高三一轮复习数学计数原理复习教案
高考数学一轮总复习 第十一篇 计数原理教案 理 苏教版
第十一篇计数原理第1讲分类加法计数原理与分步乘法计数原理知识梳理1.分类加法计数原理完成一件事有n类不同的方案,在第一类方案中有m1种不同的方法,在第二类方案中有m2种不同的方法,……,在第n类方案中有m n种不同的方法,则完成这件事情,共有N=m1+m2+…+m n种不同的方法.2.分步乘法计数原理完成一件事情需要分成n个不同的步骤,完成第一步有m1种不同的方法,完成第二步有m2种不同的方法,……,完成第n步有m n种不同的方法,那么完成这件事情共有N=m1×m2×…×m n种不同的方法.3.分类加法计数原理与分步乘法计数原理,都涉及完成一件事情的不同方法的种数.它们的区别在于:分类加法计数原理与分类有关,各种方法相互独立,用其中的任一种方法都可以完成这件事;分步乘法计数原理与分步有关,各个步骤相互依存,只有各个步骤都完成了,这件事才算完成.辨析感悟1.两个计数原理的理解(1)在分类加法计数原理中,两类不同方案中的方法可以相同.(×)(2)在分类加法计数原理中,每类方案中的方法都能直接完成这件事.(√)(3)在分步乘法计数原理中,每个步骤中完成这个步骤的方法是各不相同的.(√)(4)在分步乘法计数原理中,事情是分两步完成的,其中任何一个单独的步骤都能完成这件事.(×)2.两个计数原理的应用(5)(教材习题改编)三个人踢毽,互相传递,每人每次只能踢一下,由甲开始踢,经过5次传递后,毽又被踢回给甲,则不同的传递方式共有10种.(√)(6)用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数共有14个.(√) [感悟·提升]1.两点区别一是分类加法计数原理中,完成一件事的方法属于其中一类并且只属于其中一类,简单的说分类的标准是“不重不漏,一步完成”,如(1)、(2).二是分步乘法计数原理中,各个步骤相互依存,在各个步骤中任取一种方法,即是完成这个步骤的一种方法,简单的说步与步之间的方法“相互独立,分步完成”,如(3)、(4).2.两点提醒一是分类时,标准要明确,应做到不重不漏;可借助几何直观,探索规律,如(5).二是分步时,要合理设计顺序、步骤,并注意元素是否可以重复选取,如(6)中2,3可重复但至少各出现一次.考点一 分类加法计数原理【例1】 (2013·福建卷改编)满足a ,b ∈{-1,0,1,2},且关于x 的方程ax 2+2x +b =0有实数解的有序数对(a ,b )的个数为________.解析 由于a ,b ∈{-1,0,1,2}.(1)当a =0时,有x =-b 2为实根,则b =-1,0,1,2有4种可能; (2)当a ≠0时,则方程有实根,∴Δ=4-4ab ≥0,所以ab ≤1.(*)①当a =-1时,满足(*)式的b =-1,0,1,2有4种可能.②当a =1时,b =-1,0,1,有3种可能.③当a =2时,b =-1,0,有2种可能.∴由分类加法计数原理,有序数对(a ,b )共有4+4+3+2=13(个).答案 13规律方法 分类标准是运用分类计数原理的难点所在,重点在于抓住题目中的关键词或关键元素、关键位置.首先根据题目特点恰当选择一个分类标准;其次分类时应注意完成这件事情的任何一种方法必须属于某一类.【训练1】 某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有________.解析 赠送一本画册,3本集邮册,需从4人中选取一人赠送画册,其余送邮册,有C 14种方法.赠送2本画册,2本集邮册,只需从4人中选出2人送画册,其余2人送邮册,有C 24种方法. 由分类加法计数原理,不同的赠送方法有C 14+C 24=10(种).答案 10种考点二 分步计数原理【例2】 将字母a ,a ,b ,b ,c ,c 排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有________.解析 先排第一列,由于每列的字母互不相同,因此共有A 33种不同排法.再排第二列,其中第二列第一行的字母共有2种不同的排法,第二列第二、三行的字母只有1种排法.因此共有A33·2·1=12(种)不同的排列方法.答案12种规律方法 (1)利用分步乘法计数原理解决问题要按事件发生的过程合理分步,即分步是有先后顺序的,并且分步必须满足:完成一件事的各个步骤是相互依存的,只有各个步骤都完成了,才算完成这件事.(2)分步必须满足两个条件:一是步骤互相独立,互不干扰;二是步与步确保连续,逐步完成.【训练2】将一个四面体ABCD的六条棱上涂上红、黄、白三种颜色,要求共端点的棱不能涂相同颜色,则不同的涂色方案有________.解析因为只有三种颜色,又要涂六条棱,所以应该将四面体的对棱涂成相同的颜色.故有3×2×1=6种涂色方案.答案6种考点三两个计数原理的综合应用【例3】(2014·济南质检)如图,用4种不同的颜色对图中5个区域涂色(4种颜色全部使用),要求每个区域涂一种颜色,相邻的区域不能涂相同的颜色,则不同的涂色种数有________.审题路线由于区域1,2,3又相邻区域不同色,因此应按区域1和区域3是否同色分类求解.解析按区域1与3是否同色分类;(1)区域1与3同色;先涂区域1与3有4种方法,再涂区域2,4,5(还有3种颜色)有A33种方法.∴区域1与3涂同色,共有4A33=24种方法.(2)区域1与3不同色:先涂区域1与3有A24种方法,第二步涂区域2有2种涂色方法,第三步涂区域4只有一种方法,第四步涂区域5有3种方法.∴这时共有A24×2×1×3=72种方法,故由分类加法计数原理,不同的涂色种数为24+72=96.答案96规律方法 (1)解决涂色问题,一定要分清所给的颜色是否用完,并选择恰当的涂色顺序.(2)切实选择好分类标准,分清哪些可以同色,哪些不同色.【训练3】如果一个三位正整数如“a1a2a3”满足a1<a2,且a2>a3,则称这样的三位数为凸数(如120,343,275等),那么所有凸数的个数为________.解析若a2=2,则“凸数”为120与121,共1×2=2个.若a2=3,则“凸数”有2×3=6个.若a2=4,满足条件的“凸数”有3×4=12个,…,若a2=9,满足条件的“凸数”有8×9=72个.∴所有凸数有2+6+12+20+30+42+56+72=240(个).答案2401.分类加法计数原理与分步乘法计数原理是解决排列组合问题的基础并贯穿始终.(1)分类加法计数原理中,完成一件事的方法属于其中一类并且只属于其中一类.(2)分步乘法计数原理中,各个步骤相互依存,步与步之间的方法“相互独立,分步完成”.2.(1)切实理解“完成一件事”的含义,以确定需要分类还是需要分步进行.(2)分类的关键在于要做到“不重不漏”,分步的关键在于要正确设计分步的程序,即合理分类,准确分步.3.若综合利用两个计数原理,一般先分类再分步.创新突破8——与计数原理有关的新定义问题【典例】 (2012·湖北卷)回文数是指从左到右与从右到左读都一样的正整数.如22,121,3 443,94 249等.显然2位回文数有9个:11,22,33,…,99.3位回文数有90个:101,111,121,…,191,202,…,999.(*)则:(1)4位回文数有________个;(2)2n+1(n∈N*)位回文数有________个.(**)突破:由(*)式,理解“特殊”背景——回文数的含义,借助计数原理计算.结合(**),可从2位回文数,3位回文数,4位回文数探索求解方法,从特殊到一般发现规律.解析(1)4位回文数相当于填4个方格,首尾相同,且不为0,共9种填法;中间两位一样,有10种填法.共计9×10=90(种)填法,即4位回文数有90个.(2)根据回文数的定义,此问题也可以转化成填方格.由计数原理,共有9×10n种填空.答案(1)90 (2)9×10n[反思感悟] (1)一题两问,以“回文数”为新背景,考查计数原理,体现了化归思想,将确定回文数的问题转化为“填方格”问题,进而利用分步乘法计数原理解决,将新信息转化为所学的数学知识来解决.(2)从特殊情形入手,通过分析、归纳,发现问题中隐含的一些本质特征和规律,然后再推广到一般情形,必要时可以多列举一些特殊情形,使规律方法更加明确.【自主体验】1.(2014·扬州调研)从8名女生4名男生中,选出3名学生组成课外小组,如果按性别比例分层抽样,则不同的抽取方法数为________种.解析从男生中抽取1人有4种方法.从女生中抽取两人有C28=28种方法.∴由分步乘法计数原理,共有28×4=112种方法.答案1122.(2013·山东卷改编)用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为________.解析0,1,2,…,9共能组成9×10×10=900(个)三位数,其中无重复数字的三位数有9×9×8=648(个),∴有重复数字的三位数有900-648=252(个).答案252基础巩固题组(建议用时:40分钟)一、填空题1.某市汽车牌照号码可以上网自编,但规定从左到右第二个号码只能从字母B,C,D中选择,其他四个号码可以从0~9这十个数字中选择(数字可以重复),有车主第一个号码(从左到右)只想在数字3,5,6,8,9中选择,其他号码只想在1,3,6,9中选择,则他的车牌号码可选的所有可能情况有________.解析按照车主的要求,从左到右第一个号码有5种选法,第二位号码有3种选法,其余三位号码各有4种选法.因此车牌号码可选的所有可能情况有5×3×4×4×4=960(种).答案960种2.(2012·新课标全国卷改编)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有________.解析分两步:第一步,选派一名教师到甲地,另一名到乙地,共有C12=2种选派方法;第二步,选派两名学生到甲地,另外两名到乙地,共有C24=6种选派方法.由分步乘法计数原理,不同选派方案共有2×6=12(种).答案12种3.6位选手依次演讲,其中选手甲不在第一个也不在最后一个演讲,则不同的演讲次序共有________.解析第一步先排甲,共有A14种不同的排法;第二步再排其他人,共有A55种不同的排法.因此不同的演讲次序共有A14·A55=480(种).答案480种4.从集合{1,2,3,…,10}中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列的个数为________.解析以1为首项的等比数列为1,2,4;1,3,9;以2为首项的等比数列为2,4,8;以4为首项的等比数列为4,6,9;把这四个数列顺序颠倒,又得到4个数列,∴所求的数列共有2(2+1+1)=8(个).答案85.集合P={x,1},Q={y,1,2},其中x,y∈{1,2,3,…,9},且P⊆Q.把满足上述条件的一对有序整数对(x,y)作为一个点的坐标,则这样的点的个数是________.解析当x=2时,x≠y,点的个数为1×7=7(个).当x≠2时,由P⊆Q,∴x=y.∴x可从3,4,5,6,7,8,9中取,有7种方法.因此满足条件的点共有7+7=14(个).答案146.从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有________种(用数字作答).解析第一步,先选出文娱委员,因为甲、乙不能担任,所以从剩下的3人中选1人当文娱委员,有3种选法.第二步,从剩下的4人中选学习委员和体育委员,又可分两步进行:先选学习委员有4种选法,再选体育委员有3种选法.由分步乘法计数原理可得,不同的选法共有3×4×3=36(种).答案367.如图所示,在连接正八边形的三个顶点而成的三角形中,与正八边形有公共边的三角形有________个.解析把与正八边形有公共边的三角形分为两类:第一类,有一条公共边的三角形共有8×4=32个;第二类,有两条公共边的三角形共有8个.由分类加法计数原理知,共有32+8=40(个).答案408.8名世界网球顶级选手在上海大师赛上分成两组,每组各4人,分别进行单循环赛,每组决出前两名,再由每组的第一名与另一组的第二名进行淘汰赛,获胜者角逐冠、亚军,败者角逐第3,4名,大师赛共有________场比赛.解析小组赛共有2C24场比赛;半决赛和决赛共有2+2=4场比赛;根据分类加法计数原理共有2C24+4=16(场)比赛.答案16二、解答题9.电视台在“欢乐在今宵”节目中拿出两个信箱,其中放着竞猜中成绩优秀的观众来信,甲箱中有30封,乙箱中有20封,现由主持人抽奖确定幸运观众,若先从中确定一名幸运之星,再从两箱中各确定一名幸运观众,有多少种不同结果?解(1)幸运之星在甲箱中抽,选定幸运之星,再在两箱内各抽一名幸运观众有30×29×20=17 400种.(2)幸运之星在乙箱中抽取,有20×19×30=11 400种.共有不同结果17 400+11 400=28 800(种).10.“渐升数”是指每个数字比它左边的数字大的正整数(如1 458),若把四位“渐升数”按从小到大的顺序排列,求第30个“渐升数”.解渐升数由小到大排列,形如12××的渐升数共有6+5+4+3+2+1形如134×的渐升数共有5个.形如135×的渐升数共有4个.故此时共有21+5+4=30(个).因此从小到大的渐升数的第30个必为1 359.能力提升题组(建议用时:25分钟)一、填空题1.如图,一环形花坛分成A,B,C,D四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为________.解析可依次种A,B,C,D四块,当C与A种同一种花时,有4×3×1×3=36种种法;当C与A所种花不同时,有4×3×2×2=48种种法.由分类加法计数原理,不同的种法种数为36+48=84.答案842.在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息.若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为________.解析若4个位置的数字都不同的信息个数为1;若恰有3个位置的数字不同的信息个数为C34;若恰有2个位置上的数字不同的信息个数为C24.由分类加法计数原理知满足条件的信息个数为1+C34+C24=11.答案113.如图所示,在A、B间有四个焊接点,若焊接点脱落,则可能导致电路不通,今发现A、B之间线路不通,则焊接点脱落的不同情况有________种.解析四个焊点共有24种情况,其中使线路通的情况有:1、4都通,2和3至少有一个通时线路才通共有3种可能.故不通的情况有24-3=13(种)可能.答案13二、解答题4.用n种不同颜色为下列两块广告牌着色(如图所示),要求在A,B,C,D四个区域中相邻(有公共边的)区域不用同一种颜色.(1)若n=6,为①着色时共有多少种不同的方法?(2)若为②着色时共有120种不同的方法,求n.解(1)分四步:第1步涂A有6种不同的方法,第2步涂B有5种不同的方法,第3步涂C有4种不同的方法,第4步涂D有4种不同的方法.根据分步乘法计数原理,共有6×5×4×4=480种不同的方法.(2)由题意,得n(n-1)(n-2)(n-3)=120,注意到n∈N*,可得n=5.学生用书第157页第2讲排列与组合知识梳理1.排列与组合的概念名称定义排列从n个不同元素中取出m(m≤n)个不同元素按照一定的顺序排成一列组合合成一组(1)从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数,叫做从n个不同元素中取出m个元素的排列数.(2)从n 个不同元素中取出m(m ≤n )个元素的所有不同组合的个数,叫从n 个不同元素中取出m个元素的组合数.3.排列数、组合数的公式及性质公式(1)A m n=n(n-1)(n-2)…(n-m+1)=n!n-m!(2)C m n=A m nA m m=n n-1n-2…n-m+1m!=n!m!n-m!(n,m ∈N*,且m≤n).特别地C0n=1.性质(1)0!=1;A n n=n!.(2)C m n=C n-mn;Cmn+1=Cmn+Cm-1n.1.排列与组合的基本概念、性质(1)所有元素完全相同的两个排列为相同排列.(×)(2)两个组合相同的充要条件是其中的元素完全相同.(√)(3)若组合式C x n=C m n,则x=m成立.(×)2.排列与组合的应用(4)5个人站成一排,其中甲、乙两人不相邻的排法有A55-A22A44=72种.(√)(5)(教材习题改编)由0,1,2,3这四个数字组成的四位数中,有重复数字的四位数共有3×43-A34=168(个).(×)(6)(2013·北京卷改编)将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是4A44=96种.(√)[感悟·提升]1.一个区别 排列与组合最根本的区别在于“有序”和“无序”.取出元素后交换顺序,如果与顺序有关是排列,如果与顺序无关即是组合,如(1)忽视了元素的顺序.2.求解排列、组合问题的思路:“排组分清,加乘明确;有序排列,无序组合;分类相加,分步相乘.”考点一 排列应用题【例1】 4个男同学,3个女同学站成一排. (1)3个女同学必须排在一起,有多少种不同的排法? (2)任何两个女同学彼此不相邻,有多少种不同的排法? (3)甲、乙两人相邻,但都不与丙相邻,有多少种不同的排法?解 (1)3个女同学是特殊元素,共有A 33种排法;由于3个女同学必须排在一起,视排好的女同学为一整体,再与4个男同学排队,应有A 55种排法. 由分步乘法计数原理,有A 33A 55=720种不同排法.(2)先将男生排好,共有A 44种排法,再在这4个男生的中间及两头的5个空档中插入3个女生有A 35种方法.故符合条件的排法共有A 44A 35=1 440种不同排法.(3)先排甲、乙和丙3人以外的其他4人,有A 44种排法;由于甲、乙要相邻,故先把甲、乙排好,有A 22种排法;最后把甲、乙排好的这个整体与丙分别插入原先排好的4人的空档及两边有A 25种排法.总共有A 44A 22A 25=960种不同排法.学生用书第158页规律方法 (1)在实际进行排列时一般采用特殊元素优先原则,即先安排有限制条件的元素或有限制条件的位置,对于分类过多的问题可以采用间接法.(2)对相邻问题采用捆绑法、不相邻问题采用插空法、定序问题采用倍缩法是解决有限制条件的排列问题的常用方法.【训练1】 (1)(2014·济南质检)一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的坐法种数为________(结果可不化简).(2)(2013·四川卷改编)从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a ,b ,共可得到lg a -lg b 的不同值的个数是________.解析 (1)把一家三口看作一个排列,然后再排列这3家,所以有(3!)4种. (2)由于lg a -lg b =lg a b(a >0,b >0),∴lg a b 有多少个不同的值,只需看a b不同值的个数.从1,3,5,7,9中任取两个作为a b 有A 25种,又13与39相同,31与93相同,∴lg a -lg b 的不同值的个数有A 25-2=18. 答案 (1)(3!)4(2)18考点二 组合应用题【例2】 某课外活动小组共13人,其中男生8人,女生5人,并且男、女生各指定一名队长.现从中选5人主持某种活动,依下列条件各有多少种选法? (1)只有一名女生; (2)两队长当选; (3)至少有一名队长当选; (4)至多有两名女生当选; (5)既要有队长,又要有女生当选.解 (1)一名女生,四名男生.故共有C 15·C 48=350(种).(2)将两队长作为一类,其他11人作为一类,故共有C 22·C 311=165(种).(3)至少有一名队长含有两类:只有一名队长和两名队长.故共有:C 12·C 411+C 22·C 311=825(种)或采用排除法:C 513-C 511=825(种).(4)至多有两名女生含有三类:有两名女生、只有一名女生、没有女生.故选法为: C 25·C 38+C 15·C 48+C 58=966(种).(5)分两类:第一类女队长当选:C 412;第二类女队长不当选: C 14·C 37+C 24·C 27+C 34·C 17+C 44. 故选法共有:C 412+C 14·C 37+C 24·C 27+C 34·C 17+C 44=790(种). 规律方法 组合问题常有以下两类题型变化(1)“含有”或“不含有”某些元素的组合题型:“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取.(2)“至少”或“最多”含有几个元素的题型:若直接法分类复杂时,逆向思维,间接求解. 【训练2】 若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有________.解析 满足题设的取法可分为三类:一是取四个奇数,在5个奇数1,3,5,7,9中,任意取4个,有C 45=5(种);二是两个奇数和两个偶数,在5个奇数中任取2个,再在4个偶数2,4,6,8中任取2个,有C 25·C 24=60(种);三是取4个偶数的取法有1种. 所以满足条件的取法共有5+60+1=66(种). 答案 66种考点三 排列、组合的综合应用【例3】 (1)(2013·浙江卷)将A ,B ,C ,D ,E ,F 六个字母排成一排,且A ,B 均在C 的同侧,则不同的排法共有________种(用数字作答).(2)某校高二年级共有6个班级,现从外地转入4名学生,要安排到该年级的两个班级且每班安排2名,则不同的安排方案种数为________.审题路线 (1)选出3个位置排特殊元素A 、B 、C ,并把元素A 、B 作为元素集团进行排列;(2)可将4名同学分成两组(每组2人),再分配到两个班级.解析 (1)先将A ,B 视为元素集团,与C 先排在6个位置的三个位置上,有C 36A 22C 12种排法; 第二步,排其余的3个元素有A 33种方法.∴由分步乘法计数原理,共有C 36A 22C 12·A 33=480种排法.(2)法一 将4人平均分成两组有12C 24种方法,将此两组分配到6个班级中的2个班有A 26种.所以不同的安排方法有12C 24A 26种,即45种.法二 先从6个班级中选2个班级有C 26种不同方法,然后安排学生有C 24C 22种,故有C 26C 24=12A 26C 24种,即45种. 答案 (1)480 (2)45规律方法 (1)解排列组合问题要遵循两个原则:一是按元素(或位置)的性质进行分类;二是按事情发生的过程进行分步.具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置).(2)不同元素的分配问题,往往是先分组再分配.在分组时,通常有三种类型:①不均匀分组;②均匀分组;③部分均匀分组,注意各种分组类型中,不同分组方法的求法. 【训练3】 从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为________.解析 根据所选偶数为0和2分类讨论求解.①当选数字0时,再从1,3,5中取出2个数字排在个位与百位.∴排成的三位数的奇数有C 23A 22=6个.②当取出数字2时,再从1,3,5中取2个数字有C 23种方法.然后将选中的两个奇数数字选一个排在个位,其余2个数字全排列. ∴排成的三位数的奇数有C 23A 12A 22=12个.∴由分类加法计数原理,共有18个三位数的奇数. 答案 181.熟练掌握:(1)排列数公式A m n=n!n-m!;(2)组合数公式C m n=n!m!n-m!,这是正确计算的关键.2.解受条件限制的排列、组合题,通常有直接法(合理分类)和间接法(排除法).分类时标准应统一,避免出现重复或遗漏.解组合应用题时,应注意“至少”、“至多”、“恰好”等词的含义.3.排列组合的综合应用问题,一般按先选再排,先分组再分配的处理原则.对于分配问题,解题的关键是要搞清楚事件是否与顺序有关,对于平均分组问题更要注意顺序,避免计数的重复或遗漏.学生用书第159页易错辨析6——实际意义理解不清导致计数错误【典例】(2012·山东卷改编)现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张.从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为________.[错解] 第一类,含有一张红色卡片,取出红色卡片有C14种方法,再从黄、蓝、绿三色中选出两色并各取一张卡片有C23C14C14种方法.因此满足条件的取法有C14·C23C14C14=192种.第二类,不含有红色卡片,从其余三色卡片中各取一张有C14C14C14=64种取法.∴由分类计数原理,不同的取法共有192+64=256种.[答案] 256[错因] 错解的原因是没有理解“3张卡片不能是同一种颜色”的含义,误认为“取出的三种颜色不同”.[正解] 第一类,含有1张红色卡片,不同的取法C14C212=264(种).第二类,不含有红色卡片,不同的取法C312-3C34=220-12=208(种).由分类加法计数原理知,不同的取法共有264+208=472(种).[答案] 472[防范措施] (1)准确理解题意,抓住关键字词的含义,“3张卡片不能是同一种颜色”是指“两种颜色或三种颜色”都满足要求.(2)选择恰当分类标准,避免重复遗漏,出现“至少、至多”型问题,注意间接法的运用.【自主体验】1.(2013·大纲全国卷改编)有5人排成一行参观英模事迹展览,其中甲、乙两人不相邻的不同排法共有________种(用数字作答).解析先把除甲、乙外的3人全排列,有A33种,再把甲、乙两人插入这3人形成的四个空位中的两个,共A24种不同的方法.∴所有不同的排法共有A24·A33=72(种).答案722.如果把个位数是1,且恰有3个数字相同的四位数叫做“好数”,那么在由1,2,3,4四个数字组成的有重复数字的四位数中,“好数”共有________个.解析第一类:恰有三个相同的数字为1,选2,3,4中的一个数字排在十、百、千位的一个位置上,有C13·A13种方法,四位“好数”有9个.第二类:相同的三个数字为2,3,4中的一个,这样的四位“好数”为2221,3331,4441共3个.由分类加法计数原理,共有“好数”9+3=12个.答案12基础巩固题组(建议用时:40分钟)一、填空题1.一个平面内的8个点,若只有4个点共圆,其余任何4点不共圆,那么这8个点最多确定的圆的个数为________.解析从8个点中任选3个点有选法C38种,因为有4点共圆所以减去C34种再加1种,即有圆C38-C34+1=53个.答案532.若一个三位数的十位数字比个位数字和百位数字都大,称这个数为“伞数”.现从1,2,3,4,5,6这六个数字中取3个数,组成无重复数字的三位数,其中“伞数”有________个.解析分类讨论:若十位数为6时,有A25=20个;若十位数为5时,有A24=12个;若十位数为4时,有A23=6个;若十位数为3时,有A22=2个,因此一共有40个.答案403.将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同分法的种数为________.。
高考数学一轮复习 11.1计数原理精品学案 新人教版
2013版高考数学一轮复习精品学案:第十一章计数原理、概率、随机变量及其分布【知识特点】1.本章是高中数学中相对独立的一部分,概念性强、灵活性强、思维方法独特;2.本章内容应用性强,与实际问题联系密切,读不懂题意、题意理解错误往往是解不出题的原因。
【重点关注】1.排列、组合问题及随机变量的分布列、期望、方差是必考的内容。
准确确定随机变量的取值,准确计算概率是求分布列的基础,在复习过程中要多角度地加大训练力度。
2.在解题过程中要注意“分类讨论”“正难则反”的思想。
【地位与作用】1.计数问题是数学中的重要研究对象之一,分类加法计数原理、分步乘法计数原理是解决计数问题的最基本、最重要的方法,也称为基本计数原理,它们为解决很多实际问题提供了思想和工具。
在本章中,将复习到计数基本原理、排列、组合、二项式定理及其应用,了解计数与现实生活的联系,会解决简单的计数问题。
2.概率是描述随机事件发生可能性大小的量度,它已经渗透到人们的日常生活中,例如:彩票的中奖率,产品的合格率,天气预报、台风预报等都离不开概率。
概率在整个高中数学中占有重要地位,在整个高考考试中也占据着重要的地位。
3.对本章而言,高考中主要以选择、填空或解答题的形式考查,属于中、低档题。
重点考查的是两个计数原理、古典概型、离散型随机变量的分布列及其期望、方差等,预计本章在今后的高考中仍将在计数原理、古典概型、几何模型及随机变量的分布列等处命题。
11.1 计数原理【高考新动向】一、分类加法计数原理与分步乘法计数原理1.考纲点击(1)理解分类加法计数原理和分步乘法计数原理;(2)全用分类加法计数原理或分步乘法计数原理分析和解决一些简单的实际问题。
2.热点提示(1)主要考查分类加法计数原理和分步乘法计数原理及分类讨论思想;(2)对两个原理的考查一般在选择、填空题中出现。
二、排列与组合1.考纲点击(1)理解排列、组合的概念;(2)能利用计数原理推导排列数公式、组合公式;(3)能解决简单的实际问题。
高考数学一轮复习教案选修第5课计数原理与排列、组合
一、教学目标1、理解分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题;2、理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题;3、理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题.二、基础知识回顾与梳理1、分类计数原理:完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法……在第n 类办法中有n m 种不同的方法,那么完成这件事共有12n N m m m =+++种不同的方法。
又称__加法___原理。
分步计数原理:完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法……做第n 步办法有n m 种不同的方法,那么完成这件事共有12n N m m m =⨯⨯⨯种不同的方法。
又称___乘法____原理。
【提问】:分类计数原理的“类”分步计数原理“步”之间关系是怎样的?分类和分步计数原理,都是关于做一件事的不同方法的种数的问题,区别在于:分类计数原理针对“分类”问题,其中各种方法相互独立,用其中任何一种方法都可以做完这件事;分步计数原理针对“分步” 问题,各个步骤相互依存,只有各个步骤都完成了才算完成这件事.2、排列的定义包括两个基本内容:一是“取出元素”,二是“按照一定顺序”排列。
区分某一问题是排列问题还是组合问题,关键是看所选出的元素与顺序是否有关,若交换某两个元素的位置对结果产生影响,则是排列问题,否则是组合问题。
3、排列数(1)(2)(1)m n A n n n n m =---+(1)(2)(1)()321()(1)321n n n n m n m n m n m ---+-⋅⋅=---⋅⋅ =!()!n n m -),,(n m N m n ≤∈*且 组合数:(1)(2)(1)!m mn n m m A n n n n m C A m ---+== !!()!n m n m =-),,(n m N m n ≤∈*且. 排列数和组合数之间的关系:m n A =m n C m m A ⋅【分析与点评】主要是帮助学生复习组合数公式、组合数与排列数之间的关系.教学中要强调计算mn A 可以理解为先计算从n 个元素中取m 个元素的组合数m n C ,再将这m 个元素进行排列得m m A ,运用分步计数原理得到m m m n n m A C A =⋅ 三、诊断练习1、教学处理:课前由学生自主完成5道小题,并要求将解题过程扼要地写在学习笔记栏.课前抽查批阅部分同学的解答,了解学生的思路及主要错误.教学中,充分进行讨论和交流,主要是发现学生公式、性质的记忆的错误,暴露学生求解简单排列组合问题时方法上的失误,特别要关注学生理解“分类和分步”的不足,并通过讨论、点评纠正错误.2、诊断练习点评题1:有不同的外语书5本,不同的数学书4本,不同的物理书3本.(1)从中任取一本,有 种不同的取法;(2)若取外语、数学、物理各一本,有 种不同的取法.【分析与点评】此题考查的是分类计数原理与分步计数原理直接运用.第(1)问是分类;第(2)问是分步.教学中要通过(1),(2)两问的比较使得学生“分类”和“分步”的本质区别,强调“做一件事”和“完成”的数学意义,第(1)问中,取一本书,无论取的是那一种,这件事都完成,所以是分类;第(2)问,若先取一本数学书,这件事并没有完成,再取一本外语数,这件事还没有完成,必须再取一本物理书,这件事才完成,所以是分步.学生往往凭感觉,觉得太简单,其实没有真正理解“加”、“乘”这两种运算的本质.题2:从5名男生和2名女生中选出3名志愿者,其中至少有1名女生的选法共有 _____ 种.【分析与点评】本题属于组合问题,只取不排。
2025届高中数学一轮复习课件《计数原理》ppt
高考一轮总复习•数学
第20页
解析:(1)因为学生只能从东门或西门进入校园, 所以 3 名学生进入校园的方式共 23= 8(种).因为教师只可以从南门或北门进入校园, 所以 2 名教师进入校园的方式共有 22= 4(种).所以 2 名教师和 3 名学生进入校园的方式共有 8×4=32(种).故选 D.
A.12 种 B.24 种 C.72 种 D.216 种
高考一轮总复习•数学
第15页
(2)设 I={1,2,3,4},A 与 B 是 I 的子集,若 A∩B={1,2},则称(A,B)为一个“理想配集”.若
将(A,B)与(B,A)看成不同的“理想配集”,
按其中一个子集中元素个数分类23个个;; 4个.
即十位数字最小. 称该数为“驼峰数”.比如 102,546 为“驼峰数”,由数字 1,2,3,4 构成的无重复数字 的“驼峰数”有________个.
高考一轮总复习•数学
第22页
解析:(1)由分步乘法计数原理知,用 0,1,…,9 十个数字组成三位数(可有重复数字) 的个数为 9×10×10=900,组成没有重复数字的三位数的个数为 9×9×8=648,则组成有 重复数字的三位数的个数为 900-648=252.故选 B.
(2)根据题意知,a,b,c 的取值范围都是区间[7,14]中的 8 个整数,故公差 d 的范围是区 间[-3,3]中的整数.①当公差 d=0 时,有 C18=8(种);②当公差 d=±1 时,b 不取 7 和 14, 有 2×C16=12(种);③当公差 d=±2 时,b 不取 7,8,13,14,有 2×C14=8(种);④当公差 d=±3 时,b 只能取 10 或 11,有 2×C12=4(种).综上,共有 8+12+8+4=32(种)不同的分珠计数 法.
高三数学一轮复习精品教案2:分类加法计数原理与分步乘法计数原理教学设计
10.6.1 分类加法计数原理与分步乘法计数原理考纲传真 1.理解分类加法计数原理和分步乘法计数原理.2.会用分类加法计数原理或分步乘法计数原理分析和解决一些简单的实际问题.1.分类加法计数原理完成一件事有两类不同方案,在第1类方案中有m 种不同的方法,在第2类方案中有n 种不同的方法,那么完成这件事共有N =m +n 种不同的方法.2.分步乘法计数原理完成一件事需要两个步骤,做第1步有m 种不同的方法,做第2步有n 种不同的方法,那么完成这件事共有N =m ×n 种不同的方法.1.(人教A 版教材习题改编)在所有的两位数中,个位数字大于十位数字的两位数共有( )A .50个B .45个C .36个D .35个『解析』 根据题意,十位数上的数字分别是1,2,3,4,5,6,7,8的情况分成8类,在每一类中满足题目要求的两位数分别有8个,7个,6个,5个,4个,3个,2个,1个.由分类加法计数原理知,符合题意的两位数共有8+7+6+5+4+3+2+1=36(个). 『答案』 C2.在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息.若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为()A .10B .11C .12D .15『解析』 若4个位置的数字都不同的信息个数为1;若恰有3个位置的数字不同的信息个数为C34;若恰有2个位置上的数字不同的信息个数为C24.由分类计数原理知满足条件的信息个数为1+C34+C24=11.『答案』B3.某班新年联欢会原定的6个节目已排成节目单,开演前又增加了3个新节目,如果将这3个新节目插入节目单中,那么不同的插法种数为()A.504 B.210 C.336 D.120『解析』分三步,先插一个新节目,有7种方法,再插第二个新节目,有8种方法,最后插第三个节目,有9种方法.故共有7×8×9=504种不同的插法.『答案』A4.(2012·大纲全国卷)6位选手依次演讲,其中选手甲不在第一个也不在最后一个演讲,则不同的演讲次序共有()A.240种B.360种C.480种D.720种『解析』第一步先排甲,共有A14种不同的排法;第二步再排其他人,共有A55种不同的排法.因此不同的演讲次序共有A14·A55=480(种).『答案』C5.从4名男生,2名女生中,选2人参加某项活动,至少有一名女生参加的选法有________种.『解析』法一分两类,①一男一女,共有4×2=8种;②两女,只有1种,共有8+1=9种.法二间接法C26-C24=15-6=9种.『答案』9分类加法计数原理某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友一本,则不同的赠送方法共有()A.4种B.10种C.18种D.20种『思路点拨』由于是两类不同的书本,故用分类加法计数原理.『尝试解答』赠送一本画册,3本集邮册.需从4人中选取一人赠送画册,其余送邮册,有C14种方法.赠送2本画册,2本集邮册,只需从4人中选出2人送画册,其余2人送邮册,有C24种方法.由分类加法计数原理,不同的赠送方法有C14+C24=10(种).『答案』B,1.本题常见错误:①忽视相同画册,相同集邮册条件,错用排列计算.②找不准分类标准.求解的关键在于抓住赠送画册的本数进行分类.2.分类标准是运用分类计数原理的难点所在,重点在于抓住题目中的关键词或关键元素、关键位置.首先根据题目特点恰当选择一个分类标准;其次分类时应注意完成这件事情的任何一种方法必须属于某一类,并且分别属于不同类的两种方法是不同的方法.图10-1-1如图10-1-1所示,在连接正八边形的三个顶点而成的三角形中,与正八边形有公共边的三角形有________个.『解析』把与正八边形有公共边的三角形分为两类:第一类,有一条公共边的三角形共有8×4=32(个).第二类,有两条公共边的三角形共有8(个).由分类加法计数原理知,共有32+8=40(个).『答案』40分步乘法计数原理(2012·大纲全国卷)将字母a,a,b,b,c,c排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有()A.12种B.18种C.24种D.36种『思路点拨』先排第一列三个位置,再排第二列第一行上的元素,则其余位置上元素就可以确定.『尝试解答』先排第一列,由于每列的字母互不相同,因此共有A33种不同排法.再排第二列,其中第二列第一行的字母共有A12种不同的排法,第二列第二、三行的字母只有1种排法.因此共有A33·A12·1=12(种)不同的排列方法.『答案』A,1.利用分步乘法计数原理解决问题要按事件发生的过程合理分步,即分步是有先后顺序的,并且也要确定分步的标准,分步必须满足:完成一件事的各个步骤是相互依存的,只有各个步骤都完成了,才算完成这件事.2.分步必须满足两个条件:(1)步骤互相独立,互不干扰.(2)步与步确保连续,逐步完成.已知集合M={-3,-2,-1,0,1,2},若a,b,c∈M,则(1)y=ax2+bx+c可以表示多少个不同的二次函数;(2)y=ax2+bx+c可以表示多少个图象开口向上的二次函数.『解』(1)a的取值有5种情况,b的取值有6种情况,c的取值有6种情况,因此y =ax2+bx+c可以表示5×6×6=180个不同的二次函数.(2)y=ax2+bx+c的开口向上时,a的取值有2种情况,b、c的取值均有6种情况.因此y=ax2+bx+c可以表示2×6×6=72个图象开口向上的二次函数.两个计数原理的综合应用图10-1-2如图10-1-2所示,用四种不同颜色给图中的A、B、C、D、E、F六个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色,则不同的涂色方法共有()A.288种B.264种C.240种D.168种『思路点拨』解答本题应注意两点:(1)每一个点都有可以和它同色的两个点.(2)涂色的顺序不同影响解题的难度,可先涂A、D、E,再分类涂B、F、C.『尝试解答』先涂A、D、E,共有4×3×2=24种涂法,然后再按B、C、F的顺序涂色,分为两类:一类是B与E或D同色,共有2×(2×1+1×2)=8种涂法,另一类是B与E 和D不同色,共有1×(1×1+1×2)=3种涂法,故涂色方法共有24×(8+3)=264种.『答案』B,1.给B、C、F涂色时,在每一类下又有两种情况,应切实掌握好分类的标准,分清哪些可以同色,哪些不同色.2.用两个计数原理解决计数问题时,关键是明确需要分类还是分步.(1)分类要做到“不重不漏”,分类后再分别对每一类进行计数,最后用分类加法计数原理求和,得到总数.(2)分步要做到“步骤完整”,只有完成了所有步骤,才完成任务,把完成每一步的方法数相乘,得到总数.(2013· 杭州模拟)如图10-1-3,用4种不同的颜色对图中5个区域涂色(4种颜色全部使用),要求每个区域涂一种颜色,相邻的区域不能涂相同的颜色,则不同的涂色种数有________.图10-1-3『解析』按区域1与3是否同色分类:(1)区域1与3同色:先涂区域1与3有4种方法,再涂区域2,4,5(还有3种颜色)有A33种方法.∴区域1与3涂同色,共有4A33=24种方法.(2)区域1与3不同色:先涂区域1与3有A24种方法,第二步涂区域2有2种涂色方法,第三步涂区域4只有一种方法,第四步涂区域5有3种方法.∴这时共有A24×2×1×3=72种方法,故由分类计数原理,不同的涂色种数为24+72=96.『答案』96两个原理分类加法计数原理与分步乘法计数原理是解决排列组合问题的基础并贯穿始终.(1)分类加法计数原理中,完成一件事的方法属于其中一类并且只属于其中一类.(2)分步乘法计数原理中,各个步骤相互依存,在各个步骤中任取一种方法,构成完成这件事的一种方法,简单的说步与步之间的方法“相互独立,多步完成”.两点提醒1.分类时,标准要明确,应做到不重不漏.2.分步时,要合理设计顺序、步骤,并注意元素是否可以重复选取.从近两年高考试题看,两个计数原理是高考考查的热点,一般与排列、组合等知识结合,考查分类讨论的数学思想.主要涉及数字问题、几何问题、涂色问题,有时也出现与其它知识相结合的新定义题型.创新探究之十二与计数原理有关的新定义题(2012·江苏高考)设集合P n={1,2,…,n},n∈N*,记f(n)为同时满足下列条件的集合A 的个数:①A ⊆P n ;②若x ∈A ,则2x ∉A ;③若x ∈∁P n A ,则2x ∉∁P n A .(1)求f (4);(2)求f (n )的解析式(用n 表示).『解』 (1)当n =4时,符合条件的集合A 为:{2},{1,4},{2,3},{1,3,4},故f (4)=4.(2)任取偶数x ∈P n ,将x 除以2,若商仍为偶数,再除以2,…,经过k 次以后,商必为奇数,此时记商为m ,于是x =m ·2k ,其中m 为奇数,k ∈N *.由条件知,若m ∈A ,则x ∈A ⇔k 为偶数;若m ∉A ,则x ∈A ⇔k 为奇数.于是x 是否属于A 由m 是否属于A 确定.设Q n 是P n 中所有奇数的集合,因此f (n )等于Q n 的子集个数.当n 为偶数(或奇数)时,P n 中奇数的个数是n 2(或n +12), 所以f (n )=⎩⎨⎧2n 2,n 为偶数,2n +12,n 为奇数.创新点拨:(1)以集合的概念和运算为背景,求解计数问题.(2)一题两问,体现由特殊到一般的数学思想,考查归纳、抽象概括能力.防范措施:(1)通过阅读、分析,弄清新定义,弄清利用新定义所解决的问题,如本题中f (n )表示集合A 的个数,且集合A 满足三个条件.(2)从特殊情形入手,通过分析、归纳,发现问题中隐含的一些本质特征和规律,然后再推广到一般情形,必要时可以多列举一些特殊情形,使规律方法更加明确.1.(2012·课标全国卷)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )A .12种B .10种C .9种D .8种『解析』 分两步:第一步,选派一名教师到甲地,另一名到乙地,共有C 12=2(种)选派方法;第二步,选派两名学生到甲地,另外两名到乙地,共有C24=6(种)选派方法.由分步乘法计数原理得不同的选派方案共有2×6=12(种).『答案』A2.(2013·济南质检)如果把个位数是1,且恰有3个数字相同的四位数叫做“好数”,那么在由1,2,3,4四个数字组成的有重复数字的四位数中,“好数”共有________个.『解析』第一类:恰有三个相同的数字为1,选2,3,4中的一个数字排在十、百、千位的一个位置上,有C13·A13种方法,四位“好数”有9个.第二类:相同的三个数字为2,3,4中的一个,这样的四位“好数”为2221,3331,4441共3个.由分类加法计数原理,共有“好数”9+3=12个.『答案』12。
2025版高考数学一轮复习第十一章计数原理概率随机变量及分布列第3讲二项式定理教案理含解析新人教A版
第3讲 二项式定理基础学问整合1.二项式定理的内容(1)(a +b )n =□01C 0n a n +C 1n a n -1b 1+…+C r n a n -r b r +…+C n nb n (n ∈N *). (2)第r +1项,T r +1=□02C r na n -rb r . (3)第r +1项的二项式系数为□03C r n (r =0,1,…,n ). 2.二项式系数的性质(1)0≤k ≤n 时,C k n 与C n -k n 的关系是□04相等. (2)二项式系数先增后减中间项最大且n 为偶数时第□05n 2+1项的二项式系数最大,最大为,当n 为奇数时第□07n -12+1或n +12+1项的二项式系数最大,最大为.(3)各二项式系数和:C 0n +C 1n +C 2n +…+C n n =□092n ,C 0n +C 2n +C 4n +…=□102n -1,C 1n +C 3n +C 5n +…=□112n -1.1.留意(a +b )n与(b +a )n虽然相同,但详细到它们绽开式的某一项时是不同的,肯定要留意依次问题.2.解题时,要留意区分二项式系数和项的系数的不同、项数和项的不同. 3.切实理解“常数项”“有理项(字母指数为整数)”“系数最大的项”等概念.1.(2024·全国卷Ⅲ)⎝⎛⎭⎪⎫x 2+2x 5的绽开式中x 4的系数为( )A .10B .20C .40D .80 答案 C解析 由题可得T r +1=C r 5(x 2)5-r⎝ ⎛⎭⎪⎫2x r =C r 5·2r ·x 10-3r .令10-3r =4,则r =2,所以C r 5·2r =C 25×22=40.故选C.2.若(x -1)4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4,则a 0+a 2+a 4的值为( ) A .9 B .8 C .7 D .6 答案 B解析 令x =1,则a 0+a 1+a 2+a 3+a 4=0,令x =-1,则a 0-a 1+a 2-a 3+a 4=16,两式相加得a 0+a 2+a 4=8.3.(x -y )(x +y )5的绽开式中x 2y 4的系数为( ) A .-10 B .-5 C .5 D .10 答案 B解析 (x +y )5的绽开式的通项公式为T r +1=C r 5·x5-r·y r,令5-r =1,得r =4,令5-r =2,得r =3,∴(x -y )(x +y )5的绽开式中x 2y 4的系数为C 45×1+(-1)×C 35=-5.故选B.4.设(5x -x )n的绽开式的各项系数之和为M ,二项式系数之和为N ,M -N =240,则绽开式中x 3的系数为( )A .500B .-500C .150D .-150 答案 C解析 N =2n,令x =1,则M =(5-1)n=4n=(2n )2.∴(2n )2-2n=240,2n=16,n =4.绽开式中第r +1项T r +1=C r 4·(5x )4-r·(-x )r =(-1)r ·C r 4·54-r·x4-r2.令4-r2=3,即r =2,此时C 24·52·(-1)2=150.5.(2024·绍兴模拟)若⎝⎛⎭⎪⎫ax 2+1x 5的绽开式中x 5的系数是-80,则实数a = ________.答案 -2 解析6.(2024·南昌模拟)(1+x +x 2)⎝ ⎛⎭⎪⎫x -1x 6的绽开式中的常数项为________.答案 -5解析 ⎝ ⎛⎭⎪⎫x -1x 6的通项公式为T r +1=C r 6x 6-2r (-1)r ,所以(1+x +x 2)⎝ ⎛⎭⎪⎫x -1x 6的常数项为C r 6x6-2r(-1)r (当r =3时)与C r 6x6-2r(-1)r (当r =4时)之和,所以常数项为C 36(-1)3+C 46(-1)4=-20+15=-5.核心考向突破考向一 求绽开式中的特定项或特定系数例1 (1)⎝ ⎛⎭⎪⎫x -13x 18的绽开式中含x 15的项的系数为( )A .153B .-153C .17D .-17 答案 C 解析(2)(2024·山东枣庄模拟)若(x 2-a )⎝⎛⎭⎪⎫x +1x 10的绽开式中x 6的系数为30,则a 等于( )A.13B.12 C .1 D .2 答案 D解析 ⎝⎛⎭⎪⎫x +1x 10绽开式的通项公式为T r +1=C r 10·x 10-r ·⎝ ⎛⎭⎪⎫1x r =C r 10·x 10-2r ,令10-2r =4,解得r =3,所以x 4项的系数为C 310;令10-2r =6,解得r =2,所以x 6项的系数为C 210,所以(x 2-a )⎝⎛⎭⎪⎫x +1x 10的绽开式中x 6的系数为C 310-a C 210=30,解得a =2.故选D.(3)(2024·浙江高考)二项式⎝⎛⎭⎪⎫3x +12x 8的绽开式的常数项是________.答案 7解析 二项式⎝ ⎛⎭⎪⎫3x +12x 8的绽开式的通项公式为T r +1=C r 8(3x )8-r ⎝ ⎛⎭⎪⎫12x r=C r8·12r ·x8-4r3,令8-4r 3=0得r =2,故所求的常数项为C 28·122=7.触类旁通即时训练 1.(2024·广州调研)⎝ ⎛⎭⎪⎫x -12x9的绽开式中x 3的系数为( )A .-212B .-92 C.92 D.212答案 A解析 二项绽开式的通项T r +1=C r 9x9-r⎝ ⎛⎭⎪⎫-12x r =⎝ ⎛⎭⎪⎫-12r C r 9x 9-2r ,令9-2r =3,得r =3,绽开式中x 3的系数为⎝ ⎛⎭⎪⎫-123C 39=-18×9×8×73×2×1=-212.故选A.2.(2024·河南信阳模拟)(x 2+1)⎝⎛⎭⎪⎫1x -25的绽开式的常数项是( )A .5B .-10C .-32D .-42 答案 D解析 由于⎝ ⎛⎭⎪⎫1x -25的通项为C r 5·⎝ ⎛⎭⎪⎫1x 5-r ·(-2)r =C r 5(-2)r·xr -52,故(x 2+1)·⎝⎛⎭⎪⎫1x -25的绽开式的常数项是C 15·(-2)+C 55(-2)5=-42.故选D.3.已知⎝ ⎛⎭⎪⎫a x-x 29的绽开式中x 3的系数为94,则a =________. 答案 4 解析 ⎝ ⎛⎭⎪⎫a x-x 29的绽开式的通项公式为T r +1=C r9⎝ ⎛⎭⎪⎫a x 9-r ·⎝⎛⎭⎪⎫-x 2r=(-1)r ·a 9-r·2-r2·C r9·x 32r -9.令32r -9 =3,得r =8,则(-1)8·a ·2-4·C 89=94,解得a =4.考向二 二项式系数与各项的系数问题角度1 二项式绽开式中系数的和例2 (1)(2024·金华模拟)已知⎝⎛⎭⎪⎫x 3+2x n 的绽开式的各项系数和为243,则绽开式中x7的系数为( )A .5B .40C .20D .10 答案 B解析 由⎝⎛⎭⎪⎫x 3+2x n 的绽开式的各项系数和为243,得3n=243,即n =5,∴⎝ ⎛⎭⎪⎫x 3+2x n =⎝ ⎛⎭⎪⎫x 3+2x 5,则T r +1=C r 5·(x 3)5-r ·⎝ ⎛⎭⎪⎫2x r =2r ·C r 5·x 15-4r ,令15-4r =7,得r =2,∴绽开式中x 7的系数为22×C 25=40.故选B.(2)已知(1-2x )7=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5+a 6x 6+a 7x 7,则a 1+a 2+a 3+a 4+a 5+a 6=________,a 0-a 1+a 2-a 3+a 4-a 5+a 6-a 7=________,a 2+a 4+a 6=________.答案 126 2187 1092 解析 令x =0,得a 0=1.令x =1,得-1=a 0+a 1+a 2+…+a 7. ① 又∵a 7=C 77(-2)7=(-2)7,∴a 1+a 2+…+a 6=-1-a 0-a 7=126. 令x =-1,得a 0-a 1+a 2-a 3+a 4-a 5+a 6-a 7=37=2187. ②①+②2,得a 0+a 2+a 4+a 6=1093,∴a 2+a 4+a 6=1092. 触类旁通求二项式系数和的常用方法是赋值法(1)“赋值法”普遍适用于恒等式,对形如(ax +b )n,(ax 2+bx +c )m(a ,b ∈R )的式子,求其绽开式的各项系数之和,常用赋值法,只需令x =1即可;对形如(ax +by )n(a ,b ∈R )的式子求其绽开式各项系数之和,只需令x =y =1即可.即时训练 4.(2024·黄冈质检)若(1+x +x 2)6=a 0+a 1x +a 2x 2+…+a 12x 12,则a 2+a 4+…+a 12=( )A .284B .356C .364D .378 答案 C解析 令x =0,则a 0=1;令x =1,则a 0+a 1+a 2+…+a 12=36①; 令x =-1,则a 0-a 1+a 2-…+a 12=1 ②.①②两式左右分别相加,得2(a 0+a 2+…+a 12)=36+1=730,所以a 0+a 2+…+a 12=365,又a 0=1,所以a 2+a 4+…+a 12=364.5.(2024·郑州一测)在⎝⎛⎭⎪⎫x +3x n的绽开式中,各项系数和与二项式系数和之比为32∶1,则x 2的系数为________.答案 90解析 令x =1,则⎝⎛⎭⎪⎫x +3x n=4n,所以⎝⎛⎭⎪⎫x +3x n的绽开式中,各项系数和为4n,又二项式系数和为2n,所以4n2n =2n =32,解得n =5.二项绽开式的通项T r +1=C r 5x 5-r ⎝ ⎛⎭⎪⎫3x r =C r53rxr5-32,令5-32r =2,得r =2,所以x 2的系数为C 2532=90.角度2 二项式系数的最值问题例3 (1)(2024·广东广州模拟)已知二项式⎝⎛⎭⎪⎫2x 2-1x n的全部二项式系数之和等于128,那么其绽开式中含1x项的系数是( )A .-84B .-14C .14D .84 答案 A解析 由二项式⎝⎛⎭⎪⎫2x 2-1x n 的绽开式中全部二项式系数的和是128,得2n=128,即n =7,∴⎝⎛⎭⎪⎫2x 2-1x n =⎝ ⎛⎭⎪⎫2x 2-1x 7,则T r +1=C r 7·(2x 2)7-r ·⎝ ⎛⎭⎪⎫-1x r =(-1)r ·27-r ·C r 7·x 14-3r.令14-3r =-1,得r =5.∴绽开式中含1x项的系数是-4×C 57=-84.故选A.(2)(2024·安徽马鞍山模拟)二项式⎝⎛⎭⎪⎪⎫3x +13x n 的绽开式中只有第11项的二项式系数最大,则绽开式中x 的指数为整数的项的个数为( )A .3B .5C .6D .7 答案 D解析 依据⎝ ⎛⎭⎪⎪⎫3x +13x n 的绽开式中只有第11项的二项式系数最大,得n =20,∴⎝ ⎛⎭⎪⎪⎫3x +13x n 的绽开式的通项为T r +1=C r 20·(3x )20-r ·⎝ ⎛⎭⎪⎪⎫13x r =(3)20-r · C r20·x20-4r 3,要使x 的指数是整数,需r 是3的倍数,∴r =0,3,6,9,12,15,18,∴x 的指数是整数的项共有7项.故选D.触类旁通求二项式系数最大项(1)假如n 是偶数,那么中间一项(第⎝ ⎛⎭⎪⎫n2+1项)的二项式系数最大.即时训练 6.已知(1+x )n的绽开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为( )A .212B .211C .210D .29答案 D解析 因为绽开式的第4项与第8项的二项式系数相等,所以C 3n =C 7n ,解得n =10,所以依据二项式系数和的相关公式可知,奇数项的二项式系数和为2n -1=29.7.若⎝ ⎛⎭⎪⎫x +2x 2n 的绽开式中只有第6项的二项式系数最大,则绽开式中的常数项是( )A .180B .120C .90D .45 答案 A解析 只有第6项的二项式系数最大,可知n =10,于是绽开式通项为T r +1=C r10(x )10-r⎝ ⎛⎭⎪⎫2x 2r =2r C r 10·x 5-5r 2,令5-5r 2=0,得r =2,所以常数项为22C 210=180.故选A.角度3 项的系数的最值问题例4 (1)(2024·承德模拟)若(1+2x )6的绽开式中其次项大于它的相邻两项,则x 的取值范围是( )A.112<x <15B.16<x <15C.112<x <23D.16<x <25答案 A解析 ∵⎩⎪⎨⎪⎧C 162x >C 06,C 162x >C 262x 2,∴⎩⎪⎨⎪⎧x >112,0<x <15,即112<x <15. (2)若⎝⎛⎭⎪⎫x 3+1x 2n的绽开式中第6项系数最大,则不含x 的项为( )A .210B .10C .462D .252 答案 A解析 ∵第6项系数最大,且项的系数为二项式系数, ∴n 的值可能是9,10,11. 设常数项为T r +1=C r n x3(n -r )x -2r=C r n x3n -5r, 则3n -5r =0,其中n =9,10,11,r ∈N , ∴n =10,r =6,故不含x 的项为T 7=C 610=210. 触类旁通求绽开式系数最大项如求(a +bx )n(a ,b ∈R )的绽开式系数最大的项,一般是采纳待定系数法,设绽开式各项系数分别为A 1,A 2,…,A n +1,且第k 项系数最大,应用⎩⎪⎨⎪⎧A k ≥A k -1,A k ≥A k +1从而解出k 来,即得.即时训练 8.(2024·宜昌高三测试)已知(x 23+3x 2)n的绽开式中,各项系数和与它的二项式系数和的比为32.(1)求绽开式中二项式系数最大的项; (2)求绽开式中系数最大的项. 解考向三二项式定理的应用例5 (1)(2024·潍坊模拟)设a∈Z,且0≤a<13,若512024+a能被13整除,则a=( ) A.0 B.1 C.11 D.12答案 D1+1,又由于13解析由于51=52-1,(52-1)2024=C020********-C12024522024+…-C2024202452整除52,所以只需13整除1+a,0≤a<13,a∈Z,所以a=12.(2)0.9910的第一位小数为n1,其次位小数为n2,第三位小数为n3,则n1,n2,n3分别为( )A.9,0,4 B.9,4,0 C.9,2,0 D.9,0,2答案 A解析0.9910=(1-0.01)10=C010·110·(-0.01)0+C110·19·(-0.01)1+C210·18·(-0.01)2+…=1-0.1+0.0045+…≈0.9045.触类旁通二项式定理应用的题型及解法(1)在证明整除问题或求余数问题时要进行合理的变形,使被除式(数)绽开后的每一项都含有除式的因式.2二项式定理的一个重要用途是做近似计算:当n不很大,|x|比较小时,1+x n≈1+nx.即时训练9.1-90C110+902C210-903C310+…+(-1)k90k C k10+…+9010C1010除以88的余数是( )A .-1B .1C .-87D .87 答案 B解析 1-90C 110+902C 210-903C 210+…+(-1)k 90k C k 10+…+9010C 1010=(1-90)10=8910=(88+1)10=8810+C 110889+…+C 91088+1.∵前10项均能被88整除,∴余数是1.10.1.028的近似值是________(精确到小数点后三位). 答案 1.172解析 1.028=(1+0.02)8≈C 08+C 18·0.02+C 28·0.022+C 38·0.023≈1.172.1.(2024·江苏模拟)(x 2+x +y )5的绽开式中,x 5y 2的系数为( ) A .10 B .20 C .30 D .60 答案 C解析 由二项绽开式通项易知T r +1=C r 5(x 2+x )5-r y r,令r =2,则T 3=C 25(x 2+x )3y 2,对于二项式(x 2+x )3,由T t +1=C t 3(x 2)3-t·x t =C t 3x6-t,令t =1,所以x 5y 2的系数为C 25C 13=30.故选C.2.在⎝⎛⎭⎪⎫2+x -x 2024202412的绽开式中x 5的系数为________. 答案 264解析 ⎝ ⎛⎭⎪⎫2+x -x 2024202412=⎣⎢⎡⎦⎥⎤2+x -x 2024202412的绽开式的通项公式为T r +1=C r12(2+x )12-r·⎝ ⎛⎭⎪⎫-x 20242024r ,若要出现x 5项,则需r =0,则T 1=(2+x )12,∴x 5的系数为22C 1012=4C 212=264.答题启示二项式定理探讨两项和的绽开式,对于三项式问题,一般是通过合并、拆分或进行因式分解,转化成二项式定理的形式去求解.对点训练1.(x 2-x +1)10绽开式中x 3的系数为( ) A .-210 B .210 C .30 D .-30 答案 A解析 (x 2-x +1)10=[x 2-(x -1)]10=C 010(x 2)10-C 110(x 2)9(x -1)+…-C 910x 2(x -1)9+C 1010(x -1)10,所以含x 3项的系数为-C 910C 89+C 1010(-C 710)=-210.故选A.2.⎝⎛⎭⎪⎪⎫x +13x -4y 7的绽开式中不含x 的项的系数之和为( ) A .-C 37C 3443-47B .-C 27C 2443+47C .-47D .47答案 A11 解析 ⎝ ⎛⎭⎪⎪⎫x +13x -4y 7=⎣⎢⎢⎡⎦⎥⎥⎤⎝ ⎛⎭⎪⎪⎫x +13x -4y 7的绽开式的通项公式为T r +1=C r 7·⎝ ⎛⎭⎪⎪⎫x +13x 7-r ·(-4y )r,⎝ ⎛⎭⎪⎪⎫x +13x 7-r 的绽开式的通项公式为M k +1=C k 7-r · x 7-r -4k 3,0≤k ≤7-r,0≤r ≤7,k ,r 均为整数,令7-r =4k 3,解得k =0,r =7或k =3,r =3,则不含x 的项的系数之和为(-4)7+C 37C 34(-4)3=-C 37C 3443-47.。
高考数学第一轮复习学案---计数原理
⾼考数学第⼀轮复习学案---计数原理第⼀课时:两个基本原理、排列组合的基本知识考纲要求:①理解分类加法计数原理和分类乘法计数原理;理解排列、组合的概念;②能利⽤计数原理推导排列数公式、组合数公式;③会⽤以上原理和概念解决⼀些简单的实际问题. ⼀、两个基本原理:1、分类加法计数原理:做⼀件事,完成它可以有n 类办法,在第⼀类办法中有m 1种不同的办法;在第⼆类办法中有m 2种不同的办法……在第n 类办法中有m n 种不同的办法,那么完成这件事共有N=m 1+m 2+…..+ m n 种不同的办法.2、分步乘法计数原理:做⼀件事,完成它需要分成n 个步骤,做第⼀步有m 1种不同的办法;做第⼆步有m 2种不同的办法……做第n 步有m n 种不同的办法,那么完成这件事共有N=m 1*m 2*…..* m n 种不同的办法.3、两个原理的共同点和不同点共同点:都是有关做⼀件事的不同⽅法的种数问题;不同点:(1)分类加法计数原理针对的是“分类”问题,其中各种⽅法相互独⽴,⽤其中任何⼀种⽅法都可以做完这件事;(2)分步乘法计数原理针对的是“分步”问题,各个步骤中的⽅法互相依存,只有各个步骤都完成才算做完这件事.▲要注意“类”和“类”的独⽴性,“步”与“步”的连续性. ⼆、排列1、排列的概念:⼀般地,从n 个不同元素中取出m (m ≤n )个元素,按照⼀定的顺序排成⼀列,叫做从n 个不同元素中取出m 个元素的⼀个排列.2、排列数:从n 个不同元素中取出m (m ≤n )个元素的所有不同排列的个数叫做从n 个不同元素中取出m (m ≤n )个元素的排列数,记作m n A .3、排列数公式:(1)(1)(2)(1)m n A n n n n m =---+ (,,m n N m n *∈≤)▲(1)(2)321!n n A n n n n =--??= ▲0!1= (2))!(!m n n A mn -==nnn mn mA A -- (,,m n N m n *∈≤)三、组合1、组合的概念:从n 个不同元素中,任取m(m ≤n)个元素并成⼀组,叫做从n 个不同元素中取出m 个元素的⼀个组合.2、组合数:从n 个不同元素中取出m 个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,记作mn C .3、排列与组合的区别和联系:相同点:不同点:两者的联系:从n 个不同元素中取出m 个元素的⼀个排列可以看成先从n 个不同元素中取出m 个元素的⼀4、组合数公式:(1)!)1()2)(1(m m n n n n C mn +---=▲1n n C =; 01n C =(2)组合数性质:① =mn C mn n C -②=+mn C 1+mn C 1-m nC③1121++++++=++++m n m mn m mm mm mm C C C C C 例题与练习:1、(2010湖北⽂6)现有6名同学旁听同时进⾏的5个课外知识讲座,每名同学可⾃由选择其中的⼀个讲座,不同选法的种数是()AABCDEF(补充题)GA .45 B. 56 C.5654322D.6543????23、(2010全国卷2理6)将标号为1,2,3,4,5,6的6张卡⽚放⼊3个不同的信封中.若每个信封放2张,其中标号为1,2的卡⽚放⼊同⼀信封,则不同的⽅法共有()B (A )12种(B )18种(C )36种(D )54种4、(2010湖南理数7)在某种信息传输过程中,⽤4个数字的⼀个排列(数字允许重复)表⽰⼀个信息,不同排列表⽰不同信息,若所⽤数字只有0和1,则与信息0110⾄多有两个对应位置上的数字相同的信息个数为( ) BA.10B.11C.12D.155、(2010四川⽂9)由1、2、3、4、5组成没有重复数字且1、2都不与5相邻的五位数的个数是()A (A )36 (B )32(C )28 (D )246、(2009⼴东7)2010年⼴州亚运会组委会要从⼩张、⼩赵、⼩李、⼩罗、⼩王五名志愿者中选派四⼈分别从事翻译、导游、礼仪、司机四项不同⼯作,若其中⼩张和⼩赵只能从事前两项⼯作,其余三⼈均能从事这四项⼯作,则不同的选派⽅案共有( )AA.36种B.12种C.18种D.48种7、(2007⼴东12)如果⼀个凸多⾯体是n 棱锥,那么这个凸多⾯体的所有顶点所确定的直线共有条,这些直线中共有()f n 对异⾯直线,则(4)f = ;()f n = .:(1)2n n +;8;n(n-2)(答案⽤数字或n 的解析式表⽰)8、(2010全国卷2⽂9)将标号为1,2,3,4,5,6的6张卡⽚放⼊3个不同的信封中,若每个信封放2张,其中标号为1,2的卡⽚放⼊同⼀信封,则不同的⽅法共有( )B(A ) 12种 (B) 18种 (C) 36种 (D) 54种9、(2010湖北理8)现安排甲、⼄、丙、丁、戌5名同学参加上海世博会志愿者服务活动,每⼈从事翻译、导游、礼仪、司机四项⼯作之⼀,每项⼯作⾄少有⼀⼈参加.甲、⼄不会开车但能从事其他三项⼯作,丙丁戌都能胜任四项⼯作,则不同安排⽅案的种数是()B A .152 B.126 C.90 D.54 作业:《⼗年》P213 Ex1-15补充题: (14分)如图,已知四边形ABCD 为矩形,A D ⊥平⾯ABE ,AE =EB =BC =2,F 为CE 上的点,且BF ⊥平⾯ACE .(1)求证:AE //平⾯BDF ;(2)求三棱锥D -ACE 的体积.(34)题7第⼆课时:⼆项式定理考纲要求:①能⽤计数原理证明⼆项式定理;②会⽤⼆项式定理解决与⼆项式展开式有关的简单问题.⼀、⼆项式定理:当n ∈N *时,nr r n r n n n n n n n b b a C b a C b a C a b a ++++++=+---......)(22211b a n ++与整体展开式⼀样,但展开式的通项不⼀样:)(b a n +的通项是b r ar n C r n T r ?-?=+1;n a b )(+的通项是.'1a r b r n C r n T r ?-?=+ 1、通项公式:第r+1项为.1r b r n ar n C r T -=+ 2、⼆项式的性质:(1)⼆项式系数的对称性在⼆项展开式中,与⾸末两端“等距离”的两项的⼆项式系数相等. (2)⼆项式系数的⼤⼩规律如果⼆项式的幂指数是偶数,中间⼀项即12+n T 的⼆项式系数最⼤;如果⼆项式的幂指数是奇数,中间两项即21+n T 与121++n T 的⼆项式系数最⼤;(3)⼆项式系数和nn n n n C C C 210=+++ ; 1422-=+++n n n n C C C ; 15312-=+++n n n n C C C ;.11--=?r n r n nCC r(1)121++++++=++++m n m mn m mm mm mm C C C C C mn m mm n n n n C C C C C 1221...+++++=++++3、⼆项式系数与项的系数的区别如n bx a )(+的展开式中,第r+1项的⼆项式系数为r n C ;第r+1项的系数为.rb r n a r n C - 4、求展开式的各项系数之和 5、最⼤系数及最⼤项的求法例题1、在2nx- 的展开式中,只有第5项的⼆项式系数最⼤,则展开式中常数项是________.72、(2010四川理13)6(2-的展开式中的第四项是 .-160x3、(2010全国卷2理14)若9()a x x-的展开式中3x 的系数是84-,则a = . 14、(2010湖北⽂11)在210(1)x -的展开中, 4x 的系数为______. 455、(2006江苏)10)31(xx -的展开式中含x 的正整数指数幂的项数是( )B(A )0 (B )2 (C )4 (D )66、(2006江西)在(x2006 的⼆项展开式中,含x 的奇次幂的项之和为S ,当xS 等于7、(2007江西⽂5)11112210102)2()2()2(+++++++=+x a x a x a a x x ,则=++++11211a a a a ________-2 8、(2010湖北理11)在(x+)20的展开式中,系数为有理数的项共有_______项. 6【解析】⼆项式展开式的通项公式为202012020)(020)rrr r r rrr T C x C xy r --+==≤≤要使系数为有理数,则r 必为4的倍数,所以r 可为0.、4、8、12、16、20共6种,故系数为有理数的项共有6项. 9、(2005⼴东13)已知5)1cos (+θx 的展开式中2x 的系数与4)45(+x 的展开式中x 3的系数相等,则θcos = . 22±作业:1、(2010全国卷1⽂5)43(1)(1x --的展开式中2x 的系数是()A(A)-6 (B)-3 (C)0 (D)331+x x 的展开式中,x 的幂的指数是整数的项共有(C ) A.3项 B.4项 C.5项 D.6项3、(2010辽宁理13)261(1)()x x x x++-的展开式中的常数项为_________. -54、(2010江西理6)(82-展开式中不含..4x 项的系数的和为()BA.-1B.0C.1D.2 5、(2010安徽理12)6)(xy yx -展开式中,3x 的系数等于__________. 156、(2010全国卷1理5)35(1(1+-的展开式中x 的系数是()C (A) -4 (B) -2 (C) 2 (D) 47、已知2012(1)n nn x a a x a x a x -=++++ ,若12520a a +=,则0123(1)nn a a a a a -+-++-= ________.64补充题: (06辽宁22)已知0(),n11()()(1)k k k f x f x f --=,其中(,)k n n k N +≤∈,设02122201()()()...()...()knn n n k n n F x C f x C f x C f x C f x =+++++,[]1,1x ∈-. (I) 写出(1)k f ;(II) (▲思考)证明:对任意的[]12,1,1x x ∈-,恒有112()()2(2)1n F x F x n n --≤+--.【解析】(I)由已知推得()(1)n kk f x n k x -=-+,从⽽有(1)1k f n k =-+(II)当11x -≤≤时,212(1)22(2)2()12()(1)...(1)...21nn n kn k n n n n nF x xnC xn C xn k C x C x ----=++-+-++++当x>0时, ()0F x '>,所以()F x 在[0,1]上为增函数因函数()F x 为偶函数,所以()F x 在[-1,0]上为减函数所以对任意的[]12,1,1x x ∈-12()()(1)(0)F x F x F F -≤-0121(1)(0)(1)...(1)...2k n n n n n nF F C nC n C n k C C --=++-+-+++211(1)(0)23......k n n n nnn F F C C kC nC C ---=++++++所以12112[(1)(0)](2)[......]2k n n n n nn F F n C C C C C ---=+++++++121112(1)(0)[......]22(22)12(2)12k n n n nn nnn n F F C C C C C n n n ---+-=+++++++=-+=+--因此结论成⽴.《⼗年》P215-216: Ex2、4、6、7、9、12、15、24、29、31第三课时:排列组合的⽅法(1)⼀、特殊(元素或位置)优先法例1、(2006年上海春)电视台连续播放6个⼴告,其中含4个不同的商业⼴告和2个不同的公益⼴告,要求⾸尾必须播放公益⼴告,则共有 48 种不同的播放⽅式(结果⽤数值表⽰). 例2、(2010重庆理9)某单位安排7位员⼯在10⽉1⽇⾄7⽇值班,每天1⼈,每⼈值班1天,若7位员⼯中的甲、⼄排在相邻两天,丙不排在10⽉1⽇,丁不排在10⽉7⽇,则不同的安排⽅案共有()C A. 504种 B. 960种 C. 1008种 D. 1108种解析:分两类:甲⼄排1、2号或6、7号共有4414222A A A ?种⽅法;甲⼄排中间,丙排7号或不排7号,共有)(43313134422A A A A A +种⽅法;故共有1008种不同的排法⼆、合理分类、准确分步例3、安排5名歌⼿的演出顺序时,要求某名歌⼿不第⼀个出场,另⼀名歌⼿不最后⼀个出场,不同排法的总数是 .(78)例4、(2006年辽宁卷)5名乒乓球队员中,有2名⽼队员和3名新队员.现从中选出3名队员排成1、2、3号参加团体⽐赛,则⼊选的3名队员中⾄少有⼀名⽼队员,且1、2号中⾄少有1名新队员的排法有____种.(48)例5、(2010浙江理17)有4位同学在同⼀天的上、下午参加“⾝⾼与体重”、“⽴定跳远”、“肺活量”、“握⼒”、“台阶”五个项⽬的下午测试握⼒,则其余三⼈对应三个项⽬且不重复,只有2种⽅法,⽽若A 下午不测试握⼒,则握⼒测试有BCD3个⼈选,其余三个项⽬有3种⽅案,故共有24(2+3×3)=264种安排.例6、(2010四川理10)由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是()C (A )72(B )96 (C ) 108 (D )144 解析:先选⼀个偶数字排个位,有3种选法①若5在⼗位或⼗万位,则1、3有三个位置可排,32232A A =24个②若5排在百位、千位或万位,则1、3只有两个位置可排,共32222A A =12个算上个位偶数字的排法,共计3(24+12)=108个答案:C三、相邻(捆绑法)与不相邻(插空法)问题例7、有8本互不相同的书,其中数学书3本,外⽂书2本,其他书3本,若将这些书排成⼀列放在书架上,则数学书恰好排在⼀起、外⽂书也恰好排在⼀起的排法共有_____种. 1440.例8、(2010北京理4)8名学⽣和2位⽼师站成⼀排合影,2位⽼师不相邻的排法种数为( )A (A )8289A A (B )8289A C (C ) 8287A A (D )8287A C例9、⾼三(⼀)班学要安排毕业晚会的4各⾳乐节⽬,2个舞蹈节⽬和1个曲艺节⽬的演出顺序,要求两个舞蹈节⽬不连排,则不同排法的种数是()B 5256A A =3600(A )1800 (B )3600 (C )4320 (D )5040 例10、在数字1,2,3与符号“+”,“-”五个元素的所有全排列中,任意两个数字都不相邻的全排列个数是()B A .6 B . 12 C. 18 D . 24 四、先选后排法例11、某校从8名教师中选派4名教师同时去4个边远地区⽀教(每地1⼈),其中甲和⼄不同去,则不同的选派⽅案共有种.解析:可以分情况讨论,①甲去,则⼄不去,有3464C A ?=480种选法;②甲不去,⼄去,有3464C A ?=480种选法;③甲、⼄都不去,有46A =360种选法;共有1320种不同的选派⽅案.五、定序均分问题先排后除法例12、(2006年湖北)某⼯程队有6项⼯程需要先后单独完成,其中⼯程⼄必须在⼯程甲完成后才能进⾏,⼯程丙必须在⼯3320A A =例13、(2006年江苏)今有2个红球、3个黄球、4个⽩球,同⾊球不加以区分,将这9个球排成⼀列有_______种不同的⽅法.992342341260A A A A =,本题主要考查不全相异元素的全排列作业:《⼗年》P213 16-29第四课时:排列组合的⽅法(2)六、先分组后分配法(平均分组与不平均分组)例1、某校安排5个班到4个⼯⼚进⾏社会实践,每个班去⼀个⼯⼚,每个⼯⼚⾄少安排⼀个班,不同的安排⽅法共有______种.(240)例2、5名志愿者分到3所学校⽀教,每个学校⾄少去⼀名志愿者,则不同的分派⽅法共有( ). A (A )150种 (B)180种 (C)200种 (D)280种解:⼈数分配上有1,2,2与1,1,3两种⽅式,若是1,2,2,则有3113521322C C C A A ?=60种,若是1,1,3,则有1223542322C C C A A ?=90种,所以共有150种,选A例3、(2010江西理14)将6位志愿者分成4组,其中两个各2⼈,另两个组各1⼈,分赴世博会的四个不同场馆服务,不同的分配⽅案有种. 1080【解析】考查概率、平均分组分配问题等知识,重点考查化归转化和应⽤知识的意识.先分组,考虑到有2个是平均分组,得22116421222C C C C A A 两个两⼈组两个⼀⼈组,再全排列得:221146421422221080C C C C A A A ??= 七、相同元素分配的隔板法例4、将⾃主招⽣的10个名额分配给7所学校,每校⾄少1名,则名额的分配⽅式有_________种.84解:问题等价于在10个相同元素的9个间隔(除去两端)中插⼊6块隔板隔成7份,共有8469=C 种. 例5、⽅程x+y+z=8(x 、y 、z 都是⾮负整数)有________组解. 45210=C例6、将⾃主招⽣的10个名额分配给3所学校,每校⾄少2名,则名额的分配⽅式有_________种.1526=C⼋、等价转化法:正难则反、分排问题连排处理等例7、从4名男⽣和3名⼥⽣中选出3⼈,分别从事三项不同的⼯作,若这3⼈中⾄少有1名⼥⽣,则选派⽅案共有()解析:从全部⽅案中减去只选派男⽣的⽅案数,共有3374A A -=186种,选B.(A )108种(B )186种(C )216种(D )270种例8、有两排座位,前排10个座位,后排11个座位,现安排两⼈就座,如果因故后排中间3个座位不能坐,并且这2⼈不能左右相邻,那么不同排法的种数是________.2218215A A -=276例9、(2006年全国卷I )设集合{}1,2,3,4,5I =.选择I 的两个⾮空⼦集A 和B ,要使B 中最⼩的数⼤于A 中最⼤的数,则不同的选择⽅法共有( )种.B A .50 B .49 C .48 D .47 解析:显然A B =? ,设A B C = ,则C 是I 的⾮空⼦集,且C 中元素不少于2个(当然,也不多于5个);另⼀⽅⾯,对I 的任何⼀个k (25k ≤≤)元⼦集C ,我们可以将C 中元素从⼩到⼤排列,排好后,相邻数据间共有k -1个空档,在任意⼀个空挡间插⼊⼀个隔板,隔板前的元素组成集合A ,隔板后元素组成集合B . 这样的A 、B ⼀定符合条件,且集合对{A ,B }⽆重复.综上,所求为:213141515152535449C C C C C C C C +++=例10、8⼈排成前后两排,每排4⼈,其中有2个⼥⽣要排在前排,另有2个个⼦⾼的要排在后排,共有_____种不同的排法. =??442424A A A 3456九、染⾊、⼏何计数问题例11、某城市在中⼼⼴场建造⼀个扇环形花圃,花圃分为6个部分,如图,现要栽种4种不同颜⾊的花,每⼀部分栽种⼀种且相邻部分不能栽种同样颜⾊的花,有______种不同的栽种⽅法.120例12、⼀个地区分为5个⾏政区域,如右上图,现给地图着⾊,要求相邻区域不得使⽤同⼀种颜⾊.现有四种颜⾊可供选择,则不同的着⾊⽅法共有种.72例13、将⼀个四棱锥的每个顶点染上⼀种颜⾊,并使同⼀条棱上的两端异⾊,如果只有5种颜⾊可供使⽤,求不同的涂⾊⽅法总数.420例14、现⽤4种颜⾊给三棱柱的6个顶点涂⾊,要求同⼀条棱的两端点的颜⾊不同,4种颜⾊全部⽤上,有_________种不同的涂⾊⽅案.216例15、(2010天津理10)如图,⽤四种不同颜⾊给图中的A,B,C,D,E,F 六个点涂⾊,要求每个点涂⼀种颜⾊,且图中每条线段的两个端点涂不同颜⾊,则不同的涂⾊⽅法⽤() B (A )288种(B )264种(C )240种(D )168种【解析】(1)B,D,E,F ⽤四种颜⾊,则有441124A ??=种涂⾊⽅法;(2)B,D,E,F ⽤三种颜⾊,则有334422212192A A ??+=种涂⾊⽅法;(3)B,D,E,F ⽤两种颜⾊,则有242248A ??=种涂⾊⽅法;共有24+192+48=264种不同的涂⾊⽅法.例13、( 2006年湖南卷)过平⾏六⾯体ABCD-A 1B 1C 1D 1任意两条棱的中点作直线,其中与平⾯DBB 1D 1平⾏的直线共有 ( ) D A.4条 B.6条 C.8条 D.12条例14、(2006年上海卷)如果⼀条直线与⼀个平⾯垂直,那么,称此直线与平⾯构成⼀个“正交线⾯对”.在⼀个正⽅体中,由两个顶点确定的直线与含有四个顶点的平⾯构成的“正交线⾯对”的个数是.36 作业:《⼗年》P213 Ex30-45第五课时:习题课题组⼀ (排队问题、相邻、不相邻、特殊位置、特殊元素、定序、分排等)1、从8⼈中选5⼈排成⼀排照相,每次拍照时甲或⼄两⼈中要有⼀⼈排在正中间,有____种不同的排法.( 1680247=A )2、从8⼈中选5⼈排成⼀排照相,若选到甲或⼄,他们两⼈都不能排在正中间,有____种不同的排法.( 47583624461456250402A A A A A C A -==++)3、4名男⽣和5名⼥⽣排成⼀横队,其中甲、⼄都不能排在两端,有______种不同的排法.(7727A A )4、4名男⽣和5名⼥⽣排成⼀横队,任何两个男⽣不能连排在⼀起,有______种不同的排法.(4655A A )5、4名男⽣和5名⼥⽣排成⼀横队,男⼥⽣相间,有______种不同的排法.(5544A A )6、4名男⽣和5名⼥⽣排成⼀横队,男⽣不能都排在⼀起,有______种不同的排法.(664499A A A -)7、4名男⽣和5名⼥⽣排成⼀横队,男、⼥⽣各在⼀边,有______种不同的排法.(55442A A )8、4名男⽣和5名⼥⽣排成⼀横队,其中甲在⼄的左边,丙在⼄的右边,有______种不同的排法.(3399A A )9、4名男⽣和5名⼥⽣排成前后两⾏,男、⼥⽣各在⼀⾏,有______种不同的排法.(55442A A )题组⼆(分组分配问题、区分均匀与⾮均匀分组)1、有6本不同的书,甲⼄丙3⼈每⼈2本,有_____种不同的分法.( 222426C C C )2、有6本不同的书,分给甲⼄丙3⼈,⼀⼈1本,⼀⼈2本,⼀⼈3本,有_____种不同的分法.(3 3332516A C C C )3、有6本不同的书,分给甲1本,⼄2本,丙3本,有_____种不同的分法.( 332516C C C )4、有6本不同的书,分成3堆,每堆2本,有_____种不同的分法.(33222426A C C C )5、有6本不同的书,分成3堆,⼀堆1本,⼀堆2本,⼀堆3本,有_____种不同的分法.(332516C C C ) 6、有6本不同的书,分成3堆,有2堆各1本,另⼀堆4本,有_____种不同的分法.(22441516A C C C )7、有6本不同的书,分给甲⼄丙3⼈,其中甲、⼄各1本,丙4本,有_____种不同的分法.(441516C C C ) 8、有6本不同的书,分给甲⼄丙3⼈,其中两⼈各1本,另⼀⼈4本,有_____种不同的分法.( 332244151C C C )题组三(排列有序、组合⽆序、排列组合不能重复选取,能重复选取为次幂问题,相同元素的隔板模型) 1、3个不同的⼩球放进4个不同的盒⼦,有_______种放法.34=642、3个不同的⼩球放进4个不同的盒⼦,不同的⼩球必须放进不同的盒⼦,有_______种放法.34A =243、3个相同的⼩球放进4个不同的盒⼦,有_______种放法. 142434C A C ++=204、3个相同的⼩球放进4个不同的盒⼦,每个盒⼦放不超过1个⼩球,有_______种放法. 34C =45、4个不同的⼩球放进3个不同的盒⼦,每个盒⼦⾄少放⼊⼀个⼩球,有_______种放法. 3324A C =366、4个相同的⼩球放进3个不同的盒⼦,每个盒⼦⾄少放⼊⼀个⼩球,有_______种放法. 13C =3 7、4个不同的⼩球放进3个相同的盒⼦,每个盒⼦⾄少放⼊⼀个⼩球,有_______种放法. 24C =6 8、4个不同的⼩球放进3个相同的盒⼦,有_______种放法. 44142224242C C C C C+++=149、12个相同的⼩球放进编号为1、2、3、4的盒⼦中,要求每个盒⼦中的⼩球个数不⼩于其编号数,有_______种不同的放法. (转化为隔板模型1035=C )题组四1、8个⼈分配到4辆车上⼯作,每车两⼈,若车不相同,车上⼯种相同,有_____种不同的分配⽅法.2、8个⼈分配到4辆车上⼯作,每车两⼈,若车不相同,车上⼯种不同,有_____种不同的分配⽅法.3、8个⼈分配到4辆车上⼯作,每车两⼈,若车相同,车上⼯种相同,有_____种不同的分配⽅法.4、8个⼈分配到4辆车上⼯作,每车两⼈,若车相同,车上⼯种不同,有_____种不同的分配⽅法.1、22242628CC C C2、88A 3、22242628AC C C C 4、42244222426284488)(A AC C C C AA 或作业:《备考指南练习册》P203-204补充:设函数()f x 是定义在[1,0)(0,1]- 上的奇函数,当[1,0)x ∈-时,21()2f x a x x=+(a 为实数)(1)当(0,1]()x f x ∈时,求的解析式;21()2f x a x x=-(2)若()f x 在]1,0(上为增函数,求a 的取值范围. 1a ≥-。
高三一轮复习《计数原理》教材
排列、组合和二项式定理2015.12一、高考要求二、本章定位计数原理的课程设置意图:必修三概率→本章→选修2-3第二章概率1.必修3强调概率思想,避免复杂的组合计算干扰学生对概率思想的领悟;2.本章为进一步研究概率做准备;3.本章学习为学生提供解决问题的思想和工具;“课标”对本章内容的定位是:用计数原理、排列与组合概念解决“简单的实际问题”。
所以,教学中一定要把握好这种定位,避免在技巧和难度上做文章(排列组合的求值化简证明题难度要控制,要重点做应用题)。
三、本章内容与要求【计数】1.分类计数原理完成一件事,有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有N=m+n种不同的方法.2.分步计数原理完成一件事,需要分成两个步骤,做第一步有m种不同的方法,做第二步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法.3.排列从n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列,所有排列的个数称为排列数.(1)当m<n时的排列称为选排列,排列数为A m n=n(n-1)×…×(n-m+1)=n!(n-m)!.(2)当m=n时的排列称为全排列,排列数为A n n=n(n-1)×…×3×2×1=n!.规定0!=1.4.组合从n 个不同元素中,任意取出m (m ≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合,所有组合的个数称为组合数.(1)组合数公式:C mn =A m n A m m =n (n -1)(n -2)·…·(n -m +1)m !=n !m !(n -m )!.规定:C 0n =1.(2)组合数的两个性质:①C m n =C n-mn; ②C m n +1=C m n +C m -1n. 注意:1.正确区分“分类”与“分步”,恰当地进行分类,使分类后不重、不漏.2.正确区分是组合问题还是排列问题,要把“定序”和“有序”区分开来. 3.正确区分分堆问题和分配问题. 【二项式定理】1.二项式定理(a +b )n =C 0n a n +C 1n a n -1b +…+C r n a n -r b r +…C n -1n ab n -1+C n n b n (n ∈N +),叫做二项式定理,右边的多项式叫做(a +b )n 的二项展开式,其通项公式为T r +1= .(a -b )n 的展开式第r +1项T r +1= . 2.二项式系数的性质(1)对称性:C 0n =C n n ,C 1n =C n -1n ,C 2n =C n -2n ,…,C r n =C n -r n. (2)增减性与最大值:二项式系数C k n ,当k <n +12时,二项式系数是递增的;当k >n +12时,二项式系数是递减的.当n 是偶数时,中间的一项的二项式系数最大.当n 是奇数时,中间两项的二项式系数相等且最大.(3)C 0n +C 1n +C 2n +…+C r n +…+C n n=2n . (4)C 1n +C 3n +C 5n +…=C 0n +C 2n +C 4n+…=2n –1.注意:1.通项公式T k +1=C k n an -k b k 是第k +1项,而不是第k 项,注意其指数规律. 2.求二项式展开式中的特殊项(如:系数最大的项、二项式系数最大的项、常数项、含某未知数的次数最高的项、有理项…)时,要注意n 与k 的取值范围.3.注意区分“某项的系数”与“某项的二项式系数”,展开式中“二项式系数的和”与“各项系数的和”,“奇(偶)数项系数的和”与“奇(偶)次项系数的和”.三、高考题【2015高考北京版理第9题】( 9 )在5(2)x 的展开式中,3x 的系数为_______.(用数字作答)40【2014高考北京版理第13题】把5件不同产品摆成一排.若产品A 与产品B 相邻,且产品A 与产品C 不相邻,则不同的摆法有 种.36[解析]先考虑产品A 与B 相邻,把A 、B 作为一个元素有44A 种方法,而A 、B 可交换位置,所以有48244=A 种摆法,又当A 、B 相邻又满足A 、C 相邻,有12233=A 种摆法,故满足条件的摆法有361248=-种【2013高考北京版理第12题】将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是________. 96[解析] 5张参观券分为4堆,有2个连号有4种分法,然后每一种全排列有A 44种方法,所以不同的分法种数是4A 44=96.【2012高考北京版理第6题】从0,2中选一个数字.从1.3.5中选两个数字,组成无重复数字的三位数.其中奇数的个数为( )A. 24B. 18C. 12D. 6[解析]由于题目要求的是奇数,那么对于此三位数可以分成两种情况:奇偶奇;偶奇奇。
高考一轮复习教案十二(1)计数原理(教师)文科用
模块: 十二、排列组合、二项式定理、概率统计课题: 1、计数原理教学目标: 掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题.分类计数原理与分步计数原理是计数问题的基本原理,体现了解决问题时将其分解的两种常用方法,即把问题分类解决和分步解决.重难点: 掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题.一、 知识要点1、分类计数原理(加法原理):做一件事情,完成它可以有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种不同的方法,……,在第n 类办法中有n m 种不同的方法.那么完成这件事共有 12n N m m m =+++ 种不同的方法.2、分步计数原理(乘法原理):做一件事情,完成它需要分成n 个步骤,做第一步有1m 种不同的方法,做第二步有2m 种不同的方法,……,做第n 步有n m 种不同的方法,那么完成这件事有12n N m m m =⨯⨯⨯ 种不同的方法.二、 例题精讲例 1 、电视台在“欢乐今宵”节目中拿出两个信箱,其中存放着先后两次竞猜中成绩优秀的观众来信,甲信箱中有30封,乙信箱中有20封现由主持人抽奖确定幸运观众,若先确定一名幸运之星,再从两信箱中各确定一名幸运伙伴,有多少种不同的结果?答案:28800.例2、从集合{1,2,3,…,10}中,选出由5个数组成的子集,使得这5个数中的任何两个数的和不等于11,这样的子集共有多少个?答案:32个例3、某城市在中心广场建造一个花圃,花圃分为6个部分(如下图)现要栽种4种不同颜色的花,每部分栽种一种且相邻部分不能栽种同样颜色的花,不同的栽种方法有_____________种.(以数字作答)答案:120种 654321例4、(1)有红、黄、白色旗子各n 面(3n ),取其中一面、二面、三面组成纵列信号,可以有多少不同的信号?(2)有1元、5元、10元的钞票各一张,取其中一张或几张,能组成多少种不同的币值?答案:(1)60;(2)7种.例5、d c b a ,,,排成一行,其中a 不排第一,b 不排第二,c 不排第三,d 不排第四的不同排法共有多少种?答案:9种.例6、关于正整数2160,求:(1)它有多少个不同的正因数?(2)它的所有正因数的和是多少?答案:(1)40个;(2)7440.例7、如图所示,问从A 到D 每次不许走重复的路,共有多少种走法?(注:每次的路线一个地方只能经过一次)答案:16例8、由数字0,1,2,3,4,(1)可组成多少个没有重复数字且比20000大的自然数?(2)2不在千位,且4不在十位的五位数有多少个?答案:(1)72;(2)1600三、 课堂练习1、4名男生和3名女生排成一行,按下列要求各有多少种排法:(1)男生必须排在一起 ; (2)女生互不相邻 ;(3)男女生相间 ; (4)女生按指定顺序排列 . 答案:576;1440;144;840.2、6本不同的书全部送给5人,每人至少1本,有 种不同的送书方法. 答案:18003、三名男歌手和两名女歌手联合举行一场演唱会,演出时要求两名女歌手之间恰有一名男歌手,则共有出场方案 种.答案:364、圆周上有12个不同的点,过其中任意两点作弦,这些弦在圆内的交点个数最多是 .答案:4955、7人站一排,甲不站排头,也不站排尾,不同的站法种数有 种;甲不站排头,乙不站排尾,不同站法种数有 种.答案:3600;3720.6、远洋轮一根旗杆上用红、蓝、白三面旗帜中,一面,二面或三面表示信号,则最多可组成不同信号有___________种.答案:15四、 课后作业一、填空题1、十字路口来往的车辆,如果不允许回头,共有_________种行车路线.答案:122、从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有 种. 答案:123、从1到10的正整数中,任意抽取两个相加,所得和为奇数的不同情形有______种. 答案:254、72的正约数(包括1和72)共有__________个.答案:125、从-1,0,1,2这四个数中选三个不同的数作为函数()2f x ax bx c =++的系数,可组成不同的二次函数共有_____________个,其中不同的偶函数共有_____________个.(用数字作答)答案:18;66、如图,一个地区分为5个行政区域,现给地图着色,要求相邻区域不得使用同一颜色.现有4种颜色可供选择,则不同的着色方法共有_____________种.(以数字作答) 答案:72 二、选择题7、某城市的电话号码,由六位升为七位(首位数字均不为零),则该城市可增加的电话部数是( )A 、9×8×7×6×5×4×3B 、8×96C 、9×106D 、81×105答案:D8、从长度分别为1、2、3、4的四条线段中,任取三条的不同取法共有n 种在这些取法中,以取出的三条线段为边可组成的三角形的个数为m ,则n m 等于( ) A 、0 B 、41 C 、21 D 、43 答案:B9、某班新年联欢会原定的6个节目已排成节目单,开演前又增加了3个新节目,如果将这3个节目插入节目单中,那么不同的插法种数为( )A 、504B 、210C 、336D 、120答案:A三、解答题10、在所有两位数中,个位数字大于十位数字的两位数共有多少个?答案:3611、五名学生报名参加四项体育比赛,每人限报一项,报名方法的种数为多少?又他们争夺这四项比赛的冠军,获得冠军的可能性有多少种?答案:(1)1024种;(2)526种.12、三边长均为整数,且最大边长为11的三角形的个数是多少?答案:36⑤④③②①。
第85讲、计数原理(教师版)2025高考数学一轮复习讲义
第85讲计数原理知识梳理知识点1、分类加法计数原理完成一件事,有n 类办法,在第1类办法中有1m 种不同的办法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有:12n N m m m =+++ 种不同的方法.知识点2、分步乘法计数原理完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有:12n N m m m =⋅⋅⋅ 种不同的方法.注意:两个原理及其区别分类加法计数原理和“分类”有关,如果完成某件事情有n 类办法,这n 类办法之间是互斥的,那么求完成这件事情的方法总数时,就用分类加法计数原理.分步乘法计数原理和“分步”有关,是针对“分步完成”的问题.如果完成某件事情有n 个步骤,而且这几个步骤缺一不可,且互不影响(独立),当且仅当依次完成这n 个步骤后,这件事情才算完成,那么求完成这件事情的方法总数时,就用分步乘法计数原理.当然,在解决实际问题时,并不一定是单一应用分类计数原理或分步计数原理,有时可能同时用到两个计数原理.即分类时,每类的方法可能运用分步完成;而分步后,每步的方法数可能会采取分类的思想求方法数.对于同一问题,我们可以从不同的角度去处理,从而得到不同的解法(但方法数相同),这也是检验排列组合问题的很好方法.知识点3、两个计数原理的综合应用如果完成一件事的各种方法是相互独立的,那么计算完成这件事的方法数时,使用分类计数原理.如果完成一件事的各个步骤是相互联系的,即各个步骤都必须完成,这件事才告完成,那么计算完成这件事的方法数时,使用分步计数原理.必考题型全归纳题型一:分类加法计数原理的应用例1.(2024·全国·高三专题练习)如果一条直线与一个平面垂直,那么称此直线与平面构成一个“正交线面对”.在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是()A.48B.18C.24D.36【答案】D【解析】正方体的两个顶点确定的直线有棱、面对角线、体对角线,对于每一条棱,都可以与两个侧面构成“正交线面对”,这样的“正交线面对”有21224⨯=(个);对于每一条面对角线,都可以与一个对角面构成“正交线面对”,这样的“正交线面对”有12个,不存在四个顶点确定的平面与体对角线垂直,+=(个).所以正方体中“正交线面对”共有241236故选:D例2.(2024·四川成都·双流中学校考模拟预测)如图,小黑圆表示网络的结点,结点之间的连线表示它们有网线相连.连线上标注的数字表示该段网线单位时间内可以通过的最大信息量.现从结点A向结点B传递信息()A.26B.24C.20D.19【答案】D【解析】根据题意,结合图形知,从A 到B 传播路径有4条,如图所示;途径①传播的最大信息量为3,途径②传播的最大信息量为4;途径③传播的最大信息量为6,途径④传播的最大信息量为6;所以从A 向B 传递信息,单位时间内传递的最大信息量为346619+++=,故选:D .例3.(2024·江苏镇江·高三扬中市第二高级中学校考阶段练习)定义:“各位数字之和为7的四位数叫好运数”,比如1006,2203,则所有好运数的个数为()A .82B .83C .84D .85【答案】C【解析】因为各位数字之和为7的四位数叫好运数,所以按首位数字分别计算:当首位数字为7,则剩余三位数分别为0,0,0,共有1个好运数;当首位数字为6,则剩余三位数分别为1,0,0,共有3个好运数;当首位数字为5,则剩余三位数分别为1,1,0或2,0,0,共有336+=个好运数;当首位数字为4,则剩余三位数分别为3,0,0或2,1,0或1,1,1,共有333A 110++=个好运数;当首位数字为3,则剩余三位数分别为4,0,0或3,1,0或2,2,0或2,1,1,共有333A 3315+++=个好运数;当首位数字为2,则剩余三位数分别为5,0,0或4,1,0或3,2,0或3,1,1或2,2,1,共有33333A A 3321++++=个好运数;当首位数字为1,则剩余三位数分别为6,0,0或5,1,0或4,2,0或4,1,1或3,3,0或3,2,1或2,2,2,共有3333333A A 33A 128++++++=个好运数;所以共有1361015212884++++++=个好运数,故选:C变式1.(2024·全国·高三专题练习)从1,2,3,4,5,6中选取4个数字,组成各个数位上的数字既不全相同,也不两两互异的四位数,记四位数中各个数位上的数字从左往右依次为a ,b ,c ,d ,且要求a b c d ≤≤≤,则满足条件的四位数的个数为.【答案】105【解析】由题意可知,只用2个不同的数字时,有2615C =(种)选法,按照位数要求,每种数字组合组成的符合要求的四位数有3个,比如数字1和2,可以构成的四位数有1222,1122,1112,所以共有15345⨯=(个)符合要求的四位数.只用3个不同的数字时,有36C 20=(种)选法,按照位数要求,每种数字组合组成的符合要求的四位数有3个,比如数字1,2,3,可以构成的四位数有1123,1223,1233,所以共有20360⨯=(个)符合要求的四位数.故符合要求的四位数总共有4560105+=(个).故答案为:105变式2.(2024·全国·高三专题练习)已知直线方程0Ax By +=,若从0、1、2、3、5、7这六个数中每次取两个不同的数分别作为A 、B 的值,则0Ax By +=可表示条不同的直线.【答案】22【解析】当0A =时,可表示1条直线;当0B =时,可表示1条直线;当0AB ≠时,A 有5种选法,B 有4种选法,可表示5420⨯=条不同的直线.由分类加法计数原理,知共可表示112022++=条不同的直线.故答案为:22变式3.(2024·辽宁·高三校联考开学考试)某迷宫隧道猫爬架如图所示,B ,C 为一个长方体的两个顶点,A ,B 是边长为3米的大正方形的两个顶点,且大正方形由完全相同的9小正方形拼成.若小猫从A 点沿着图中的线段爬到B 点,再从B 点沿着长方体的棱爬到C 点,则小猫从A 点爬到C 点可以选择的最短路径共有条.【答案】120【解析】小猫要从A点爬到C点,需要先从A点爬到B点,需要走3横3竖,则可选的路径=条,共有36C20再从B点爬到C点的路径共6条,用分步乘法计数原理可得小猫可以选择的最短路径有20×6=120条.故答案为:120.【解题方法总结】分类标准的选择(1)应抓住题目中的关键词、关键元素、关键位置.根据题目特点恰当选择一个分类标准.(2)分类时应注意完成这件事情的任何一种方法必须属于某一类,并且分别属于不同种类的两种方法是不同的方法,不能重复,但也不能有遗漏.题型二:分步乘法计数原理的应用例4.(2024·广东深圳·高三校考阶段练习)甲、乙、丙3个公司承包6项不同的工程,甲承包1项,乙承包2项,丙承包3项,则共有种承包方式(用数字作答).【答案】60【解析】由题意得,不同的承包方案分步完成,先让甲承包1项,有16C6=种,再让乙承包=,剩下的3项丙承包,2项,有25C10⨯=种方案,所以由分步乘法原理可得共有61060故答案为:60例5.(2024·全国·高三专题练习)若一个三位数同时满足:①各数位的数字互不相同;②任意两个数位的数字之和不等于9,则这样的三位数共有个.(结果用数字作答)【答案】432【解析】从百位开始讨论:(1)百位数字为1,十位数字有0,2,3,4,5,6,7,9,(除1,8外所有数字);当十位数字为0时,个位数字为2,3,4,5,6,7,(除1,0,8,9外所有数字),所以对应的三位数有4868=⨯种;(2)百位数字为2,3,4,5,6,7,8,9,情况同(1);综上这样的三位数共有:948432⨯=种;故答案为:432.例6.(2024·安徽亳州·高三蒙城第一中学校考阶段练习)将3名男生,2名女生排成一排,要求男生甲必须站在中间,2名女生必须相邻的排法种数有()A .4种B .8种C .12种D .48种【答案】B【解析】先让甲站好中间位置,再让2名女生相邻有两种选法,最后再排剩余的2名男生,根据分步乘法原理得,有22222A A 8⨯⨯=种不同的排法.故选:B变式4.(2024·四川成都·高三统考开学考试)“数独九宫格”原创者是18世纪的瑞士数学家欧拉,它的游戏规则很简单,将1到9这九个自然数填到如图所示的小九宫格的9个空格里,每个空格填一个数,且9个空格的数字各不相同,若中间空格已填数字5,且只填第二行和第二列,并要求第二行从左至右及第二列从上至下所填的数字都是从小到大排列的,则不同的填法种数为()A .72B .108C .144D .196【答案】C 【解析】按题意,5的上方和左边只能从1,2,3,4中选取,5的下方和右边只能从6,7,8,9中选取.第一步,填上方空格,有4种方法;第二步,填左方空格,有3种方法;第三步,填下方空格,有4种方法;第四步,填右方空格,有3种方法.由分步计数原理得,填法总数为4343144⨯⨯⨯=.故选:C.变式5.(2024·全国·高三专题练习)三棱柱各面所在平面将空间分成不同部分的个数为()A .18B .21C .24D .27【答案】B【解析】三棱柱的三个侧面将空间分成7部分,三棱柱的两个底面将空间分成3部分.故三棱柱各面所在平面将空间分成不同部分的个数为3721⨯=.故选:B .变式6.(2024·河北石家庄·高三校联考期中)临近春节,某校书法爱好小组书写了若干副春联,准备赠送给四户孤寡老人.春联分为长联和短联两种,无论是长联或短联,内容均不相同.经过调查,四户老人各户需要1副长联,其中乙户老人需要1副短联,其余三户各要2副短联.书法爱好小组按要求选出11副春联,则不同的赠送方法种数为()A .15120B .7560C .12520D .12160【答案】A【解析】4副长联内容不同,赠送方法有44A 24=种;从剩余的7副短联中选出1副赠送给乙户老人,有17A 7=种方法,再将剩余的6副短联平均分为3组,最后将这3组赠送给三户老人,方法种数为2223222642364233C C C A C C C 90A ⋅==.所以所求方法种数为2479015120⨯⨯=.故选:A变式7.(2024·北京东城·高三北京市广渠门中学校考开学考试)鱼缸里有8条热带鱼和2条冷水鱼,为避免热带鱼咬死冷水鱼,现在把鱼缸出孔打开,让鱼随机游出,每次只能游出1条,直至2条冷水鱼全部游出就关闭出孔,若恰好第3条鱼游出后就关闭了出孔,则不同游出方案的种数为()A .16B .32C .36D .48【答案】B【解析】由题意得,前2条鱼游出1条冷水鱼,1条热带鱼,第3条为另一条冷水鱼,先选出一条热带鱼,有18C 种,再选出一条冷水鱼,有12C 种,两条鱼可在第一条鱼和第二条鱼顺序上进行全排列,则不同游出方案的种数为112822C C A 32=.故选:B变式8.(2024·湖南·高三临澧县第一中学校联考开学考试)在如图所示的表格中填写1,2,3三个数字,要求每一行、每一列均有这3个数字,则不同的填法种数为().A .6B .9C .12D .18【答案】C 【解析】先填第一行,有33A 6=种填法;再填第二行,有2种填法;最后填第三行,只有1种填法;∴不同的填法种数为62112⨯⨯=种.故选:C.变式9.(2024·黑龙江佳木斯·高三校考开学考试)甲、乙分别从4门不同课程中选修1门,且2人选修的课程不同,则不同的选法有()种.A .6B .8C .12D .16【答案】C【解析】甲从4门课程中选择1门,有4种选法;乙再从甲未选的课程中选择1门,有3种选法;根据分步乘法计数原理可得:不同的选法有4312⨯=种.故选:C.变式10.(2024·陕西西安·西安市第三十八中学校考模拟预测)从六人(含甲)中选四人完成四项不同的工作(含翻译),则甲被选且甲不参加翻译工作的不同选法共有()A .120种B .150种C .180种D .210种【答案】C【解析】依题意可得,甲需从除翻译外的其他三项工作中任选一项,有3种选法,再从其余五人中选三人参加剩下的三项工作,有35A 60=种选法,所以满足条件的不同选法共有353A 180=种.故选:C变式11.(2024·贵州黔东南·凯里一中校考模拟预测)某足球比赛有A ,B ,C ,D ,E ,F ,G ,H ,J 共9支球队,其中A ,B ,C 为第一档球队,D ,E ,F 为第二档球队,G ,H ,J 为第三档球队,现将上述9支球队分成3个小组,每个小组3支球队,若同一档位的球队不能出现在同一个小组中,则不同的分组方法有()A .27种B .36种C .72种D .144种【答案】B【解析】根据题意,先排,,A B C ,共有1种排法;再排,,D E F ,共有33A 6=种不同的排法;最后排,,G H J ,共有33A 6=种不同的排法,由分步计数原理得,共有16636⨯⨯=种不同的排法.故选:B.【解题方法总结】利用分步乘法计数原理解题的策略(1)明确题目中的“完成这件事”是什么,确定完成这件事需要几个步骤,且每步都是独立的.(2)将这件事划分成几个步骤来完成,各步骤之间有一定的连续性,只有当所有步骤都完成了,整个事件才算完成.题型三:两个计数原理的综合应用例7.(2024·全国·高三专题练习)第31届世界大学生夏季运动会于6月26日至7月7日在成都举办,现在从6男4女共10名青年志愿者中,选出3男2女共5名志愿者,安排到编号为1、2、3、4、5的5个赛场,每个赛场只有一名志愿者,其中女志愿者甲不能安排在编号为1、2的赛场,编号为2的赛场必须安排女志愿者,那么不同安排方案有()A .1440种B .2352种C .2880种D .3960种【答案】D 【解析】分以下两种情况讨论:①女志愿者甲被选中,则还需从剩余的9人中选出3男1女,选法种数为3163C C 60=,则女志愿者甲可安排在3号或4号或5号赛场,另一位女志愿者安排在2号赛场,余下3个男志愿者随意安排,此时,不同的安排种数为33603A 1080⨯⨯=;②女志愿者甲没被选中,则还需从剩余9人中选出3男2女,选法种数为3263C C 60=,编号为2的赛场必须安排女志愿者,只需从2名女志愿者中抽1人安排在2号赛场,余下4人可随意安排,此时,不同的安排方法种数为44602A 2880⨯⨯=.由分类加法计数原理可知,不同的安排方法种数为108028803960+=种.故选:D.例8.(2024·江苏南京·高三校联考阶段练习)从2位男生,3位女生中安排3人到三个场馆做志愿者,每个场馆各1人,且至少有1位男生入选,则不同安排方法有()种A .16B .36C .54D .96【答案】C【解析】当选择一个男生,二个女生时,不同的安排方法有123233C C A 36⋅⋅=;当选择二个男生,一个女生时,不同的安排方法有213233C C A 18⋅⋅=,所以不同安排方法有361854+=种,故选:C例9.(2024·上海黄浦·高三上海市敬业中学校考开学考试)三位同学参加跳高、跳远、铅球项目的比赛,若每人只选择一个项目,则同一个项目最多只有2人参赛的情况共有种.【答案】24【解析】三位同学参加跳高、跳远、铅球项目的比赛,若每人只选择一个项目,同一个项目最多只有2人参赛有以下两种情况:①同一个项目有且仅有两人选择;②每个项目分别只有一人选择;有且仅有两人选择的项目完全相同有211332C C C 18⨯⨯=种;每个项目分别只有一人选择;33A 6=种;故同一个项目最多只有2人参赛的情况共有18624+=种.故答案为:24.变式12.(2024·广东·高三河源市河源中学校联考阶段练习)现有5名同学从北京、上海、深圳三个路线中选择一个路线进行研学活动,每个路线至少1人,至多2人,其中甲同学不选深圳路线,则不同的路线选择方法共有种.(用数字作答)【答案】60.【解析】每个路线至少1人,至多2人,则一个路线1人,另外两个路线各2人,若甲同学单独1人时,有122412C C =种不同的选法;若甲同学与另外一个同学一起,则有11124232C C C A 48=种不同的选法,则不同的选择方法有60种.故答案为:60.变式13.(2024·浙江·高三舟山中学校联考开学考试)杭州亚运会举办在即,主办方开始对志愿者进行分配.已知射箭场馆共需要6名志愿者,其中3名会说韩语,3名会说日语.目前可供选择的志愿者中有4人只会韩语,5人只会日语,另外还有1人既会韩语又会日语,则不同的选人方案共有种.(用数字作答).【答案】140【解析】若从只会韩语中选3人,则()33214551C C +C C 42080=⨯=种,若从只会韩语中选2人,则213415C C C 61060=⨯=种,故不同的选人方案共有6080140+=种.故答案为:140.变式14.(2024·江苏扬州·高三仪征中学校考阶段练习)已知如图所示的电路中,每个开关都有闭合、不闭合两种可能,因此5个开关共有52种可能,在这52种可能中,电路从P 到Q 接通的情况有种.【答案】16【解析】若电路从P 到Q 接通,共有三种情况:(1)若1闭合,而4不闭合时,可得分为:①若1、2闭合,而4不闭合,则3、5可以闭合也可以不闭合,共有224⨯=种情况;②若1、3、5闭合,而4不闭合,则2可以闭合也可以不闭合,有2种情况,但①与②中都包含1、2、3、5都闭合,而4不闭合的情况,所以共有4215+-=种情况;(2)若4闭合,而1不闭合时,可分为:③若4、5闭合,而1不闭合,则2、3可以闭合也可以不闭合,有224⨯=种情况;④若4、3、2闭合,而1不闭合,则5可以闭合也可以不闭合,有2种情况,但③与④中,都包含4、2、3、5都闭合,而1不闭合的情况,所以共有4215+-=种情况;(3)若1、4都闭合,共有2228⨯⨯=种情况,而其中电路不通有2、3、5都不闭合与2、5都不闭合2种情况,则此时电路接通的情况有826-=种情况;所以电路接通的情况有55616++=种情况.故答案为:16.变式15.(2024·湖北·高三校联考开学考试)从5男3女共8名学生中选出组长1人,副组长1人,普通组员3人组成5人志愿组,要求志愿组中至少有3名男生,且组长和副组长性别不同,则共有种不同的选法.(用数字作答)【答案】480【解析】由题意可知,当志愿组有3名男生,2名女生时,有3211253322C C C C A 360=种方法;当志愿组有4名男生,1名女生时,有41125342C C C A 120=种方法,由分类计数原理得,共有360120480+=种不同的选法.故答案为:480.变式16.(2024·湖北·高三校联考阶段练习)有两个家庭共8人暑假到新疆结伴旅游(每个家庭包括一对夫妻和两个孩子),他们在乌鲁木齐租了两辆不同的汽车进行自驾游,每辆汽车乘坐4人,要求每对夫妻乘坐同一辆汽车,且该车上至少有一个该夫妻自己的孩子,则满足条件的不同乘车方案种数为.【答案】10【解析】由题意得当每个家庭各乘坐一辆车时,有2种乘车方案;当每对夫妻乘坐的车上恰有一个自己的孩子时,乘车方案种数为11222C C 8⨯=,故满足条件的不同乘车方案种数为2810+=,故答案为:10变式17.(2024·福建福州·高三统考开学考试)“二十四节气”是中国古代劳动人民伟大的智慧结晶,其划分如图所示.小明打算在网上搜集一些与二十四节气有关的古诗.他准备在春季的6个节气与夏季的6个节气中共选出3个节气,若春季的节气和夏季的节气各至少选出1个,则小明选取节气的不同情况的种数是()A .90B .180C .270D .360【答案】B 【解析】根据题意可知,小明可以选取1春2夏或2春1夏,其中1春2夏的不同情况有:1266C C 90⋅=种;2春1夏的不同情况有:2166C C 90⋅=种,所以小明选取节气的不同情况有:9090180+=种.故选:B .【解题方法总结】利用两个计数原理解题时的三个注意点(1)当题目无从下手时,可考虑要完成的这件事是什么,即怎样做才算完成这件事.(2)分类时,标准要明确,做到不重不漏,有时要恰当画出示意图或树状图.(3)对于复杂问题,一般是先分类再分步.。
2025届高考数学一轮复习教案:计数原理、概率、随机变量及其分布-事件的独立性、条件概率与全概率公式
第四节事件的独立性、条件概率与全概率公式【课程标准】1.了解两个事件相互独立的含义.2.了解条件概率与独立性的关系,会利用乘法公式计算概率.3.会利用全概率公式计算概率.【考情分析】考点考法:高考命题常以现实生活为载体,考查相互独立事件、条件概率、全概率;条件概率、全概率是高考热点,常以选择题的形式出现.核心素养:数学抽象、数学运算【必备知识·逐点夯实】【知识梳理·归纳】1.相互独立事件(1)概念:对任意两个事件A与B,如果P(AB)=__P(A)P(B)__成立,则称事件A与事件B相互独立,简称为独立.(2)性质:若事件A与B相互独立,那么A与,与B,与也都相互独立.2.条件概率(1)概念:一般地,设A,B为两个随机事件,且P(A)>0,我们称P(B|A)=(B)()为在事件A 发生的条件下,事件B发生的条件概率,简称条件概率.(2)两个公式:①利用古典概型:P(B|A)=(B)();②概率的乘法公式:P(AB)=__P(A)P(B|A)__.【微点拨】P(B|A)与P(A|B)是两个不同的概率,前者是在A发生的条件下B发生的概率,后者是在B发生的条件下A发生的概率.3.全概率公式一般地,设A1,A2,…,A n是一组__两两互斥__的事件,A1∪A2∪…∪A n=Ω,且P(A i)>0,i=1,2,…,n,则对任意的事件B⊆Ω,有P(B)=.我们称此公式为全概率公式.【基础小题·自测】类型辨析改编易错高考题号12341.(多维辨析)(多选题)下列说法正确的是()A.对于任意两个事件,公式P(AB)=P(A)P(B)都成立B.若事件A,B相互独立,则P(B|A)=P(B)C.抛掷2枚质地均匀的硬币,设“第一枚正面朝上”为事件A,“第二枚正面朝上”为事件B,则A,B相互独立D.若事件A1与A2是对立事件,则对任意的事件B⊆Ω,都有P(B)=P(A1)P(B|A1)+P(A2)P(B|A2)【解析】选BCD.因为当两个事件A,B相互独立时公式P(AB)=P(A)P(B)成立,所以选项A错误;因为事件A,B相互独立,所以P(AB)=P(A)P(B),P(B|A)=(B)()=P(B),所以选项B正确;因为抛掷2枚质地均匀的硬币,第一枚正面朝上,与第二枚正面的朝向无关,所以选项C正确;因为事件A1与A2是对立事件,所以B=A1B+A2B,所以P(B)=P(A1B)+P(A2B)=P(A1)P(B|A1)+P(A2)P(B|A2),所以选项D正确.2.(必修第二册P253习题4改条件)甲、乙两人独立地破解同一个谜题,破解出此谜题的概率分别为12,23,则此谜题没被破解出的概率为()A.16B.13C.56D.1【解析】选A.设“甲独立地破解出此谜题”为事件A,“乙独立地破解出此谜题”为事件B,则P(A)=12,P(B)=23,故P()=12,P()=13,所以P()=12×13=16,即此谜题没被破解出的概率为16.3.(条件概率公式使用错误)已知3件次品和2件正品混在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,则在第一次取出次品的条件下,第二次取出的也是次品的概率是()A.310B.35C.12D.14【解析】选C.设事件A表示第一次取出次品,事件B表示第二次取出次品,P(A)=35,P(AB)=35×24=310,则在第一次取出次品的条件下,第二次取出的也是次品的概率是P(B|A)=(B)()=31035=12.4.(2022·天津高考)52张扑克牌,没有大小王,无放回地抽取两次,则两次都抽到A 的概率为________;已知第一次抽到的是A,则第二次抽取A的概率为________.【解析】由题意,设第一次抽到A为事件B,第二次抽到A为事件C,则P(BC)=452×351=1221,P(B)=452=113,所以P(C|B)=(B)()=1221113=117.答案:1221117【巧记结论·速算】如果事件A1,A2,…,A n相互独立,那么这n个事件同时发生的概率等于每个事件发生的概率的积,即P(A1A2…A n)=P(A1)P(A2)…P(A n).【即时练】从应届高中生中选拔飞行员,已知这批学生体型合格的概率为13,视力合格的概率为16,其他几项标准合格的概率为15,从中任选一名学生,则该生各项均合格的概率为(假设各项标准互不影响)()A.49B.190C.45D.59【解析】选B.各项均合格的概率为13×16×15=190.【核心考点·分类突破】考点一事件的相互独立性角度1事件独立性的判断[例1](2021·新高考Ⅰ卷)有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回地随机取两次,每次取1个球.甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则()A.甲与丙相互独立B.甲与丁相互独立C.乙与丙相互独立D.丙与丁相互独立【解析】选B.设甲、乙、丙、丁事件发生的概率分别为P(A),P(B),P(C),P(D).则P(A)=P(B)=16,P(C)=56×6=536,P(D)=66×6=16,对于A选项,P(AC)=0;对于B选项,P(AD)=16×6=136;对于C选项,P(BC)=16×6=136;对于D选项,P(CD)=0.若两事件X,Y相互独立,则P(XY)=P(X)P(Y),因此B选项正确.【解题技法】两个事件相互独立的判断方法(1)定义法:由事件本身的性质直接判定两个事件发生是否相互影响.(2)充要条件法:事件A,B相互独立的充要条件是P(AB)=P(A)P(B).【对点训练】某校为提升学生的综合素养、大力推广冰雪运动,号召青少年成为“三亿人参与冰雪运动”的主力军,开设了“陆地冰壶”“陆地冰球”“滑冰”“模拟滑雪”四类冰雪运动体验课程.甲、乙两名同学各自从中任意挑选两门课程学习,设事件A=“甲、乙两人所选课程恰有一门相同”,事件B=“甲、乙两人所选课程完全不同”,事件C=“甲、乙两人均未选择陆地冰壶课程”,则()A.A与B为对立事件B.A与C互斥C.A与C相互独立D.B与C相互独立【解析】选C.依题意,甲、乙两人所选课程有如下情形:①有一门相同;②两门都相同;③两门都不相同.故A与B互斥不对立,A与C不互斥,所以P(A)=C41C31C21C42C42=23,P(B)=C42C42C42=16,P(C)=C32C32C42C42=14,且P(AC)=C31C21C42C42=16,P(BC)=0,所以P(AC)=P(A)P(C),P(BC)≠P(B)P(C),即A与C相互独立,B与C不相互独立.角度2独立性事件的概率[例2](2023·临沂模拟)“11分制”乒乓球比赛,每赢一球得1分,当某局打成10∶10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10∶10平后,若甲先发球,两人又打了2个球后该局比赛结束的概率为________;若乙先发球,两人又打了4个球后该局比赛结束,则甲获胜的概率为________.【解析】记两人又打了X个球后该局比赛结束,设双方10∶10平后的第k个球甲得分为事件A k(k=1,2,3…),则P(X=2)=P(A1A2)+P(12)=P(A1)P(A2)+P(1)P(2)=0.5×0.4+0.5×0.6=0.5.由乙先发球,且甲获胜的概率P=P(A12A3A4)+P(1A2A3A4)=P(A1)P(2)P(A3)P(A4)+P(1)P(A2)P(A3)P(A4)=0.4×0.5×0.4×0.5+0.6×0.5×0.4×0.5= 0.1.答案:0.50.1【解题技法】求相互独立事件同时发生的概率的方法(1)相互独立事件同时发生的概率等于它们各自发生的概率之积.(2)当正面计算较复杂或难以入手时,可从其对立事件入手计算.【对点训练】(2020·全国Ⅰ卷)甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰;比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人被淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为12.(1)求甲连胜四场的概率;(2)求需要进行第五场比赛的概率;(3)求丙最终获胜的概率.【解析】(1)甲连胜四场的概率为116.(2)根据赛制,至少需要进行四场比赛,至多需要进行五场比赛.比赛四场结束,共有三种情况:甲连胜四场的概率为116;乙连胜四场的概率为116;丙上场后连胜三场的概率为18.所以需要进行第五场比赛的概率为1-116-116-18=34.(3)丙最终获胜有两种情况:比赛四场结束且丙最终获胜的概率为18.比赛五场结束且丙最终获胜,则从第二场开始的四场比赛按照丙的胜、负、轮空结果有三种情况:胜胜负胜,胜负空胜,负空胜胜,概率分别为116,18,18.因此丙最终获胜的概率为18+116+18+18=716.【加练备选】某一部件由三个电子元件按如图方式连接而成,元件1和元件2同时正常工作,或元件3正常工作,则部件正常工作.设三个电子元件正常工作的概率均为34且各个元件能否正常工作相互独立,那么该部件正常工作的概率为()A.764B.1532C.2732D.5764【解析】选D.讨论元件3正常与不正常:第一类,元件3正常,上部分正常或不正常都不影响该部件正常工作,则正常工作的概率为34×1=34;第二类,元件3不正常,上部分必须正常,则正常工作的概率为14×(34×34)=964,故该部件正常工作的概率为34+964=5764.考点二条件概率[例3](1)七巧板是中国民间流传的智力玩具.它是由如图所示的七块板组成:五块等腰直角三角形(其中两块小型三角形、一块中型三角形和两块大型三角形)、一块正方形和一块平行四边形.可以拼成人物、动物、植物、房亭、楼阁等多种图案.现从七巧板中取出两块,已知取出的是三角形,则两块板恰好是全等三角形的概率为()A .35B .25C .27D .15【解析】选D .设事件A 为“从七巧板中取出两块,取出的是三角形”,事件B 为“两块板恰好是全等三角形”,则P (AB )=2C 72=221,P (A )=C 52C 72=1021,所以P (B |A )=(B )()=2211021=15.(2)(2022·新高考Ⅰ卷改编)一医疗团队为研究某地的一种地方性疾病与当地居民的卫生习惯(卫生习惯分为良好和不够良好两类)的关系,在已患该疾病的病例中随机调查了100人(称为病例组),同时在未患该疾病的人群中随机调查了100人(称为对照组),得到如下数据:项目不够良好良好病例组4060对照组1090从该地的人群中任选一人,A 表示事件“选到的人卫生习惯不够良好”,B 表示事件“选到的人患有该疾病”.(|)(|)与(|)(|)的比值是卫生习惯不够良好对患该疾病风险程度的一项度量指标,记该指标为R.①证明:R =(|)(|)·(|)(|);②利用该调查数据,给出P (A |B ),P (A |)的估计值,并利用①的结果给出R 的估计值.【解析】①因为R =(|)(|)·(|)(|)=(B )()·()(B )·(B )()·()(B ),所以R =(B )()·()(B )·(B )()·()(B ).所以R =(|)(|)·(|)(|).②由已知P (A |B )=40100=25,P (A |)=10100=110,又P (|B )=60100=35,P (|)=90100=910,所以R =(|)(|)·(|)(|)=25×91035×110=6.所以指标R 的估计值为6.【解题技法】求条件概率的常用方法(1)定义法:P (B |A )=(B )().(2)样本点法:P (B |A )=(B )().【对点训练】1.某地的中学生中有60%的同学爱好滑冰,50%的同学爱好滑雪,70%的同学爱好滑冰或爱好滑雪,在该地的中学生中随机调查一位同学,若该同学爱好滑雪,则该同学也爱好滑冰的概率为()A .0.8B .0.4C .0.2D .0.1【解析】选A .根据题意,在该地的中学生中随机调查一位同学,设选出的同学爱好滑冰为事件A,选出的同学爱好滑雪为事件B,由于该地中学生中有60%的同学爱好滑冰,50%的同学爱好滑雪,70%的同学爱好滑冰或爱好滑雪,则P(B)=0.5,同时爱好两个项目的占该地中学生总人数的50%+60%-70%=40%,则P(AB)=0.4,则P(A|B)=(B)()=0.40.5=0.8.2.根据历年的气象数据可知,某市5月份发生中度雾霾的概率为0.25,刮四级以上大风的概率为0.4,既发生中度雾霾又刮四级以上大风的概率为0.2.则在发生中度雾霾的情况下,刮四级以上大风的概率为()A.0.8B.0.625C.0.5D.0.1【解析】选A.设“发生中度雾霾”为事件A,“刮四级以上大风”为事件B,所以P(A)=0.25,P(B)=0.4,P(AB)=0.2,则在发生中度雾霾的情况下,刮四级以上大风的概率为P(B|A)=(B)()=0.20.25=0.8.考点三全概率公式的应用[例4](1)一份新高考数学试卷中有8道单选题,小胡对其中5道题有思路,3道题完全没有思路.有思路的题做对的概率是0.9,没有思路的题只能猜一个答案,猜对答案的概率为0.25,则小胡从这8道题目中随机抽取1道做对的概率为() A.79160B.35C.2132D.58【解析】选C.设事件A表示“小胡做对”,事件B表示“小胡选到有思路的题”,则小胡从这8道题目中随机抽取1道做对的概率P(A)=P(B)P(A|B)+P()P(A|) =58×0.9+38×0.25=2132.(2)在数字通信中,信号是由数字0和1组成的序列.由于随机因素的干扰,发送的信号0或1有可能被错误地接收为1或0.已知当发送信号0时,被接收为0和1的概率分别为0.93和0.07;当发送信号1时,被接收为1和0的概率分别为0.95和0.05.假设发送信号0和1是等可能的,则接收的信号为1的概率为()A.0.48B.0.49C.0.52D.0.51【解析】选D.设事件A=“发送的信号为0”,事件B=“接收的信号为1”,则P(A)=P()=0.5,P(B|A)=0.07,P(B|)=0.95,因此P(B)=P(A)P(B|A)+P()P(B|)=0.5×(0.07+0.95)=0.51.【解题技法】利用全概率公式解题的思路(1)按照确定的标准,将一个复杂事件分解为若干个互斥事件A i(i=1,2,…,n).(2)求P(A i)和所求事件B在各个互斥事件A i发生条件下的概率P(B|A i).(3)代入全概率公式计算.【对点训练】某商店收进甲厂生产的产品30箱,乙厂生产的同种产品20箱,甲厂每箱装100个,废品率为0.06,乙厂每箱装120个,废品率为0.05.(1)任取一箱,求从中任取一个为废品的概率;(2)若将所有产品开箱混放,求任取一个为废品的概率.【解析】记事件A为取到的是甲厂的产品,事件B为取到的是乙厂的产品,事件C 为取到的是废品.(1)P(A)=3050=35,P(B)=2050=25,P(C|A)=0.06,P(C|B)=0.05,由全概率公式,得P(C)=P(A)P(C|A)+P(B)P(C|B)=7125.(2)P(A)=30×10030×100+20×120=59,P(B)=20×12030×100+20×120=49,P(C|A)=0.06,P(C|B)=0.05,由全概率公式,得P(C)=P(A)P(C|A)+P(B)P(C|B)=118.。
高三一轮复习数学计数原理复习教案
富县高级中学集体备课教案年级:高三级科目:数学(理)授课人:审核人签字:年月日富县高级中学集体备课教案年级:高三级科目:数学(理)授课人:审核人签字:年月日富县高级中学集体备课教案年级:高三级科目:数学(理)授课人:审核人签字: 年 月 日富县高级中学集体备课教案年级:高三级科目:数学(理) 授课人:(1)估计甲品牌产品寿命小于200小时的概率;(2)这两种品牌产品中,某个产品已使用了200小时,试估计该产品是甲品牌的概率.思维启迪:(1)根据甲品牌频数条形图计算寿命小于200小时的频率;(2)根据甲乙两品牌频数条形图求出使用了200小时的产品总数量和甲品牌使用了200小时的产品数量,并计算相应的频率.题型二:互斥事件的概率【例2】某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示:已知这100位顾客中一次购物量超过8件的顾客占55%.(1)确定x,y的值,并估计顾客一次购物的结算时间的平均值;(2)求一位顾客一次购物的结算时间不超过2分钟的概率.(将频率视为概率).审核人签字:年月日富县高级中学集体备课教案年级:高三级科目:数学(理)授课人:思维启迪:由于出现的结果有限,每次每颗只能有四种结果,且每种结果出现的可能性是相等的,所以是古典概型.由于试验次数少,故可将结果一一列出.题型二:古典概型【例2】有编号为A1,A2,…,A10的10个零件,测量其直径(单位:cm),得到下面数据:其中直径在区间[1.48,1.52]内的零件为一等品.(1)从上述10个零件中,随机抽取一个,求这个零件为一等品的概率;(2)从一等品零件中,随机抽取2个.①用零件的编号列出所有可能的抽取结果;②求这2个零件直径相等的概率.思维启迪:确定基本事件总数,可用列举法.确定事件所包含的基本事件数,用公式求解.题型三:古典概型的综合应用【例3】为了解学生身高情况,某校以10%的比例对全校700名学生按性别进行分层抽样调查,测得身高情况的统计图如下:审核人签字:年月日富县高级中学集体备课教案年级:高三级科目:数学(理)授课人:一、知识梳理1. 几何概型2.几何概型中,事件A的概率计算公式P(A)=构成事件A的区域长度面积或体积试验的全部结果所构成的区域长度面积或体积3.在切实理解并掌握几何概型试验的两个基本特点二、典型例题题型一:与长度有关的几何概型【例1】在集合A={m|关于x的方程x2+mx+3 4审核人签字:年月日富县高级中学集体备课教案年级:高三级科目:数学(理)授课人:审核人签字:年月日富县高级中学集体备课教案年级:高三级科目:数学(理)授课人:审核人签字:年月日富县高级中学集体备课教案年级:高三级科目:数学(理)授课人:审核人签字:年月日。
计数原理与二项式定理 教案 2022届高三数学一轮复习备考
3.1 分类加法与分步乘法计数原理【知识点】1.分类加法计数原理完成一件事有n类不同的办法,用第1类办法完成这件事有m1种不同的方法,用第2类办法完成这件事有m2种不同的方法,……,用第n类办法完成这件事有m n种不同的方法,则完成这件事情共有不同的方法数为N=.2.分步乘法计数原理完成一件事有n个不同的步骤,完成第1步有m1种不同的方法,完成第2步有m2种不同的方法,……,完成第n步有m n种不同的方法,那么完成这件事共有不同的方法数为N =.3.两个原理的区别分类加法计数原理中的任何一种方法都可独立完成这件事,各类办法之间的交集为空集,并集为全集,即分类要不重不漏;分步乘法计数原理中的任何一步的任何一种方法都不可独立完成这件事,只够完成这一步;只有所有步骤都完成才能完成这件事.各步之间相互独立相互依存.【应用点】1.用0,1,2,3,4,5六个数字构成三位数⑴各位上的数字允许相同的三位数有多少个?⑴各位上的数字互不相同的三位数有多少个?⑴各位上的数字互不相同且大于421的三位数有多少个?⑴各位上的数字互不相同且可被3整除的三位数有多少个?2.有5个不同的小球,现将这5个小球全部放入到标有编号1、2、3、4、5的五个盒子中⑴若不要求每个盒子必须有小球,有多少种不同放法?⑴若要求每个盒子必须有小球,有多少种不同放法?⑴恰有1个空盒的放法有多少种?⑴若装有小球的盒子的编号之和恰为11,则有多少种不同放法?3.如图所示,将一个四棱锥的每一个顶点染上一种颜色,并使同一条棱上的两端异色,如果只有4种颜色可供使用. ⑴有多少种不同涂色方法?⑴若4种颜色全被用上,有多少种不同涂色方法?4.将1,2,3填入3×3的方格中,要求每行、每列都没有重复数字,右面是一种填法,则不同的填写方法共有多少种?【核心点】1.如何计数?两个计数原理是基础;2.分类——分类讨论,分步——步步为营; 3.从考虑如何完成所给事情入手进行计数.3.2 排列【知识点】1.排列:从n 个不同的元素中取出m(m ≤n)个元素,按照 排成一列,叫做从n 个不同的元素中取出m 个元素的 ;注:两个排列相同⇔ 相同且 相同.2.排列数及其计算⑴从n 个不同的元素中取出m(m ≤n)个元素的所有 的个数叫做从n 个不同的元素中取出m 个元素的 ,记为 . ⑵mn A = ;nn A = = ,称为n 的 . 用阶乘的形式表示________mn A =,规定0!___=.注:排列是一个具体的一排,排列数是一个 数.1 2 3 3 1 2 231【应用点】1.⑴1!+2!+3!+……+n!(n ≥5,且n ∈N *)的个位数字是 ; ⑵化简!)!1(n n += .2.⑴公共汽车上有3个座位,现在上来5名乘客,每人坐1个座位,有几种不同的坐法? ⑵公共汽车上有5个座位,现在上来3名乘客,每人坐1个座位,有几种不同的坐法?3.要对元旦晚会10个节目排一个节目单,下列要求中的不同节目单个数分别是多少? ⑴A 、B 两个节目不能排第一也不能排最后; ⑵A 、B 两个节目不能相邻; ⑶A 、B 两个节目顺序一定;⑷A 、B 两个节目不能相邻,但B 节目必须与C 节目相邻; ⑸A 节目不能排第一且B 节目不能排最后.4.10个人围圆桌而坐⑴有多少种不同的坐法?⑵其中甲、乙两人不相邻的不同的坐法有多少种?5.今有2个红球、3个黄球、4个白球,同色球不加以区分,将这9个球排成一列有多少种不同的方法?【核心点】1.与顺序有关的计数可直接用排列计数,也可用计数原理计数;2.从考虑如何完成所给事情入手进行计数;3.退:退到最简单的计数,找到解决方案,再将此方案用到量大的问题;4.转化化归思想:化圆排为直排,化大量为小量。
高三数学一轮复习 6.1 计数原理、二项式定理学案
专题六:概率与统计、推理与证明、算法初步、复数第一讲计数原理、二项式定理【备考策略】根据近几年高考命题特点和规律,复习本专题时,要注意以下几个方面:1.复习时要注意控制难度,以中低档题为主;2.注意各知识点的交汇,如统计与概率,计数原理与概率等;3.统计部分应重视茎叶图的复习,概率部分应重视条件概率,相互独立事件同时发生的概率和几何概型;程序框图应有所降温。
【最新考纲透析】1.分类加法计数原理、分步乘法计数原理(1)理解分类加法计数原理和分步乘法计数原理;(2)会用分类加法计数原理或分步乘法计数原理分析和解决一些简单的实际问题。
2.排列与组合(1)理解排列、组合的概念;(2)能利用计数原理推导排列数公式、组合数公式;(3)能解决简单的实际问题。
3.二项式定理(1)能用计数原理证明二项式定理;(2)会用二项式定理解决与二项展开式有关的简单问题。
【核心要点突破】要点考向1:利用分步加法和分步乘法计数原理计数考情聚焦:1.两个计数原理是排列、组合的基础,又是古典概率的必要工具,在每年的高考中都直接或间接考查。
2.多在选择、填空题中出现,属中档或较难题目。
考向链接:1.“分类”与“分步”的区别:关键是看事件完成情况,如果每种方法都能将事件完成则是分类;如果必须要连续若干步才能将事件完成则是分步。
分类要用分类计数原理将种数相加;分步要用分步计数原理将种数相乘。
2.对于较复杂的问题,一般要分类讨论,此时要注意分类讨论的对象和分类讨论的标准。
例1:用1,2,3这三个数字组成四位数,要求这三个数字必须都使用, 但相同的数字不能相邻,以这样的方式组成的四位数共有 ( )A .9个B .12个C .18个D .36个【解析】选C.先选取使用两次的数字有13C 种,然后将剩余的两个数字全排列有22A 种,再将使用两次的数字插入到这两个数字之间有23C 种,故共有13C 22A 23C =18种组合方式.要点考向2:利用排列组合计数问题考情聚焦:1.在高考题中可单独考查,也可与古典概型结合起来考查。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
富县高级中学集体备课教案
年级:高三级科目:数学(理)授课人:
审核人签字:年月日
富县高级中学集体备课教案
年级:高三级科目:数学(理)授课人:
审核人签字:年月日
富县高级中学集体备课教案
年级:高三级科目:数学(理)授课人:
审核人签字: 年 月 日
富县高级中学集体备课教案
年级:高三级
科目:数学(理) 授课人:
(1)估计甲品牌产品寿命小于200小时的概率;
(2)这两种品牌产品中,某个产品已使用了200小时,试估计该产品是甲品牌的概率.
思维启迪:(1)根据甲品牌频数条形图计算寿命小于200小时的频率;(2)根据甲乙两品牌频数条形图求出使用了200小时的产品总数量和甲品牌使用了200小时的产品数量,并计算相应的频率.
题型二:互斥事件的概率
【例2】
某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示:
已知这100位顾客中一次购物量超过8件的顾客占55%.
(1)确定x,y的值,并估计顾客一次购物的结算时间的平均值;
(2)求一位顾客一次购物的结算时间不超过2分钟的概率.(将频率视为概率).
审核人签字:年月日
富县高级中学集体备课教案
年级:高三级科目:数学(理)授课人:
思维启迪:由于出现的结果有限,每次每颗只能有四种结果,且每种结果出现的可能性是相等的,所以是古典概型.由于试验次数少,故可将结果一一列出.
题型二:古典概型
【例2】
有编号为A1,A2,…,A10的10个零件,测量其直径(单位:cm),得到下面数据:
其中直径在区间[1.48,1.52]内的零件为一等品.(1)从上述10个零件中,随机抽取一个,求这个零件为一等品的概率;
(2)从一等品零件中,随机抽取2个.
①用零件的编号列出所有可能的抽取结果;
②求这2个零件直径相等的概率.
思维启迪:确定基本事件总数,可用列举法.确定事件所包含的基本事件数,用公式求解.
题型三:古典概型的综合应用
【例3】
为了解学生身高情况,某校以10%的比例对全校700名学生按性别进行分层抽样调查,测得身高情况的统计图如下:
审核人签字:年月日富县高级中学集体备课教案
年级:高三级科目:数学(理)授课人:
一、知识梳理
1. 几何概型
2.几何概型中,事件A的概率计算公式
P(A)
=
构成事件A的区域长度面积或体积
试验的全部结果所构成的区域长度面积或体积
3.在切实理解并掌握几何概型试验的两个基本特点二、典型例题
题型一:与长度有关的几何概型
【例1】在集合A={m|关于x的方程x2+mx+3 4
审核人签字:年月日
富县高级中学集体备课教案
年级:高三级科目:数学(理)授课人:
审核人签字:年月日
富县高级中学集体备课教案
年级:高三级科目:数学(理)授课人:
审核人签字:年月日
富县高级中学集体备课教案
年级:高三级科目:数学(理)授课人:
审核人签字:年月日。