《全等三角形的判定复习》教学设计

合集下载

全等三角形的判定复习教学设计

全等三角形的判定复习教学设计

全等三角形的判定复习教学设计一、设计思路:全等三角形是初中数学中非常重要的知识点,它涉及到了数学的思维能力和几何推理能力。

为了帮助学生巩固全等三角形的判定方法,本教学设计旨在通过多种教学方法和教学活动,激发学生的兴趣,提高学生的参与度,让学生全面了解全等三角形的判定方法,掌握运用这些方法进行推理和证明。

二、教学目标:1.知识目标:掌握全等三角形的判定方法,包括SAS判定法、SSS判定法和ASA判定法。

2.能力目标:培养学生的观察能力、问题分析能力和逻辑推理能力,能够准确判断和证明两个三角形是否全等。

3.情感目标:激发学生对几何学的兴趣,培养学生的数学思维能力和合作意识。

三、教学内容:1.全等三角形的定义和判定方法。

2.全等三角形的性质和应用。

3.通过多个案例进行全等三角形的判定和推理。

四、教学过程:第一步:导入新知识(10分钟)1.教师用一个有趣的故事或问题引入全等三角形的定义和判定方法,并引导学生思考两个图形全等的条件是什么。

2.引导学生根据已学知识进行一些简单的判断,如判断两个已知三角形是否全等等。

第二步:全等三角形的判定方法讲解(15分钟)1.通过PPT或板书,讲解SAS判定法、SSS判定法和ASA判定法的原理和应用场景。

2.教师讲解过程中,可结合具体案例进行讲解,引导学生思考这些判定方法的依据和推理过程。

第三步:全等三角形的性质和应用(10分钟)1.讲解全等三角形的性质,如对应的角相等、对应的边相等等。

2.引导学生思考全等三角形在实际中的应用,如测量图形的面积、解决实际问题等。

第四步:示例分析和讨论(25分钟)1.给出多个实际案例,让学生互相配对进行分析和讨论。

2.学生通过观察、测量和比较,利用判定方法进行判断,并用书面形式写出判定的依据和过程。

3.引导学生沟通交流,总结不同案例中的判定方法和推理过程。

第五步:小组合作活动(20分钟)1.将学生分成小组,每个小组分配一些判定全等三角形的题目。

人教版数学八年级上册《三角形全等的判定(复习)》教学设计

人教版数学八年级上册《三角形全等的判定(复习)》教学设计

人教版数学八年级上册《三角形全等的判定(复习)》教学设计一. 教材分析人教版数学八年级上册《三角形全等的判定(复习)》这一节的内容主要包括SSS、SAS、ASA、AAS四种三角形全等的判定方法,以及三角形全等的应用。

学生在学习这一节内容时,需要掌握三角形全等的判定方法,并能够灵活运用到实际问题中。

二. 学情分析学生在学习这一节内容时,已经有了一定的几何基础,掌握了三角形的基本性质和判定方法。

但是,部分学生对于三角形全等的判定方法理解不深,不能灵活运用到实际问题中。

因此,在教学过程中,需要引导学生深入理解三角形全等的判定方法,并通过实际例题让学生学会如何运用这些判定方法。

三. 教学目标1.让学生掌握SSS、SAS、ASA、AAS四种三角形全等的判定方法。

2.培养学生灵活运用三角形全等的判定方法解决实际问题的能力。

3.培养学生合作交流、归纳总结的能力。

四. 教学重难点1.重点:SSS、SAS、ASA、AAS四种三角形全等的判定方法。

2.难点:如何灵活运用三角形全等的判定方法解决实际问题。

五. 教学方法采用讲授法、案例分析法、小组合作法、归纳总结法等教学方法,引导学生通过自主学习、合作交流,深入理解三角形全等的判定方法,并能够灵活运用到实际问题中。

六. 教学准备1.教材、教案、PPT等教学资料。

2.三角板、直尺、圆规等几何作图工具。

3.练习题、案例分析题等教学素材。

七. 教学过程1.导入(5分钟)通过复习已学过的三角形性质和判定方法,引导学生回顾三角形全等的判定方法,为新课的学习做好铺垫。

2.呈现(10分钟)讲解SSS、SAS、ASA、AAS四种三角形全等的判定方法,并通过PPT展示相关例题,让学生直观地理解这些判定方法。

3.操练(10分钟)让学生分成小组,利用几何作图工具,根据四种全等判定方法,相互判断给出的三角形是否全等。

教师巡回指导,解答学生疑问。

4.巩固(10分钟)出示一些判断题和应用题,让学生独立完成,检验学生对三角形全等判定方法的掌握程度。

初中数学八年级《全等三角形判定的复习》优秀教学设计

初中数学八年级《全等三角形判定的复习》优秀教学设计

初中数学八年级《全等三角形判定的复习》优秀教学设计-CAL-FENGHAI.-(YICAI)-Company One1《全等三角形判定的复习》教学设计教学目标1、进一步理解全等三角形的判定方法,并能根据题意灵活利用所学知识进行解题。

2、通过变式练习提高学生的分析能力和解题能力。

学情分析本节课是在学生已经学习完了全等三角形的几种判定方法的基础上进一步通过一题多解、变式教学的措施促使学生对全等三角形判定方法有一个整体的认识。

教学重点1、进一步理解全等三角形的判定方法,并能根据题意灵活利用所学知识进行解题。

2、通过变式练习提高学生的分析能力和解题能力。

教学难点能根据题意灵活利用所学知识进行解题。

教学过程一、回顾全等三角形的判定方法全等三角形的判定方法有种,它们分别是(填简称),其中直角三角形专用的是(填简称)。

二、“全等三角形的判定”对应练习(一)小组讨论,活用方法例1、已知:如图,AD=BE,AC=BC,CD=CE,请你试用不同方法证明:△AEC≌△BDC(二)题组训练,总结经验1.(A组)如图1,△ABC中,AB=AC,AD平分∠BAC,则依据 (填简称)可得到__________≌__________。

反思:此题第一个空还有其它答案吗?23图1 图2 2. (B 组)已知:如图2, ∠C=∠E ,∠1=∠2,AC=AE ,求证:AB=AD反思:你从此题得到了什么解题经验?3.(B 组)已知:如图,AB =CD ,AB ∥DC .求证:AD ∥BC , AD =BC反思:你从此题得到了什么解题经验?4. (C 组)如图,AB =AC ,BD ⊥AC 于D ,CE ⊥AB 于E ,交BD 于P ,求证:PD =PE反思:你从此题得到了什么解题经验?(三)随堂小测1、(A 组)如图,已知AB=AD ,试用四种不同方法添加适当条件使得三角形全等。

(1)添加条件 后, 可判定△ABC ≌△ADC ,依据是 (填简称);(2)添加条件 后,可判定△ABC ≌△ADC ,依据是 (填简称);(3)添加条件 后,A B CD可判定△ABC≌△ADC,依据是(填简称);(4)添加条件后,可判定△ABC≌△ADC,依据是(填简称)。

全等三角形的复习课教学设计

全等三角形的复习课教学设计

全等三角形的复习课教学设计一、教学内容本节课的教学内容为全等三角形的性质及判定。

教材选用为人教版《数学》五年级下册第二章第三节“全等三角形”。

内容包括:全等三角形的定义、全等三角形的性质、全等三角形的判定方法(SSS、SAS、ASA、AAS)。

二、教学目标1. 理解全等三角形的定义,掌握全等三角形的性质,能运用全等三角形的性质解决实际问题。

2. 掌握全等三角形的判定方法,能运用判定方法判断两个三角形是否全等。

3. 培养学生的空间想象力,提高学生的逻辑思维能力。

三、教学难点与重点重点:全等三角形的定义、性质及判定方法。

难点:全等三角形的判定方法的运用,以及如何根据全等三角形的性质解决实际问题。

四、教具与学具准备教具:黑板、粉笔、三角板、多媒体设备。

学具:练习本、彩笔、剪刀、胶水。

五、教学过程1. 情景引入教师展示两幅完全相同的三角形图案,提问:“请大家观察这两幅图案,它们有什么特点?”引导学生发现两幅图案的三角形完全相同,从而引出全等三角形的概念。

2. 知识讲解(2)全等三角形的性质:教师通过多媒体展示全等三角形的性质,引导学生发现全等三角形对应边相等、对应角相等。

(3)全等三角形的判定方法:教师讲解SSS、SAS、ASA、AAS四种判定方法,并通过例题展示判定过程。

3. 随堂练习教师给出练习题,学生独立完成,检验自己对全等三角形概念、性质和判定方法的理解。

4. 例题讲解教师选取一道典型例题,讲解解题思路,引导学生运用全等三角形的性质和判定方法解决问题。

5. 实践环节学生分组进行实践,利用全等三角形的性质和判定方法,解决实际问题。

教师巡回指导,解答学生疑问。

6. 课堂小结7. 作业布置教师布置作业,包括课后练习题和实际问题解决题。

六、板书设计板书内容:全等三角形的定义、性质、判定方法。

七、作业设计1. 课后练习题:(1)判断题:a. 全等三角形的对应边相等。

()b. 全等三角形的对应角相等。

()c. 如果两个三角形的一边和两个角分别相等,那么这两个三角形全等。

全等三角形的判定复习教学设计

全等三角形的判定复习教学设计

全等三角形的判定复习教学设计教学目标:1.知识目标:学生能够理解全等三角形的概念,并掌握全等三角形的判定方法。

2.能力目标:培养学生的逻辑推理能力和问题解决能力。

3.情感目标:培养学生对数学的兴趣,增强他们对数学的自信心。

教学重点和难点:1.重点:全等三角形的判定方法。

2.难点:学生掌握并运用判定方法进行实际问题的解决。

教学准备:1.教学材料:教科书、练习册、白板、彩色笔。

2.教学方法:讲授、互动、实践。

教学过程:Step 1 导入新知(10分钟)1.引入问题:请同学们回顾一下,什么是全等三角形?全等三角形有哪些性质?2.引导学生回答,并给出全等三角形的定义。

3.引入课题:本节课我们将复习全等三角形的判定方法,以及如何应用这些方法解决实际问题。

Step 2 示范教学(15分钟)1.教师给出两个全等三角形的形状,并解释这两个三角形相等的原因。

2.教师讲解全等三角形的判定方法,包括SSS判定法、SAS判定法、ASA判定法以及证明两组三角形全等的方法。

3.教师通过几个例题演示如何运用这些方法判定两个三角形是否全等。

Step 3 学生练习(20分钟)1.学生进行练习册上相关习题的解答,并在解答过程中运用全等三角形的判定方法。

2.部分学生上台讲解解题思路,并互相交流讨论。

Step 4 拓展运用(20分钟)1.学生分组合作,自选一个实际问题,并应用全等三角形的判定方法解决问题。

2.每个小组派一名代表上台展示解题过程和结果,其他小组进行评价和讨论。

Step 5 总结归纳(10分钟)1.教师与学生共同总结全等三角形的判定法,并强调每种判定法的使用条件和步骤。

2.教师提问学生,全等三角形的判定是一种证明方法,那么如何进行三角形全等的证明呢?Step 6 课堂作业(5分钟)1.布置课堂作业:完成练习册上的相关习题,同时要求学生用全等三角形的判定法证明一组三角形全等。

2.提醒学生写明解题思路和步骤。

教学反思:本节课通过引入问题、示范教学、学生练习、拓展运用以及总结归纳的多种教学手段,旨在帮助学生复习并掌握全等三角形的判定方法。

人教版八年级数学上册1三角形全等的判定复习学案

人教版八年级数学上册1三角形全等的判定复习学案

12.2全等三角形的判定复习【学习目标】1、进一步熟练掌握三角形全等的判定方法,并能利用全等三角形的判定证明有关线段相等、角相等的问题;2、经历运用三角形全等的条件解决问题的过程,发展合情推理能力和演绎推理能力.【重点难点】重点:利用全等三角形的判定证明有关线段相等、角相等的问题;难点:根据已知条件选择合适的判定方法证明两个三角形全等【学习过程】一、知识回顾:1、判定两个三角形全等的方法有哪些?2、判定两个直角三角形全等的方法有哪些?二、合作探究:证明两个三角形全等常见思路有哪些?(1)当条件中有两条边对应相等时,如何选择判定方法?(2)当条件中有一条边对应相等,一个角对应相等时,如何选择判定方法?(3)当条件中有两个角对应相等时,如何选择判定方法?三、例题探究:例1、已知:如图∠B=∠DEF,BC=EF,补充条件求证:ΔABC≌ΔDEF(1)若要以“SAS”为依据,还缺条件__;(2) 若要以“ASA”为依据,还缺条件__;(3) 若要以“AAS”为依据,还缺条件__;(4)若要以“SSS”为依据,还缺条件__;(5)若∠B=∠DEF=90°要以“HL”为依据还缺条件__;例2、已知:如图,AD是△ABC 的中线,求证:ACABAD+<2四、尝试应用1、如图,已知AB=AC,BE=CE,延长AE交BC于D,则图中全等三角形共有()A、1对B、2对C、3对D、4对2、下列条件中,不能判定两个直角三角形全等的是()A、一锐角和斜边对应相等B、两条直角边对应相等C、斜边和一直角边对应相等D、两个锐角对应相等3、下列四组中一定是全等三角形的为()A.三内角分别对应相等的两三角形B、斜边相等的两直角三角形C、两边和其中一条边的对角对应相等的两个三角形D、三边对应相等的两个三角形4、已知:如图∠ABC=∠DCB, AB=DC,求证: (1)AC=BD; (2)S△AOB = S△DOC5、如图,已知∠ABC=∠DCB,要使△ABC≌△DCB,只需添加一个条件是_____________。

(完整word版)全等三角形判定的复习教案

(完整word版)全等三角形判定的复习教案

全等三角形判定的复习学习目标:1、了解判定两个三角形全等的4种方法,并能应用它们解决简单问题;2、学会用全等的方法证明线段(角)的相等3、了解全等的证明思路,学会合理思考.教学重点:1、了解判定两个三角形全等的4种方法,并能应用它们解决简单问题;2、学会用全等的方法证明线段(角)的相等教学难点:1:如何灵活运用合适判定方法进行全等证明 2:初步认识并获得全等的证明思路 教学过程:(一) 温故知新:(直接导入复习内容)学生回顾旧知识 1、全等三角形的定义?能够完全重合的两个三角形叫全等三角形 2、全等三角形的性质?全等三角形对应边相等,对应角相等 3、全等三角形的判定方法判定方法1 三边对应相等的两个三角形全等(可以简写为“边边边”或“SSS ” ) 判定方法2 两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS”)判定方法3 有两角和它们夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA ”)判定方法 4 有两角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS ”)(师引言本章重点复习三角形的全等进入全等证明) (二) 基础训练:1.如图, A,E,B,D 在同一直线上, AB=DE,AC=DF,AC ∥ DF,在ΔABC 和ΔDEF, (1)求证: ΔABC ≌ΔDEF (学生口述过程)(师指出需要条件先给予证明)(1)证明:∵AC ∥DF(已知) ∴∠A=∠D (两直线平行,内错角相等) 在ΔABC 和ΔDEF 中AB=DE(已知) ∠A=∠D(已证) AC=DF (已知∴ΔABC ≌ΔDEF(SAS) (2) 如图,A,E,B,D 在同一直线上, 在ΔABC 和ΔDEF 中, AB=DE,AC=DF,AC ∥DF, 你还可以得到的结论是 .(写出一个,不添加其他线段,不再表注或使用其他字母) 解:根据”全等三角形的对应边(角)相等”可知:① BC=EF, ② ∠C=∠F③ ∠ABC=∠ DEF, (师引导学生分析全由学生回答) ④ EF ∥BC ⑤ AE=BDF EDC BA F E DC BA(基础训练2)已知:如图,AB=AD,AC=AE,∠1=∠2, (本题全由学生解答) 求证:∠B=∠D.证明: ∵∠1=∠2 (已知) ∴ ∠1+∠DAC =∠2+ ∠DAC, (等式性质)即∠BAC=∠DAE (等量代换) 在ΔABC 和ΔADE 中AB=AD(已知)∠BAC=∠DAE(已证) AC=AE (已知)∴ ΔABC ≌ΔADE(SAS) ∴ ∠B=∠D(全等三角形的对应角相等)(三)开放训练: 1 、如图,点B 在AE 上,∠CAB=∠DAB,要使ΔABC ≌ΔABD,可补充的一个条件是___________________ .如图,AE=AD,要使ΔABD ≌ΔACE,请你增加一个条件是如图,AB,CD 相交于点O,OA=OD.要使ΔOAC ≌ΔODB,请你增加一个条件是 .(四)合作探究:在△ABC 中,∠ACB=90°,AC=BC ,直线MN 经过点C ,如图,且AD ⊥MN 于D ,BE ⊥MN 于E ,求证:△ ADC ≌ △CEB.如图在ΔACD 和ΔCBE 中AC=BC, ∠ACB= 120°, ∠ ADC=∠BEC= 120°, ΔACD 和ΔCBE 是否还全等?(学生分组合作讨论)(从中你发现了什么?)CBOAD E DCBAACDBE120°120° 120°ENM EDCBAE DC BA ACDBEX ° X °X °(五)谈收获:通过本节的学习,谈谈你在全等证明问题中的收获和经验(六)教师总结1.证明两个三角形全等,要结合题目的条件和结论,选择恰当的判定方法2.全等三角形,是证明两条线段或两个角相等的重要方法之一,证明时①要观察待证的线段或角,在哪两个可能全等的三角形中。

全等三角形的判定(复习教案)

全等三角形的判定(复习教案)

学科数学课题《全等三角形的判定(复习)》执教人:李稻芬年级:八年级
变式练习2:已知∠1=∠2,AO=CO ,求证:△ABD ≌△CDB .
基础训练基础练习选择题
1.如右图,某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是( )
A 、带①去;
B 、带②去;
C 、带③去;
D 、①②③都带去.
2.如右图,已知AB 平分∠CBD , 要使△ABC ≌△ABD ,
(1)根据“SAS ”需要添加条件 ;
(2)根据“ASA ”需要添加条件 ;
(3)根据“AAS ”需要添加条件 ;
3.选取第2题中的一个小题进行证明。

4. 已知:如图AB=CB ,AD=CD ,求证:AE=CE.
当 堂 测 学
学生测试
A
B
D
O
变式练习2图
1 2
C



D
C
B
A。

京改版八年级上册第12章《全等三角形的判定复习》优秀教学案例

京改版八年级上册第12章《全等三角形的判定复习》优秀教学案例
针对本节课的内容,我以实际教学为例,设计了一系列具有针对性和实用性的教学活动。首先,通过复习全等三角形的判定定理,帮助学生回顾和巩固相关知识点。然后,通过设计不同难度的练习题,让学生在实践中运用所学知识,提高解题技巧。此外,我还组织学生进行小组讨论和分享,鼓励他们相互学习、共同进步。
在教学过程中,我充分关注学生的个体差异,针对不同学生的学习需求给予个性化的指导。对于学习困难的学生,我耐心讲解,帮助他们理解全等三角形的判定方法;对于学习优秀的学生,我则引导他们拓展思维,探讨全等三角形在实际问题中的应用。
2.小组讨论:组织学生进行小组讨论,鼓励学生发表自己的观点,提高学生的团队协作精神。
3.实践操作:设计具有针对性的练习题,让学生在实践中运用所学知识,提高解题能力。
4.反馈与评价:及时给予学生反馈,鼓励学生自我评价,提高学生的自我认知能力。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,激发学生学习数学的积极性。
三、教学策略
(一)情景创设
1.利用多媒体展示全等三角形的实际应用场景,如建筑设计、物理学中的受力分析等,让学生了解全等三角形在现实生活中的重要性。
2.设计具有启发性的问题,引导学生思考全等三角形的判定方法在解决问题中的应用。
3.通过设置不同的难度等级的练习题,满足不同层次学生的学习需求,激发学生的学习兴趣。
在教学过程中,我注重创设情景,让学生在现实生活中的情境中感受数学的魅力。例如,在讲解全等三角形的判定方法时,我可以利用多媒体展示建筑设计中全等三角形的应用,让学生明白全等三角形在实际生活中的重要性。同时,我还会设计具有启发性的问题,引导学生思考全等三角形的判定方法在解决问题中的应用。
(二)问题导向
1.引导学生提出问题,激发学生思考,培养学生的逻辑思维能力。

三角形全等的判定教案教学设计

三角形全等的判定教案教学设计

《三角形全等的判定》教学设计课型新授课教学内容分析边边边定理是“浙教版八年级数学(上)”第一章第五节第一课时的内容。

本节课的主要内容是让学生通过动手操作探索并掌握判定两个三角形全等的基本事实——三边对应相等的两个三角形全等(SSS),通过生活实例了解三角形的稳定性及其应用,要求学生会运用“SSS”判定两个三角形全等,能够掌握角平分线的尺规作图.边边边定理是平面几何中的重要定理之一,有利于证明几何题中角相等和线段相等的问题,在教材中有着非常重要的地位和作用.学习者分析八年级的学生具备了一定的独立思考、实践操作、合作探究、归纳概括的能力,能够进行简单的推理论证.教师可以通过动手操作,分类讨论引导学生探究判定三角形全等的条件.同时学生具有一定的生活经验,教师可以借助生活实例来帮助学生理解三角形的稳定性.教师在教学过程中要注意指导学生完成边边边定理几何语言格式的书写,且教师的教学要面向全体学生,发挥学生的主体作用,让学生积极参与进来.教学目标 1.探索并掌握判定两个三角形全等的基本事实:三边对应相等的两个三角形全等(SSS).2.了解三角形的稳定性及其应用.3.会运用“SSS”判定两个三角形全等.4.掌握角平分线的尺规作图.教学重点判定两个三角形全等的基本事实:三边对应相等的两个三角形全等.教学难点探究三角形全等的条件学习活动设计教师活动学生活动环节一:情境导入,复习回顾教师活动1:学生活动1:教师讲授:钱塘江大桥由著名桥梁工程师茅以升设计,建成于1937年,是我国第一座铁路、公路两用双层桥.桥上有许多全等的三角形结构.学生认真听讲教师提问:全等三角形的性质是什么?教师带领回顾:全等三角形的对应边相等,对应角相等.学生回顾旧知,举手回答问题学生跟随教师回顾旧知活动意图说明:复习导入有利于衔接新旧知识,提高学习效率。

通过图片和生活实例进行切入有利于活跃课堂教学氛围,激发学生学习动机环节二:探究新知,动手操作教师活动2:△ABC和△A'B'C'全等,说出它们的对应边以及对应角答案:对应边:BC和B'C',CA和C'A',AB和A'B'对应角:∠A和∠A',∠B和∠B',∠C和∠C'思考:从六个条件中至少选出几个条件可以使得两个三角形全等?教师讲授:一个条件:有一个角相等或一条边相等动手操作:画出一个角为50°的三角形和一条边为3cm的三角形,与同桌互相比较所画的三角形,它们能重合吗?教师讲授:有一个角相等或一条边相等的两个三角形不一学生活动2:学生回顾旧知,举手回答问题学生认真听讲学生认真思考,相互交流学生动手操作,合作交流学生认真听讲定全等教师讲授:两个条件:有两个角对应相等、有两条边对应相等、或一条边,一个角对应相等动手操作:画出一个角为60°和一个角为45°的三角形,与同桌互相比较所画的三角形,它们能重合吗?教师讲授:有两个角对应相等的两个三角形不一定全等动手操作:画出一条边为5cm和一条边为7cm的三角形,与同桌互相比较所画的三角形,它们能重合吗?教师讲授:有两条边对应相等的两个三角形不一定全等动手操作:画出一条边为5cm和一个角为40°的三角形,与同桌互相比较所画的三角形,它们能重合吗?教师讲授:有一条边对应相等和一个角对应相等的两个三角形不一定全等教师讲授:学生动手操作,合作交流学生认真听讲学生动手操作,合作交流学生认真听讲学生动手操作,合作交流学生认真听讲动手操作:画出三个角都为60°的三角形,与同桌互相比较所画的三角形,它们能重合吗?教师讲授:有三个角对应相等的两个三角形不一定全等动手操作:按照下面的方法,用刻度尺和圆规在一张透明纸上画△DEF,使其三边长分别为1.3cm,1.9cm和2.5cm.画法:如图1.画线段EF=1.3cm.2.分别以点E,F为圆心,2.5cm,1.9cm长为半径画两条圆弧,交于点D(或D').3.连结DE,DF (或D'E,D'F).△DEF(或△D'EF)即所求作的三角形.把你画的三角形与其他同学所画的三角形进行比较,它们能互相重合吗?教师讲授:一般地,我们有如下基本事实:三边对应相等的两个三角形全等(简写成“边边边”或学生认真听讲学生动手操作,合作交流学生认真听讲学生动手操作,合作交流学生认真听讲“SSS ”).几何语言:在△ABC和△A'B'C'中∵{AB=A'B' BC=B'C' CA=C'A’∴△ABC≌△A'B'C'(SSS)教师讲授:让我们动手做下面的实验:如图,把两根木条的一端用螺栓固定在一起,木条可以自由转动.在转动过程中,连结另两个端点所成的三角形的形状、大小随之改变.如果把另两个端点用螺栓固定在第三根木条上,那么构成的三角形的形状、大小就完全确定.从上述实验可以看出,当三角形的三条边长确定时,三角形的形状、大小完全被确定,这个性质叫做三角形的稳定性,这是三角形特有的性质.三角形的稳定性在生产和日常生活中有广泛的应用.例如,房屋的人字架、大桥的钢梁、起重机的支架等,都采用三角形结构,以起到稳固的作用.学生认真听讲,了解边边边定理的几何语言学生动手操作,合作交流学生认真听讲,了解三角形的稳定性活动意图说明:通过动手操作可以让学生的认知更直观,使学生亲自经历获取知识的过程,能提高对数学结论的认可程度。

六年级下册数学教案-总复习《三角形全等的性质与判定(复习课)》北师大版

六年级下册数学教案-总复习《三角形全等的性质与判定(复习课)》北师大版

六年级下册数学教案总复习《三角形全等的性质与判定(复习课)》北师大版教学目标1. 知识与技能:使学生能熟练地理解和运用三角形全等的性质和判定方法,如SSS、SAS、ASA、AAS、HL等。

2. 过程与方法:通过观察、推理和交流,提高学生解决实际问题的能力,特别是在全等三角形的应用上。

3. 情感态度价值观:培养学生对数学美的感知,激发学生探索数学规律的积极性。

教学内容1. 全等三角形的定义与性质:介绍全等三角形的含义,强调全等三角形的对应边和对应角相等。

2. 全等三角形的判定方法:详细讲解SSS、SAS、ASA、AAS、HL 等判定方法,并通过实例展示如何应用。

3. 全等三角形的实际应用:解决一些实际问题,如测量不可到达的距离、计算不规则图形的面积等。

教学重点与难点1. 教学重点:全等三角形的判定方法是本节课的重点,需要通过各种例子让学生深入理解。

2. 教学难点:如何正确应用全等三角形的性质和判定方法解决实际问题,尤其是那些需要创造性地应用知识的问题。

教具与学具准备1. 教具:三角板、多媒体课件。

2. 学具:直尺、量角器、剪刀、彩纸。

教学过程1. 导入:通过一个简单的实际问题引入全等三角形的概念。

2. 新知识讲解:详细介绍全等三角形的性质和判定方法,用多媒体课件辅助教学。

3. 实例分析:分析几个典型的例子,让学生了解如何在实际问题中应用全等三角形的性质和判定方法。

4. 小组讨论:让学生分组讨论,解决一些实际问题,加深对全等三角形应用的理解。

板书设计板书将围绕全等三角形的性质、判定方法和应用进行设计,通过图表、示例和关键词清晰地展示教学内容。

作业设计1. 基础练习:设计一些基础的题目,让学生练习全等三角形的判定。

2. 综合应用:设计一些需要综合运用全等三角形性质和判定方法的实际问题,让学生独立解决。

课后反思课后,教师应反思教学过程中的不足,如是否充分激发了学生的兴趣,是否有效地解决了学生的疑问,以及是否达到了预期的教学目标。

全等三角形判定复习教案

全等三角形判定复习教案

全等三角形判定复习教案教案:全等三角形判定的复习一、教学目标:1.复习全等三角形的判定方法和性质。

2.掌握使用全等三角形的判定方法解决相关问题。

3.培养学生的逻辑思维能力和分析问题的能力。

二、教学重点:1.全等三角形的判定方法和性质。

2.全等三角形的相关题目解答。

三、教学难点:1.通过给出的条件判定三角形是否全等。

2.通过给出的三角形判定是否全等。

四、教学过程:Step 1:复习全等三角形的判定方法1.提问:回顾一下全等三角形的判定方法有哪些?2.学生回答:欢迎学生回答,教师进行总结。

3.教师解释:全等三角形的判定方法有以下几种:a.SSS判定法:三边相等的两个三角形全等。

b.SAS判定法:两边和夹角相等的两个三角形全等。

c.ASA判定法:两角和边相等的两个三角形全等。

d.AAS判定法:两角和对边相等的两个三角形全等。

e.RHS判定法:直角边和斜边相等的两个三角形全等。

Step 2:练习全等三角形的判定方法1.提问:根据给出的条件,判断以下三角形是否全等。

a.△ABC≌△DEF,AB=DE,BC=EF,∠B=∠E。

b.△ABC≌△DEF,AB=DE,BC=DF,AC=EF。

c.△ABC≌△DEF,AC=DE,∠A=∠D,∠C=∠F。

2.学生回答:请学生根据给出的条件,结合全等三角形的判定方法,回答问题。

3.教师解释和点评:让学生进行回答,并解释判断的依据和结果。

Step 3:复习全等三角形的性质1.提问:回顾一下全等三角形的性质有哪些?2.学生回答:欢迎学生回答,教师进行总结。

3.教师解释:全等三角形的性质包括以下几个方面:a.对应角相等:全等三角形的对应角相等。

b.对应边相等:全等三角形的对应边相等。

c.对应中线相等:全等三角形的对应中线相等。

d.对应角平分线相等:全等三角形的对应角平分线相等。

Step 4:练习全等三角形的性质1.提问:根据给出的全等三角形,判断下列几组线段是否相等。

a.AB≌DE,AC≌DF,∠B≌∠E,∠C≌∠F,AD≌DG,BE≌EH。

全等三角形的判定sss、sas复习导学案教案

全等三角形的判定sss、sas复习导学案教案

则∠AMF 等于( )
A.2∠B
B.2∠ACB
C.∠A+∠Dห้องสมุดไป่ตู้
D.∠B+∠ACB
C
D
B
活动 1
A E 图1
【探究案】 已知△ABC.再画一个△A′B ′C′′ ,使 A′B′=AB,A′C′=AC,B′C′=BC.
A
B
C
活动 2 边边边公理(简写成“SSS”):三边分别相等的两个三角形全等. 符号语言:
D
F E
探究 2 如图,AB=AC ,AD=AE, 求证:∠B=∠C.
B
C
A
D
E
B
C
探究 3 如图,已知 CA=CD,CB=CE,∠ACB=∠DCE,试说明△ACE≌△DCB 的理由.
八年级数学学案
探究 4 已知:如图 AB=BC,AD=CD,求证:AE=CE.
使用日期:2019-09
【训练案】 1.已知在△ABC 和△A1B1C1 中,AB=A1B1,∠A=∠A1,要使△ABC≌△A1B1C1,还需添加一个条件, 这个条件可以是_________. 2.已知:如图:AB=CD,AB//CD,求证:∠B=∠D.
【预习案】
1. 全等形:能够
叫做全等形.
2.全等三角形:能够
叫做全等三角形.
3.把两个全等的三角形重合到一起.重合的顶点叫做
;重合的边叫做

重合的角叫做

4.全等三角形的性质:
(1)

(2)

【探究案】 探究 1 指出下列全等三角形中的对应边和对应角.
△ABO ≌ △DCO
△ABD ≌ △ACD
△ABC ≌ △CDA

5 全等三角形的判定 复习课 一等奖创新教案

5 全等三角形的判定 复习课 一等奖创新教案

5 全等三角形的判定复习课一等奖创新教案《全等三角形的判定复习课》教学设计教学内容:新湘教版八年级上册第2单元第5小节《全等三角形的判定》教学目标:熟练掌握全等三角形的判定方法。

能准确、灵活的运用三角形全等的判定方法解决问题。

3、通过变式练习提高分析问题和解决问题的能力。

训练学生解题的严谨性。

重、难点:重点:利用三角形全等的判定方法正确的解题。

难点:能准确、灵活的运用三角形全等的判定方法解决问题。

教法学法:讲练结合、小组合作教学手段;多媒体辅助教学教学过程:一、解读目标(2分钟)采用了课前将学习目标写在导学案上,课上让学生先齐读,教师再解析的方法来完成。

在这个环节中,让学生通过齐读,教师解读目标的过程在课的开始就明确本节课的学习目标及学习的重、难点,带着目标进行学习,为学生指明了学习的方向。

二、自主学习(6分钟)知识点梳理:能够两个三角形叫做全等三角形;全等三角形的对应边,对应角;三角形全等的判定方法(简写)、、、;的两个直角三角形全等,简写为。

简单应用(如图1所示):由DE=DG, 、DF=DF根据SAS可以判定△DEF≌△DGF;由、DE=DG、根据ASA可以判定△DEF≌△DGF;由、∠E=∠G、DE=DG,根据AAS可以判定△DEF≌△DGF;由DE=DG、、根据SSS可以判定△DEF≌△DGF;由∠E=∠G=90°、DF=DF、根据HL可以判定Rt△DEF≌Rt△DGF。

对这9个小问题的思考与解答,学生既能回顾学过的三角形全等的几种判定方法,又能通过图形明确三角形全等的具体条件。

三、合作探究挖掘“隐含条件”判定三角形全等例1 如图2所示,AB=CD,AC=BD,则△ABC≌△DCB吗?请说明理由。

熟练转化“间接条件”判定三角形全等例2 如图3所示,AE=CF,∠AFD=∠CEB,DF=BE,△AFD≌△CEB 吗?请说明理由。

“添加辅助线”判定三角形全等例3 如图4所示,AB=AE,∠B=∠E,BC=ED,AF⊥CD。

中考数学第五章《全等三角形》复习教案新人教版

中考数学第五章《全等三角形》复习教案新人教版

章节第五章课题全等三角形课型复习课教法讲练结合教学目标(知1。

了解图形全等的概念,能利用全等图形解决有关问题。

识、能力、教育)2.掌握两个三角形全等的条件,能应用三角形的全等解决一些实际问题.3.体会在证明过程中,所运用的归纳、转化等数学思想方法.教学重点掌握两个三角形全等的条件教学难点应用三角形的全等解决一些实际问题.教学媒体学案教学过程一:【课前预习】(一):【知识梳理】1。

全等三角形的判定方法(1)三边对应相等的两个三角形全等,简写成“边边边”或“SSS".(2)两角和它们的夹边对应相等的两个二角形全等,简写成“角边角”或"ASA”(3)两角和其中一角的对边对应角相等的两个三角形全等,简写成“角角边"或“AAS”.(4)两边和它们的夹角对应相等的两个三角形全等,简写成“边角边”或“SAS”. (5)有斜边和一条直角边对应相等的两个直角三角形全等,简写成“斜过直角边定理"或“HL”.2。

全等三角形的性质:全等三角形的对应边相等,对应角相等.3.注意事项:(1)说明两个三角形全等时,应注意紧扣判定的方法,找出相应的条件,同时要从实际图形出发,弄清对应关系,把表示对应顶点的字母写在对应的位置上.(2)注意三个内角对应相等的两个三角形不一定全等,另外已知两个三角形的两边与一角对应相等的两个三角形也不一定全等.(二):【课前练习】1.如图,若△ABC≌△DEF,∠E等于( )A.30° B.50° C.60° D、100°2.如图,在△ABC中,AD⊥BC于 D,再添加一个条件____,就可确定△ABD≌△ACD3。

在下列各组几何图形中,一定全等的是( )A.各有一个角是45°的两个等腰三角形;B.两个等边三角形C.腰长相等的两个等腰直角三角形D.各有一个角是40°腰长都是5cm的两个等腰三角形4。

下列说法中不正确的是()A.有两角和其中一角的对边对应相等的两个三角形全等B.有两边和其中一边上的中线对应相等的两个三角形全等C.有一边对应相等的两个等边三角形全等D.面积相等的两个直角三角形全等5。

初中数学_全等三角形(复习)教学设计学情分析教材分析课后反思

初中数学_全等三角形(复习)教学设计学情分析教材分析课后反思

《全等三角形(复习)》教学设计教学目标1.熟练掌握全等三角形的性质与判定定理;2.会用全等三角形性质与判定定理解决实际问题;3.通过复习,领悟数形结合思想、以及构建全等三角形在解决几何问题中的重要作用。

重难点、关键1.重点:熟练掌握全等三角形的性质与判定定理,会用它解决实际问题。

2.难点与关键:会用全等三角形性质与判定定理解决实际问题,领悟数形结合思想、以及构建全等三角形在解决几何问题中的重要作用。

教学过程一、课前热身(一)判断1.面积相等的三角形一定全等. ( )2.全等三角形的对应中线一定相等. ( )3.两边及其任意一边的对角对应相等的两个三角形全等 ( )4.有一边对应相等的等边三角形一定全等. ( )5.三个角对应相等的三角形一定全等. ( )(二)、判断下面各组的两个三角形是否全等并说明理由(1)(2)已知:AB=CD AB∥CD (3)已知:AC=AD,BC=BD二、典例分析一【例1】(2016·重庆)如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD.求证:AE=FB.三、跟踪训练一:1.如图,已知△ABC的六个元素,则下面甲、乙、丙三个三角形中和△ABC全等的图形是()A.甲和乙 B.乙和丙 C.只有乙 D.只有丙2.如图,已知CD⊥AB于点D,BE⊥AC于点E,CD、BE交于点O,且AO平分∠BAC,则图中的全等三角形共有()A.1对 B.2对 C.3对D.4对3、如图,A在DE上,F在AB上,且AC=CE, ∠1=∠2=∠3,求证:DE=AB四、典例分析二【例2】(2016·济宁)如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为D,E,AD,CE交于点H,请你添加一个适当条件 ,使△AEH≌△CEB.并证明五、跟踪训练二4、如图:已知AB=CD, AD=BC则图中有()对全等三角形。

5、如图:已知AC=AD,只需附加一个条件,就能使△ACB≌△ADB,请写出一个符合的条件__________ 。

全等三角形判定复习教案

全等三角形判定复习教案

11.2一般三角形全等的判定(复习)【学习目标】:1、熟记三角形全等的判定条件,能灵活使用各种方法判定两个三角形全等。

2、使用各种全等判定法实行说理。

【重点难点】:重点:灵活应用各种判定法识别全等三角形。

难点:判定三角形全等的准确的思维方法及准确的数学表述。

【教学过程】:一、预习作业(二)、基本练习:练习1、如图,∠ACB=∠DBC,要使△ABC≌△DCB,只需增加条件A DB C3、 如图,点E 在AB 上,∠1=∠2,∠3=∠4,那么CB 等于DB 吗?为什么?4、如图,已知AB=AC ,∠B=∠C,∠BAC=∠DAE , 求证:△ABD ≌△ACE 。

5、如图,已知AB=AC ,∠B=∠C,∠BAE=∠CAD , 求证:△ABD ≌△ACE 。

练习2、如上图,点E 在AB 上,AC=AD ,请你添一个条件,使图中存有全等三角形,并予以证明。

A BC D E )1 ABC DE)2 ) (3 4 D A B E C AB DEC二、展示探究:(2)取BD 的中点O ,过O 作直线EF ,交AB 于E ,交CD 于F ,那么你能得出哪些结论?(3) 若将(2)中的直线EF 绕点O 旋转,且与直线AB 交于点E ,与直线CD 交于点F ,请问OE=OF 一定成立吗?说明理由。

3、如图,已知在Rt △ABC ,AB=AC ,∠BAC=90°,AN 是过点A 的任一条直线,BD ⊥AN 于D ,CE1、已知:AD=BC,AB=CD.求证:(1)∠A=∠C2、已知:AB//CD ,且AB=CD ,BF=DE 求证:AF//CE ;AE=CF 。

B A C D OA B C D E F⊥AN于E.(1)求证:DE=BD-CE(2)如将直线AN绕A点沿顺时针方向旋转,使它不经过△ABC的内部,再作BD⊥AN于D,CE⊥AN 于E,那么DE、DB、CE之间还存在等量关系吗?如存在,请证明你的结论.三、当堂检测:1、如图,在ΔABC和ΔDCB中,AC与BD相交于点。

《全等三角形的判定》教学设计

《全等三角形的判定》教学设计

《全等三角形的判定》教学设计教学设计:全等三角形的判定一、教学目标1.知识目标:学生理解全等三角形的定义和判定条件。

2.技能目标:学生能够根据给定条件判定两个三角形是否全等。

3.情感目标:培养学生对数学的兴趣,提高他们的逻辑思维和推理能力。

二、教学内容全等三角形的判定:根据三个条件进行判定。

三、教学重点1.全等三角形的定义;2.全等三角形的判定条件。

四、教学过程1.导入新知识引入新知识,让学生回忆三角形的基本概念和性质。

通过提问,引导学生回忆和复习已学的内容,例如:什么是三角形?你能说说三角形有哪些性质?2.引入全等三角形的概念和判定条件通过引入全等三角形的概念和判定条件,让学生了解全等三角形的特点和判定方法。

首先,教师给学生展示两个全等三角形的图形,让他们观察并比较两个图形的特点,引导学生发现它们有哪些相同的地方。

接下来,教师告诉学生全等三角形的定义:如果两个三角形的对应的三边和对应的三个角相等,那么这两个三角形是全等的。

然后,教师向学生介绍全等三角形的判定条件:全等三角形的判定条件有三个,分别是SSS、SAS和ASA。

SSS判定条件表示三边对三边全等,即如果两个三角形的三条边对应相等,则这两个三角形全等。

SAS判定条件表示两边夹角对两边夹角全等,即如果两个三角形的一对边和夹角分别相等,则这两个三角形全等。

ASA判定条件表示两角夹边对两角夹边全等,即如果两个三角形的一对角和连着它们的两边分别相等,则这两个三角形全等。

3.判定全等三角形的练习将学生分成小组,进行判定全等三角形的练习。

教师提供一些三角形的边长和角度大小,让学生通过观察和比较,运用判定条件判断是否为全等三角形。

同时,教师要引导学生进行合理的推理和思考,让学生能够用自己的语言解释判定的过程和结果。

4.巩固与拓展教师出示一些全等三角形的图形,让学生运用判定条件判断是否为全等三角形,并解释自己的判断过程。

然后,教师提问学生:如果两个三角形有两边分别相等,这两个三角形一定全等吗?为什么?学生根据之前学到的知识,用语言和推理回答这个问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《三角形全等的判定习题课》教学设计
通辽市科左后旗甘旗卡第三初级中学林丽哲一、关于教学内容和要求的思考
本节的主要内容是:通过判定三角形全等的三种题型复习全等三角形的判定方法,利用题中的已知条件、挖掘“隐含条件”、转化“间接条件”、合理添加“辅助线”来判定三角形全等,充分掌握分析问题的方法,使所学的知识能灵活应用到
三、学习目标的确定
1、熟练掌握全等三角形的判定方法。

2、能准确、灵活的运用三角形全等的判定方法解决问题。

3、通过变式练习提高分析问题和解决问题的能力。

训练学生解题的严谨性。

四、学习重、难点的分析
重点:利用三角形全等的判定方法正确的解题。

难点:灵活运用所学的知识正确解题。

五、教师导学方式与学生学习方法的选择
新课标要求:数学教学是数学活动的教学,是师生之间、学生之间交流互动与共同发展的过程。

在导学方式中,我坚持启发与引导相结合,在学生学习方法上我采用学生自主学习、小组合作学习相结合的方式,既可以突出学习的重点、突破学习的难点,又可以营造良好的课堂氛围,提高课堂教学效率,同时更重要的是能够丰富学生的直观感受,帮助学生更好的掌握基础知识、基本能力,发展形象思维能力,感受数学的魅力。

六、教学过程的设计
本节课的教学过程分为七个环节:(一)解读目标
)由、、
可以判定△DEF≌△DGF;
(8)由DE=DF、、根据SSS 可以判定△DEF≌△DGF;
F G
(9)由∠E=∠G=90°、、DE=DF根据HL可以判定Rt△DEF≌Rt△DGF。

对这9个小问题的思考与解答,学生既能回顾学过的三角形全等的几种判定方法,又能通过图形明确三角形全等的具体条件。

(三)问题解决
1、挖掘“隐含条件”判定三角形全等
(1)如图2所示,AB=CD,AC=BD,则△ABC≌△DCB吗?请说明理由。

图2
(2)如图3所示,点D在AB上,点E在AC上,CD与BE相交于点O,且

受到全等图形的无限魅力,体会到数学的美,激发学生学习数学的热情。

(四)展示提高(12分钟)
1、如图8所示,四边形ABCD是正方形,G是BC上一点,DE⊥AG于点E,
BF ⊥AG 于点F 。

求证:(1)△ABF ≌△DAE ,(2)AF=EF+FB 。

(中考链接题型)
图8 图9
、如图9所示,在△ABC 中,∠C=90°,∠BAC 的角平分线交CD=4,则点D 到AB 的距离是 。

(中考链接题型)
(五)指导点评(5分钟)
指导学生在判定三角形全等,找全等条件时要注意对“隐含条件”公共角、对顶角等条件的挖掘;注意对“间接条件”的转化;以及如何恰当的添加“辅助线”。

(六)学练测结合 1题 2题 3题
、要使得△ABC ≌△ABD ,下面给出的四组条件中,错误的一组是(BC=BD ∠BAC=∠BAD B 、∠C=∠D ∠
BAC=∠BAD 、∠BAC=∠BAD ∠ABC=∠ABD D 、BC=BD AC=AD 、已知如图,AC=EF ,BC=ED ,点A 、D 、B 、F 四点共线,要使得△,还需添加的一个条件可以是 。

了学生的差异,又满足了不同学生的需求,体现了因材施教的原则.
总之,经历观察、猜想、论证、应用的全过程,不仅使学生理解了三角形全等的判定,更重要的是让学生学会观察,学会思考,更加深刻地体会了从具体到抽象,从特殊到一般的辩证唯物主义观点,让学生在学习过程中欣赏数学,探索数学,会学数学.
七、本节的创新点:
本节课以填空的形式回顾三角形全等的定义、性质及判定方法,从具体题目入
C
B
D E C
F
C
D
F D
B
E
A
C D B
手,以题带点,复习旧知识,回忆旧方法,然后对其进行变化,让学生主动探究,通过变式练习,从而很自然的复习了这节课所要研究的内容.激发了学生的好奇心.在反馈交流环节, 教师放手让学生自己提出解决问题的方法,在小组内合作探究,这样使学生兴趣盎然, 既提高了学生分析问题、解决问题的能力,同时又创造更多的机会让学生真正做数学,使学生的才能得以展示.
八、教案
图8
、如图9所示,在△ABC中,∠C=90°,BAC的角平分线交BC于点D,若CD=4,则到AB的距离是。

图9
(五)指导点评(5分钟)
指导学生在判定三角形全等,找全等条件时要注意对“隐含条件”,如公共边、公共角、对顶角等条件的挖掘;注意对“间接条件”的老师
生共
结,把知识纳入体系,促进
的理解。

E
B
C
F
A
C
D
B。

相关文档
最新文档