(完整版)平行四边形的性质和判定练习题

合集下载

平行四边形性质和判定习题(答案详细)

平行四边形性质和判定习题(答案详细)

平行四边形性质和判定习题1.如图,已知四边形ABCD为平行四边形,AE⊥BD于E,CF⊥BD于F.(1)求证:BE=DF;(2)若M、N分别为边AD、BC上的点,且DM=BN,试判断四边形MENF的形状(不必说明理由).2.如图所示,▱AECF的对角线相交于点O,DB经过点O,分别与AE,CF交于B,D.求证:四边形ABCD是平行四边形.3.如图,在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E,F.(1)求证:△ABE≌△CDF;(2)若AC与BD交于点O,求证:AO=CO.4.已知:如图,在△ABC中,∠BAC=90°,DE、DF是△ABC的中位线,连接EF、AD.求证:EF=AD.5.如图,已知D是△ABC的边AB上一点,CE∥AB,DE交AC于点O,且OA=OC,猜想线段CD与线段AE的大小关系和位置关系,并加以证明.6.如图,已知,▱ABCD中,AE=CF,M、N分别是DE、BF的中点.求证:四边形MFNE是平行四边形.7.如图,平行四边形ABCD,E、F两点在对角线BD上,且BE=DF,连接AE,EC,CF,FA.求证:四边形AECF是平行四边形.8.在▱ABCD中,分别以AD、BC为边向内作等边△ADE和等边△BCF,连接BE、DF.求证:四边形BEDF是平行四边形.9.如图所示,DB∥AC,且DB=AC,E是AC的中点,求证:BC=DE.10.已知:如图,在梯形ABCD中,AD∥BC,AD=24cm,BC=30cm,点P自点A向D以1cm/s的速度运动,到D点即停止.点Q自点C向B以2cm/s的速度运动,到B点即停止,直线PQ截梯形为两个四边形.问当P,Q同时出发,几秒后其中一个四边形为平行四边形?11.如图:已知D、E、F分别是△ABC各边的中点,求证:AE与DF互相平分.12.已知:如图,在▱ABCD中,对角线AC交BD于点O,四边形AODE是平行四边形.求证:四边形ABOE、四边形DCOE都是平行四边形.13.如图,已知四边形ABCD中,点E,F,G,H分别是AB、CD、AC、BD的中点,并且点E、F、G、H有在同一条直线上.求证:EF和GH互相平分.14.如图:▱ABCD中,MN∥AC,试说明MQ=NP.15.已知:如图所示,平行四边形ABCD的对角线AC,BD相交于点O,EF经过点O并且分别和AB,CD相交于点E,F,点G,H分别为OA,OC的中点.求证:四边形EHFG是平行四边形.16.如图,已知在▱ABCD中,E、F是对角线BD上的两点,BE=DF,点G、H分别在BA和DC的延长线上,且AG=CH,连接GE、EH、HF、FG.(1)求证:四边形GEHF是平行四边形;(2)若点G、H分别在线段BA和DC上,其余条件不变,则(1)中的结论是否成立?(不用说明理由)17.如图,在△ABC中,D是AC的中点,E是线段BC延长线一点,过点A作BE的平行线与线段ED的延长线交于点F,连接AE、CF.(1)求证:AF=CE;(2)如果AC=EF,且∠ACB=135°,试判断四边形AFCE是什么样的四边形,并证明你的结论.18.如图平行四边形ABCD中,∠ABC=60°,点E、F分别在CD、BC的延长线上,AE∥BD,EF⊥BF,垂足为点F,DF=2(1)求证:D是EC中点;(2)求FC的长.19.如图,已知△ABC是等边三角形,点D、F分别在线段BC、AB上,∠EFB=60°,DC=EF.(1)求证:四边形EFCD是平行四边形;(2)若BF=EF,求证:AE=AD.20.如图,四边形ABCD,E、F、G、H分别是AB、BC、CD、DA的中点.(1)请判断四边形EFGH的形状?并说明为什么;(2)若使四边形EFGH为正方形,那么四边形ABCD的对角线应具有怎样的性质?21.如图,△ACD、△ABE、△BCF均为直线BC同侧的等边三角形.(1)当AB≠AC时,证明:四边形ADFE为平行四边形;(2)当AB=AC时,顺次连接A、D、F、E四点所构成的图形有哪几类?直接写出构成图形的类型和相应的条件.22.如图,以△ABC的三边为边,在BC的同侧分别作三个等边三角形即△ABD、△BCE、△ACF,那么,四边形AFED是否为平行四边形?如果是,请证明之,如果不是,请说明理由.23.在△ABC中,AB=AC,点P为△ABC所在平面内一点,过点P分别作PE∥AC交AB于点E,PF∥AB交BC 于点D,交AC于点F.若点P在BC边上(如图1),此时PD=0,可得结论:PD+PE+PF=AB.请直接应用上述信息解决下列问题:当点P分别在△ABC内(如图2),△ABC外(如图3)时,上述结论是否成立?若成立,请给予证明;若不成立,PD,PE,PF与AB之间又有怎样的数量关系,请写出你的猜想,不需要证明.24.如图1,P为Rt△ABC所在平面内任意一点(不在直线AC上),∠ACB=90°,M为AB边中点.操作:以PA、PC为邻边作平行四边形PADC,连续PM并延长到点E,使ME=PM,连接DE.探究:(1)请猜想与线段DE有关的三个结论;(2)请你利用图2,图3选择不同位置的点P按上述方法操作;(3)经历(2)之后,如果你认为你写的结论是正确的,请加以证明;如果你认为你写的结论是错误的,请用图2或图3加以说明;(注意:错误的结论,只要你用反例给予说明也得分)(4)若将“Rt△ABC”改为“任意△ABC”,其他条件不变,利用图4操作,并写出与线段DE有关的结论(直接写答案).25.在一次数学实践探究活动中,小强用两条直线把平行四边形ABCD分割成四个部分,使含有一组对顶角的两个图形全等;(1)根据小强的分割方法,你认为把平行四边形分割成满足以上全等关系的直线有_________组;(2)请在图中的三个平行四边形中画出满足小强分割方法的直线;(3)由上述实验操作过程,你发现所画的两条直线有什么规律?26.如图,在直角梯形ABCD中,AB∥CD,∠BCD=Rt∠,AB=AD=10cm,BC=8cm.点P从点A出发,以每秒3cm的速度沿折线ABCD方向运动,点Q从点D出发,以每秒2cm的速度沿线段DC方向向点C运动.已知动点P、Q同时发,当点Q运动到点C时,P、Q运动停止,设运动时间为t.(1)求CD的长;(2)当四边形PBQD为平行四边形时,求四边形PBQD的周长;(3)在点P、点Q的运动过程中,是否存在某一时刻,使得△BPQ的面积为20cm2若存在,请求出所有满足条件的t的值;若不存在,请说明理由.27.已知平行四边形的三个顶点的坐标分别为O(0,0)、A(2,0)、B(1,1),则第四个顶点C的坐标是多少?28.已知平行四边形ABCD的周长为36cm,过D作AB,BC边上的高DE、DF,且cm,,求平行四边形ABCD的面积.29.如图,在平面直角坐标系中,已知O为原点,四边形ABCD为平行四边形,A、B、C的坐标分别是A(﹣3,),B(﹣2,3),C(2,3),点D在第一象限.(1)求D点的坐标;(2)将平行四边形ABCD先向右平移个单位长度,再向下平移个单位长度所得的四边形A1B1C1D1四个顶点的坐标是多少?(3)求平行四边形ABCD与四边形A1B1C1D1重叠部分的面积?30.如图所示.▱ABCD中,AF平分∠BAD交BC于F,DE⊥AF交CB于E.求证:BE=CF.答案与评分标准1.如图,已知四边形ABCD为平行四边形,AE⊥BD于E,CF⊥BD于F.(1)求证:BE=DF;(2)若M、N分别为边AD、BC上的点,且DM=BN,试判断四边形MENF的形状(不必说明理由).考点:平行四边形的判定与性质;全等三角形的判定与性质。

专题 平行四边形的性质和判定(原卷版)

专题 平行四边形的性质和判定(原卷版)

八年级下册数学《第十八章 平行四边形》专题 平行四边形的性质与判定【例题1】如图,在平行四边形ABCD 中,CE 平分∠BCD ,交AB 于点E ,AE =3,EB =5,ED =4.则CE 的长是( )A .2√2B .6√2C .5√5D .4√5【变式1-1】如图,在平行四边形ABCD 中,AB =5,AD =7,AE 平分∠BAD 交BC 于点E ,作DG ⊥AE 于点G 并延长交BC 于点F ,则线段EF 的长为( )A .2B .52C .3D .2√6【变式1-2】如图,在▱ABCD 中,O 为对角线AC 与BD 的交点,AC ⊥AB ,E 为AD 的中点,并且OF ⊥BC ,∠D =53°,则∠FOE 的度数是( )A .143°B .127°C .53°D .37°【变式1-3】如图,将平行四边形OABC 放置在平面直角坐标系xOy 中,O 为坐标原点,若点C 的坐标是(1,3),点A 的坐标是(5,0),则点B 的坐标是( )A .(5,3)B .(4,3)C .(6,3)D .(8,1)【变式1-4】如图,在平行四边形ABCD 中P 是CD 边上一点,且AP 和BP 分别平分∠DAB 和∠CBA ,若AD =5,AP =8,则△APB 的周长是( )A.18B.24C.23D.14【变式1-5】如图,在平行四边形ABCD中,∠B=60°,AE平分∠BAD交BC于点E,若∠AED=80°,则∠ACE的度数是()A.30°B.35°C.40°D.45°【变式1-6】▱ABCD中,对角线AC和BD交于O,若AC=8,BD=6,则边AB长的取值范围是()A.3≤AB≤4B.2<AB<14C.1<AB<7D.1≤AB≤7【变式1-7】在平行四边形ABCD中,∠A的角平分线把边BC分成长度为4和5的两条线段,则平行四边形ABCD的周长为()A.13或14B.26或28C.13D.无法确定【变式1-8】如图,▱ABCD的对角线AC、BD相交于点O,EF过点O且与AB、CD分别相交于点E、F,连接EC.(1)求证:OE=OF;(2)若EF⊥AC,△BEC的周长是10,求▱ABCD的周长.【例题2】(2022•南京模拟)如图,在平行四边形ABCD中,E,F是对角线AC上的两点,且AE=EF =FC.(1)求证:DE∥BF;(2)若BE⊥BC,DE=6,求对角线AC的长.【变式2-1】(2022春•西吉县校级月考)如图.已知四边形ABCD是平行四边形,BE⊥AC,DF⊥AC,求证:BE=DF.【变式2-2】(2022•泉山区校级三模)已知,如图,在平行四边形ABCD中,点E、F分别在AB、CD的延长线上,BE=DF,连接EF,分别交BC、AD于G、H.求证:EG=FH.【变式2-3】(2022秋•北碚区校级期末)如图,平行四边形ABCD中,CB=2AB,∠DCB的平分线交BA 的延长线于点F.(1)求证:DE=AE;(2)若∠DAF=70°,求∠BEA的度数.【变式2-4】(2022秋•道里区校级月考)在平行四边形ABCD中,点E在CD边上,点F在AB边上,连接AE、CF、DF、BE,∠DAE=∠BCF.(1)如图1,求证:DE=BF;(2)如图2,设AE交DF于点G,BE交CF于点H,连接GH,若E是CD边的中点,在不添加任何辅助线的情况下,请直接写出图中以G为顶点并且与△EHC全等的所有三角形.【变式2-5】(2021春•九龙坡区校级期中)在▱ABCD中,∠ABC=45°,过A作AE⊥CD于E,连接BE,延长EA至F,使CE=AF,连接DF.(1)求证:DF=BE;(2)若DF=√34,AD=3√2,求四边形ADEB的周长.【变式2-6】(2022春•济南期中)如图,将▱ABCD的边BC延长到点E,使BE=CD,连接AE交CD 于点F.(1)求证:AE平分∠BAD;(2)已知BC=CE=3,EF=4,FG⊥AB,求FG的长.【例题3】如图,平行四边形ABCD中,E、F是对角线BD上不同的两点,下列条件中,不能得出四边形AECF一定为平行四边形的是()A.CE=AF B.BE=DF C.∠DAF=∠BCE D.AF∥CE【变式3-1】在下列条件中,能够判定一个四边形是平行四边形的有()①一组对边平行,另一组对边相等②一组对边平行,一条对角线平分另一条对角线③一组对边平行,一组对角相等④一组对角相等,一条对角线平分另一条对角线A.1个B.2个C.3个D.4个【变式3-2】下列条件能判定四边形ABCD是平行四边形的是()A.∠A=∠B,∠C=∠D B.AB=AD,BC=CDC.AB=CD,AD=BC D.AB∥CD,AD=BC【变式3-3】四边形ABCD中,对角线AC,BD交于点O,给出下列四组条件:①AB∥CD,AD∥BC;②AB∥CD,∠BAD=∠BCD;③AO=CO,BO=DO;④AB∥CD,AD=BC.一定能判定四边形ABCD 是平行四边形的条件有()A.1组B.2组C.3组D.4组【变式3-4】如图,在△ABC中,D,F分别是AB,AC上的点,且DF∥BC.点E是射线DF上一点,若再添加下列其中一个条件后,不能判定四边形DBCE为平行四边形的是()A.∠ADE=∠E B.∠B=∠E C.DE=BC D.BD=CE【变式3-5】如图,在△ABC中,点D,E分别是AB,BC边的中点,点F在DE的延长线上.添加一个条件,使得四边形ADFC为平行四边形,则这个条件可以是()A.∠B=∠F B.DE=EF C.AC=CF D.AD=CF【变式3-6】如图,在▱ABCD中,E,F分别是边AD,BC上的点,连接AF,CE,只需添加一个条件即可证明四边形AFCE是平行四边形,这个条件可以是(写出一个即可).【变式3-7】平行四边形ABCD中,E、F是对角线BD上不同的两点,写出一个能使四边形AECF一定为平行四边形的条件.(用题目中的已知字母表示)【例题4】(2021•江华县一模)如图,△ABC为等边三角形,D、F分别为BC、AB上的点,且CD=BF,以AD为边作等边△ADE.(1)求证:△ACD≌△CBF;(2)点D在线段BC上何处时,四边形CDEF是平行四边形且∠DEF=30°.【变式4-1】如图,点B、C、E、F在同一直线上,BE=CF,AC⊥BC于点C,DF⊥EF于点F,AC=DF.求证:(1)△ABC≌△DEF;(2)四边形ABED是平行四边形.【变式4-2】如图所示,△ABC中,D是BC边上中点,AE是∠BAC的平分线,CE⊥AE,EF∥BC交AB于点F,求证:四边形BDEF是平行四边形.【变式4-3】(2021秋•海阳市期末)如图,在△ABC中,AD是BC边的中线,F是AC上一点,且满足2AF=CF,连接BF与AD相交于点E.若G为线段BF上一动点,试分析当点G在何位置时,四边形AFDG为平行四边形?【变式4-4】(2022春•顺义区校级月考)如图,四边形ABCD中,BD垂直平分AC,垂足为点F、E为四边形ABCD外一点,且∠ADE=∠BAD,AE⊥AC.(1)求证:四边形ABDE是平行四边形;(2)如果DA平分∠BDE,AB=3,AD=4,求AC的长.【变式4-5】(2021春•西安期末)如图,在△AFC中,∠F AC=45°,FE⊥AC于点E,在EF上取一点B,连接AB、BC,使得AB=FC,过点A作AD⊥AF,且AD=BC,连接CD,求证:四边形ABCD是平行四边形.【变式4-6】(2022春•礼泉县期末)如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD,等边△ABE,已知∠BAC=30°,EF⊥AB,垂足为F,连接DF.(1)求证:△AEF≌△BAC;(2)四边形ADFE是平行四边形吗?请说明理由.【例题5】如图,在▱ABCD 中,要在对角线BD 上找两点E 、F ,使A 、E 、C 、F 四点构成平行四边形,现有①,②,③,④四种方案,①只需要满足BE =DF ;②只需要满足AE ⊥BD ,CF ⊥BD ;③只需要满足AE ,CF 分别平分∠BAD ,∠BCD ,④只需要满足AE =CF .则对四种方案判断正确的是( )A .①②③B .①③④C .①②④D .②③④【变式5-1】如图,在▱ABCD 中,E 、F 分别为边AB 、DC 的中点,连接AF 、CE 、DE 、BF 、EF ,AF 与DE 交于点G ,CE 与BF 交于点H ,则图中共有平行四边形( )A .3个B .4个C .5个D .6个【变式5-2】如图,已知△ABC 是边长为6的等边三角形,点D 是线段BC 上的一个动点(点D 不与点B ,C 重合),△ADE 是以AD 为边的等边三角形,过点E 作BC 的平行线,分别交线段AB ,AC 于点F ,G ,连接BE 和CF .则下列结论中:①BE =CD ;②∠BDE =∠CAD ;③四边形BCGE 是平行四边形;④当CD =2时,S △AEF =23,其中正确的有( )A .4个B .3个C .2个D .1个【变式5-3】(2022春•南海区月考)如图,在▱ABCD 中,点E 是BC 边的中点,连接AE 并延长与DC的延长线交于F.(1)求证:四边形ABFC是平行四边形;(2)若AF平分∠BAD,∠D=60°,AD=8,求▱ABCD的面积.【变式5-4】(2022春•重庆月考)已知,如图,在▱ABCD中,延长DA到点E,延长BC到点F,使得AE=CF,连接EF,分别交AB,CD于点M,N,连接DM,BN.(1)求证:△AEM≌△CFN;(2)求证:四边形BMDN是平行四边形.【变式5-5】(2022春•南湖区校级期中)如图,在平行四边形ABCD中,BD是它的一条对角线,过A、C两点分别作AE⊥BD,CF⊥BD,E、F为垂足.(1)求证:四边形AFCE是平行四边形.(2)若AD=13cm,AE=12cm,AB=20cm,求四边形AFCE的面积.【变式5-6】(2021春•南昌期中)如图,点O是平行四边形ABCD对角线的交点,过点O的直线交AD,BC于P,Q两点,交BA,DC的延长线于M,N两点.(1)求证:AP=CQ;(2)连接DM,BN,求证:四边形BNDM是平行四边形.【变式5-7】(2022春•温州校级月考)在Rt△ABC中,∠ACB=90°,D是斜边AB上的一点,作DE ⊥BC,垂足为E,延长DE到F,连结CF,使∠A=∠F.(1)求证:四边形ADFC是平行四边形.(2)连接CD,若CD平分∠ADE,CF=10,CD=12,求四边形ADFC的面积.【变式5-8】(2022春•锦江区校级期中)如图,在等边△ABC中,D、E两点分别在边BC、AC上,BD =CE,以AD为边作等边△ADF,连接EF,CF.(1)求证:△CEF为等边三角形;(2)求证:四边形BDFE为平行四边形;(3)若AE=2,EF=4,求四边形BDFE的面积.。

(完整)平行四边形的性质练习题及答案-1

(完整)平行四边形的性质练习题及答案-1

(完整)平行四边形的性质练习题及答案-1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)平行四边形的性质练习题及答案-1)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)平行四边形的性质练习题及答案-1的全部内容。

平行四边形的性质一、课中强化(10分钟训练)1。

如图3,在平行四边形ABCD中,下列各式不一定正确的是( ) A。

∠1+∠2=180° B.∠2+∠3=180° C。

∠3+∠4=180° D.∠2+∠4=180°图3 图4 图52。

如图4,ABCD的周长为16 cm,AC、BD相交于点O,OE⊥AC交AD于E,则△DC E的周长为( )A。

4 cm B。

6 cm C.8 cm D.10 cm3。

如图5,ABCD中,EF过对角线的交点O,如果AB=4 cm,AD=3 cm,OF=1 cm,则四边形BCFE的周长为__________________。

4。

如图6,已知在平行四边形ABCD中,AB=4 cm,AD=7 cm,∠ABC的平分线交AD于点E,交CD的延长线于点F,则DF=_____________ cm。

图6 图75。

如图7,在平行四边形ABCD中,点E、F在对角线BD上,且BE=DF,求证:AE=CF。

6.如图8,在ABCD中,AE⊥BC于E,AF⊥CD于F,BE=2 cm,DF=3 cm,∠EAF=60°,试求CF的长。

图8二、课后巩固(30分钟训练)1。

ABCD中,∠A比∠B大20°,则∠C的度数为( )A。

60° B.80° C。

(完整版)平行四边形练习题及答案(DOC)

(完整版)平行四边形练习题及答案(DOC)

20.1平行四边形的判断一、选择题1 .四边形A BCD,从( 1)AB∥CD;( 2)AB=CD;( 3)BC∥AD;( 4) BC=AD这四个条件中任选两个,此中能使四边形ABCD是平行四边形的选法有()A .3种B.4种C.5种D.6种2.四边形的四条边长分别是a, b, c,d,此中 a,b 为一组对边边长, c,d?为另一组对边边长且知足a2+b2+c2+d2=2ab+2cd,则这个四边形是()A .随意四边形B.平行四边形C.对角线相等的四边形 D .对角线垂直的四边形3.以下说法正确的选项是()A.若一个四边形的一条对角线均分另一条对角线,则这个四边形是平行四边形B.对角线相互均分的四边形必定是平行四边形C.一组对边相等的四边形是平行四边形D.有两个角相等的四边形是平行四边形二、填空题4 .在□ ABCD中,点 E, F 分别是线段A D, BC上的两动点,点 E 从点 A 向 D 运动,点F从 C?向 B 运动,点 E 的速度边形.m与点F 的速度n 知足 _______关系时,四边形BFDE为平行四5.如图 1 所示,平行四边形ABCD中, E, F 分别为AD,BC边上的一点,连结EF,若再增添一个条件_______,就能够推出BE=DF.图1图26 .如图 2 所示, AO=OC,BD=16cm,则当 OB=_____cm时,四边形ABCD是平行四边形.三、解答题7.以下图,四边形 ABCD中,对角线 BD=4,一边长 AB=5,其他各边长用含有未知数 x 的代数式表示,且 AD⊥BD于点 D,BD⊥BC 于点 B.问:四边形 ABCD?是平行四边形吗?为什么?四、思虑题8.以下图,在□ABCD中, E,F 是对角线 AC上的两点,且 AF=CE,?则线段 DE?与 BF的长度相等吗?参照答案一、 1. B 点拨:可选择条件(1)(3)或(2)( 4)或( 1)( 2)或( 3)(4).故有 4 种选法.2. B 点拨: a2+b 2+c2+d2=2ab+2cd 即( a-b)2+( c-d )2=0,即( a-b )2=0 且( c-d )2=0.所以 a=b, c=d,即两组对边分别相等,所以四边形为平行四边形.3. B 点拨:娴熟掌握平行四边形的判断定理是解答这种题目的重点.二、 4.相等点拨:利用“一组对边平行且相等的四边形是平行四边形”来确立.5 .AE=CF 点拨:此题答案不唯一,只需增添的条件能使四边形EBFD?是平行四边形即可.6. 8 点拨:依据对角线相互均分的四边形为平行四边形来进行鉴别.三、 7.解:以下图,四边形ABCD是平行四边形.原因以下:在 Rt△BCD中,依据勾股定理,得BC2+BD 2=DC 2,即( x-5 )2+42=( x-3 )2,解得 x=8.所以 AD=11-8=3, BC=x-5=3, DC=x-3=8-3=5 ,所以 AD=BC, AB=DC.所以四边形ABCD是平行四边形.点拨:此题主要告诉的是线段的长度,故只需说明AD=BC, AB=DC即可,此题也可在Rt△ABD中求 x 的值.四、 8.解:线段DE与BF 的长度相等;连结BD交AC于O点,连结DF, BE,以下图.在ABCD中, DO=OB, AO=OC,又因为 AF=EC,所以 AF-AO=CE-OC,即 OF=OE,所以四边形 DEBF是平行四边形,所以DE=BF.点拨:此题若用三角形全等,也能够解答,但过程复杂,学了平行四边形性质后,要学会应用.20.2矩形的判断一、选择题1.矩形拥有而一般平行四边形不拥有的性质是()A.对角相等 B .对边相等 C .对角线相等 D .对角线相互垂直2.以下表达中能判断四边形是矩形的个数是()①对角线相互均分的四边形;②对角线相等的四边形;③对角线相等的平行四边形;④对角线相互均分且相等的四边形.A . 1B. 2C. 3D. 43.以下命题中,正确的选项是()A.有一个角是直角的四边形是矩形B.三个角是直角的多边形是矩形C.两条对角线相互垂直且相等的四边形是矩形 D .有三个角是直角的四边形是矩形二、填空题4.如图 1 所示,矩形 ABCD中的两条对角线订交于点O,∠ AOD=120°, AB=4cm,则矩形的对角线的长为 _____.D E CF OA B图 1图 25.若四边形 ABCD的对角线 AC, BD相等,且相互均分于点 O,则四边形 ABCD?是_____ 形,若∠ AOB=60°,那么AB:AC=______.6.如图 2 所示,已知矩形ABCD周长为 24cm,对角线交于点O,OE⊥DC 于点 E,于点 F, OF-OE=2cm,则 AB=______, BC=______.三、解答题7.以下图,□ABCD的四个内角的均分线分别订交于E, F, G,H 两点,试说明四边形 EFGH是矩形.四、思虑题8.以下图,△ABC中, CE, CF分别均分∠ACB和它的邻补角∠ACD.AE⊥CE于 E,AF⊥CF 于F,直线EF分别交AB, AC于 M, N 两点,则四边形AECF是矩形吗?为何?参照答案一、 1. C点拨:A与B都是平行四边形的性质,而D是一般矩形与平行四边形都不具有的性质.2 .B点拨:③是矩形的判断定理;④中对角线相互均分的四边形是平行四边形,对角线相等的平行四边形是矩形,故④能判断矩形,应选B.3. D 点拨:选项 D 是矩形的判断定理.二、 4. 8cm5.矩; 1: 2 点拨:利用对角线相互均分来判断此四边形是平行四边形,再依据对角线相等来判断此平行四边形是矩形.由矩形的对角线相等且相互均分,?可知△ AOB 是等腰三角形,又因为∠ AOB=60°,所以AB=AO=1AC.26 . 8cm; 4cm三、 7.解:在□ABCD中,因为AD∥BC,所以∠ DAB+∠CBA=180°,又因为∠ HAB= 1∠DAB,∠ HBA=1∠CBA.22所以∠ HAB+∠HBA=90°,所以∠ H=90°.所以四边形EFGH是矩形.点拨:因为“两直线平行,同旁内角的均分线相互垂直”,所以很简单求出四边形EFGH 的四个角都是直角,从而求得四边形EFGH是矩形.四、 8.解:四边形AECF是矩形.原因:因为CE均分∠ ACB, ?CF?均分∠ ACD, ?所以∠ ACE=1∠ACB,∠ ACF=1∠ACD.所以∠ ECF=1(∠ ACB+∠ACD)=90°.222又因为 AE⊥CE,AF⊥CF, ?所以∠ AEC=∠AFC=90°,所以四边形AECF是矩形.点拨: ?此题是经过证四边形中三个角为直角得出结论.还能够经过证其为平行四边形,再证有一个角为直角得出结论.20.3菱形的判断一、选择题1.以下四边形中不必定为菱形的是()A .对角线相等的平行四边形B.每条对角线均分一组对角的四边形C.对角线相互垂直的平行四边形D.用两个全等的等边三角形拼成的四边形2.四个点 A, B, C,D 在同一平面内,从① AB∥CD;② AB=CD;③ AC⊥BD;④ AD=BC;5 个条件中任选三个,能使四边形ABCD是菱形的选法有().A .1种B.2种C.3种D.4种3 .菱形的周长为32cm,一个内角的度数是60°,则两条对角线的长分别是()A.8cm和 4 3 cm B.4cm和83 cm C.8cm和83 cm D.4cm和43 cm二、填空题4.如图 1 所示,已知□ABCD,AC,BD订交于点O,?增添一个条件使平行四边形为菱形,增添的条件为 ________.(只写出切合要求的一个即可)图1图25.如图 2 所示, D, E,F 分别是△ ABC 的边 BC, CA,AB 上的点,且 DE∥AB,DF∥CA,要使四边形 AFDE是菱形,则要增添的条件是 ________.(只写出切合要求的一个即可)6 .菱形 ABCD的周长为48cm,∠ BAD:∠ ABC=1:?2,?则 BD=?_____,?菱形的面积是______.7.在菱形ABCD中, AB=4, AB 边上的高DE垂直均分边AB,则 BD=_____,AC=_____.三、解答题8.以下图,在四边形ABCD中, AB∥CD, AB=CD=BC,四边形 ABCD是菱形吗? ?说明理由.四、思虑题9.如图,矩形 ABCD的对角线订交于点 O,PD∥AC,PC∥BD, PD,PC订交于点 P,四边形 PCOD是菱形吗?试说明原因.参照答案一、 1. A点拨:此题用清除法作答.2. D 点拨:依据菱形的判断方法判断,注意不要漏解.3. C点拨:以下图,若∠ ABC=60°,则△ ABC为等边三角形,?所以 AC=AB=1×32=8( cm), AO=1AC=4cm.42因为 AC⊥BD,在 Rt△AOB中,由勾股定理,得OB=2222AB OA8 4 =43(cm ?),所以 BD=2OB=8 3 cm.二、 4. AB=BC 点拨:还可增添AC⊥BD 或∠ ABD=∠CBD等.5.点 D 在∠ BAC的均分线上(或 AE=AF)26. 12cm; 723 cm点拨:以下图,过 D 作 DE⊥AB 于 E,因为 AD∥BC, ?所以∠ BAD+∠ABC=180°.又因为∠ BAD:∠A BC=1:2,所以∠ BAD=60°,因为 AB=AD,所以△ ABD 是等边三角形,所以BD=AD=12cm.所以 AE=6cm.在 Rt△AED 中,由勾股定理,得 AE 2+ED 2=AD 2, 62+ED 2=12 2,所以 ED 2=108 ,所以 ED=6 3 cm,所以S菱形ABCD=12×63=72 3 (cm2).7. 4;4 3点拨:以下图,因为DE垂直均分 AB,又因为 DA=AB,所以 DA=DB=4.所以△ ABD 是等边三角形,所以∠ BAD=60°,由已知可得AE=2.在 Rt△AED中,2222222?AE +DE=AD,即 2 +DE=4,所以 DE=12,所以 DE=2 3 ,因为1AC·BD=AB·DE,即1AC·4=4×2 3 ,所以AC=4 3 .22三、 8.解:四边形ABCD是菱形,因为四边形ABCD中, AB∥CD,且AB=CD,所以四边形ABCD是平行四边形,又因为AB=BC,所以Y ABCD是菱形.点拨:依据已知条件,不难得出四边形ABCD为平行四边形,又AB=BC,即一组邻边相等,由菱形的定义能够鉴别该四边形为菱形.四、 9.解:四边形PCOD是菱形.原因以下:因为 PD∥OC,PC∥OD, ?所以四边形P COD是平行四边形.又因为四边形ABCD是矩形,所以OC=OD,所以平行四边形PCOD是菱形.20.4正方形的判断一、选择题1.以下命题正确的选项是()A.两条对角线相互均分且相等的四边形是菱形B.两条对角线相互均分且垂直的四边形是矩形C.两条对角线相互垂直,均分且相等的四边形是正方形D.一组邻边相等的平行四边形是正方形2.矩形四条内角均分线能围成一个()A.平行四边形B.矩形C.菱形 D .正方形二、填空题3.已知点 D, E,F 分别是△ ABC 的边 AB, BC, CA的中点,连结 DE, EF, ?要使四边形ADEF是正方形,还需要增添条件_______.4.如图 1 所示,直线L 过正方形ABCD的极点 B,点 A, C 到直线 L?的距离分别是 1 和2,则正方形ABCD的边长是 _______.图1图2图35.如图 2 所示,四边形 ABCD是正方形,点 E 在 BC的延伸线上, BE=BD且 AB=2cm,则∠E的度数是 ______, BE 的长度为 ____.6.如图 3 所示,正方形 ABCD的边长为 4,E 为 BC上一点, BE=1,F?为 AB?上一点, AF=2,P 为 AC上一动点,则当 PF+PE取最小值时, PF+PE=______.三、解答题7.以下图,在 Rt△ABC中, CF为∠ ACB的均分线, FD⊥AC 于 D,FE⊥BC于点 E,试说明四边形 CDFE是正方形.BEF四、思虑题8.已知以下图,在正方形 ABCD中, E,F 分别是(1) AF 与 DE相等吗?为何?(2) AF 与 DE能否垂直?说明你的原因.C D A AB,BC边上的点,且 AE=BF,?请问:参照答案一、 1. C点拨:对角线相互均分的四边形是平行四边形,?对角线相互垂直的平行四边形是菱形,对角线相等的平行四边形是矩形,既是菱形又是矩形的四边形必定是正方形,应选 C.2. D 点拨:由题意画出图形后,利用“一组邻边相等的矩形是正方形”来判断.二、 3.△ ABC是等腰直角三角形且∠ BAC=90°点拨:还可增添△ ABC 是等腰三角形且四边形ADEF是矩形或∠ BAC=90°且四边形ADEF 是菱形等条件.4.5点拨:察看图形易得两直角三角形全等,由全等三角形的性质和勾股定理得正方形的边长为 2212=5.5. 67. 5°; 2 2 cm点拨:因为BD是正方形ABCD的对角线,所以∠ DBC=45°, AD=?AB=2cm.在 Rt△BAD中,由勾股定理得 AD 2+AB 2=BD 2,即 22+22=BD 2,所以 BD=2 2 cm,所以 BE=BD=2 2( cm),又因为BE=BD,所以∠ E=∠EDB= 1(180°- 45°)=67. 5°.26.17点拨:以下图,作 F 对于AC的对称点G.连结EG交AC于P,则 PF+?PE=PG+PE=GE为最短.过 E 作 EH⊥AD.在 Rt△GHE中,HE=4,HG=AG-AH=AF-BE=1,所以 GE= 4212 = 17,?即 PF+PE= 17.三、 7.解:因为∠ FDC=∠FEC=∠BCD=90°,所以四边形CDFE是矩形,因为 CF?均分∠ ACB,FE⊥BC,FD⊥AC,所以FE=FD,所以矩形CDFE是正方形.点拨:此题先说明四边形是矩形,再求出有一组邻边相等,?还能够先说明其为菱形,再求其一个内角为90°.四、 8.解:( 1)相等.原因:在△ ADE 与△ BAF 中, AD=AB,∠ DAE=∠ABF=90°, AE=BF,所以△ ADE≌△ BAF( S. A. S.),所以 DE=AF.( 2) AF 与 DE垂直.原因:如图,设DE与 AF 订交于点O.因为△ ADE≌△ BAF, ?所以∠ AED=∠BFA.又因为∠ BFA+∠EAF=90°,所以∠ AEO+∠EAO=90°,所以∠ EOA=90°,所以DE⊥AF.20.5等腰梯形的判断1 A C 一、选择题.以下结论中,正确的选项是(.等腰梯形的两个底角相等.一组对边平行的四边形是梯形)BD.两个底角相等的梯形是等腰梯形.两条腰相等的梯形是等腰梯形2.以下图,等腰梯形ABCD的对角线 AC,BD订交于点O,则图中全等三角形有()A.2对B.3对C.4对D.5对3.课外活动课上, ?老师让同学们制作了一个对角线相互垂直的等腰梯形形状的风筝,其面积为450cm,则两条对角线所用的竹条长度之和起码为()A. 30 2 cm B.30cm C.60cm D.60 2 cm二、填空题4.等腰梯形上底,下底和腰分别为 4,?10,?5,?则梯形的高为 _____,?对角线为 ______.5.一个等腰梯形的上底长为5cm,下底长为 12cm,一个底角为 60°,则它的腰长为____cm,周长为 ______cm.6.在四边形 ABCD中, AD∥BC,但 AD≠BC,若使它成为等腰梯形,则需要增添的条件是__________ (填一个正确的条件即可).三、解答题7.以下图,AD是∠ BAC的均分线, DE∥AB, DE=AC,AD≠EC.求证: ?四边形 ADCE是等腰梯形.四、思虑题8.以下图,四边形ABCD中,有 AB=DC,∠ B=∠C,且AD<BC,四边形 ABCD是等腰梯形吗?为何?参照答案一、 1. D点拨:梯形的底角分为上底上的角和下底上的角,?所以在等腰梯形的性质和鉴别方法中一定重申同一底上的两个内角(?指上底上的两个内角或下底上的两个内角),不然就会出现错误,所以A, B 选项都不正确,而 C 选项中遗漏了限制条件此外一组对边不平行,若平行该四边形就形成了平行四边形了,所以应选D.2. B点拨:因为△ ABC≌△ DCB,△ BAD≌△ CDA,△ AOB≌△ DOC,所以共有 3 对全等的三角形.3. C点拨:设该等腰梯形对角线长为Lcm,因为两条对角线相互垂直,?所以梯形面积为122L =450,解得 L=30,所以所用竹条长度之和起码为2L=2× 30=60(cm).二、 4. 4:65点拨:以下图,连结BD,过 A,D 分别作 AE⊥BC,DF⊥BC,垂足分别为E, F.易知△ BAE≌△ CDF,在四边形 AEFD为矩形,所以BE=CF=3, AD=EF=4.在 Rt△CDF 中, FC2+DF 2=CD 2,即 32+DF 2=52,所以 DF=4 ,在 Rt △BFD 中, BF2+DF 2=BD 2,即 72+42=BD 2,所以 BD=65 .5. 7;31点拨:以下图,过点D作 DE∥AB 交 BC于 E.因为ABED是平行四边形.所以 BE=AD=5(cm), AB=DE.又因为 AB=CD,所以 DE=?DC,又因为∠ C=60°,所以△ DEC 是等边三角形,所以 DE=DC=EC=7( cm),所以周长为5+?12+7+7=31(cm).6. AB=CD(或∠ A=∠D,或∠ B=∠C,或 AC=BD,或∠ A+∠C=180°,或∠B+∠D=180°)三、 7.证明:因为 AB∥ED,所以∠ BAD=∠ADE.又因为 AD是∠ BAC的均分线,所以∠ BAD=∠CAD,所以∠ CAD=∠ADE,所以 OA=OD.又因为AC=DE,所以 AC-OA=DE-OD即 OC=OE, ?所以∠ OCE=∠OEC,又因为∠ AOD=∠COE,所以∠ CAD=∠OCE.所以AD∥CE,而 AD≠CE,故四边形ADCE是梯形.又因为∠ CAD=∠ADE, AD=DA, AC=DE,所以△ DAC≌△ ADE,所以DC=?AE,所以四边形ADCE是等腰梯形.点拨:证明一个四边形是等腰梯形时,应先证其是梯形尔后再证两腰相等或同一底上的两个角相等.四、 8.解:四边形ABCD是等腰梯形.原因:延伸BA, CD,订交于点 E,以下图,由∠ B=∠C,可得EB=EC.又 AB=DC,所以 EB-AB=EC-DC,即 AE=DE,所以∠ EAD=∠EDA.因为∠ E+∠EAD+∠EDA=180°,∠ E+∠B+∠C=180°,所以∠ EAD=∠B.故 AD∥BC. ?又 AD<BC,所以四边形 ABCD是梯形.又 AB=DC,所以四边形 ABCD是等腰梯形.点拨:由题意可知,只需推出AD∥BC,再由AD<BC便可知四边形ABCD为梯形,再由AB=DC,即可求得此四边形是等腰梯形,由∠ B=∠C联想到延伸 BA,CD,即可获得等腰三角形,从而使 AD∥BC.华东师大版数学八年级(下)第 20 章平行四边形的判断测试(答卷时间: 90 分钟,全卷满分: 100 分)姓名得分 ____________一、认认真真选,沉稳应战!(每题 3 分,共 30 分)1. 正方形拥有菱形不必定拥有的性质是()(A )对角线相互垂直(B)对角线相互均分(C)对角线相等(D)对角线均分一组对角2.如图 (1),EF 过矩形 ABCD 对角线的交点 O,且分别交 AB 、CD 于 E、 F,那么暗影部分的面积是矩形ABCD 的面积的()(A )A 111( D )3A5(B )( C)1043D E FFEB C D HB C(1)(2)(3)3.在梯形ABCD 中, AD ∥ BC ,那么 A : B : C : D 能够等于()( A)4:5:6:3(B)6:5:4:3(C)6:4:5:3(D)3:4:5:64.如图 (2) ,平行四边形ABCD 中,DE ⊥ AB 于 E,DF⊥ BC 于 F,若Y ABCD的周长为48,DE = 5, DF= 10,则Y ABCD的面积等于 ()( A)87.5(B)80(C)75(D)72.55. A 、 B、 C、 D 在同一平面内,从① AB∥CD;② AB=CD;③ BC∥AD;④ BC=AD这四个条件中任选两个,能使四边形ABCD 是平行四边形的选法有()( A)3种(B)4种(C)5种(D)6种6.如图 (3) ,D、E、F分别是VABC各边的中点,AH 是高,假如 ED5cm ,那么 HF的长为()( A ) 5cm(B)6cm(C)4cm(D)不可以确立7.如图( 4):E 是边长为 1 的正方形 ABCD 的对角线 BD 上一点,且 BE = BC, P 为 CE 上随意一点, PQ⊥BC 于点 Q, PR⊥ BE 于点 R,则 PQ+PR 的值是()2132( A )2(B)2(C)2(D)38.如图( 5),在梯形ABCD 中, AD ∥ BC , AB CD , C 60 ,BD均分ABC ,假如这个梯形的周长为30,则AB的长()( A)4( B)5(C)6( D)7A DA DERPB C( 5)B(4)Q C9.右图是一个利用四边形的不稳固性制作的菱形晾衣架.A B C 已知此中每个菱形的边长为20cm,墙上悬挂晾衣架的两个铁钉 A 、 B 之间的距离为20 3 cm,则∠1等于()1)( A)90°(B) 60°(C) 45°(D) 30°10.某校数学课外活动研究小组,在老师的指引下进一步研究了完整平方公式.联合实数的性质发现以下规律:对于随意正数a、 b,都有 a+b ≥ 2ab 建立.某同学在做一个面积为3600cm2,对角线相互垂直的四边形风筝时,运用上述规律,求得用来做对角线用的竹条至少需要准备xcm.则 x 的值是()(A) 1202(B) 602(C) 120(D) 60二、仔认真细填,记录自信!( 每题 2 分,共20 分)11.一个四边形四条边按序是a、b、c、d,且a2 b 2 c 2 d 22ac 2bd,则这个四边形是 _______________ .12.在四边形ABCD中,对角线AC、BD交于点O,从(1)AB CD ;(2) AB∥CD ;(3)OA OC;(4)OB OD ;(5) AC ⊥ BD ;(6) AC 均分 BAD 这六个条件中,选用三个推出四边形ABCD是菱形.如( 1)( 2)( 5)ABCD 是菱形,再写出切合要求的两个:ABCD 是菱形;ABCD 是菱形.13. 如图,已知直线l 把 Y ABCD 分红两部分,要使这两部分的面积相等,直线l 所在地点需知足的条件是____________________. (只需填上一个你以为适合的条件)lA DB C(第 13 题)(第 16 题)14.梯形的上底长为 6cm ,过上底的一极点引一腰的平行线,与下底订交,所构成的三角形周长为 21cm ,那么梯形的周长为_________ cm。

(完整版)平行四边形的性质判定练习题

(完整版)平行四边形的性质判定练习题

第一部分 平行四边形的性质练习题 例题1、平行四边形得周长为50cm ,两邻边之差为5cm,求各边长。

变题1.平行四边形ABCD 的周长为40cm,两邻边AB 、AC 之比为2:3,则AB=_______,BC=________. 变题2.四边形ABCD 是平行四边形,∠BAC=90°,AB=3,AC=4,求AD 的长。

例题2.平行四边形ABCD 中,∠A-∠B=20°,求平行四边形各内角的度数。

变题3.平行四边形ABCD 中,AE 平分∠DAB, ∠DEA=20°,则∠C=_________,∠B_________. 变题4.如图,在平行四边形ABCD 中,∠BAC=34°, ∠ACB=26°,求∠DAC 与∠D 的度数。

例题3.如图,在平行四边形ABCD 中,CE ⊥AD,CF ⊥BA 交BA 的延长线于F ,∠FBC=30°,CE=3cm,CF=5cm,求平行四边形ABCD 的周长。

变题5.如图,平行四边形ABCD 的周长为50,其中AB=15,∠ABC=60°,求平行四边形面积。

1、如图,四边形ABCD 是平行四边形,AB=6cm,BC=8cm ,∠B=70°,则AD=________,CD=______,∠D=_______,∠A=______,∠C=_______.2、平行四边形ABCD 的周长为40cm,两邻边AB 、AC 之比为2:3,则AB=_______,BC=________.3、平行四边形得周长为50cm ,两邻边之差为5cm,则长边是________ ,短边是__________.4、平行四边形ABCD 中,∠A-∠B=20°, 则∠A=_______ ∠B=________5、.平行四边形ABCD 中,AE 平分∠DAB, ∠DEA=20°,则∠C=____,∠B_____.6、平行四边形 ABCD 中,∠A+∠C=200°.则:∠A= _______,∠B= _________ .7、如图,平行四边形ABCD 的周长为50,其中AB=15,∠ABC=60°,求平行四边形面积。

平行四边形的性质与判定经典例题练习

平行四边形的性质与判定经典例题练习

平行四边形的性质与判定经典例题练习一、平行四边形的性质1. 定义:平行四边形是一种具有两对对边平行的四边形。

定义:平行四边形是一种具有两对对边平行的四边形。

2. 性质1:平行四边形的对边相等。

性质1:平行四边形的对边相等。

3. 性质2:平行四边形的对角线相等。

性质2:平行四边形的对角线相等。

4. 性质3:平行四边形的内角和为180度(即任意两个相邻内角之和为180度)。

性质3:平行四边形的内角和为180度(即任意两个相邻内角之和为180度)。

5. 性质4:平行四边形的两组对边分别互相平行并且相互等长。

性质4:平行四边形的两组对边分别互相平行并且相互等长。

二、平行四边形的判定1. 判定方法1:若一个四边形的对边分别平行且相等,则它是一个平行四边形。

判定方法1:若一个四边形的对边分别平行且相等,则它是一个平行四边形。

2. 判定方法2:若一个四边形的对角线互相相等,则它是一个平行四边形。

判定方法2:若一个四边形的对角线互相相等,则它是一个平行四边形。

三、经典例题练1. 例题1:已知四边形ABCD,AB = BC,且AD与BC互相平行,证明四边形ABCD是平行四边形。

例题1:已知四边形ABCD,AB = BC,且AD与BC互相平行,证明四边形ABCD是平行四边形。

2. 例题2:已知四边形EFGH,EF = GH,且EG与FH互相垂直,证明四边形EFGH是平行四边形。

例题2:已知四边形EFGH,EF = GH,且EG与FH互相垂直,证明四边形EFGH是平行四边形。

3. 例题3:判定以下四边形是否为平行四边形:(a)四边形ABCD,AB = CD,且AD与BC互相垂直;(b)四边形PQRS,PQ = SR,且PS与QR互相平行。

例题3:判定以下四边形是否为平行四边形:(a)四边形ABCD,AB = CD,且AD与BC互相垂直;(b)四边形PQRS,PQ = SR,且PS与QR互相平行。

- (a)根据对边平行和相等的判定方法,若AB = CD且AD与BC互相垂直,则四边形ABCD是平行四边形。

(完整版)平行四边形的性质习题(有答案)

(完整版)平行四边形的性质习题(有答案)

平行四边形的性质测试题一、选择题(每题 3 分共 30 分)1.下边的性质中,平行四边形不必定具备的是()A.对角互补B.邻角互补C.对角相等D.内角和为 360°2.在中,∠ A:∠ B:∠ C:∠ D 的值能够是()A .1:2:3:4B .1:2:1:2C .1:1:2:2 D.1: 2:2:13.平行四边形的对角线和它的边能够构成全等三角形()A.3对B.4 对 C .5对D. 6 对A D 4.以下图,在中,对角线 AC、BD交于点 O,?以下式子中一O 定建立的是()B CA.AC⊥ BD B . OA=OC C. AC=BD D .AO=OD5.以下图,在中, AD=5,AB=3,AE均分∠ BAD交BC A D边于点 E,则线段 BE、 EC的长度分别为()BE C A .2和3 B.3和2 C .4和1 D .1和46.的两条对角线订交于点 O,已知 AB=8cm,BC=6cm,△AOB的周长是 18cm,那么△ AOD的周长是()A .14cmB .15cmC .16cmD .17cm7.平行四边形的一边等于14,它的对角线可能的取值是()A .8cm和 16cmB .10cm和 16cmC . 12cm和 16cmD . 20cm和 22cm 8.如图,在中,以下各式不必定正确的选项是()A.∠ 1+∠ 2=180° B .∠ 2+∠ 3=180C.∠ 3+∠ 4=180°D.∠ 2+∠4=180°9.如图,在中,∠ ACD=70°,AE⊥ BD于点E,则∠ ABE等于()A、20°B、25° C 、 30° D 、35°10.如图,在△ MBN中, BM=6,点 A、C、D 分别在 MB、NB、MN上,四边形 ABCD为平行四边形,∠NDC=∠ MDA,那么的周长是()二、填空题(每题 3 分共 18 分)11.在中,∠ A:∠ B=4:5,则∠ C=______.12.在中, AB:BC=1:2,周长为 18cm,则 AB=______cm,AD=_______cm.13.在中,∠A=30°,则∠ B=______,∠C=______,∠D=________.14.如图,已知:点 O是的对角线的交点, ?AC=?48mm,?BD=18mm,AD=16mm,那么△ OBC的周长等于 _______mm.15.如图,在中,E、F是对角线BD上两点,要使△ ADF≌△ CBE,还需增添一个条件是 ________.16.如图,在中,EF∥ AD,MN∥ AB,那么图中共有_______?个平行四边形.三、解答题17.已知:如图,在中,E、F是对角线AC?上的两点,AE=CF.BE与DF的大小有什么关系,并说明原因。

平行四边形的判定与性质

平行四边形的判定与性质

平行四边形的性质与判定一、平行四边形定义及其性质:1、两组对边分别平行的四边形是平行四边形,平行四边形对边平行且相等。

定义的几何语言表述 ∵ AB ∥CD AD ∥BC ∴四边形ABCD 是平行四边形 。

∵四边形ABCD 是平行四边形(或在 ABCD 中) ∴ AB=CD ,AD=BC 。

例题1、如图5,AD ∥BC ,AE ∥CD ,BD 平分∠ABC ,求证AB=CE2、平行四边形除了对边平行且相等外,其对角也相等。

∵四边形ABCD 是平行四边形(或在ABCD 中) ∴ ∠A=∠C ,∠B=∠D 。

例题2、在平行四边形ABCD 中,若∠A :∠B=2:3,求∠C 、∠D 的度数。

3、平行四边形的对角线互相平分。

例题3.已知O 是平行四边形ABCD 的对角线的交点,AC=24cm ,BD=38 cm ,AD= 28cm ,求三角形OBC 的周长。

5.如图,平行四边形ABCD 中,AC 交BD 于O ,AE ⊥BD 于E ,∠EAD=60°,AE=2cm,AC+BD=14cm, 求三角形BOC 的周长。

例题4:已知平行四边形ABCD ,AB=8cm ,BC=10cm,∠B=30°, 求平行四边形平行四边形ABCD 的面积。

对边分别平行 边 对边分别相等 对角线互相平分 平行四边形角 对角相等 邻角互补图(5)DCB AA B C D二、平行四边形的判定 方法一(定义法):两组对边分别平行的四边形的平边形。

几何语言表达定义法:∵AB ∥CD ,AD ∥BC ,∴四边形ABCD 是平行四边形方法二:两组对边分别相等的四边形是平行四边形。

∵AB=CD ,AD=BC ,∴四边形ABCD 是平行四边形 方法三:对角线互相平分的四边形是平行四边形。

∵OA=OC , OB= OD ∴四边形ABCD 是平行四边形 方法四:有一组对边平行且相等的四边形是平行四边形 ∵AB=CD ,AB ∥CD ,∴四边形ABCD 是平行四边形方法五:两组对角分别相等的四边形是平行四边形∵ ∠A =∠C ,∠B=∠D ,∴四边形ABCD 例1:已知:E 、F 分别为平行四边形ABCD 两边AD 、BC 的中点,连结BE 、DF 求证:2∠1∠=三、三角形中位线:三角形两边的中点连线线段(即中位线)与三角形的第三边平行,并且等于第三边的一半。

(完整版)平行四边形的性质和判定练习题

(完整版)平行四边形的性质和判定练习题

初2017级寒假培训(八)A 层----平行四边形的性质与判定班级: 姓名:1.定义:两组对边互相平行的四边形叫做平行四边形,平行四边形ABCD 记作:□ 几何语言:,2.性质:平行四边形的对边平行且相等,对角相等,邻角互补,对角线互相平分;几何语言:∵ 四边形ABCD 是平行四边形∴AD ∥ BC, _________ (对边平行);AD=BC ,__________(对边相等);,_________(对角相等);…(邻角互补);, (对角线互相平分)。

平行四边形的判定:判定1.两组对边分别平行的四边形是平行四边形 判定2.两组对边分别相等的四边形是平行四边形 判定3.两组对角分别相等的四边形是平行四边形 判定4.对角线互相平分的四边形是平行四边形判定5.一组对边平行且相等的四边形是平行四边形; 几何语言判定1., 判定2.,判定3., 判定4. 判定5.,夯实基础:1.如图,将□的一边BC 延长至E ,若∠A =110°,则∠1=________.E2.如图,在□中,,则= °.3.在平行四边形ABCD 中,cm AB 6=,cm BC 8=,则平行四边形ABCD 的周长为 cm .4.如图,在□中,已知,平分交边于点,ABCD BC AD CD AB //,// 是平行四边形四边形ABCD ∴BCD BAC ∠=∠ 180=∠+∠ABC BAC OC OA =BC AD CD AB //,// 是平行四边形四边形ABCD ∴BC AD DC AB ==,是平行四边形四边形ABCD ∴BCD BAD ADC ABC ∠=∠∠=∠, 是平行四边形四边形ABCD ∴,,DO BO CO AO == 是平行四边形四边形ABCD ∴CD AB CD AB =,// 是平行四边形四边形ABCD ∴ABCD ABCD 120=∠A D ∠ABCD ,6,8CM AB CM AD ==DE ADC ∠BC E ABCDOA B CD 4 EA B C D 2 1A B C D则等于( )5.平行四边形中一边的长为10cm ,那么它的两条对角线的长度可以是( )6.在□ABCD 中,对角线AC ,BD 相交于点O ,若BD 与AC 的和为18cm , CD :DA=2:3,ΔAOB 的周长为13cm ,那么BC 的长为( ) A. 6cm B. 9cm C .3cm D .12cm7.如图,▱ABCD 中,AC 、BD 为对角线,BC=6,BC 边上的高为4,则阴影部分的面积为 .8.在下面给出的条件中,能判定四边形ABCD是平行四边形的是( )9.一个四边形的三个相邻内角度数依次如下,那么其中是平行四边形的是( )10.点A ,B ,C ,D 在同一平面内,从①AB ∥CD ,②AB=CD ,③BC ∥AD ,④BC=AD 这四个条件中任选两个,能使四边形ABCD 是平行四边形的选法有( )种A .3B .4C .5D .68.如图,在平行四边形ABCD 中,若AB=6,AD=10,▱ABC 的平分线交AD 于点E ,交CD 的延长线于点F ,求DF 的长.9.已知:如图a ,的对角线、相交于点,过点与、分BE CM A 2.CM B 4.CM C 6.CM D 8.cm cm A 64.和cm cm B 3020.和cm cm C 86.和cm cm D 128.和CD AD BC AB A ==,.BC AD CD AB B =,//.D B CD AB C ∠=∠,//.D C B A D ∠=∠∠=∠,. 88,108,88.A 108,104,88.B 92,92,88.C 108,72,108.D ABCD AC BD O EF O AB CD DC B A别相交于点、.(1)求证:(2)若上题中的条件都不变,将EF 转动到图b 的位置,那么结论是否成立?若将EF 向两方延长与平行四边形的两对边的延长线分别相交(图c 和图d ),结论是否成立,说明你的理由.10.已知如图,O 为平行四边形ABCD 的对角线AC 的中点,EF 经过点O ,且与AB 交于E ,与CD 交于F ,求证:四边形AECF 是平行四边形。

(完整版)平行四边形的性质练习题及答案

(完整版)平行四边形的性质练习题及答案

(完整版)平⾏四边形的性质练习题及答案平⾏四边形的性质、课中强化(10分钟训练)1?如图3,在平⾏四边形 ABCD 中,下列各式不⼀定正确的是()A. / 1 + Z 2=180 °B. / 2+ / 3=180 °C. / 3+Z 4=180的周长为()3. 如图5,」ABCD 中,EF 过对⾓线的交点 O,如果AB=4 cm,AD=3 cm,OF=1 cm,则四边形 BCFE 的周长为 ____________________ .4. 如图6,已知在平⾏四边形 ABCD 中,AB=4 cm , AD=7 cm , / ABC 的平分线交 AD 于点E ,5. 如图7,在平⾏四边形 ABCD 中,点E 、F 在对⾓线6. 如图 8,在 ABCD 中,AE 丄BC 于 E,AF 丄 CD 于 F,BE=2 cm,DF=3 cm, / EAF=60° ,试求 CF 的长.D. /2+ /4=180O , OE 丄AC 交AD 于丘,则⼛DCEA.4 cmB.6 cmC.8 cmD.10 cm交CD 的延长线于点 F ,贝U DF= _____________cm.BD 上,且 BE=DF ,求证:AE=CF.图32?如图4,⼆ABCD 的周长为图5图6图7图8三、课后巩固(30分钟训练)1?⼆ABCD中,/A⽐/ B⼤20。

,则/ C的度数为()A.60 °B.80 °C.100 °D.120 2?以A、B、C三点为平⾏四边形的三个顶点,作形状不同的平⾏四边形,⼀共可以作(A.0个或3个B.2个C.3个D.4个3?如图9 所⽰,在—ABCD 中,对⾓线AC、BD交于点0,下列式⼦中⼀定成⽴的是()A.AC 丄BDB.OA=OCC.AC=BDD.AO=OD4?如图10,平⾏四边形ABCD中,对⾓线AC、BD相交于点O ,将⼛AOD平移⾄△ BEC的位置,则图中与OA相等的其他线段有()A.1条B.2条C.3条D.4条5?如图11,在平⾏四边形ABCD中,EF // AB , GH // AD , EF与GH交于点O,则该图中的平⾏四边形的个数共有()6?如图12,平⾏四边形ABCD中,AE丄BD , CF丄BD,垂⾜分别为E、F,求证:/ BAE= / DCF.7、如图13所⽰,已知平⾏四边形ABCD中,E、F分别是BC和AD上的点,且BE=DF.求证:△ ABE CDF.A.7个B.8个C.9个D.11 个图12图138?如图14,已知四边形ABCD是平⾏四边形,/ BCD的平分线CF交边AB于F,/ ADC的平分线DG交边AB于G.⑴求证:AF=GB ;(2)请你在已知条件的基础上再添加⼀个条件,使得△EFG是等腰直⾓三⾓形,并说明理由?19.1.2平⾏四边形的判定⼆、课中强化(10分钟训练)1?如图3,在ABCD中,对⾓线AC、BD相交于点O,E、F是对⾓线AC上的两点,当E、F满⾜下列哪个条件时,四边形DEBF不⼀定是平⾏四边形()A.AE=CFC.Z ADE= / CBFD. / AED= / CFB,使四边形AECF是平⾏四边形.4. 如图6,AD=BC,要使四边形ABCD是平⾏四边形,还需补充的⼀个条件是:__________________5. 如图,在,ABCD中,已知M和N分别是边AB、DC的中点,试说明四边形BMDN也是平⾏四边形.2.如图4,AB 喪DC ,DC=EF=10 ,DE=CF=8,则图中的平⾏四边形有,理由分别是图4 图53.如图5,E、F是平⾏四边形ABCD对⾓线BD上的两点,B.DE=BF图14三、课后巩固(30分钟训练)1?以不在同⼀直线上的三个点为顶点作平⾏四边形最多能作()是平⾏四边形的是()4?已知四边形 ABCD 的对⾓线 AC 、BD 相交于点② OA=OC :③ AB=CD ;④/ BAD= / DCB :⑤ AD // BC.(1)从以上5个条件中任意选取 2个条件,能推出四边形 ABCD 是平⾏四边形的有(⽤序号表⽰): _____________________________ :(2)对由以上5个条件中任意选取 2个条件,不能推出四边形请选取⼀种情形举出反例说明平⾏四边形?6?如图,E 、F 是四边形ABCD 的对⾓线 AC 上的两点,AF=CE , DF=BE , DF // BE. 求证:⑴△AFD ◎△ CEB;(2)四边形ABCD 是平⾏四边形A.4个B.3个C.2个D.1个2?下⾯给出了四边形 ABCD 中/A 、/ B 、/ C 、/ D 的度数之⽐,其中能判定四边形 ABCDA.1 : 2 : 3 : 4B. 2 : 2 : 3 : 3C. 2 : 3 : 3 : 2D. 2 : 3 : 2 : 33?九根⽕柴棒排成如右图形状,图中 ____ 个平⾏四边形 ,你判断的根据是O ,给出下列 5个条件:①AB // CD ;5?若三条线段的长分别为20 cm,14 cm,16 cm,以其中两条为对⾓线 ABCD 是平⾏四边形的,,另17?如图,已知DC // AB,且DC= — AB , E为AB的中点.2(1) 求证:△ AED ◎△ EBC ;(2) 观察图形,在不添加辅助线的情况下,除△EBC⼣⼘,请再写出两个与△ AED的⾯积相等的三⾓形(直接写出结果,不要求证明): ___________________________8?如图,已知⼆ABCD中DE丄AC,BF丄AC,证明四边形DEBF为平⾏四边形9?如图,已知■ ABCD中,E、F分别是AB、CD的中点?求证:(1) △ AFD ◎△ CEB;(2) 四边形AECF是平⾏四边形?⼆、课中强化(10 分钟训练)1 答案:D2. 解析:因为四边形ABCD 是平⾏四边形,所以OA=OC. ⼜0E丄AC , 所以EA=EC.贝U △ DCE 的周长=CD+DE+CE=CD+DE+EA=CD+AD. 在平⾏四边形ABCD 中,AB=CD ,AD=BC ,且AB+BC+CD+AD=16 cm ,所以CD+AD=8 cm.答案:C3?解析:0E=0F=1,其周长=BE+BC+CF+EF=CD+BC+EF=AD+AB+2DF=8(cm).答案:8 cm4?解析:由平⾏四边形的性质AB // DC,知/ ABE= / F,结合⾓平分线的性质/ ABE= / EBC,得/ EBC= / F,再根据等⾓对等边得到BC=CF=7 ,再由AB=CD=4 , AD=BC=7 得到DF=DE=AD-AE=3.答案:35?答案:证明:四边形ABCD是平⾏四边形,AB // CD , AB=CD./ ABE= / CDF.AB CD,在⼛ABE和⼛CDF中,ABE CDF ,BE DF .△ ABE ◎△ CDF.AE=CF.6. 解:/ EAF=60°AE 丄BC,AF 丄CD, C=120°. B=60°「./ BAE=30° .AB=2BE=4(cm). CD=4(cm). CF=1(cm).三、课后巩固(30 分钟训练)1 答案:C2. 解析:分两种情况,A、B、C三点共线时,可作0个当点A、B、C不在同⼀直线上时,可作3 个. 答案:A3. 解析:平⾏四边形对⾓线互相平分,所以OA=OC. 答案:B4. 解析:由平⾏四边形的对⾓线互相平分知OA=OC;再由平移的性质:经过平移,对应线段平⾏且相等可得OA=BE.答案:B5?解析:本题借助于平⾏四边形的定义,按照从左到右,从⼩到⼤的顺序,可找到下列的平⾏四边形:DEOH,.HOFC,. DEFC, EAGO,OGBF,EABF,■ DAGH,■ HGBC,⼆ABCD.答案:C6?答案:证明:四边形ABCD是平⾏四边形,AB // CD , AB=CD. /-Z ABE= / CDF ?/ AE 丄BD , CF 丄BD ,「./ AEB= / CFD=90 .△ABE ◎△ CDF. /.Z BAE= Z DCF.7、答案:证明:四边形ABCD是平⾏四边形,AB=CD, Z B= Z D.在⼛ABE和⼛CDF中,AB CD,B D, ?/△ ABE 也⼛CDF.BE DF.8?答案:(1)证明:四边形ABCD是平⾏四边形,? AB // CD. AGD= Z CDG.vZ ADG= Z CDG,/?/ ADG= Z AGD. ? AD=AG ?同理,BC=BF.⼜四边形ABCD 是平⾏四边形,? AD=BC,AG=BF. ? AG-GF=BF-GF ,即AF=GB.(2)解:添加条件EF=EG.理由如下:1 1由(1)证明易知Z AGD= Z ADG= Z ADC , Z BFC= Z BCF= Z BCD.2 2/ AD // BC,/?/ ADC+ Z BCD=180 ./Z AGD+ Z BFC=90 ./Z GEF=90 .⼜v EF=EG ,?△ EFG为等腰直⾓三⾓形.⼆、课中强化(10分钟训练)1. 解析:当E、F满⾜AE=CF时,由平⾏四边形的对⾓线相等知OB=OD,OA=OC , 故OE=OF.可知四边形DEBF是平⾏四边形.当E、F满⾜Z ADE= Z CBF 时,因为AD // BC,所以Z DAE= Z BCF.⼜AD=BC,可证出⼛ADE ◎△ CBF,所以DE=BF , Z DEA= Z BFC.故Z DEF= Z BFE.因此DE // BF,可知四边形DEBF是平⾏四边形.类似地可说明D也可以.。

【精编版】数学中考专题训练——平行四边形的判定和性质

【精编版】数学中考专题训练——平行四边形的判定和性质

中考专题训练——平行四边形的判定和性质1.如图,在▱ABCD中,点E、F分别在边BC和AD上,且BE=DF.(1)求证:△ABE≌△CDF.(2)求证:四边形AECF是平行四边形.2.如图,在▱ABCD中,E是AD的中点,F是BC延长线上一点,且CF=BC,连接CE、DF.(1)求证:四边形CEDF是平行四边形;(2)若AB=4,AD=6,∠B=60°,求DF的长.3.如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,延长BC至点F,使CF =BC,连接CD和EF.(1)求证:四边形DCFE是平行四边形;(2)求EF的长.4.如图,E、F是▱ABCD对角线AC上两点,且AE=CF.(1)求证:四边形BFDE是平行四边形.(2)如果把条件AE=CF改为BE⊥AC,DF⊥AC,试问四边形BFDE是平行四边形吗?为什么?(3)如果把条件AE=CF改为BE=DF,试问四边形BFDE还是平行四边形吗?为什么?5.如图,平行四边形ABCD中,∠ABC=60°,点E,F分别在CD和BC的延长线上,AE ∥BD,EF⊥BC,CF=.(1)求证:四边形ABDE是平行四边形;(2)求AB的长.6.在△ABC中,AD为BC边上的中线,E为AD的中点,过点A作AF∥BC,交BE的延长线于点F,连接CF.(1)如图1,求证:四边形ADCF是平行四边形;(2)如图2,连接DF交AC于点G,连接EG,当∠BAC=90°,在不添加任何辅助线和字母的情况下,直接写出图中所有长度为2EG的线段.7.如图,四边形ABCD为平行四边形,E为AD上的一点,连接EB并延长,使BF=BE,连接EC并延长,使CG=CE,连接FG.H为FG的中点,连接DH.(1)求证:四边形AFHD为平行四边形;(2)若CB=CE,∠BAE=70°,∠DCE=20°,求∠CBE的度数.8.如图,过△ABC的顶点C作CD∥AB,E是AC的中点,连接DE并延长,交线段AB于点F,连接AD,CF.(1)求证:四边形AFCD是平行四边形.(2)若AB=4,∠BAC=60°,∠DCB=135°,求AC的长.9.如图,△ABC是等边三角形,AD是BC边上的高.点E在AB的延长线上,连接ED,∠AED=30°,过A作AF⊥AB与ED的延长线交于点F,连接BF,CF,CE.(1)求证:四边形BECF为平行四边形;(2)若AB=6,请直接写出四边形BECF的周长.10.如图,四边形ABCD中,点E在AD上,且EA=EB,∠ADB=∠CBD=90°,∠AEB+∠C=180°.(1)求证:四边形BCDE是平行四边形.(2)若AB=,DB=4.求四边形ABCD的面积.11.如图所示,在△ABC中,点D为边AB的中点,点E为AC边上一点,延长ED交AE 的平行线于点F,连接AF、BE.(1)猜想四边形AEBF的形状,并证明你的结论.(2)若BE⊥CE,CE=2AE=4,BC=9,求DE的长.12.已知:在△ABC中,∠ACB=90°,点D,E分别为BC,AB的中点,连接DE,CE,点F在DE的延长线上,连接AF,且AF=AE.(1)如图1,求证:四边形ACEF是平行四边形;(2)如图2,当∠B=30°时,连接CF交AB于点G,在不添加任何辅助线的情况下,请直接写出图2中的四条线段,使每条线段的长度都等于线段DE的长度的倍.13.如图,四边形ABCD为平行四边形,E为AD上的一点,连接EB并延长到点F,使BF =BE,连接EC并延长到点H,使CH=CE,连接FH,点G在FH上,∠ADG=∠AFG,连接DG.(1)求证:四边形AFGD为平行四边形;(2)在不添加任何辅助线的情况下,直接写出图中长度为FH的一半的所有线段.14.已知,如图1,D是△ABC的边上一点,CN∥AB,DN交AC于点M,MA=MC.(1)求证:四边形ADCN是平行四边形.(2)如图2,若∠AMD=2∠MCD,∠ACB=90°,AC=BC.请写出图中所有与线段AN相等的线段(线段AN除外).15.如图,在▱ABCD中,∠DAB=60°,点E,F分别在CD,AB的延长线上,且AE=AD,CF=CB.(1)求证:四边形AFCE是平行四边形;(2)若去掉已知条件“∠DAB=∠60°”,(1)中的结论还成立吗?若成立,请写出证明过程;若不成立,请说明理由.16.如图,在▱ABCD中,对角线AC,BD相交于点O,AB⊥AC,AB=3cm,BC=5cm.点P从A点出发沿AD方向匀速运动,速度为1cm/s,连接PO并延长交BC于点Q.设运动时间为t(s)(0<t<5)(1)当t为何值时,四边形ABQP是平行四边形?(2)设四边形OQCD的面积为y(cm2),当t=4时,求y的值.17.如图1,在△ABC中,D是BC边上一点,且CD=BD,E是AD的中点,过点A作BC 的平行线交CE的延长线于F,连接BF.(1)求证:四边形AFBD是平行四边形;(2)如图2,若AB=AC=13,BD=5,求四边形AFBD的面积.18.如图,在四边形ABCD中,AD=BC=8,AB=CD,BD=12,点E从D点出发,以每秒1个单位的速度沿DA向点A匀速移动,点F从点C出发,以每秒3个单位的速度沿C→B→C作匀速移动,两个点同时出发,当有一个点到达终点时,另一点也随之停止运动.点G为BD上的一点,假设移动时间为t秒,BG的长度为y.(1)证明:AD∥BC;(2)在移动过程中,小明发现有△DEG与△BFG全等的情况出现,请你探究这样的情况会出现几次?并分别求出此时的移动时间t和BG的长度y.19.在△ABC中,AB=AC,点P为△ABC为所在平面内一点,过点P分别作PF∥AC交AB于点F,PE∥AB交BC于点D,交AC于点E.(1)当点P在BC边上(如图1)时,请探索线段PE,PF,AB之间的数量关系式为.(2)当点P在△ABC内(如图2)时,线段PD,PE,PF,AB之间有怎样的数量关系,请说明理由.(3)当点P在△ABC外(如图3)时,线段PD,PE,PF,AB之间有怎样的数量关系,直接写出结论.20.如图,四边形ABCD是平行四边形,AD=AC,AD⊥AC,E是AB的中点,F是AC延长线上的一点.(1)若ED⊥EF,求证:ED=EF;(2)在(1)的条件下,若DC的延长线与FB交于点P,试判断四边形ACPE是否为平行四边形?并证明你的结论(请先补全图形,再解答);(3)在(1)的条件下,若BC的延长线交DF于点Q,连接QA与QE.试说明QA=QE.参考答案与试题解析1.如图,在▱ABCD中,点E、F分别在边BC和AD上,且BE=DF.(1)求证:△ABE≌△CDF.(2)求证:四边形AECF是平行四边形.【分析】(1)根据平行四边形的性质得出AB=CD,∠B=∠D,根据SAS证出△ABE≌△CDF;(2)根据全等三角形的对应边相等即可证得.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,∠B=∠D,在△ABE和△CDF中,∴△ABE≌△CDF(SAS);(2)∵BE=DF,∴AF=CE,∵AF∥CE,∴四边形AECF是平行四边形.2.如图,在▱ABCD中,E是AD的中点,F是BC延长线上一点,且CF=BC,连接CE、DF.(1)求证:四边形CEDF是平行四边形;(2)若AB=4,AD=6,∠B=60°,求DF的长.【分析】(1)只要证明DE=CF,DE∥CF即可解决问题;(2)过D作DH⊥BE于H,想办法求出DH、HF即可解决问题;【解答】解:(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,又∵E是AD的中点,∴DE=AD,∵CF=BC∴DE=CF,又∵AD∥BC,∴四边形CEDF是平行四边形.(2)过D作DH⊥BE于H,在▱ABCD中,∵∠B=60°,AB∥CD,∴∠DCF=60°,∵AB=4,∴CD=4,∴CH=2,DH=2,∴FH=1,在Rt△DHF中,DF==.3.如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,延长BC至点F,使CF =BC,连接CD和EF.(1)求证:四边形DCFE是平行四边形;(2)求EF的长.(1)直接利用三角形中位线定理得出DE∥BC,DE=BC,进而得出DE=FC;【分析】(2)利用平行四边形的判定与性质得出DC=EF,进而利用等边三角形的性质以及勾股定理得出EF的长.【解答】(1)证明:∵D、E分别为AB、AC的中点,∴DE为△ABC的中位线,∴DE∥BC,DE=BC∵延长BC至点F,使CF=BC,∴DE=FC,∵DE∥FC,∴四边形DCFE是平行四边形.(2)解:∵DE∥FC,DE=FC∴四边形DEFC是平行四边形,∴DC=EF,∵D为AB的中点,等边△ABC的边长是2,∴AD=BD=1,CD⊥AB,BC=2,∴DC=EF==.4.如图,E、F是▱ABCD对角线AC上两点,且AE=CF.(1)求证:四边形BFDE是平行四边形.(2)如果把条件AE=CF改为BE⊥AC,DF⊥AC,试问四边形BFDE是平行四边形吗?为什么?(3)如果把条件AE=CF改为BE=DF,试问四边形BFDE还是平行四边形吗?为什么?【分析】(1)方法一:证明△BAE≌△DCF,推出BE=DF,BE∥DF即可.方法二:连接BD,交AC于点O.只要证明OE=OF,OB=OD即可;(2)是平行四边形.只要证明△BAE≌△DCF即可解决问题;(3)四边形BFDE不是平行四边形.因为把条件AE=CF改为BE=DF后,不能证明△BAE与△DCF全等;【解答】(1)证法一:∵ABCD是平行四边形∴AB=CD且AB∥CD(平行四边形的对边平行且相等)∴∠BAE=∠DCF又∵AE=CF∴△BAE≌△DCF(SAS)∴BE=DF,∠AEB=∠CFD∴∠BEF=180°﹣∠AEB∠DFE=180°﹣∠CFD即:∠BEF=∠DFE∴BE∥DF,而BE=DF∴四边形BFDE是平行四边形(一组对边平行且相等的四边形是平行四边形)证法二:连接BD,交AC于点O.∵ABCD是平行四边形∴OA=OC OB=OD(平行四边形的对角线互相平分)又∵AE=CF∴OA﹣AE=OC﹣CF,即OE=OF∴四边形BFDE是平行四边形(对角线互相平分的四边形是平行四边形)(2)四边形BFDE是平行四边形∵ABCD是平行四边形∴AB=CD且AB∥CD(平行四边形的对边平行且相等)∴∠BAE=∠DCF∵BE⊥AC,DF⊥AC∴∠BEA=∠DFC=90°,BE∥DF∴△BAE≌△DCF(AAS)∴BE=DF∴四边形BFDE是平行四边形(一组对边平行且相等的四边形是平行四边形)(3)四边形BFDE不是平行四边形因为把条件AE=CF改为BE=DF后,不能证明△BAE与△DCF全等.5.如图,平行四边形ABCD中,∠ABC=60°,点E,F分别在CD和BC的延长线上,AE ∥BD,EF⊥BC,CF=.(1)求证:四边形ABDE是平行四边形;(2)求AB的长.【分析】(1)根据平行四边形的判定定理即可得到结论;(2)由(1)知,AB=DE=CD,即D是CE的中点,在直角△CEF中利用三角函数即可求得到CE的长,则求得CD,进而根据AB=CD求解.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,即AB∥DE,∵AE∥BD,∴四边形ABDE是平行四边形;(2)解:∵EF⊥BC,∴∠EFC=90°.∵AB∥EC,∴∠ECF=∠ABC=60°,∴∠CEF=30°∵CF=,∴CE=2CF=2,∵四边形ABCD和四边形ABDE都是平行四边形,∴AB=CD=DE,∴CE=2AB,∴AB=.6.在△ABC中,AD为BC边上的中线,E为AD的中点,过点A作AF∥BC,交BE的延长线于点F,连接CF.(1)如图1,求证:四边形ADCF是平行四边形;(2)如图2,连接DF交AC于点G,连接EG,当∠BAC=90°,在不添加任何辅助线和字母的情况下,直接写出图中所有长度为2EG的线段.【答案】(1)证明见解析;(2)CD,AF,BD,AD,CF.【分析】(1)由E是AD的中点,过点A作AF∥BC,易证得△AFE≌△DBE,然后证得AF=BD=CD,即可证得四边形ADCF是平行四边形;(2)根据平行四边形的性质和直角三角形的性质解答即可.【解答】(1)证明:∵E是AD的中点,∴AE=ED,∵AF∥BC,∴∠AFE=∠DBE,∠F AE=∠BDE,在△AFE和△DBE中,,∴△AFE≌△DBE(AAS),∴AF=BD,∵AD是BC边中线,∴CD=BD,∴AF=CD,∴四边形CDAF是平行四边形;(2)解:∵四边形CDAF是平行四边形,∴AG=GC,AD=CF,∵E为AD的中点,∴EG是△ADC的中位线,∴2EG=DC,∵∠BAC=90°,AD为BC边上的中线,∴BD=DC=AD,由(1)可知,CD=AF=BD=2EG,即所有长度为2EG的线段是CD,AF,BD,AD,CF.7.如图,四边形ABCD为平行四边形,E为AD上的一点,连接EB并延长,使BF=BE,连接EC并延长,使CG=CE,连接FG.H为FG的中点,连接DH.(1)求证:四边形AFHD为平行四边形;(2)若CB=CE,∠BAE=70°,∠DCE=20°,求∠CBE的度数.(1)由平行四边形的性质得出AD=BC,AD∥BC;证明BC是△EFG的中位线,【分析】得出BC∥FG,BC=FG,证出AD∥FH,AD=FH,由平行四边形的判定方法即可得出结论;(2)由平行四边形的性质得出∠BCE=50°,再由等腰三角形的性质得出∠CBE=∠CEB,根据三角形内角和定理即可得出结果.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∠BAE=∠BCD,∵BF=BE,CG=CE,∴BC是△EFG的中位线,∴BC∥FG,BC=FG,∵H为FG的中点,∴FH=FG,∴BC∥FH,BC=FH,∴AD∥FH,AD=FH,∴四边形AFHD是平行四边形;(2)解:∵∠BAE=70°,∴∠BCD=70°,∵∠DCE=20°,∴∠BCE=70°﹣20°=50°,∵CB=CE,∴∠CBE=∠CEB=(180°﹣50°)=65°.8.如图,过△ABC的顶点C作CD∥AB,E是AC的中点,连接DE并延长,交线段AB于点F,连接AD,CF.(1)求证:四边形AFCD是平行四边形.(2)若AB=4,∠BAC=60°,∠DCB=135°,求AC的长.【分析】(1)先证△AEF≌△CED(AAS),得AF=CD,再由CD∥AB,即AF∥CD,即可得出结论;(2)过C作CM⊥AB于M,先证△BCM是等腰直角三角形,得BM=CM,再由含30°角的直角三角形的性质得AC=2AM,BM=CM=AM,由AM+BM=AB求出AM=2﹣2,即可求解.【解答】(1)证明:∵E是AC的中点,∴AE=CE,∵CD∥AB,∴∠AFE=∠CDE,在△AEF和△CED中,,∴△AEF≌△CED(AAS),∴AF=CD,又∵CD∥AB,即AF∥CD,∴四边形AFCD是平行四边形;(2)解:过C作CM⊥AB于M,如图所示:则∠CMB=∠CMA=90°,∵CD∥AB,∴∠B+∠DCB=180°,∴∠B=180°﹣135°=45°,∴△BCM是等腰直角三角形,∴BM=CM,∵∠BAC=60°,∴∠ACM=30°,∴AC=2AM,BM=CM=AM,∵AM+BM=AB,∴AM+AM=4,解得:AM=2﹣2,∴AC=2AM=4﹣4.9.如图,△ABC是等边三角形,AD是BC边上的高.点E在AB的延长线上,连接ED,∠AED=30°,过A作AF⊥AB与ED的延长线交于点F,连接BF,CF,CE.(1)求证:四边形BECF为平行四边形;(2)若AB=6,请直接写出四边形BECF的周长.【分析】(1)根据等边三角形的性质可得BD=DC,∠BAD=∠CAD=30°,然后证明△ADF为等边三角形,可得ED=DF,进而可以证明四边形BECF为平行四边形;(2)根据AB=6和勾股定理可得BF的长,然后证明BE=BD,进而可得四边形BECF 的周长.【解答】(1)证明:∵AD是等边△ABC的BC边上的高,∴BD=DC,∠BAD=∠CAD=30°,∵∠AED=30°,∴ED=AD,∠ADF=∠AED+∠EAD=60°,∵AF⊥AB,∴∠DAF=90°﹣∠EAD=90°﹣30°=60°,∴△ADF为等边三角形,∴AD=DF,∵ED=AD,∴ED=DF,∵BD=DC,∴四边形BECF为平行四边形;(2)∵AB=6,∴BD=3,AD=3,∵△ADF为等边三角形,∴AF=AD=3,∴BF===3,∵∠ABC=60°,∠AED=30°,∴∠BDE=30°,∴BE=BD=3,∴四边形BECF的周长为:2(BF+BE)=2(3+3)=6+6.10.如图,四边形ABCD中,点E在AD上,且EA=EB,∠ADB=∠CBD=90°,∠AEB+∠C=180°.(1)求证:四边形BCDE是平行四边形.(2)若AB=,DB=4.求四边形ABCD的面积.【分析】(1)根据∠ADB=∠CBD=90°,可得DE∥CB,由∠AEB+∠C=180°.证明BE∥CD,进而可得四边形BEDC是平行四边形;(2)根据勾股定理先求出AD的长,再设DE=x,则EA=AD﹣DE=8﹣x,EB=EA=8﹣x.根据勾股定理列式计算得x的值,进而可以求出四边形ABCD的面积.【解答】解:(1)∵∠ADB=∠CBD=90°,∴DE∥CB,∵∠AEB+∠C=180°,∵∠AEB+∠BED=180°,∴∠C=∠BED,∴∠CDB=∠EBD,∴BE∥CD,∴四边形BEDC是平行四边形;(2)∵四边形BEDC是平行四边形.∴BC=DE,在Rt△ABD中,由勾股定理得,AD===8.设DE=x,则EA=AD﹣DE=8﹣x,∴EB=EA=8﹣x.在Rt△BDE中,由勾股定理得,DE2+DB2=EB2,∴x2+42=(8﹣x)2.解得x=3.∴BC=DE=3,∴S四边形ABCD=S△ABD+S△BDC=AD•DB+DB•BC=16+6=22.11.如图所示,在△ABC中,点D为边AB的中点,点E为AC边上一点,延长ED交AE 的平行线于点F,连接AF、BE.(1)猜想四边形AEBF的形状,并证明你的结论.(2)若BE⊥CE,CE=2AE=4,BC=9,求DE的长.【分析】(1)根据已知条件证明△AED≌△BFD,可得ED=FD,可得四边形AEBF是平行四边形;(2)根据BE⊥CE,可得四边形AEBF是矩形,根据CE=2AE=4,BC=9,再利用勾股定理即可求DE的长.【解答】解:(1)四边形AEBF是平行四边形,证明:∵点D为边AB的中点,∴AD=BD,∵AE∥BF,∴∠AED=∠BFD,在△AED和△BFD中,,∴△AED≌△BFD(AAS),∴ED=FD,∵AD=BD,∴四边形AEBF是平行四边形;(2)∵BE⊥CE,∴∠AEB=90°,∴平行四边形AEBF是矩形,∴EF=AB,DE=AB,在Rt△BEC中,CE=4,BC=9,根据勾股定理,得BE2=BC2﹣CE2=92﹣42=65,在Rt△ABE中,AE=2,BE2=65,根据勾股定理,得AB===,∴DE=AB=.12.已知:在△ABC中,∠ACB=90°,点D,E分别为BC,AB的中点,连接DE,CE,点F在DE的延长线上,连接AF,且AF=AE.(1)如图1,求证:四边形ACEF是平行四边形;(2)如图2,当∠B=30°时,连接CF交AB于点G,在不添加任何辅助线的情况下,请直接写出图2中的四条线段,使每条线段的长度都等于线段DE的长度的倍.【分析】(1)由三角形的中位线定理可证得DE∥AC,由直角三角形斜边中线定理得到CE=AB,根据平行线的性质定理和等腰三角形的性质证得∠F=∠CED,进而得到AF∥CE,根据平行四边形的判定即可证得四边形ACEF是平行四边形;(2)根据直角三角形的性质得到AC=AB,由(1)知CE=AB,求得AC=CE,推出四边形ACEF为菱形,得到AE⊥CF,根据直角三角形的性质即可得到结论.【解答】(1)证明:∵BD=CD,BE=AE,∴DE∥AC,∴∠AEF=∠EAC,∠CED=∠ECA,∵∠ACB=90°,BE=AE,∴CE=AE,∴∠EAC=∠ECA,∵AF=AE,∴∠F=∠AEF,∴∠F=∠CED,∴AF∥CE,∴四边形ACEF是平行四边形;(2)解:∵∠ACB=90°,∠B=30°,∴AC=AB,由(1)知CE=AB,∴AC=CE=BE,又∵四边形ACEF为平行四边形∴四边形ACEF为菱形,∴AE⊥CF,∵CE=BE,∴∠B=∠DCE=30°,∴∠BED=∠BAC=60°,∵DF∥AC,∠BDE=∠ACB=∠CDE=90°,∴BD=CD=DE,∵∠DEB=∠FEG=∠CEG=60°,∴∠CED=60°,∴∠FEG=∠CED,∵EF=CE,∠EGF=∠CDE=90°,∴△EFG≌△CED(AAS),∴EG=DE,FG=CD,∴FG=DE,∵CG=FG,∴CG=DE,∴等于线段DE的长度的倍的线段是FG,CG,CD,DB.13.如图,四边形ABCD为平行四边形,E为AD上的一点,连接EB并延长到点F,使BF =BE,连接EC并延长到点H,使CH=CE,连接FH,点G在FH上,∠ADG=∠AFG,连接DG.(1)求证:四边形AFGD为平行四边形;(2)在不添加任何辅助线的情况下,直接写出图中长度为FH的一半的所有线段.【分析】(1)只要证明AD∥FG,AF∥DG即可;(2)根据三角形的中位线的性质和平行四边形的性质即可得到结论.【解答】(1)证明:如图,∵EB=BF,EC=CH,∴BC∥FH,BC=FH,∵四边形ABCD是平行四边形,∴AD∥BC,∴AD∥FH,∴∠DAF+∠AFG=180°,∵∠ADG=∠AFG,∴∠DAF+∠ADG=180°,∴AF∥CD,∴四边形AFHD是平行四边形;(2)∵四边形ABCD为平行四边形,∴AD=BC,∵BF=BE,CH=CE,∴BC=FH,∴AD=FH,∵四边形AFHD是平行四边形,∴FG=AD=FH,∴HG=FH,∴长度为FH的一半的所有线段为:AD,BC,FG,HG.14.已知,如图1,D是△ABC的边上一点,CN∥AB,DN交AC于点M,MA=MC.(1)求证:四边形ADCN是平行四边形.(2)如图2,若∠AMD=2∠MCD,∠ACB=90°,AC=BC.请写出图中所有与线段AN相等的线段(线段AN除外).【分析】(1)由CN∥AB,MA=MC,易证得△AMD≌△CMN,则可得MD=MN,即可证得:四边形ADCN是平行四边形.(2)由∠AMD=2∠MCD,可证得四边形ADCN是矩形,又由∠ACB=90°,AC=BC,可得四边形ADCN是正方形,继而求得答案.【解答】(1)证明:∵CN∥AB,∴∠DAM=∠NCM,在△ADM和△CNM中,,∴△AMD≌△CMN(ASA),∴MD=MN,∴四边形ADCN是平行四边形.(2)解:∵∠AMD=2∠MCD,∠AMD=∠MCD+∠MDC,∴∠MCD=∠MDC,∴MC=MD,∴AC=DN,∴▱ADCN是矩形,∵AC=BC,∴AD=BD,∵∠ACB=90°,∴CD=AD=BD=AB,∴▱ADCN是正方形,∴AN=AD=BD=CD=CN.15.如图,在▱ABCD中,∠DAB=60°,点E,F分别在CD,AB的延长线上,且AE=AD,CF=CB.(1)求证:四边形AFCE是平行四边形;(2)若去掉已知条件“∠DAB=∠60°”,(1)中的结论还成立吗?若成立,请写出证明过程;若不成立,请说明理由.【分析】(1)由已知条件可得△AED,△CFB是正三角形,可得∠AEC=∠BFC=60°,∠EAF=∠FCE=120°,所以四边形AFCE是平行四边形.(2)上述结论还成立,可以证明△ADE≌△CBF,可得∠AEC=∠BFC,∠EAF=∠FCE,所以四边形AFCE是平行四边形.【解答】(1)证明:∵四边形ABCD是平行四边形,∴DC∥AB,∠DCB=∠DAB=60°.∴∠ADE=∠CBF=60°.∵AE=AD,CF=CB,∴△AED,△CFB是正三角形.∴∠AEC=∠BFC=60°,∠EAF=∠FCE=120°.∴四边形AFCE是平行四边形.(2)解:上述结论还成立.证明:∵四边形ABCD是平行四边形,∴DC∥AB,∠CDA=∠CBA,∠DCB=∠DAB,AD=BC,DC=AB.∴∠ADE=∠CBF.∵AE=AD,CF=CB,∴∠AED=∠ADE,∠CFB=∠CBF.∴∠AED=∠CFB.又∵AD=BC,在△ADE和△CBF中.,∴△ADE≌△CBF(AAS).∴∠AED=∠BFC,∠EAD=∠FCB.又∵∠DAB=∠BCD,∴∠EAF=∠FCE.∴四边形EAFC是平行四边形.16.如图,在▱ABCD中,对角线AC,BD相交于点O,AB⊥AC,AB=3cm,BC=5cm.点P从A点出发沿AD方向匀速运动,速度为1cm/s,连接PO并延长交BC于点Q.设运动时间为t(s)(0<t<5)(1)当t为何值时,四边形ABQP是平行四边形?(2)设四边形OQCD的面积为y(cm2),当t=4时,求y的值.【分析】(1)求出AP=BQ和AP∥BQ,根据平行四边形的判定得出即可;(2)求出高AM和ON的长度,求出△DOC和△OQC的面积,再求出答案即可.【解答】解:(1)当t=2.5s时,四边形ABQP是平行四边形,理由是:∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD=3cm,AD=BC=5cm,AO=CO,BO=OD,∴∠P AO=∠QCO,在△APO和△CQO中∴△APO≌△CQO(ASA),∴AP=CQ=2.5cm,∵BC=5cm,∴BQ=5cm﹣2.5cm=2.5cm=AP,即AP=BQ,AP∥BQ,∴四边形ABQP是平行四边形,即当t=2.5s时,四边形ABQP是平行四边形;(2)过A作AM⊥BC于M,过O作ON⊥BC于N,∵AB⊥AC,AB=3cm,BC=5cm,∴在Rt△ABC中,由勾股定理得:AC=4cm,∵由三角形的面积公式得:S△BAC==,∴3×4=5×AM,∴AM=2.4(cm),∵ON⊥BC,AM⊥BC,∴AM∥ON,∵AO=OC,∴MN=CN,∴ON=AM=1.2cm,∵在△BAC和△DCA中∴△BAC≌△DCA(SSS),∴S△DCA=S△BAC==6cm2,∵AO=OC,∴△DOC的面积=S△DCA=3cm2,当t=4s时,AP=CQ=4cm,∴△OQC的面积为 1.2cm×4cm=2.4cm2,∴y=3cm2+2.4cm2=5.4cm2.17.如图1,在△ABC中,D是BC边上一点,且CD=BD,E是AD的中点,过点A作BC 的平行线交CE的延长线于F,连接BF.(1)求证:四边形AFBD是平行四边形;(2)如图2,若AB=AC=13,BD=5,求四边形AFBD的面积.【分析】(1)根据全等三角形的性质和判定求出AF=CD,求出AF=BD,根据平行四边形的判定推出即可;(2)求出四边形AFBD的矩形,根据勾股定理求出AD,根据矩形的面积公式求出即可.【解答】(1)证明:∵AF∥BC,∴∠AFE=∠DCE,∵E是AD的中点,∴AE=DE,在△AFE和△DCE中∴△AFE≌△DCE(AAS),∴AF=CD,∵BD=CD,∴BD=AF,∵AF∥BC,∴四边形AFBD是平行四边形;(2)解:∵AB=AC,CD=BD,∴AD⊥BC,∴∠ADB=90°,∵四边形AFBD是平行四边形,∴四边形AFBD是矩形,∵AB=AC=13,BD=5,∴由勾股定理得:AD==12,∴四边形AFBD的面积是12×5=60.18.如图,在四边形ABCD中,AD=BC=8,AB=CD,BD=12,点E从D点出发,以每秒1个单位的速度沿DA向点A匀速移动,点F从点C出发,以每秒3个单位的速度沿C→B→C作匀速移动,两个点同时出发,当有一个点到达终点时,另一点也随之停止运动.点G为BD上的一点,假设移动时间为t秒,BG的长度为y.(1)证明:AD∥BC;(2)在移动过程中,小明发现有△DEG与△BFG全等的情况出现,请你探究这样的情况会出现几次?并分别求出此时的移动时间t和BG的长度y.【分析】(1)利用平行四边形得判定和性质证明;(2)利用全等三角形的判定求解.【解答】解:(1)∵AD=BC,AB=CD,∴四边形ABCD是平行四边形,∴AD∥BC;(2)BG=y,DE=t,当0≤t≤时,CF=3t,则BF=8﹣3t,∵AD∥BC,∴∠DBC=∠ADB,若△DEG与△BFG全等,则BF=DE且BG=DG,或者BF=DG且BG=DE,即:或,解得:或(不合题意,舍去),当<t≤时,则BF=3t﹣8,若△DEG与△BFG全等,则BF=DE且BG=DG,或者BF=DG且BG=DE,即:或,解得:或,所以△DEG与△BFG全等的情况出现了三次,第一次是2秒时,y=6,第二次是4秒时,y=6,第三次是5秒时,y=5.19.在△ABC中,AB=AC,点P为△ABC为所在平面内一点,过点P分别作PF∥AC交AB于点F,PE∥AB交BC于点D,交AC于点E.(1)当点P在BC边上(如图1)时,请探索线段PE,PF,AB之间的数量关系式为PE+PF=AB.(2)当点P在△ABC内(如图2)时,线段PD,PE,PF,AB之间有怎样的数量关系,请说明理由.(3)当点P在△ABC外(如图3)时,线段PD,PE,PF,AB之间有怎样的数量关系,直接写出结论.【分析】(1)先求出四边形PF AE是平行四边形,根据平行四边形对边相等可得PF=AE,再根据两直线平行,同位角相等可得∠BPE=∠C,然后求出∠B=∠BPE,利用等角对等边求出PE=BE,然后求解即可;(2)根据等边对等角可得∠B=∠C,再根据两直线平行,同位角相等可得∠B=∠CDE,然后求出∠C=∠CDE,再根据等角对等边可得CE=PD+PE,然后求出四边形PF AE是平行四边形,根据平行四边形对边相等可得PE=AF,然后求出PD+PE+PF=AC,等量代换即可得证;(3)证明思路同(2).【解答】解:(1)答:PE+PF=AB.证明如下:∵点P在BC上,∴PD=0,∵PE∥AC,PF∥AB,∴四边形PF AE是平行四边形,∴PF=AE,∵PE∥AC,∴∠BPE=∠C,∴∠B=∠BPE,∴PE=BE,∴PE+PF=BE+AE=AB,∵PD=0,∴PE+PF=AB;故答案为:PE+PF=AB(2)证明:∵AB=AC,∴∠B=∠C,∵PE∥AB,∴∠B=∠CDE,∴∠C=∠CDE,∴CE=PD+PE,∵PF∥AC,PE∥AB,∴四边形PF AE是平行四边形,∴PE=AF,∴PD+PE+PF=AC,∴PD+PE+PF=AB;(3)证明:同(2)可证DE=CE,PE=AF,∵AE+CE=AC,∴PF+PE﹣PD=AC,∴PE+PF﹣PD=AB.20.如图,四边形ABCD是平行四边形,AD=AC,AD⊥AC,E是AB的中点,F是AC延长线上的一点.(1)若ED⊥EF,求证:ED=EF;(2)在(1)的条件下,若DC的延长线与FB交于点P,试判断四边形ACPE是否为平行四边形?并证明你的结论(请先补全图形,再解答);(3)在(1)的条件下,若BC的延长线交DF于点Q,连接QA与QE.试说明QA=QE.【分析】(1)根据平行四边形的想知道的AD=AC,AD⊥AC,连接CE,根据全等三角形的判定和性质即可得到结论;(2)根据全等三角形的性质得到CF=AD,等量代换得到AC=CF,于是得到CP=AB =AE,根据平行四边形的判定定理即可得到四边形ACPE为平行四边形;(3)由(1)知AC=CF,根据三角形的中位线的性质得到DQ=FQ,根据直角三角形的性质即可得到结论.【解答】(1)证明:在▱ABCD中,∵AD=AC,AD⊥AC,∴AC=BC,AC⊥BC,连接CE,∵E是AB的中点,∴AE=EC,CE⊥AB,∴∠ACE=∠BCE=45°,∴∠ECF=∠EAD=135°,∵ED⊥EF,∴∠CEF=∠AED=90°﹣∠CED,在△CEF和△AED中,,∴△CEF≌△AED,∴ED=EF;(2)解:由(1)知△CEF≌△AED,CF=AD,∵AD=AC,∴AC=CF,∵DP∥AB,∴FP=PB,∴CP=AB=AE,∴四边形ACPE为平行四边形;(3)由(1)知AC=CF,∵CQ∥AD,∴DQ=FQ,∵在Rt△DAF与Rt△DEF中,∴AQ=EQ=DF.。

平行四边形的性质与判定练习题

平行四边形的性质与判定练习题

E D C OF B A一、选择题1、下面各条件中,能判定四边形是平行四边形的是 〔 〕A 、对角线互相垂直B 、对角线互相平分C 、一组对角相等D 、一组对边相等2、以下四个命题:①一组对边平行且相等的四边形;②两组对角分别相等的四边形;③对角线相等的四边形;④对角线互相平分的四边形。

其中能判定平行四边形的命题的个数为 〔 〕A 、1个B 、2个C 、3个D 、4个3、以下说法中错误的选项是〔 〕A .平行四边形的对角线互相平分B .有两对邻角互补的四边形为平行四边形C .对角线互相平分的四边形是平行四边形D .一组对边平行,一组对角相等的四边形是平行四边形4、平行四边形的两条对角线及一边的长可依次取 〔 〕A 、6、6、6B 、6、4、3C 、6、4、6D 、3、4、55、以不共线三点为三个顶点作平行四边形,一共可作平行四边形的个数是 〔 〕A 、2个B 、3个C 、4个D 、5个6、 四边形ABCD 的四个角∠A ∶∠B ∶∠C ∶∠D 满足以下哪一条件时,四边形ABCD 是平行四边形?〔 〕A 、1∶2∶2∶1B 、2∶1∶1∶1C 、1∶2∶3∶4D 、2∶1∶2∶17、四边形ABCD 中,AD ∥BC ,要判定四边形ABCD 是平行四边形,还应满足〔 〕A 、∠A +∠C =180°B 、∠B +∠D =180°C 、∠A +∠B =180°D 、∠A +∠D =180°8、根据以下条件,得不到平行四边形的是〔 〕A 、AB =CD ,AD =BC B 、AB ∥CD ,AB =CD C 、AB =CD ,AD ∥BC D 、AB ∥CD ,AD ∥BC9、如图,在□ABCD 中,EF 过对角线的交点,假设AB =4,BC =7,OE =3,那么四边形EFDC 的周长是〔 〕A 、14B 、11C 、10D 、179题图 10题图 11题图 12题图10、如图,线段a 、b 、c 的端点分别在直线l 1、l 2上,那么以下说法中正确的选项是〔 〕A .假设l 1∥l 2,那么a=bB .假设l 1∥l 2,那么a=cC .假设a∥b,那么a=bD .假设l 1∥l 2,且a∥b,那么a=b11、如图,△ABC 中,AB=AC=15,D 在BC 边上,DE∥BA,DF∥CA,那么四边形AFDE 的周长是〔 〕A .30B . 25C . 20D .1512、如图,AB=CD ,BF=ED ,AE=CF ,由这些条件能得出图中互相平行的线段共有〔 〕A .1组 B . 2组 C . 3组 D . 4组13、假设□ABCD 的周长为40cm ,ΔABC 的周长为27cm ,那么AC 的长是〔 〕A 、13cmB 、3cmC 、7cmD 、14、平行四边形的对角线长分别是x 和y ,一边长为12,那么以下各组数据可能是x 与y 的值的是〔 〕A 、8与14B 、10与14C 、18与20D 、10与3615、□ABCD 中,∠A:∠B=13:5,那么∠A 和∠B 的度数分别为〔 〕A .80° ,100°B .130°,50°C .160°,20°D .60°,120°16、一个平行四边形的两条对角线把它分成的全等三角形的对数是( )A.2B.4 C17、E 、F 分别是□ABCD 的边AB 、DC 中点,DE 、BF 交AC 于M 、N ,那么( )⊥MD18、在□ABCD 中假设∠A >∠B ,那么∠A 的补角与∠B 的余角之和( )°°°19、从等腰三角形底边上任意一点分别作两腰的平行线与两腰所围成的平行四边形的周长等于三角形( )A B E C F DO A B D C20、平行四边形两条邻边的长分别是6厘米和4厘米,它们的夹角是60°,那么它的面积是( )A.123cm 2B.73cm 2C.63cm 2D.43cm 221、以下说法正确的有〔 〕①平行四边形的对角线相等;②平行四边形的对边相等;③平行四边形的对角线互相垂直;④平行四边形的对角线互相平分;⑤两组对边分别相等的四边形是平行四边形;⑥一组对边平行而且另一组对边相等的四边形是平行四边形.A .4个 B . 3个 C . 2个 D . 1个22、平行四边形的一条对角线与一边垂直,且此对角线为另一边的一半,那么此平行四边形两邻角之比为( )∶∶3 C.1∶∶523、如图,□ABCD 和□EAFC 的顶点D 、E 、F 、B 在一条直线上,那么以下关系中一定正确的选项是( )A.DE >BFB.DE=BFC.DE <BFD.DE=EF=BF23题图 24题图 25题图24、如图,□ABCD 中,∠ABC=60°,AE∥BD,EF⊥BC 交BC 的延长线于点F ,DF=2,那么EF 的长为〔 〕 A .2 B . 2 C . 4 D . 425、如图,∠BAC=120°,AD⊥AC,BD=CD ,那么以下结论正确的选项是〔 〕A . A D=ACB . A B=AC C . A B=2ACD . A B=AC二、填空题1、□ABCD 中,∠B -∠A =40°,那么∠D =________.2、□ABCD 的周长是44cm ,AB 比AD 大2cm ,那么AB =________cm ,AD =________cm.3、平行四边形的两个相邻内角的平分线相交所成的角的度数是________.4、平行四边形的两条邻边的比为2∶1,周长为60cm ,那么这个四边形较短的边长为________.5、如右上图,在□ABCD 中,AE ⊥BC 于E ,AF ⊥CD 于F ,∠BAD =120°,BE =2,FD =3,那么∠EAF =________,□ABCD 的周长为________.6、假设平行四边形的两邻边的长分别为16和20,两长边间的距离为8,那么两短边间的距离为________.7、□ABCD 中,AB=6cm,BC=8cm ,∠B=70°,那么AD=__________,CD=__________, ∠D=__________,∠A=__________,∠C=__________.8、平行四边形周长为50cm ,两邻边之差为5cm,各边长为 . 9、如右图,平行四边形ABCD 的周长为30cm,它的对角线AC 和BD 相交于O,且△AOB 的周长比△BOC 的周长大5cm,那么AB=________,BC=________. 10、□ABCD 的对角线AC 和BD 相交于O,那么其中全等的三角形有________对.(1)由平行四边形的一个顶点在形内向两边引垂线,二垂线夹角为65°,那么这个平行四边形各内角的度数分别为________.(2)在□ABCD 中,∠A 的补角与∠B 的和等于210°,那么∠A=________,∠B=________.(3)在□ABCD 中,AB ∶BC=1∶2,∠D=30°,AE ⊥BC 于E ,AE=3cm,那么AB=________cm.这个平行四边形的周长是________cm.(4)平行四边形周长是40cm ,二邻边的比为3∶2,那么两邻边长分别是________.(5)在□ABCD 中,两邻边AB 、AD 的比是1∶2,M 是大边AD 的中点,那么∠BMC 的度数是________.(6)平行四边形的周长为50厘米,那么它两邻边之和是______cm ,每条对角线的长不能超过______cm.(7)□ABCD 中,周长为50厘米,AB=15cm ,∠A=30°,那么此平行四边形的面积为______cm 2.(8)□ABCD 的周长为50厘米,对角线交于O 点,△AOB 的周长比△BOC 的周长大5厘米,那么AB 、BC 的长分别是______、______.(9)有五条平行的直线,每相邻两条的距离相等,有一条直线和这组平行线相交成30°角,它介于相邻两条平行线之间的线段长是10厘米,那么这一组平行线最外面两条之间的距离是______厘米.(10)平行四边形周长为68厘米,被两条对角线分成两个不同的三角形的周长的和等于82厘米,两条对角线A BF CD EA BE CFDA BFOC DE的长度比为2∶1,那么两条对角线的长分别为______厘米,______厘米.11、等腰△ABC底边上任意一点D,AB=AC=5cm,过D作DE∥AC交AB于E,DF∥AB交AC于F,那么四边形AEDF的周长为.12、如图〔在下页〕,等边△ABC的边长为8,P是△ABC内一点,PD∥AC,PE∥AD,PF∥BC,点D,E,F分别在AB,BC,AC上,那么PD+PE+PF= .第12题第13题第14题13、如图,在□ABCD中,E,F分别为AB,DC的中点,连接DE,EF,FB,那么图中共有个平行四边形.14、如图,在□ABCD中,E,F是对角线AC上的两点且AE=CF,在①BE=DF;②BE∥DF;③AB=DE;④四边形EBFD为平行四边形;⑤S△ADE=S△ABE;⑥AF=CE这些结论中正确的选项是.15、如图,梯形ABCD,AD∥BC,∠B+∠C=90°,EF=10,E,F分别是AD,BC的中点,那么BC﹣AD= .第15题第16题第17题16、如图,六边形ABCDEF的每个内角都是120°,AB∥DE,BC∥EF,CD∥FA,且AB=4,BC=5,CD=6,DE=7,那么,六边形ABCDEF的周长是.17、如图,△ABC中,如果AB=30,BC=24,AC=27,DN∥GM∥AB,EG∥DF∥BC,FM∥EN∥AC,那么图中阴影局部的三个三角形周长之和为.18、如右图所示,木工师傅把曲尺的一边紧靠木板边缘,从曲尺的另一边上可以读出木板另一边缘的刻度,然后将曲尺移动到另一处〔紧靠木板边缘〕,如果两次读数一样,说明木板两个边缘平行,其中道理是 .三、解答题与证明题1、在□ABCD中,E、F分别在DC、AB上,且DE=BF。

(完整版)平行四边形的性质练习题及答案-1

(完整版)平行四边形的性质练习题及答案-1

平行四边形的性质一、课中强化(10分钟训练)1.如图3,在平行四边形ABCD中,下列各式不一定正确的是( )A.∠1+∠2=180°B.∠2+∠3=180°C.∠3+∠4=180°D.∠2+∠4=180°图3 图4 图52.如图4,ABCD的周长为16 cm,AC、BD相交于点O,OE⊥AC交AD于E,则△DCE的周长为( )A.4 cmB.6 cmC.8 cmD.10 cm3.如图5,ABCD中,EF过对角线的交点O,如果AB=4 cm,AD=3 cm,OF=1 cm,则四边形BCFE的周长为__________________.4.如图6,已知在平行四边形ABCD中,AB=4 cm,AD=7 cm,∠ABC的平分线交AD于点E,交CD的延长线于点F,则DF=_____________ cm.图6 图75.如图7,在平行四边形ABCD中,点E、F在对角线BD上,且BE=DF,求证:AE=CF.6.如图8,在ABCD中,AE⊥BC于E,AF⊥CD于F,BE=2 cm,DF=3 cm,∠EAF=60°,试求CF的长.图8二、课后巩固(30分钟训练)1.ABCD中,∠A比∠B大20°,则∠C的度数为( )A.60°B.80°C.100°D.120°2.以A、B、C三点为平行四边形的三个顶点,作形状不同的平行四边形,一共可以作( )A.0个或3个B.2个C.3个D.4个3.如图9所示,在ABCD中,对角线AC、BD交于点O,下列式子中一定成立的是( )A.AC⊥BDB.OA=OCC.AC=BDD.AO=OD图9 图10 图11 4.如图10,平行四边形ABCD中,对角线AC、BD相交于点O,将△AOD平移至△BEC的位置,则图中与OA相等的其他线段有( )A.1条B.2条C.3条D.4条5.如图11,在平行四边形ABCD中,EF∥AB,GH∥AD,EF与GH交于点O,则该图中的平行四边形的个数共有( )A.7个B.8个C.9个D.11个6.如图12,平行四边形ABCD中,AE⊥BD,CF⊥BD,垂足分别为E、F,求证:∠BAE=∠DCF.图127、如图13所示,已知平行四边形ABCD中,E、F分别是BC和AD上的点,且BE=DF.求证:△ABE≌△CDF.图138.如图14,已知四边形ABCD是平行四边形,∠BCD的平分线CF交边AB于F,∠ADC的平分线DG交边AB于G.(1)求证:AF=GB;(2)请你在已知条件的基础上再添加一个条件,使得△EFG是等腰直角三角形,并说明理由.图1419.1.2 平行四边形的判定一、课中强化(10分钟训练)1.如图3,在ABCD中,对角线AC、BD相交于点O,E、F是对角线AC上的两点,当E、F满足下列哪个条件时,四边形DEBF不一定是平行四边形( )A.AE=CFB.DE=BFC.∠ADE=∠CBFD.∠AED=∠CFB2.如图4,AB DC,DC=EF=10,DE=CF=8,则图中的平行四边形有_________________,理由分别是_________________、____________________.图4 图5 图6 3.如图5,E、F是平行四边形ABCD对角线BD上的两点,请你添加一个适当的条件:__________,使四边形AECF是平行四边形.4.如图6,AD=BC,要使四边形ABCD是平行四边形,还需补充的一个条件是:______ ________.5.如图,在ABCD中,已知M和N分别是边AB、DC的中点,试说明四边形BMDN 也是平行四边形.二、课后巩固(30分钟训练)1.以不在同一直线上的三个点为顶点作平行四边形最多能作( )A.4个B.3个C.2个D.1个2.下面给出了四边形ABCD中∠A、∠B、∠C、∠D的度数之比,其中能判定四边形ABCD是平行四边形的是( )A.1∶2∶3∶4B.2∶2∶3∶3C.2∶3∶3∶2D.2∶3∶2∶33.九根火柴棒排成如右图形状,图中_____个平行四边形,你判断的根据是________________.4.已知四边形ABCD的对角线AC、BD相交于点O,给出下列5个条件:①AB∥CD;②OA=OC;③AB=CD;④∠BAD=∠DCB;⑤AD∥BC. (1)从以上5个条件中任意选取2个条件,能推出四边形ABCD是平行四边形的有(用序号表示):_____________________________;(2)对由以上5个条件中任意选取2个条件,不能推出四边形ABCD是平行四边形的,请选取一种情形举出反例说明.5.若三条线段的长分别为20 cm,14 cm,16 cm,以其中两条为对角线,另一条为一边,是否可以画平行四边形?6.如图,E 、F 是四边形ABCD 的对角线AC 上的两点,AF=CE ,DF=BE ,DF ∥BE. 求证:(1)△AFD ≌△CEB;(2)四边形ABCD 是平行四边形.7.如图,已知DC ∥AB ,且DC=21AB ,E 为AB 的中点.(1)求证:△AED ≌△EBC ;(2)观察图形,在不添加辅助线的情况下,除△EBC 外,请再写出两个与△AED 的面积相等的三角形(直接写出结果,不要求证明):______________________________.8.如图,已知ABCD中DE⊥AC,BF⊥AC,证明四边形DEBF为平行四边形.9.如图,已知ABCD中,E、F分别是AB、CD的中点.求证:(1)△AFD≌△CEB;(2)四边形AECF是平行四边形.二、课中强化(10分钟训练)1答案:D2.解析:因为四边形ABCD是平行四边形,所以OA=OC.又OE ⊥AC ,所以EA=EC.则△DCE 的周长=CD+DE+CE=CD+DE+EA=CD+AD.在平行四边形ABCD 中,AB=CD ,AD=BC ,且AB+BC+CD+AD=16 cm ,所以CD+AD=8 cm.答案:C3.解析:OE=OF=1,其周长=BE+BC+CF+EF=CD+BC+EF=AD+AB+2DF=8(cm). 答案:8 cm4.解析:由平行四边形的性质AB ∥DC,知∠ABE=∠F ,结合角平分线的性质∠ABE=∠EBC ,得 ∠EBC=∠F ,再根据等角对等边得到BC=CF=7, 再由AB=CD=4,AD=BC=7得到DF=DE=AD-AE=3. 答案:35.答案:证明:∵四边形ABCD 是平行四边形, ∴AB ∥CD ,AB=CD. ∴∠ABE=∠CDF.在△ABE 和△CDF 中,⎪⎩⎪⎨⎧=∠=∠=.,,DF BE CDF ABE CD AB∴△ABE ≌△CDF. ∴AE=CF.6.解:∵∠EAF=60°,AE ⊥BC,AF ⊥CD,∴∠C=120°.∴∠B=60°.∴∠BAE=30°. ∴AB=2BE=4(cm).∴CD=4(cm).∴CF=1(cm). 三、课后巩固(30分钟训练) 1答案:C2.解析:分两种情况,A 、B 、C 三点共线时,可作0个,当点A 、B 、C 不在同一直线上时,可作3个.答案:A3.解析:平行四边形对角线互相平分,所以OA=OC.答案:B4.解析:由平行四边形的对角线互相平分知OA=OC ;再由平移的性质:经过平移,对应线段平行且相等可得OA=BE.答案:B 5.解析:本题借助于平行四边形的定义,按照从左到右,从小到大的顺序,可找到下列的平行四边形:DEOH ,HOFC ,DEFC ,EAGO ,OGBF ,EABF ,DAGH ,HGBC ,ABCD.答案:C 6.答案:证明:∵四边形ABCD 是平行四边形, ∴AB ∥CD,AB=CD.∴∠ABE=∠CDF ∵AE ⊥BD,CF ⊥BD,∴∠AEB=∠CFD=90°.∴△ABE ≌△CDF.∴∠BAE=∠DCF. 7、答案:证明:∵四边形ABCD 是平行四边形, ∴AB=CD,∠B=∠D. 在△ABE 和△CDF 中,⎪⎩⎪⎨⎧=∠=∠=.,,DF BE D B CD AB ∴△ABE ≌△CDF. 8.答案:(1)证明:∵四边形ABCD 是平行四边形,∴AB ∥CD.∴∠AGD=∠CDG . ∵∠ADG=∠CDG ,∴∠ADG=∠AGD.∴AD=AG .同理,BC=BF.又∵四边形ABCD 是平行四边形,∴AD=BC,AG=BF.∴AG-GF=BF-GF , 即AF=GB.(2)解:添加条件EF=EG .理由如下: 由(1)证明易知∠AGD=∠ADG=21∠ADC ,∠BFC=∠BCF=21∠BCD. ∵AD ∥BC ,∴∠ADC+∠BCD=180°.∴∠AGD+∠BFC=90°.∴∠GEF=90°. 又∵EF=EG ,∴△EFG 为等腰直角三角形.二、课中强化(10分钟训练)1.解析:当E 、F 满足AE=CF 时,由平行四边形的对角线相等知OB=OD,OA=OC ,故OE=OF.可知四边形DEBF 是平行四边形.当E 、F 满足∠ADE=∠CBF 时,因为AD ∥BC ,所以∠DAE=∠BCF. 又AD=BC ,可证出△ADE ≌△CBF ,所以DE=BF ,∠DEA=∠BFC. 故∠DEF=∠BFE.因此DE ∥BF ,可知四边形DEBF 是平行四边形.类似地可说明D 也可以. 答案:B2.解析:因为AB DC ,根据一组对边平行且相等的四边形是平行四边形可判定四边形ABCD 是平行四边形;DC=EF ,DE=CF,根据两组对边分别相等的四边形是平行四边形可判定四边形CDEF 是平行四边形.答案:四边形ABCD ,四边形CDEF 一组对边平行且相等的四边形是平行四边形 两组对边分别相等的四边形是平行四边形3.解析:根据平行四边形的定义和判定方法可填BE=DF ;∠BAE=∠CDF 等. 答案:BE=DF 或∠BAE=∠CDF 等任何一个均可4.解析:根据平行四边形的判定定理,知可填①AD ∥BC,②AB=CD,③∠A+∠B=180°,④∠C+∠D=180°等.答案:不唯一,以上几个均可.5.答案:证明:∵ABCD,∴AB CD.∵M 、N 是中点,∴BM=21AB,DN=21CD.∴BM DN. ∴四边形BMDN 也是平行四边形.三、课后巩固(30分钟训练)1.解析:要求最多能作几个,只要连结起三个顶点后构成三角形,分别以其中一边作为对角线,另两边作为平行四边形的邻边作图,即可得出三种.答案:B2.解析:由两组对角分别相等的四边形是平行四边形易知,要使四边形ABCD 是平行四边形需满足∠A=∠C ,∠B=∠D ,因此∠A 与∠C ,∠B 与∠D 所占的份数分别相等.答案:D3.答案:有3 两组对边分别相等的四边形是平行四边形4.解析:本题是条件开放性试题,要使四边形ABCD 是平行四边形,从边、角、对角线上考虑共有5种判定方法,因此只需将任意两个条件组合加以 评砼卸? 答案:(1)①与②;①与③;①与④;①与⑤;②与⑤;④与⑤(2)③与⑤两个条件不能推出四边形ABCD 是平行四边形.如图,AB=CD 且AD ∥BC ,而四边形ABCD 不是平行四边形.5.解析:由平行四边形对角线互相平分,能否画平行四边形,应以任两条的一半和第三边为三边,看是否能构成三角形即可.20,16或20,14为对角线,另一条为一边可画平行四边形.6.答案:证明:(1)∵DF ∥BE ,∴∠AFD=∠CEB.又∵AF=CE ,DF=BE ,∴△AFD ≌△CEB.(2)由(1)△AFD ≌△CEB 知AD=BC ,∠DAF=∠BCE ,∴AD ∥BC.∴四边形ABCD 是平行四边形.7.答案:证明:(1)∵E 为AB 的中点,∴AE=EB=21AB.∵DC=21AB ,DC ∥AB , ∴AE DC ,EB DC.∴四边形AECD 和四边形EBCD 都是平行四边形. ∴AD=EC ,ED=BC.又∵AE=BE ,∴△AED ≌△EBC.(2)△ACD ,△ACE ,△CDE(写出其中两个三角形即可)8.答案:证明:在ABCD 中,AD=BC,AD ∥BC,∴∠DAC=∠BCA.又∵∠DEA=∠BFC=90°,∴Rt △ADE ≌Rt △CBF.∴DE=BF.同理,可证DF=BE.∴四边形DEBF 为平行四边形.9.答案:证明:(1)在ABCD 中,AD=CB,AB=CD,∠D=∠B.∵E 、F 分别是AB 、CD 的中点,∴DF=21CD,BE=21AB.∴DF=BE.∴△AFD ≌△CEB. (2)在ABCD 中,AB=CD,AB ∥CD.由(1)得BE=DF,∴AE=CF.∴四边形AECF 是平行四边形.。

北师大版八年级数学下册 平行四边形的性质与判定 专题(附答案)

北师大版八年级数学下册 平行四边形的性质与判定 专题(附答案)

北师大版八年级数学下册平行四边形的性质与判定专题(附答案)综合滚动练:平行四边形的性质与判定一、选择题(每小题4分,共32分)1.在平行四边形ABCD中,若∠A+∠C=120°,则∠A 的度数是()。

A。

100° B。

120° C。

80° D。

60°2.如图,在平行四边形ABCD中,点O是对角线AC,BD的交点,下列结论错误的是()。

A。

AB∥CD B。

AB=CD C。

AC=BD D。

OA=OC3.在平行四边形ABCD中,∠A∶∠B∶∠C∶∠D的值可以是()。

A。

4∶3∶3∶4 B。

7∶5∶5∶7 C。

4∶3∶2∶1 D。

7∶5∶7∶54.平面直角坐标系中,已知平行四边形ABCD的三个顶点坐标分别是A(m,n),B(2,-1),C(-m,-n),则点D的坐标是()。

A。

(-2,1) B。

(-2,-1) C。

(-1,-2) D。

(-1,2)5.如图,在平行四边形ABCD中,点E,F是对角线BD上的两点,如果添加一个条件,使△ABE≌△CDF,则添加的条件不能为()。

A。

BE=DF B。

BF=DE C。

AE=CF D。

∠1=∠26.如图,在平行四边形ABCD中,BF平分∠ABC交AD于点F,CE平分∠BCD交AD于点E。

若AB=6,EF=2,则BC的长为()。

A。

8 B。

10 C。

12 D。

147.如图,在平行四边形ABCD中,∠B=80°,AE平分∠BAD交BC于E,CF∥AE交AD于F,则∠BCF等于()。

A。

40° B。

50° C。

60° D。

80°8.(2017·龙东中考)在平行四边形ABCD中,∠A的平分线把BC边分成长度是3和4的两部分,则平行四边形ABCD的周长是()。

A。

22 B。

20 C。

22或20 D。

18二、填空题(每小题4分,共24分)9.已知AB∥CD,添加一个条件使得四边形ABCD为平行四边形。

平行四边形性质与判定(题型较全)

平行四边形性质与判定(题型较全)

初二数学平行四边形1.下列条件中,能判别四边形ABCD 是平行四边形的是( )A .AB=BC=CDB .∠B+∠C=180°,∠C+∠D=180°C .AB=BC ,CD=DAD .∠A+∠B=180°,∠C+∠D=180°2.若A 、B 、C 是不在同一直线上的三点,则以这三点为顶点画平行四边形,可画( )A .1个B .2个C .3个D .4个3.下列说法正确的是( )A .平行四边形的对角线相等B .一组对边平行,另一组对边相等的四边形是平行四边形C .平行四边形的对角线交点到一组对边的距离相等D .沿平行四边形的一条对角线对折,这条对角线两旁的图形能够重合4.下列条件不能判定四边形ABCD 为平行四边形的是( )A .AB=CD ,AD=BCB .AB=AD ,BC=CDC .AB ∥CD ,AB=CD D .∠A=∠C ,∠B=∠D5.四边形ABCD 中,AD ∥BC ,要判别它是平行四边形还需满足( )A .∠A+∠C=180°B .∠B+∠D=180°C .∠A+∠B=180°D .∠A+∠D=180°6.如图,四边形ABED 和四边形AFCD 都是平行四边形,AF 和DE 相交成直角,AG=3cm ,DG=4cm ,□ABED 的面积是,则四边形ABCD 的周长为( )A .49cmB .43cmC .41cmD .46cm第6题图 第7题图7.如图,点E 、F 分别是□ABCD 的边AB 、CD 的中点,DE 、BF 交于AC 于M 、N ,则( )A .AM=MEB .AM=BEC .AM=CND .AM ⊥MD8、在平行四边形ABCD 中,=∠︒=∠-∠C ,B A 则609.□ABCD ,AC 、BD 相交于点O ,AC=4cm ,BD=6cm ,AB=3cm ,则△ABO 的周长是________。

(完整版)平行四边形的性质及判定典型例题

(完整版)平行四边形的性质及判定典型例题

平行四边形的性质及判定 (典型例题)1.平行四边形及其性质例1如图,O 是卜二・ABCD 对角线的交点.△ OBC 的周长为59, BD=38 , AC=24,贝卩AD= __ 若厶OBC 与厶OAB 的周长之差为 15,贝y AB=QABCD 的周长= _____ .AC ,可得BC ,再由平行四边形对边相等知 AD=BC ,由平行四 边形的对角线互相平分,可知△ OBC 与厶OAB 的周长之差就为BC 与AB 之差,可得AB ,进而可得」ABCD 的周长.解 EBCD 中0A 二= OB = OD = |E D (平行四边形的对角线互相平分)•••△ OBC 的周长=0B + 0C +EC分析: 根据平行四边形对角线互相平先 所OC =1=19 + 12 + BC=59••• BC=28—ABCD 中,•BC=AD(平行四边形对边相等)•AD=28△ OBC的周长-△ OAB的周长=(OB + OC + BC)-(OB + OA+AB)=BC-AB=15•AB=13•••二ABCD的周长=AB + BC + CD + AD=2(AB + BC)=2(13 + 28)=82说明:本题条件中的△ OBC占厶OAB的周长之差为15”,用符号语言表示出来后,便容易发现其实质,即BC与AB之差是15 .例2判断题(1) 两条对边平行的四边形叫做平行四边形. ()(2) 平行四边形的两角相等.()(3) 平行四边形的两条对角线相等.()(4) 平行四边形的两条对角线互相平分. ()(5) 两条平行线中,一条直线上任一点到另一条直线的垂线段叫做两条平行线的距离.()(6) 平行四边形的邻角互补.()分析:根据平行四边形的定义和性质判断.解:(1) 错两组对边分别平行的四边形叫做平行四边形”是两组对边,而不是两条对边.如图四边形ABCD,两条对边AD // BC .显然四边形ABCD 不是平行四边形.(2) 错平行四边形的性定理1,“平行四边形的对角相等.”对角是指四边形中设有公共边的两个角,也就是相对的两个角.(3) 错平行四边形的性质定理3,“平行四边形的对角线互相平分.”一般地不相等.(矩形的两条对角线相等).(4) 对根据平行四边形的性质定理 3 可判断是正确的.(5) 错线段图形,而距离是指线段的长度,是正值正确的说法是:两条平行线中,一条直线上任一点到另一条直线的垂线段的长度叫做这两条平行线的距离.(6) 对由定义知道,平行四边形的对边平行,根据平行线的性质可知.平行四边形的邻角互补.例3 .如图1,在二ABCD中,E、F是AC上的两点.且AE=CF .求证:ED // BF .分析:欲址DE // BF,只需/ DEC二/ AFB,转证=/ ABF CDF, 因卜二,ABCD,则有AB丄CD,从而有/ BAC= / CDA .再由AF=CF 得AF=CE .满足了三角形全等的条件.证明:v AE=CFAE+EF二CF+EF••• AF=CE在二ABCD中AB // CD(平行四边形的对边平行)• / BAC= / DCA(两直线平行内错角相等)AB=CD(平行四边形的对边也相等)•••△ ABF刍乂 CDE(SAS)•••/ AFB= / DCE• ED // BF(内错角相等两直线平行)说明:解决平行四边形问题的基本思想是化为三角形问题不处理.例4如图已知在△ ABC中DE // BC // FG,若BD=AF、求证; DE + FG=BC .分析1:要证DE + FG=DC由于它们是平行线,由平行四边形定义和性质.考虑将DE平移列BC上为此,过E(或D)作EH // AB(或DM // AC),得至U DE=BH、只需证HC=FG ,因AF=BD=EH , / CEH=/ A. / AGF = Z C所以△ AFG幻/ EHC .此方法称为截长法.分析2:过C点作CK // AB交DE的延长线于K,只需证FG=EK , 转证△ AFG CKE .过E作EH // AB交于Hv DE // BC•••四边形DBHE是平行四边形(平行四边形定义)••• DB=EHDE=BH(平行四边形对边也相等)又BD=AF• AF=EHv BC // FGAGF= / C(两直线平行同位角相等)同理 / A= / CEH• △ AFG EHC(AAS)••• FG=HC••• BC二BH+HC二DE二FG.过C作CK // AB交DE的延长线于K.v DE // BC•四边形DBCK是平行四边形(平行四边形定义)•CK=BD DK=BC(平行四边形对边相等)又BD=AF•AF=CKv CK // AB• / A= / ECK(两直线平行内错角相等)v BC // FG•••/ AGF二/ AED(两直线平行同位角相等)又/ CEK二/ AED(对顶角相等)•••/ AGF= / CEK•••△ AFG S' CKE(AAS)FG=EKDE+EK=BC• DE+FG=BC例 5 如图I—ABCD 中,/ ABC=3 /A,点 E 在CD 上,CE=1 , EF丄CD交CB延长线于F,若AD=1,求BF的长.u --- ---------- r分析:根据平行四边形对角相等,邻角互补,可得/ C= / F=45°进而由勾股定理求出CF ,再根据平行四边形对边相等,得BF的长.解:在二ABCD 中,AD // BC•••/ A +/ ABC=180 (两直线平行同旁内角互补)vZ ABC=3 / A•••/ A=45 ,Z ABC=135•••Z C= Z A=45 (平行四边形的对角相等)•EF 丄CD•Z F=45°(直角三角形两锐角互余)•EF=CE=1在RtAOEF中,CF = JCE之》EF金=(勾股定理)v AD=BC=1二BF = CF”EC = Q[例6如图1,‘ ■ ABCD中,对角线AC长为10cm , Z CAB=30 , AB长为6cm,求一ABCD的面积.解:过点C作CH丄AB,交AB的延长线于点H .(图2)vZ CAB=30-■.CH 二丄= 1 X10=52 2••• S—ABCD = AB-CH = 6X5=30(cm2)答:二ABCD的面积为30cm2 .说明:由于二=底>高,题设中已知AB的长,须求出与底AB 相应的高,由于本题条件的制约,不便于求出过点D的高,故选择过点C 作高.例7如图,E、F分别在’・ABCD的边CD、BC上,且EF //求证:S△ ACE二S △ ABF分析:运用平行四形的性质,利用三角形全等,将其转化为等底同高的三角形.证明:将EF向两边延长分别交AD、AB的延长线于G、H.二ABCD DE // AB•••/ DEG= / BHF(两直线平行同位角相等)/ GDE= / DAB(同上)AD // BC•••/ DAB= / FBH(同上):丄 GDE= / FBHv DE // BH , DB // EH•四边形BHED是平行四边形V DE二BH(平行四边形对边相等)GDE 刍乂 FBH(ASA)••• S△ GDE=S △ FBH(全等三角形面积相等).GE=FH(全等三角形对应边相等).S△ ACE=S △ AFH(等底同高的三角形面积相等).S △ ADE = S △ ABF说明:平行四边形的面积等于它的底和高的积.即S二二a・ha .a 可以是平行四边形的任何一边,h必须是a边与其对边的距离.即对应的高,为了区别,可以把高记成ha,表明它所对应的底是a.例8如图,在二ABCD中,BE平分/ B交CD于点E, DF 平分/ D交AB于点F,求证BF=DE .分析EF二DE (目标)十BEDP 为口DF"d叫西3 ]1=Z 3 r Z 1=Z 2f t"S亠彩姑皤彩B口ABCD证明:T四边形ABCD是平行四边形二DE // FB,/ ABC= / ADC(平行四边形的对边也平行对角相等)•••/仁/ 3(两直线平行内错角相等)而Z]=^Z ADC,Z2=|ZABC•••/ 2= / 3• DF // BE(同位角相等两条直线平行)•四边形BEDF为平行四边形(平行四边形定义)• BF=DE .(平行四边形的对边相等)说明:此例也可通过△ ADF CBE来证明,但不如上面的方法简捷.例9如图,CD的Rt△ ABC斜边AB上的高,AE平分/ BAC 交CD于E, EF // AB,交BC于点F,求证CE=BF .分析作EG // BC,交AB于G,易得EG=BF .再由基本图, 可得EG=EC ,从而得出结论.过E点作EG // BC交AB于G点.v EF // AB••• EG=BFv CD为Rt△ ABC斜边AB上的高•/ BAC + / B=90°.Z BAC + / ACD = 90°•/ B= Z ACD•Z ACD=Z EGAv AE 平分Z BAC•Z 1= Z 2又AE=AE•△ AGE ACE(AAS)•CE=EG•CE=BF .说明:(1)在上述证法中,“平移”起着把条件集中的作用.(2)本题也可以设法平移AE .(连F点作FG // AE,交AB于G)例10如图,已知I —ABCD的周长为32cm , AB : BC=5 : 3, AE 丄BC 于E, AF 丄DC 于F,/ EAF=2 / C,求AE 和AF 的长.分析:从化简条件开始①由二ABCD的周长及两邻边的比,不难得到平行四边形的边长.口虹CD 的周长=321 fAB=10AB : BC-5 : 3 p |BC=6②/ EAF=2 / C告诉我们什么?AF i FC1 ZFAE^ZC=180°] oAE 1 EAF-2 Z C j討c=6°这样,立即可以看ADF、△ AEB都是有一个锐角为30°的直角三角形.于是有= = = 3再由勾股定理求出解:——ABCD的周长为32cm即AB+BC+CD+DA=32v AB=CD BC=DA(平行四边形的对边相等)/.AB + BC = - X32 = 16 2又AB : BC=5 : 35+3BC= —X3 = 65+3/ EAF+ / AFC+ / C+ / CEA=360 (四边形内角和等于360°v AE 丄BC / AEC=90AF 丄DC / AFC=90•••/ EAF+ / C=180/ EAF=2 / CT AB // CD(平行四边形的对边平行)•••/ ABE二/ C=60 (两直线平行同位角相等)同理/ ADF=60SRiAABE 中,ZBAE = 30* BE = |AB = 5£—■Al = ja =E^ = 5^3 (cm)在RtAADF中,ZDAF = 30° DF= ^AP = |B C=3■f-j d—iAF - 7A D3 -I>F a = M Ccm)说明:化简条件,化简结论,总之,题目中哪一部分最复杂就从化简那一部分开始,这是一种常用的解题策略,我们把这种解题策略称为:从最复杂的地方开始.它虽简单,却很有效.2 .平行四边形的判定例1填空题(1)如图1,四边形ABCD与四边形BEFC都是平行四边形,则四边形AEFD是—,理由是(2)如图2, D、E分别在△ ABC的边AB、AC上,DE=EF , AE=EC , DE // BC贝卩四边形ADCF是__,理由是__ ,四边形BCFD 是—,理由是—分析:判定一个四边形是平行四边形的方法较多,要从已知条件出发,具体问题具体分析:(1)根据平行四边形的性质可得AD平行且等于BC,BC平行且等于EF,从而得AD平行且等于EF,由判定定理4可得.(2)由AE=EC , DE=EF,由判定定理3可得四边形ADCF是平行四边形,从而得AD // CF即BD // CF,再由条件,可得四边形BCFD是平行四边形.解:(1)平行四边形,一组对边平行且相等的四边形是平行四边形(2)平行四边形,对角线互相平分的四边形是平行四边形,平行四边形,两组对边分别平行的四边形是平行四边形.说明:平行四边形的定义(两组对边分别平行的四边形叫做平行 四边形,既是平行四边形的一个性质,又是平行四边形的一个判定 方法.例 2 女口图,四边形 ABCD 中,AB=CD . / ADB 二 /CBD=90 .求 证:四边形ABCD 是平行四边形.分析:判定一个四边形是平行四边形,有三类五个判定方法, 这三类也是按边、角和对角线分类,具体的五个方法如下表:CIID 从对角钱看一(5 )对角线互相平分 因此必须根据已知条件与图形结构特点,选择判定方法.证法一:v AB=CD . Z ADB= / CBD=90 , BD=DB .••• Rt △ ABD 坐 Rt △ CDB .「( 1)两组对边分别平存C I )从边看 —(2)两组对边分别相等_(3)-组对边平行且相尊 (1)从边看 (II )从角看 (4)两组对角分别相等 的四边形绘平行四边形•••/ ABD= / CDB,/ A= / C.•/ ABD+ / CBD= / CDB+ / ADB即 / ABC= / CDA .•四边形ABCD 是平行四边形(两组对角分别相等的四边形是平行四边形).证法二:vZ ADB= / CBD=90 , AB=CD、BD=DB .•Rt△ ABD 坐Rt△ CDB .•Z ABD=Z CDB.•AB //CD.(内错角相等两直线平行)•四边形ABCD 是平行四边形(一组对边平行且相等的四边形是平行四边形).证法三:由证法一知,Rt △ ABD幻Rt △ CDB .••• DA=BC又T AB二CD•四边形ABCD是平行四边形(两组对边分别相等的四边形是平行四边形)说明:证明一个四边形是平行四边形,往往有多种证题思路,我们必须注意分析,通过比较,选择最简捷的证题思路.本题三种证法中,证法二与证法三比较简捷,本题还可用定义来证明.例3如图,‘「ABCD中,E、G、F、H分别是四条边上的点, 且AE=CF , BG=DH,求证:EF与GH互相平分.分析:只须证明EGFH为平行四边形.证明:连结EG 、GF、FH 、HE.T四边形ABCD是平行四边形•••/ A= / C, AD=CB .T BG=DH•AH=CG又AE=CF•△ AEH CFG(SAS)•HE=GF同理可得EG=FH•四边形EGFH 是平行四边形(两组对边分别相等的四边形是平行四边形)•EF 与GH 互相平分(平行四边形的对角线互相平分).说明:平行四边形的性质,判定的综合运用是解决有关线段和角问题基本方法.例4如图,二ABCD中,AE丄BD于E, CF丄BD于F.求证:四边形AECF是平行四边形.分析:由平行四边形的性质,可得△ ABE CDF••• AE= CF进而可得四边形AECF是平行四边形.证明:口ABCD中,AB屯CD(平行四边形的对边平行,对边相等)•/ ABD= / CDB(两直线平行内错角相等)AE 丄BD、CF 丄BD•AE // CF / AEB= / CFD=90•△ ABE CDF(AAS)•AE=CF•四边形AECF是平行四边形(一组对边平行且相等的四边形是平行四边形)说明:平行四边形的定义,既是平行四边形的一个性质,又是平行四边形的一个判定方法.例5如图,二ABCD中,E、F分别在AD、BC上,且AE=CF , AF、BE相交于G, CE、DF相交于H求证:EF与GH互相平分分析:欲证EF与GH互相平分,只需四边形EGFH为平行四边形,利用已知条件可知四边形AFCE、四边形EBFD都为平行四边形,所以可得AF // EC , BE // DF,从而四边形GEHF为平行四边形.证明:」ABCD中,AD丄BC(平行四边形对边平行且相等)v AE=CF /. DE=BFT四边形AFCE、四边形BFDE是平行四边形(一组对边平行且相等的四边形是平形四边形)二AF // CE , BE // DF(平行四边形对边平行)•••四边形EGFH是平行四边形(两组对边分别平行的四边形是平行四边形)••• GH与EF互相平分(平行四边形的对角线互相平分)说明:平行四边形问题,并不都是以求证某一个四边形为平行四边形的形式出现的.往往更多的是求证线段的相等、角的相等、直线的平行、线段的互相平分等等.要灵活地根据题中已知条件,以及定义、定理等.先判定某一四边形为平行四边形,然后再应用平行四边形的性质加以证明.例6如图,已知—ABCD中,EF在BD上,且BE=DF ,点G、H 在AD、CB上,且有AG=CH , GH与BD交于点0,求证EG丄HF分析:证EF 、GH 互相平分二GEHF 为平行四边形.证明:连 BG 、DH 、GF 、EHT ABCD 为平行四边形.••• AD 垒 BC又 AG=HC• DG 丄 BH•四边形BGDH 为平行四边形(一组对边平行且相等的四边形是平行四边形)• HO = GO , DO=BO (平行四边形的对角线互相平分) 又 BE=DF•OE=OF•四边形GEHF为平行四边形(对角线互相平分的四边形是平行四边形)••• EG丄HF.(平行四边形的对边平行相等)说明:由于条件BE=DF涉及到对角线BD,所以考虑用对角线互相平分来证明例7如图,——ABCD中,AE丄BD于E, CF丄BD于F, G、H分别为AD、BC的中点,求证:EF和GH互相平分.分析:连结EH , HF、FG、GE,只须证明EHFG为平行四边证法一:连结EH , HF、FG、GEv AE丄BD , G是AD中点.-■.GE=C J D =^AD2/ GED二 / GDE同理可得HF =HB =^EC,Z HFE =Z HEFV四边形ABCD是平行四边形••• AD 岂BC,/ GDE= / HBF••• GE=HF,/ GED= / HFB•GE // HF•四边形GEHF为平行四边形(一组对边平行且相等的四边形是平行四边形)•EF和GH互相平分.(平行四边形对角线互相平分)证法二:容易证明厶ABE CDF• BE=DFT四边形ABCD为平行四边形••• AD 些BCT G、H分别为AD、BC的中点•DG 丄BH•四边形BHDG为平行四边形(一组对边平行且相等的四边形是平行四边形)•BD和GH互相平分(平行四边形对角线互相平分)•OG=OH , OB=OD又BE=DF•OE=OF•EF和GH互相平分.例8如图,已知线段a、b与/ a,求作:—ABCD ,使/ ABC二/ a, AB=a , BC=b ,分析:已知两边与夹角,可先确定△ ABC,根据判定定理2(两组对边分别相等的四边形是平行四边形),再确定点D,从而平行四边形可作出.作法:(1) 作/ EBF二/ a,⑵在BE、BF上分别截取BA=a , BC=b ,⑶分别为A、C为圆心,b, a为半径作弧,两弧交于点D, 二四边形ABCD为所求.*证明:由作法可知AB=CD = aBC=AD=b二四边形ABCD 为平行四边形(两组对边分别相等的四边形为平 行四边形)且/ ABC 二 / a, AB=a , BC=b- ABCD 为所求说明:常见的平行四边形作图有以下几种:(1) 已知两邻边(AB 、BC)和夹角(/ B).(2) 已知一边(BC)和两条对角线(AC , BD).(3) 已知一边(BC)和这条边与两条对角线的夹角 (如/ DBC ,Z ACB).⑷已知一边(CD)和一个内角(/ ABC)以及过这个角的顶点的一条对角线(BD ,且BD > CD)求作平行四边形(如图)完成这些作图的关键点,都在于先作出一个三角形,然后再完成平行四边形的作图,体现了把平行四边形的问题化归为三角形问题的思想方法.。

中考数学总复习《平行四边形的判定与性质》练习题及答案

中考数学总复习《平行四边形的判定与性质》练习题及答案

中考数学总复习《平行四边形的判定与性质》练习题及答案班级:___________姓名:___________考号:_____________一、单选题1.如图在四边形ABCD中AB=CD,对角线AC、BD相交于点O,AE⊥BD于点E,CF⊥BD于点F,连接AF、CE,若DE=BF,则下列结论不一定正确的是()A.CF=AE B.OE=OFC.△CDE为直角三角形D.四边形ABCD是平行四边形2.如图四边形ABCD中AB∥CD,∥B=∥D点E为BC延长线上一点,连接AE,AE交CD于点H,∥DCE的平分线交AE于点G.若AB=2AD=10,点H为CD的中点,HE=6,则AC的值为()A.9B.√97C.10D.3 √103.如图在Rt∥ABC中∥ACB=90°,分别以AB、AC为腰向外作等腰直角三角形∥ABD和∥ACE,连结DE,CA的延长线交DE于点F,则与线段AF相等的是()A.AC B.AB C.BC D.AB4.如图在菱形ΑΒCD中∠Α=60∘,AD=8,F是ΑΒ的中点.过点F作FΕ⊥ΑD,垂足为Ε.将ΔΑΕF沿点Α到点Β的方向平移,得到ΔΑ′Ε′F ′.设Ρ、Ρ′分别是ΕF、Ε′F ′的中点,当点Α′与点Β重合时,四边形ΡΡ′CD的面积为()A.28√3B.24√3C.32√3D.32√3−85.下列说法中错误的是()A.平行四边形的对角线互相平分B.对角线互相垂直的四边形是菱形C.菱形的对角线互相垂直D.对角线互相平分的四边形是平行四边形6.如图.若要使平行四边形ABCD成为菱形.则需要添加的条件是()A.AB=CD B.AD=BC C.AB=BC D.AC=BD7.如图点A是直线l外一点,在l上取两点B,C,分别以A,C为圆心,BC,AB的长为半径作弧,两弧交于点D,分别连接AB,AD,CD,若∥ABC+∥ADC=120°,则∥A的度数是()A.100°B.110°C.120°D.125°8.如图在∥ABC中AB=AC=10,BC=12,点D是BC上一点,DE∥AC,DF∥AB,则∥BED与∥DFC的周长的和为()A.34B.32C.22D.209.如图在平面直角坐标系中点A(1,5),B(4,1),C(m,−m),D(m−3,−m+4),当四边形ABCD 的周长最小时,则m 的值为().A.√2B.32C.2D.310.如图分别在四边形ABCD的各边上取中点E,F,G,H,连接EG,在EG上取一点M,连接HM,过F作FN∥HM,交EG于N,将四边形ABCD中的四边形①和②移动后按图中方式摆放,得到四边形AHM′G′和AF′N′E,延长M′G′,N′F′相交于点K,得到四边形MM′KN′.下列说法中错误的是()A.S四边形MM′KN′=S四边形ABCD B.HM=NFC.四边形MM′KN′是平行四边形D.∠K=∠AHM′11.如图,已知∥ABC与∥CDA关于点O成中心对称,过点O任作直线EF分别交AD,BC于点E,F,则下则结论:①点E和点F,点B和点D是关于中心O的对称点;②直线BD必经过点O;③四边形ABCD 是中心对称图形;④四边形DEOC与四边形BFOA的面积必相等;⑤∥AOE与∥COF成中心对称.其中正确的个数为()A.2B.3C.4D.512.如图P为平行四边形ABCD内一点,过点P分别作AB、AD的平行线交平行四边形于E、F、G、H四点,若S四边形AHPE=3,S四边形PFCG=5,则S∥PBD为()A.0.5B.1C.1.5D.2二、填空题13.如图在平行四边形ABCD中点E,F分别在BC,AD上,请添加一个条件,使四边形AECF是平行四边形(只填一个即可).14.如图在Rt△ABC中AC=2√3,BC=2,点P是斜边AB上任意一点,D是AC的中点,连接PD并延长,使DE=PD.以PE,PC为边构造平行四边形PCQE,则对角线PQ的最小值为.15.如图▱ABCD中∥BAD=120°,E、F分别在CD和BC的延长线上,AE∥BD,EF∥BC,EF=5√3,则AB的长是16.如图在∥ABC中∥ACB=90°,M、N分别是AB、AC的中点,延长BC至点D,使CD= 13BD,连接DM、DN、MN.若AB=6,则DN=.17.若AC=10,BD=8,那么当AO=DO=时,四边形ABCD是平行四边形。

平行四边形的性质与判定(北师版)(含答案)

平行四边形的性质与判定(北师版)(含答案)

平行四边形的性质与判定(北师版)一、单选题(共10道,每道10分)1.四边形ABCD中,对角线AC,BD相交于点O,下列条件不能判定这个四边形是平行四边形的是( )A.AB∥DC,AD∥BCB.AB=DC,AD=BCC.AO=CO,BO=DOD.AB∥DC,AD=BC答案:D解题思路:选项A:由“AB∥DC,AD∥BC”可知,四边形ABCD的两组对边互相平行,则该四边形是平行四边形,不符合题意;选项B:由“AB=DC,AD=BC”可知,四边形ABCD的两组对边相等,则该四边形是平行四边形,不符合题意;选项C:由“AO=CO,BO=DO”可知,四边形ABCD的两条对角线互相平分,则该四边形是平行四边形,不符合题意;选项D:由“AB∥DC,AD=BC”可知,四边形ABCD的一组对边平行,另一组对边相等,据此不能判定该四边形是平行四边形,符合题意.故选D.试题难度:三颗星知识点:平行四边形的判定2.如图,平行四边形ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点,若AC+BD=24,△OAB的周长为18,则EF的长为( )A.1B.2C.3D.4答案:C解题思路:在平行四边形ABCD中,OA=OC,OB=OD,又∵AC+BD=24,∴OA+OB=12.∵△OAB的周长为18,即AB+OA+OB=18,∴AB=6.∵点E,F分别是线段AO,BO的中点,∴EF是△OAB的中位线.∴.故选C.试题难度:三颗星知识点:平行四边形的性质3.如图,在平行四边形ABCD中,EF∥AD,HN∥AB,则图中的平行四边形共有( )A.12个B.9个C.7个D.5个答案:B解题思路:确定分类标准:①每单独一个四边形为平行四边形的有:四边形AEOH,四边形HOFD,四边形EBNO,四边形ONCF,共4个;②由两个四边形组成的图形为平行四边形的有:四边形AEFD,四边形EBCF,四边形ABNH,四边形HNCD,共4个;③由三个四边形组成的图形为平行四边形的有0个;④由四个四边形组成的图形为平行四边形的有:四边形ABCD,共1个.综上,图中的平行四边形共有9个,故选B.试题难度:三颗星知识点:平行四边形的判定4.如图,在△ABC中,∠A=∠B,D是AB上任意一点,DE∥BC,DF∥AC,AC=4cm,则四边形DECF的周长为( )cm.A.6B.8C.10D.12答案:B解题思路:∵∠A=∠B,∴BC=AC=4cm.∵DF∥AC,∴∠A=∠BDF.∵∠A=∠B,∴∠B=∠BDF.∴DF=BF.同理AE=DE,∴四边形DECF的周长为:CF+DF+DE+CE=CF+BF+AE+CE=BC+AC=4+4=8(cm),故选B.试题难度:三颗星知识点:平行四边形的判定与性质5.如图,在平行四边形ABCD中,AB=6,∠ABC,∠BCD的平分线分别交AD于点E,F,且EF=3,则BC的长是( )A.6B.9C.10D.12答案:B解题思路:如图,在平行四边形ABCD中,AD∥BC,AB=CD=6,∴∠1=∠2.∵BE平分∠ABC,∴∠1=∠3.∴∠2=∠3.∴AE=AB=6.同理可证:DF=DC=6,∴BC=AD=AE+FD-EF=6+6-3=9.故选B.试题难度:三颗星知识点:平行四边形的性质6.如图,EF过平行四边形ABCD的对角线的交点O,交AD于点E,交BC于点F,已知AB=4,BC=5,OE=1.5,那么四边形EFCD的周长是( )A.16B.14C.12D.10答案:C解题思路:在平行四边形ABCD中,AB=CD=4,BC=AD=5,OA=OC,OB=OD,AD∥BC,∴∠EAO=∠FCO.又∵∠AOE=∠COF,∴△AOE≌△COF.∴AE=CF,OE=OF=1.5.故选C.试题难度:三颗星知识点:平行四边形的性质和判定7.如图,在Rt△ABC中,∠BAC=90°,D,E分别是AB,BC的中点,点F在CA延长线上,∠FDA=∠B,AC=6,AB=8,则四边形AEDF的周长为( )A.16B.20C.18D.22答案:A解题思路:在Rt△ABC中,AC=6,AB=8,∴BC=10.∵E是BC的中点,∴AE=BE=5.∴∠BAE=∠B.∵∠FDA=∠B,∴∠FDA=∠BAE.∴DF∥AE.∵D,E分别是AB,BC的中点,∴DE∥AC,.∴四边形AEDF是平行四边形.∴四边形AEDF的周长为:2×(3+5)=16.故选A.试题难度:三颗星知识点:平行四边形的判定与性质8.如图,在平行四边形ABCD中,BE⊥BC,CE平分∠BCD,AB=10,BC=16,则四边形ABCD 的面积为( )A.64B.128C.160D.256答案:B解题思路:在平行四边形ABCD中,AD∥BC,AD=BC=16,AB=CD=10,∴∠DEC=∠ECB,∠AEB=∠CBE=90°.∵CE平分∠DCB,∴∠DCE=∠BCE.∴∠DEC=∠DCE.∴DE=DC=AB=10.∴AE=16-10=6.在Rt△ABE中,AB=10,AE=6,∴BE=8.∴.故选B.试题难度:三颗星知识点:平行四边形的性质9.如图,在四边形ABCD中,AD∥BC,且AD>BC,BC=6cm,P,Q分别从A,C同时出发,P以1cm/s的速度由A向D运动,Q以2cm/s的速度由C出发向B运动,设运动时间为x秒.则当x=( )时,四边形ABQP是平行四边形.A.1B.2C.3D.4答案:B解题思路:∵P以1cm/s的速度由A向D运动,Q以2cm/s的速度由C出发向B运动,∴AP=x,CQ=2x.∵BC=6,∴QB=6-2x.由已知可得:AP∥BQ,则只需AP=BQ即可,也即当AP=BQ时,四边形ABQP是平行四边形,∴x=6-2x.解得,x=2.故选B.试题难度:三颗星知识点:动点问题10.如图,在平行四边形ABCD中,∠ABC=60°,E,F分别在CD,BC的延长线上,AE∥BD,EF⊥BC,DF=,则EF的长为( )A. B.3C.2D.答案:B解题思路:由题意可得AB∥DE,AB=DC,∵AE∥BD,∴四边形ABDE是平行四边形.∴AB=DE.∴DE=DC.∴在Rt△CEF中,∵AB∥CD,∠ABC=60°,∴∠ECF=60°.∴在Rt△ECF中,∴DF=CF=.∴在Rt△ECF中,.故选B.试题难度:三颗星知识点:平行四边形的判定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初2017级寒假培训(八)A 层----平行四边形的性质与判定班级: 姓名:1.定义:两组对边互相平行的四边形叫做平行四边形,平行四边形ABCD 记作:□ 几何语言:,2.性质:平行四边形的对边平行且相等,对角相等,邻角互补,对角线互相平分;几何语言:∵ 四边形ABCD 是平行四边形∴AD ∥ BC, _________ (对边平行);AD=BC ,__________(对边相等);,_________(对角相等);…(邻角互补);, (对角线互相平分)。

平行四边形的判定:判定1.两组对边分别平行的四边形是平行四边形 判定2.两组对边分别相等的四边形是平行四边形 判定3.两组对角分别相等的四边形是平行四边形 判定4.对角线互相平分的四边形是平行四边形判定5.一组对边平行且相等的四边形是平行四边形; 几何语言判定1., 判定2.,判定3., 判定4. 判定5.,夯实基础:1.如图,将□的一边BC 延长至E ,若∠A =110°,则∠1=________.E2.如图,在□中,,则= °.3.在平行四边形ABCD 中,cm AB 6=,cm BC 8=,则平行四边形ABCD 的周长为 cm .4.如图,在□中,已知,平分交边于点,ABCD BC AD CD AB //,// 是平行四边形四边形ABCD ∴BCD BAC ∠=∠ 180=∠+∠ABC BAC OC OA =BC AD CD AB //,// 是平行四边形四边形ABCD ∴BC AD DC AB ==,是平行四边形四边形ABCD ∴BCD BAD ADC ABC ∠=∠∠=∠, 是平行四边形四边形ABCD ∴,,DO BO CO AO == 是平行四边形四边形ABCD ∴CD AB CD AB =,// 是平行四边形四边形ABCD ∴ABCD ABCD 120=∠A D ∠ABCD ,6,8CM AB CM AD ==DE ADC ∠BC E ABCDOA B CD 4 EA B C D 2 1A B C D则等于( )5.平行四边形中一边的长为10cm ,那么它的两条对角线的长度可以是( )6.在□ABCD 中,对角线AC ,BD 相交于点O ,若BD 与AC 的和为18cm , CD :DA=2:3,ΔAOB 的周长为13cm ,那么BC 的长为( ) A. 6cm B. 9cm C .3cm D .12cm7.如图,▱ABCD 中,AC 、BD 为对角线,BC=6,BC 边上的高为4,则阴影部分的面积为 .8.在下面给出的条件中,能判定四边形ABCD是平行四边形的是( )9.一个四边形的三个相邻内角度数依次如下,那么其中是平行四边形的是( )10.点A ,B ,C ,D 在同一平面内,从①AB ∥CD ,②AB=CD ,③BC ∥AD ,④BC=AD 这四个条件中任选两个,能使四边形ABCD 是平行四边形的选法有( )种A .3B .4C .5D .68.如图,在平行四边形ABCD 中,若AB=6,AD=10,▱ABC 的平分线交AD 于点E ,交CD 的延长线于点F ,求DF 的长.9.已知:如图a ,的对角线、相交于点,过点与、分BE CM A 2.CM B 4.CM C 6.CM D 8.cm cm A 64.和cm cm B 3020.和cm cm C 86.和cm cm D 128.和CD AD BC AB A ==,.BC AD CD AB B =,//.D B CD AB C ∠=∠,//.D C B A D ∠=∠∠=∠,. 88,108,88.A 108,104,88.B 92,92,88.C 108,72,108.D ABCD AC BD O EF O AB CD DC B A别相交于点、.(1)求证:(2)若上题中的条件都不变,将EF 转动到图b 的位置,那么结论是否成立?若将EF 向两方延长与平行四边形的两对边的延长线分别相交(图c 和图d ),结论是否成立,说明你的理由.10.已知如图,O 为平行四边形ABCD 的对角线AC 的中点,EF 经过点O ,且与AB 交于E ,与CD 交于F ,求证:四边形AECF 是平行四边形。

E F .,,DF BE CF AE OF OE ===11.如图,在▱ABC中,D是AC的中点,E是线段BC延长线一点,过点A作BE的平行线与线段ED的延长线交于点F,连接AE、CF.(1)求证:AF=CE;(2)试判断四边形AFCE是什么样的四边形,并证明你的结论.12.如图所示,▱AECF的对角线相交于点O,DB经过点O,分别与AE,CF交于B,D.求证:四边形ABCD是平行四边形.13..如图,已知四边形ABCD为平行四边形,AE▱BD于E,CF▱BD于F.(1)求证:BE=DF;(2)若M、N分别为边AD、BC上的点,且DM=BN,试判断四边形MENF的形状.14..已知:如图,在梯形ABCD中,AD▱BC,AD=24cm,BC=30cm,点P自点A向D以1cm/s的速度运动,到D点即停止.点Q自点C向B以2cm/s的速度运动,到B点即停止,直线PQ截梯形为两个四边形.问当P,Q同时出发,几秒后其中一个四边形为平行四边形?如图,在▱ABCD中,F是AD的中点,延长BC到点E,使CE=BC,连接DE,CF.(1)求证:四边形CEDF是平行四边形;(2)若AB=4,AD=6,▱B=60°,求DE的长.初2017级寒假培训(九)A 层----矩形的性质与判定班级: 姓名:定义:有一个角是直角的平行四边形叫做矩形矩形是特殊的平行四边形,所以,平行四边形的性质矩形都具备矩形的性质:性质1.对边平行且相等;性质2.矩形的四个角都是直角;性质3.矩形的对角线相等且互相平分。

几何语言: 性质1. 性质2. 性质矩形的判定:判定1.有一个角是直角的平行四边形是矩形;判定2.对角线相等的平行四边形是矩形;判定3.有三个角是直角的四边形是矩形; 几何语言: 判定1.,,判定2.,且判定3. 夯实基础:1.在下列图形性质中,矩形不一定具有的是( )A .对角线互相平分且相等B .四个角相等C .是轴对称图形D .对角线互相垂直平分 2.矩形具有而一般的平行四边形不一定具有的特征是( )。

A .对角相等 B. 对边相等 C .对角线相等 D. 对角线互相平分 3.如图,矩形ABCD 的对角线AC 、BD 相交于点O ,AB=3,∠AOD=120°,则AD 的长为( ) A .3B .3C .6D .34.如图,在矩形ABCD 中,对角线AC 、BD 交于点O ,以下说法错误的是( ) A .∠ABC=90° B .AC=BD C .OA=OB D .OA=AD3题图 4题图 5.判断一个四边形是矩形,下列条件正确的是( )A .对角线相等B .对角线垂直C .对角线互相平分且相等D .对角线互相垂直且相等。

BC AD DC AB BC AD DA AB ABCD ==∴,,//,//,矩形 ,ABCD 矩形 90=∠=∠=∠=∠∴ADC BCD ABC BAC DO BO CO AO BD AC ABCD ===,,,.3矩形 ABCD90=∠BAC 且是矩形四边形ABCD ∴ABCD ,BD AC =是矩形四边形ABCD ∴,90=∠=∠=∠BCD ABC BAC 是矩形四边形ABCD ∴ODCBA6.(A层)一个矩形周长是12cm, 对角线长是5cm, 那么它的面积为 .6.(B层)矩形的两邻边分别为4㎝和3㎝,则其对角线为㎝,矩形面积为cm2.7.若矩形的一条对角线与一边的夹角是40°,则两条对角线相交所成的锐角是 .8.如图,在矩形ABCD中,点E、F分别是边AB、CD的中点.求证:DE=BF.9.如图,在矩形ABCD中,E,F为BC上两点,且BE=CF,连接AF,DE交于点O.求证:(1)▱ABF▱▱DCE;(2)▱AOD是等腰三角形.10.已知:如图,平行四边形ABCD的四个内角的平分线分别相交于点E,F,G,H,求证:四边形EFGH是矩形。

11.如图,四边形ABCD是矩形,对角线AC、BD相交于点O,BE▱AC交DC的延长线于点E.(1)求证:BD=BE;(2)若▱DBC=30°,BO=4,求四边形ABED的面积.12.如图,在▱ABCD中,DE▱AB,BF▱CD,垂足分别为E,F.(1)求证:▱ADE▱▱CBF;(2)求证:四边形BFDE为矩形.13.如图所示,四边形ABCD是平行四边形,AC、BD交于点O,▱1=▱2.(1)求证:四边形ABCD是矩形;(2)若▱BOC=120°,AB=4cm,求四边形ABCD的面积.14.已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC的外角∠CAM的平分线,CE⊥AN,垂足为点E,求证:四边形ADCE为矩形。

攻破动点问题:15.如图,在直角梯形ABCD中,AB∥C D,∠BCD=Rt∠,AB=AD=10cm,BC=8cm.点P从点出发,以每秒3cm的速度沿折线ABCD方向运动,点Q从点D出发,以每秒2cm的速度沿线段DC 方向向点C运动.已知动点P、Q同时发,当点Q运动到点C时,P、Q运动停止,设运动时间为t.(1)求CD的长;(2)当四边形PBQD为平行四边形时,求四边形PBQD的周长;(3)在点P、点Q的运动过程中,是否存在某一时刻,使得△BPQ的面积为20cm2?若存在,请求出所有满足条件的t的值;若不存在,请说明理由.。

相关文档
最新文档