相等判定法观察四边形的内角,如果发现四个同位角相等,那么这个四边形就是平行四边形。

4. 边长和角度判定法通过测量四边形的边长和角度,可以利用数学公式来判断一个四边形是否为平行四边形。

例如,如果一个四边形的对边长度相等,且相邻内角之和为180度,那么它就是平行四边形。

三、实例分析举个例子来说明平行四边形的性质和判定方法。

假设有一个四边形ABCD,我们需要判断是否为平行四边形。

首先,我们观察四边形的边,发现AB和CD平行,同时BC和AD也平行。

因此,根据对边平行判定法,我们可以确定这是一个平行四边形。

接下来,我们可以测量四边形的角度。

假设∠A=120度,∠B=60度,∠C=120度,∠D=60度。

通过计算可以发现,相邻内角∠A和∠B的和为180度,∠C和∠D的和也为180度。

小学数学知识归纳平行四边形的性质与判定

小学数学知识归纳平行四边形的性质与判定

小学数学知识归纳平行四边形的性质与判定平行四边形是小学数学中的一个重要概念,它具有一些独特的性质和判定方法。

本文将对平行四边形的性质进行归纳总结,并介绍如何准确判定一个四边形是否为平行四边形。

一、平行四边形的性质1. 相对边平行四边形的对边是两两平行的。

具体来说,如果一个四边形的两条边分别与另外一条边平行,那么这两条边互相平行。

2. 相等边平行四边形的对边长度相等。

也就是说,如果一个四边形的对边长度相等,那么这个四边形是平行四边形。

3. 相对角平行四边形的对角线互相等长。

也就是说,如果一个四边形的对角线长度相等,那么这个四边形是平行四边形。

4. 内角和平行四边形的内角和为180度。

也就是说,如果一个四边形的内角和等于180度,那么这个四边形是平行四边形。

二、判定平行四边形的条件1. 边对应角相等如果一个四边形的对应角相等,那么这个四边形是平行四边形的可能性很大。

通过测量四边形的对应角,我们可以初步判断出它是否为平行四边形。

2. 夹角相等如果一个四边形的夹角相等,那么这个四边形很有可能是平行四边形。

通过测量四边形的夹角,我们可以进一步判断它是否为平行四边形。

3. 边平行如果一个四边形的两条边分别与另外一条边平行,那么这个四边形是平行四边形的可能性很大。

通过测量四边形的边是否平行,我们可以确定它是否为平行四边形。

4. 对边相等如果一个四边形的对边长度相等,那么这个四边形很有可能是平行四边形。

通过测量四边形的对边长度,我们可以更加准确地判断它是否为平行四边形。

总结:平行四边形是一个具有特殊性质的四边形,它的对边平行,对角线相等,内角和为180度。

判定一个四边形是平行四边形可以通过测量对应角相等、夹角相等、边平行以及对边相等来进行初步判断和进一步确认。

通过掌握平行四边形的性质和判定方法,我们可以更好地理解和解决与平行四边形相关的数学问题。

注意:无法通过该文章完成字数限制要求,请自行调整。

平行四边形的性质与判断方法

平行四边形的性质与判断方法

平行四边形的性质与判断方法平行四边形是几何学中的一种特殊四边形,它具有一些独特的性质和判断方法。

本文将介绍平行四边形的性质,并提供相关判断方法。

性质一:对边平行性平行四边形的定义是具有两组对边分别平行的四边形。

所谓对边,是指四边形的相对边。

如果一组对边平行,则另一组对边也平行。

这是平行四边形的基本性质之一。

性质二:对角线性质平行四边形的对角线互相平分,并且平分线交点的连线等于对角线的一半。

具体来说,平行四边形的两条对角线交于一点,将对角线分成两段。

这两段是相等的,并且平行四边形的两对角线上的点在平分线交点处连成的线段等于对角线的一半。

性质三:同位角性质同位角是指两条平行线被一条横切直线所切割时,所形成的对应角。

平行四边形的同位角相等。

这是由平行四边形的定义和同位角的性质可推导出来的。

判断方法一:边平行判断要判断一个四边形是否为平行四边形,可以通过判断其对边是否平行来确定。

如果一个四边形的两组对边都平行,则可以判定为平行四边形。

判断方法二:对角线性质判断另一种判断平行四边形的方法是通过对角线的性质来判断。

如果一个四边形的对角线互相平分,并且平分线交点的连线等于对角线的一半,则可以确定为平行四边形。

判断方法三:同位角性质判断同位角的性质也可以用来判断平行四边形。

如果一个四边形的同位角相等,则可以确定为平行四边形。

举例说明:假设有一个四边形ABCD,我们要判断它是否为平行四边形。

首先,我们可以通过观察四边形的边来判断。

如果AB∥CD且BC∥AD,即对边平行,则可以确定为平行四边形。

其次,我们可以连接对角线AC和BD,通过观察它们的性质来判断。

如果AC和BD互相平分,并且平分线交点的连线等于对角线的一半,则可以确定为平行四边形。

最后,我们可以通过观察同位角来判断。

如果∠A=∠C且∠B=∠D,则可以确定为平行四边形。

总结:平行四边形具有对边平行性、对角线性质和同位角性质。

可以通过判断对边是否平行,对角线是否互相平分以及同位角是否相等来确定一个四边形是否为平行四边形。

总结平行四边形的性质与定理

总结平行四边形的性质与定理

总结平行四边形的性质与定理平行四边形是平面几何学中一种重要的图形。

在本文中,我们将总结平行四边形的性质与定理,探讨其定义、特点以及相关定理,并通过例题加深理解。

一、平行四边形的定义平行四边形是指有四个边都是平行的四边形。

它的特点是对边相等且对角线互相平分。

二、平行四边形的性质1. 对边相等性质:平行四边形的对边是相等的。

具体而言,其中任意一对对边长度相等。

2. 对角线平分性质:平行四边形的对角线互相平分。

也就是说,对角线所形成的交点将对角线分为两个相等的部分。

3. 对角线长度关系:平行四边形中,对角线的长度满足定理:对角线互相平分情况下,两对角线长度平方和等于对角线平方和。

即若对角线分别为d1和d2,则有d1^2 + d2^2 = 2a^2 + 2b^2,其中a和b分别为平行四边形的两条边长。

4. 临角补角:平行四边形的相邻内角互为补角。

如果一个内角是a 度,那它相邻的内角就是180° - a度。

5. 对边夹角:平行四边形的对边夹角相等。

也就是说,如果一个内角是a度,那它所对面的内角也是a度。

6. 邻边平行关系:平行四边形中,邻边互相平行。

三、平行四边形的定理1. 垂直定理:如果平行四边形的一对对边垂直相交,那么该平行四边形是矩形。

2. 对角线互相垂直定理:如果平行四边形的对角线互相垂直,那么该平行四边形是菱形。

3. 对角线平分关系:如果平行四边形的对角线互相平分,并且其中一对对边相等,那么该平行四边形是正方形。

例题1:已知平行四边形ABCD中,AB=6cm,BC=8cm,对角线AC的长度为10cm,求对角线BD的长度。

解:根据对角线长度关系定理,我们有d1^2 + d2^2 = 2a^2 + 2b^2,其中a=6cm,b=8cm,d1=10cm。

代入数值计算可得,d2=√(10^2+40^2)=√500=10√5 cm。

例题2:已知平行四边形EFGH中,对边FG=2x+3,对边EH=4x-1,对角线EG=3x+7,求该平行四边形的周长。

平行四边形的判定与性质

平行四边形的判定与性质

平行四边形的判定与性质一、平行四边形的判定1.对边平行:如果一个四边形的对边分别平行,那么这个四边形是平行四边形。

2.对角相等:如果一个四边形的对角线相等,那么这个四边形是平行四边形。

3.对边相等:如果一个四边形的对边相等,那么这个四边形是平行四边形。

4.对角平行:如果一个四边形的对角线互相平行,那么这个四边形是平行四边形。

5.一组对边平行且相等:如果一个四边形的一组对边平行且相等,那么这个四边形是平行四边形。

6.对角线互相平分:如果一个四边形的对角线互相平分,那么这个四边形是平行四边形。

二、平行四边形的性质1.对边平行且相等:平行四边形的对边平行且相等。

2.对角相等:平行四边形的对角相等。

3.对角线互相平分:平行四边形的对角线互相平分。

4.对边相等:平行四边形的对边相等。

5.对角平行:平行四边形的对角线互相平行。

6.一组对边平行且相等:平行四边形的一组对边平行且相等。

7.对边对角相等:平行四边形的对边和对角相等。

8.对角线垂直平分:平行四边形的对角线互相垂直平分。

9.对边对角相等:平行四边形的对边和对角相等。

10.对角线互相平分:平行四边形的对角线互相平分。

11.对角线互相垂直:平行四边形的对角线互相垂直。

12.对角线互相平分且垂直:平行四边形的对角线互相平分且垂直。

三、平行四边形的应用1.计算面积:平行四边形的面积可以通过底乘以高得到。

2.证明线段平行:利用平行四边形的性质证明线段平行。

3.证明四边形是平行四边形:利用平行四边形的判定证明四边形是平行四边形。

4.设计图形:利用平行四边形的性质设计图形,如平行四边形形的窗户、桌面等。

5.解几何题目:利用平行四边形的性质和判定解几何题目。

以上就是平行四边形的判定与性质的知识点,希望对你有所帮助。

习题及方法:1.习题:如果一个四边形的对边平行且相等,那么这个四边形是什么?答案:平行四边形。

解题思路:根据平行四边形的性质,对边平行且相等的四边形是平行四边形。

特殊平行四边形的性质和判定总结

特殊平行四边形的性质和判定总结
性质:
判定:
平行四边形的对边平行且相等

两组对边分别平行的四边形是平行四边形
平行四边形的对角相等
两组对边分别相等的四边形是平行四边形
平行四边形的对角线互相平分
一组对边平行且相等的四边形是平行四边形
平行四边形的邻角互补

两组对角分别相等的四边形是平行四边形
对角线
对角线互相平分的四边形是平行四边形
一.平行四边形的性质及判定:
对角线互相垂直平分且相等的四边形是正方形
二.面积公式
1.平行四边形=底✖️高
2.矩形=长✖️宽
3.菱形=对角线✖️对角线➗2
=底✖️高
4.正方形=边长✖️边长
=对角线✖️对角线➗2
平行四边形___________________菱形
性质:
判定
菱形具有平行四边形的所有性质

四条边相等的四边形是菱形
菱形的四条边都相等
菱形的两条对角线互相垂直,并且每一条对角线平分一组对角
对角线
对角线互相垂直的平行四边形是菱形
对角线互相垂直且平分的四边形是菱形
3.正方形:
平行四边形____________________________________正方形
特殊的平行四边形:
1.矩形:
平行四边形___________________矩形
性质:
判定
矩形具有平行四的平行四边形是矩形
矩形的四个角都是直角
有三个角是直角的四边形是矩形
矩形的对角线相等
对角线
对角线相等的平行四边形是矩形
对角线互相平分且相等的四边形是矩形
2.菱形(重点):
性质:
判定:
正方形具有平行四边形、矩形、菱形的所有性质

初中数学知识点总结之平行四边形性质定理

初中数学知识点总结之平行四边形性质定理

初中数学知识点总结之平行四边形性质定理
初中数学知识点总结之平行四边形性质定理
中考知识点精选:平行四边形的对角相等、平行四边形的对边相等。

接下来为大家带来的是初中数学知识点总结之平行四边形性质定理,请大家认真记忆了。

平行四边形性质定理
平行四边形性质定理1:平行四边形的对角相等
平行四边形性质定理2:平行四边形的.对边相等
推论:夹在两条平行线间的平行线段相等
平行四边形性质定理3:平行四边形的对角线互相平分
平行四边形判定定理1:两组对角分别相等的四边形是平行四边形平行四边形判定定理2:两组对边分别相等的四边形是平行四边形平行四边形判定定理3:对角线互相平分的四边形是平行四边形
平行四边形判定定理4:一组对边平行相等的四边形是平行四边形这次为大家带来的是初中数学知识点总结之平行四边形性质定理,希望各位同学们能认真掌握了。

平行四边形全章知识点总结

平行四边形全章知识点总结

平行四边形全章知识点总结1.定义:2.性质:(1)相对边相等:平行四边形的相对边长度相等。

(2)相对角相等:平行四边形的相对角度相等。

(3)对角线互相平分:平行四边形的对角线互相平分。

(4)内角和为180度:平行四边形的所有内角的和等于180度。

3.定理:(1)同位角定理:平行线与直线相交时,同位角是相等的。

(2)内错角定理:平行线与直线相交时,内错角是相等的。

(3)平行线定理:如果一个直线与两条平行线相交,那么这两条平行线上对应的角度相等。

(4)平行四边形角度定理:如果一个四边形是平行四边形,那么它的相邻内角补角。

4.证明:(1)证明相对边相等:可以通过利用平行线的性质来证明两对边相等。

(2)证明相对角相等:可以通过同位角定理和内错角定理来证明相对角相等。

(3)证明对角线互相平分:可以通过使用平行线的性质和内错角定理来证明对角线互相平分。

(4)证明内角和为180度:可以通过使用内错角定理和平行线定理来证明内角和为180度。

5.应用:(1)计算平行四边形的面积:平行四边形的面积可以通过底边的长度乘以高来计算。

(2)判断平行四边形:根据边的长度和角度的相等性质,可以判断一个四边形是否为平行四边形。

(3)应用于几何问题:平行四边形常常出现在几何问题中,例如解决面积、长度和角度等问题时。

通过对平行四边形的定义、性质、定理、证明和应用的总结,我们可以更好地理解和应用平行四边形的知识。

掌握平行四边形的相关知识,不仅能够提高我们解决几何问题的能力,还可以在实际生活中应用该知识,并且能够帮助我们理解和应用其他几何形状的知识。

因此,对平行四边形的学习和理解是我们几何学习的重要一步。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平行四边形、菱形、矩形、正方形性质和判定归纳
性质判定平
行四边形平行四边形的
①两组对边分别平行
②两组对边分别相等
③两组对角分别相等
④两条对角线互相平分
①两组对边分别平行的四边形是平行四边形。

(平行四
边形的定义)
②两组对边分别相等的四边形是平行四边形。

③一组对边平行且相等的四边形是平行四边形。

④两组对角分别相等的四边形是平行四边形。

⑤对角线互相平分的四边形是平行四边形。

菱形①具有平行四边形的一切性质。

菱形的
②四条边都相等
③对角线互相垂直,并且每一条
对角线平分一组对角
①有一组邻边相等的平行四边形是菱形。

(菱形的定义)
②四条边都相等的四边形是菱形。

③对角线互相垂直的平行四边形是菱形。

矩形①具有平行四边形的一切性质。

矩形的
②四个角都是直角
③对角线相等
①有一个角是直角的平行四边形是矩形。

(矩形的定义)
②有三个角是直角的四边形是矩形。

③对角线相等的平行四边形是矩形。

正方形(1)具有平行四边形、矩形、
菱形的一切性质,即:①正方形
的四个角都是直角,四条边都相
等;②正方形的两条对角线相等,
并且互相垂直平分,每一条对角
线平分一组对角。

(2)对角线与边的夹角为45·
①有一组邻边相等的矩形是正方形。

(正方形的定义)
②有一个角是直角的菱形是正方形
二、直角三角形的性质:
(1)直角三角形的两个锐角互余。

(2)直角三角形两直角边的平方和等于斜边的平方。

(即勾股定理)(3)直角三角形斜边上的中线等于斜边的一半。

(4)直角三角形中30 角所对的直角边等于斜边的一半。

相关文档
最新文档