第1章-张量分析(清华大学张量分析-你值得拥有)PPT课件
张量分析——初学者必看PPT
§A-2 矢量的基本运算
A 张量分析
四、矢量的并乘(并矢)
a ai ei , b b j e j
并乘
ab ai ei b j e j ai b j ei e j
a2b1e2 e1 a2b2 e2 e2 a2b3e2 e3 a3b1e3e1 a3b2 e3e2 a3b3e3e3
ab a1b1e1e1 a1b2 e1e2 a1b3e1e3
§A-3 坐标变换与张量的定义
A 张量分析
x x cos y sin y x sin y cos
x x cos y sin y x sin y cos
约定
S ai xi a j x j
用拉丁字母表示3维,希腊字母表2维
一、求和约定和哑指标
§ A-1 指标符号
双重求和
Aij xi y j
i 1 j 1
3
3
Aij xi y j A11x1 y1 A12 x1 y2 A13 x1 y3 A21x2 y1 A22 x2 y2 A23 x2 y3 A31x3 y1 A32 x3 y2 A33 x3 y3
两个二阶张量点积的结果为一个新的二阶张量,这 相当于矩阵相乘
§A-4 张量的代数运算
A 张量分析
五、张量的双点积
两个张量点积的结果仍为张量。新张量的阶数是 原两个张量的阶数之和减 4
A : B ( Aijk ei e j ek )( Brster es et ) Aijk Brst jr ks ei et Aijk B jkt ei et S
A B ( Aijk ei e j ek ) ( Brst er es et ) Aijk Brst ei e j kr es et Aijk Bkst ei e j es et S
张量分析
eijk有27个量,其中 个不为零。其标号中,每相 个量, 个不为零。 个量 其中6个不为零 其标号中, 邻两个互换一次位置,改变一次正负号。 邻两个互换一次位置,改变一次正负号。位置变 换偶次,不改变它的正负号;标号位置变换奇次, 换偶次,不改变它的正负号;标号位置变换奇次, 它将改变正负号。 它将改变正负号。如
AB BA [C ij ] = [C ij ]T
r r 则有(板书演示 板书演示) 因为 eiA ⋅ e jA = δ ij ,则有 板书演示
AB BA C ik C kj = δ ij
或
AB BA [C ij ][C ij ] = [ I ]
BA 根据 [C ijAB ] = [C ij ]T ,可见
r r r ei × e j = eijk ek
12:17
16
r r r r r A × B = Ai ei × B j e j = Ai B j eijk ek
eijk = −ejik r r r r A× B = −B × A
易证
r r r ei ⋅ (e j × ek ) = eijk
上式亦可作为e 的定义。 上式亦可作为 ijk的定义。
aij b j = aik bk
ϕ ,i dxi = ϕ ,k dxk
12:17
7
如果标号不是字母,而是数字, 如果标号不是字母,而是数字,则不适用求和约 定,如
σ ii = σ 11 + σ 22 + σ 33 = σ x + σ y + σ z(求和约定 求和约定) 求和约定
不求和) 其中 σ 11 = σ x , σ 22 = σ y , σ 33 = σ z (不求和 不求和 另外 (σ x + σ y + σ z )(σ x + σ y + σ z ) 应写成 σ iiσ jj ,不 因为后者的标号重复了4次 能写作σ iiσ ii,因为后者的标号重复了 次。 两矢量的点乘积应写成 r r r r A ⋅ B = Ai ei ⋅ B j e j
张量分析TensorAnalysisppt课件
的切线方向。矢量 r 可以取作曲线坐标系的基矢量(协变基矢量):
xi
gi
r xi
zj xi
ij
注意:对于在曲线坐标系中的每一点,都有三个基 矢量。
ቤተ መጻሕፍቲ ባይዱ
基矢量一般不是单位矢量,彼此也不正交;
基矢量可以有量纲,但一点的三个基矢量的量纲可以不同;
基矢量不是常矢量,它们的大小和方向依赖于它们所在点的坐标。
利用克罗内克符号,上式可写成:
ds2 ijdxidxj
克罗内克符号的一些常用性质:
ijxi xj
x j xi
j i
ijki kj
D) 置换符号
置换符号eijk=eijk定义为:
1
e ijk
e ijk
1
0
当i,j,k是1,2,3的偶置换(123,231,312) 当i,j,k是1,2,3的奇置换(213,132,321) 当i,j,k的任意二个指标相同
i,j,k的这些排列分别叫做循环排列、逆循环排列和非循环排列。
D) 置换符号(续)
置换符号主要可用来展开三阶行列式:
a11 a1 2 a3 1 aa12 a22 a32 a11a22a33a12a23a3 1a13a1 2a32
a13 a23 a33 a11a23a32 a12a1 2a33 a13a1 2a32
量 Ai ,在坐标系yi中有三个分量 Âi ,它们由以下的变换法则相联系;
AˆiyAjxxyij
逆变矢量用上标表示;因此上标也称为逆变指标。
(3) 协变矢量(一阶协变张量)
一个量被称为协变矢量或一阶协变张量,若它在坐标系 xi 中有三个分 量 Ai ,在坐标系yi中有三个分量 Âi ,其变换法则相为;
第2章-张量分析(清华大学张量分析-你值得拥有)
N
i
j
Nij
Nij
N
i j
N ij N ji
1N
N 1
T
(1N
)T
,
N 2
(
N 3
)T
,
N 3
(
N 2
)T
,
N 4
N 4
T
(
N 4
)T
➢ 反对称张量与其转置张量分量及二者所对应的矩阵
ij ji
j i
i j
i j
ji
ij ji
1
1
T
(1
)T
,
2
(
3
)T
,
3
(
2
)T
,
4
4
T
(
4
σ σ0 σd
0 (1 2 3 ) / 3
d(i) i 0
:由 σ产生的应变能密度可分解为: V d
V:由体积变形引起; P:体积变,形状不变; d:由形状变形引起。 D:体积不变,形状变。
塑性流动条件:
J
D 2
=
Const.
一般塑性流动条件:
f
J
D 2
,
J
Q1 QT
Q1 Q Q Q1 G QT Q Q QT G
detQ2 1
J
Q 3
1
几种特殊的二阶张量
• 正交张量只有一个实特征根
3Q 1
实数标准形
对应特征方向,轴向 e3
cos sin 0
Q sin
cos
0
0
0 1
Q cos e1e1 e2e2 sin e2e1 e1e2 e3e3
➢ 非负张量的构造:任意二阶张量T
第一章 张量分析初步
eijk eijk 6
证明见例题
eijk与ij间的关系
由排列符号的性质 : ei e j eijk ek
ei e j • ek eijk
由于ei e j • ek表示的是混合积,其物理意义是单位立方体的体积.
另外,由矢量分析知, 平行六面体的体积可以表示成其三个棱的行
i e1, j e2, k e3
X1
X3 P(x1, x2, x3)
O
X2
➢ 再对上述代换结果进行简写P点改写为: P(x1,x2,x3)P(xi, i=1,2,3)P(xi)
➢ 基向量:ei, i=1,2,3 ei ➢ 则称上述字母i为指标,i的取值i=1,2,3为指标i的取值
列式形式.
eeij
(i1, ( j1
i2,i3 , j2,
)
j3
)
ek (k1,k 2 ,k3)
ei,ej,ek为3个单位基向量, i,j,k互不相等。
i1 i2 i3 ei e j • ek j1 j2 j3 eijk
k1 k2 k3
a13 x3 a23 x3
b1 b2
a31x1 a32 x2 a33 x3 b3
如何用一个最简单 的式子来表示?
用矩阵? 还有更简单的表示方法吗? 可总结为:aij x j bi
aij, xj, bi是些什么量?
§1.1 指标记号及两个特殊符号
两种方式:
将左式展开,再给定每一个i值,求左右是否相等;
只有当i=j时ij才不等于“0”,
∴
a j ij ai ii ( ii不求和) ai
最新第1章-张量分析(清华大学张量分析-你值得拥有)PPT课件
1 、g
2
P
其中 g 1 、g 2 不一定是单位矢量。
矢量 P 可表示为:
P P1 g1 P 2 g2
2
P g P g 1
斜角直线坐标系的基矢量与矢量分量
➢ 平面内斜角直线坐标系的协变基矢量和逆变基矢量
P P g :哑指标
x2
( x 1 , x 2 ) Einstein求和约定
r
g2
如何计算 u(vw)?
vw
观察右图,可知 vw正交于
u
v 、w 构成的平面,而 u(vw)
w
正交于 vw,因此,u(vw)
一定在 v 、w 构成的平面
v
u (v w) v w
u(vw)
(u w)v (u v)w (uv) w
数形结合
矢量及其代数运算
➢矢量的乘法 矢量的混合积
uv wuvw群u论的v轮w换次序不变性w
张
gij gi gj gij gi gj
量
可证明:
分 析
g ij g ji
gij g ji
的
称 g i j 为度量张量的协变分量
起
称 g i j 为度量张量的逆变分量
点
gi gij g j gi = g ij g j
协变基矢量在逆变基矢量下分解 逆变基矢量在协变基矢量下分解
斜角直线坐标系的基矢量与矢量分量
※ 根据几何图形直接确定
由对偶条件可知, g 1 与 g 2 、g 3 均正交,因此正交于 g 2 与 g 3 所
确定的平面;其模的大小等于
g1 1
g1 cos
g1 g1
2 g2
2
g3
斜角直线坐标系的基矢量与矢量分量
张量分析.ppt
(A2 5)
3.混合积
1 基矢量混合积
(ei e j ) ek ei j rer ek ei j rδr k
ei j k
(A2 7)
故也有定义
ei jk (ei e j ) ek ei (e j ek )
2 矢量混合积
(a b) c ei jk aibjek crer ei jk aibjcrδk r
第一节 问题的提出 第二节 矢量的基本运算 第三节 坐标变换及张量的定义
自然法则与坐标无关,坐标系的引入方便 分析,但也掩盖了物理本质; 坐标系引入后的相关表达式冗长
引入张量方法
§A-1 指标符号
x1,x2xn 记作 xi (i 1,2,n)
下标符号 i 称为指标;n 为维数 指标 i 可以是下标,如 xi
e1 e2 e3 ei j tet ei j kek
a11 a12 a13
(比较: A a21 a22 a23 ei jk a1ia2 j a3k )
a31 a32 a33
特别地:
e1 e2 e12kek e123e3 e3
2 两个任意矢量的叉积
a b aiei bje j aibjei e j aibjei j kek ei j k aibjek c
0 0 1 31 32 33
ij Ai
1 j A1
2 j A2
3 j A3
A1 A2
A3
Aj
j 1 j2 j3
ds2 dx2 dy2 dz2 dxidxi ijdxidx j
性质:
ijij ii 11 22 33 3
Aijij Aii Ajj A11 A22 A33
22
23
~ yx
数学张量分析PPT课件
第6页/共92页
右散度表示为: diva a
diva a
ei i a je j
ij
a j xi
ai xi
iai
a1 a2 a3 x1 x2 x3
显然 diva diva
今后对于矢量场的左散度和右散度不加区别
第7页/共92页
张量的散度
关于二阶张量场 T T的P左散度定义为:
间点的位置。两者由下列坐标变换联系起来:
xi xi xi' i, i ' 1,2,3
第23页/共92页
若 xi'是的线性函数,则 x i' 也是一个斜角坐标,而且坐标变换为:
xi
Ai i'
x i'
x i
x i'
xi'
这里
Ai i'
为变换系数,它是常数。
若 x i不是 xi' 的线性函数,则 xi' 称为曲线坐标。
标量的梯度:
标量函数:
f f (r)
则梯度为:
f gradf eii f
展开后有:
原式 1 f e1 2 f e2 3 f e3
f i f j f k x y z
第1页/共92页
矢量的梯度: 左梯度
grad a a (i ei )(a j ej ) (eii )(a j e j )
a ai gi ai gi
由 eijk 的定义可知,下列混合积等式成立:
gig jgk gi g j gk gig jgk eijk gig jgk gi g j gk gig jgk eijk
这两个量定义为爱丁顿(Eddington)张量并分别记为 和ijk 。ijk 由此定义可知
最新张量分析第一章ppt课件
0,当 i , j , k 中有取值相同者.
1
1
3
2
3
2
偶排列
奇排列
21
矢量叉积 a b ( a 2 b 3 a 3 b 2 ) e 1 ( a 1 b 2 a 2 b 1 ) e 3 ( a 3 b 1 a 1 b 3 ) e 2 用置换符号可写成
a b c ( ijka jb k ) ( c i)
23
1.2 恒等式 ijk istjs kt jt ks
第一种证明:
11 12 13 1 0 0
1r 1s 1t
I 21 22 23 0 1 0 1 rst I 2r 2s 2t rst
31 32 33 0 0 1
3r 3s 3t
ir is it ijkrst jr js jt
a b abco s
点积满足
abba
a ( b c ) a b a c
11
(5)矢量的叉积
e1 e2 e3 aba1 a2 a3
b1 b2 b3
(a2b3a3b2)e1(a1b2a2b1)e3(a3b1a1b3)e2
注意:
a b b a
axb
O
b
a -axb
12
质量守恒,动量守恒,能量守恒,热力学基本定律 3)连续介质的本构方程
描述各种连续介质模型对外部作用的响应;
3
第一章 连续介质力学的数学基础
重点掌握: 1. 张量的概念 满足坐标变换规律 运算法则 2 .证明一些恒等式 3 .梯度,散度,旋度等概念
7
第一章 连续介质力学的数学基础
1.1 矢量
1.1.1矢量的概念
在三维欧几里得空间内, 具有大小和方向 的有向 线段.
张量分析课件
P = ∑αij Ej (i=1,2,3) i
j =1
3
Pi′ = ∑ α i′j′ E j′ (i'=1,2,3)
j ′ =1
3
代 入
将一阶张量Ej和Pi的变换规律
Pi′ = ∑ Ai′i Pi
3
代 入
E j′ = ∑ Aj ′j E j
j =1
i =1 3
∑A
i =1
3
i ′i i
P = ∑∑ α i′j′ Aj′j E j
证: 刚体定轴转动:
ω
(Z轴)转轴
刚 体
(
)
v τi A ni O′ ri
v
刚体定轴转动
r2 r r I 质点:ij = m(rij δ ij − ( r )i ( r ) j ) O
v Ri
= m(δ ij xk xk − xi x j ) (i, j, k=1, 2, 3)
例3. 设质量为m的质点位于点(x1, x2, x3), 证明在 正交变换下,由九个分量构成的一个物理量Iij是一个 二阶张量, 其中: I ij = m(δ ij xk xk − xi x j ) (i, j=1, 2, 3) —称Iij为质点的惯性积,有Iij定义的物理量叫惯性矩. 证: 质点:I ij = m(δ ij xk xk − xi x j ) (i, j, k=1, 2, 3) 九个分量:
δij在坐标变换后,其各个分量的值不变. 即在任意坐 标系中按上式定义的二价对称δ符号是一个二阶张量.
例3. 设质量为m的质点位于点(x1, x2, x3), 证明在 正交变换下,由九个分量构成的一个物理量Iij是一个 二阶张量, 其中: I ij = m(δ ij xk xk − xi x j ) (i, j=1, 2, 3) —称Iij为质点的惯性积,有Iij定义的物理量叫惯性矩.
清华大学弹性力学冯西桥FXQ-Chapter-张量_图文
张量分析引论
矢量和张量的记法,求和约定
符号ij与erst
坐标与坐标转换 张量的分量转换规律 张量代数,商判则 常用特殊张量,主方向与主分量
Appendix A
张量代数&商判则
相等
若两个张量
和
相等
则对应分量相等
若两个张量在某个坐标系中的对应分量相等,则 它们在任何其他坐标系中对应分量也相等。
坐标与坐标转换
向新坐标轴 投影,即用 点乘上式两边,则左边: 右边:
Appendix A.3
坐标与坐标转换
由上述两式可得新坐标用老坐标表示的表达式 经过类似推导可得老坐标用新坐标表示的表达式
Appendix A.3
坐标与坐标转换
坐标转换的矩阵形式(设新老 坐标原点重合)
Appendix A.3
特性 1. 对称性,由定义可知指标 i 和 j 是对称的,即
Appendix A.2
符号ij与erst
2. ij 的分量集合对应于单位矩阵。例如在三维空间
3. 换标符号,具有换标作用。例如:
即:如果符号的两个指标中,有一个和同项中其它
因子的指标相重,则可以把该因子的那个重指标换成
的另一个指标,而自动消失。
Appendix A.3
坐标与坐标转换
笛卡尔坐标系(单位直角坐标系)
坐标变化时,矢径的变化为
Appendix A.3
坐标与坐标转换
任意坐标系
坐标变化时,矢径的变化为
Appendix A.3
坐标与坐标转换
概念 • 坐标线 当一个坐标任意变化而另两个坐标保持不变时, 空间点的轨迹,过每个空间点有三根坐标线。 • 基矢量 矢径对坐标的偏导数定义的三个基矢量gi
流体力学-第一讲 场论与张量分析初步ppt精选课件
•
标量场(scalar
field):f
(r,t)
• 向量场(vector field):g (r,t) g=f(r,t)
• 均匀场(homogeneous field):f c
• •
非 定均常匀流场场((nstoen-adhyomfoigeelndou)s:ffi(erl)d): field):f(r,t)
a x b x a yb y a zb z 标量
18.06.2021
ppt精选版
9
1
如a、b正交 ,则
abab0
2
如a、b平行 ,则
aba b
3 4
如 分a在 配b正 律交 ab投 c影 aba表 用 b示 ac
m a b a m b m a b
a
ax2ay 2az2
散度是标量,而不是向量。
diav l
im sa dsaxayaz a
v 0 v x y z
于是Gauss定理可以写作:
sa n d s sa d s v( a x x a y y a z z)d v v( a )dv
18.06.2021
ppt精选版
28
div A 0 的场称为无源场。其性质:
运动学 动力学
以实际流体为主
18.06.2021
ppt精选版
2
主要内容:
第一章 场论与张量分析初步
第二章 流体运动学
第三章 流体力学基本方程组
第四章 粘性流动基础
第五章 Navier-Stokes 方程的解
第六章 边界层理论
第七章 流体的旋涡运动
第八章 湍流理论
18.06.2021
ppt精选版
3
张量分析-第1讲LJ
a2 F3 a3 F2 a c b1 a b c1 a3 F1 a1 F3 a c b2 a b c2 a1 F2 a2 F1 a c b3 a b c3
所以有: a b c a c b a b c
g1和g 2
g1和g 2 不是单位矢量,即它们有量纲的, 一般地说,
其长度也不为单位长度。此外它们也并不正交。 矢量F可以在 g1和g 2 上分解:
F F g1 F g 2
1 2
(平行四边形法则)
则有: F g 1 F 1g 1 g 1 F 2 g 2 g 1
F g 1 F 1g 1 g 1 F 2 g 2 g 1
e2 b2 c2
e3
e3 b3 b2 c3 b3 c2 e 1 b3 c1 b1c3 e 2 b1c2 b2 c1 e 3 c3
b3 a 2 F3 a3 F2 e 1 a3 F1 a1 F3 e 2 a1 F2 a 2 F1 e 3 F3
j 1
F2 ' e 2 ' e1 F1 e 2 ' e 2 F2 e 2 ' e 3 F3 2 ' j F j
j 1 3
3
F3' e 3' e1 F1 e 3' e 2 F2 e 3' e 3 F3 3' j F j
j 1
矢量场函数的散度: 矢量场函数的旋度:
i F x Fx j y Fy
Fx Fy Fz F z y x
k Fz Fy Fx Fz Fy Fx i k j y z y z z x x Fz
张量分析01
附录I 张量分析近代力学在电子计算机的辅助下冲破了数学求解上的重重困难,取得了突飞猛进的发展,力求对复杂的物理现象和工程问题做出更为系统和真实的描述和研究。
张量分析能以简洁的表达形式和清晰的推导过程来有效地描述复杂问题的本质,已被近代力学文献和教科书普遍采用。
作为入门,此处着重介绍笛卡儿坐标系和正交曲线坐标系中的张量。
I.1 矢量和张量的记法,求和约定力学中常用的量可以分成三类:只有大小没有方向性的物理量称为标量。
例如温度T 、密度ρ、时间t 等。
既有大小又有方向性的物理量称为矢量,常用黑体(或加箭头)表示,为与课堂讲述一致,此处选择用上加箭头表示矢量。
例如矢径r 、位移u 、速度v 、力f 等。
具有多重方向性的更为复杂的物理量称为张量,常用黑体(或加下横)表示,为与课堂讲述一致,此处选择用下加横线表示矢量。
例如一点的应力状态要用应力张量来表示,它是具有二重方向性的二阶张量,记为σ。
矢量可以在参考坐标系中分解。
例如图1 中P 点的位移u 在笛卡儿坐标系()321,,x x x 中分解为∑==++=31332211i i i e u e u e u e u u (I.1)其中1u 、2u 、3u 是位移的三个分量,1e 、2e 、3e是沿坐标轴的三个单位基矢量。
由此引出矢量(可推广至张量)的三种记法: ( l )实体记法:把矢量或张量的整个物理实体用一个黑体字母或上加箭头来表示。
例如把位移记为u 。
( 2 )分解式记法:同时写出矢量或张量的分量和相应分解方向的基矢量。
例如用式(I.1)表示位移u 。
( 3 )分量记法:把矢量或张量用其全部分量的集合来表示,省略相应的基矢量。
例如用三个位移分量()3,2,1=i u i 的集合表示位移u 。
下面详细讨论后两种记法中广泛采用的指标符号。
对于一组性质相关的n 个量可以采用指标符号来表示。
例如,n 维空间中矢量a 的n 个分量1a ,2a ,…,n a 可缩写成()n i a i ,,2,1 =。
第2章-张量分析(清华大学张量分析-你值得拥有)PPT课件
• 负整数次幂
G T 0 T 1(1) T 1 T 1 T T 1
T 2 T 1 T 1
T m T 1 T 1 T 1 T 1
几种特殊的二阶张量
➢ 正张量:N>0的对称二阶张量
uN u 0
➢ 非负张量:N≥0的对称二阶张量 u N u 0
对称二阶张量总可以化为:
N N1e1e1 N2e2e2 N3e3e3
能量密度。而大变形情况会出现高度非线性,则不能 用加法分解,而要用乘法分解。
• 最简单的坐标变换
y y
x cos sin x
y
sin
cos
y
x
• 椭圆曲线的坐标变换
x
正交变换可使椭圆曲线的方程由以下一般形式
ax2 bxy cy2 d 0
变换为最简形式,即两主轴坐标系下形式。
x a
2
y b
2
1
几种特殊的二阶张量
➢ 正交张量Q
• 正交张量的定义和性质
可证: Q e3 e3
Q e1 cos e1 sin e2 Q e2 cos e2 sin e1
e1, e2 整体绕轴向旋转一个角度
几种特殊的二阶张量
• 正交张量对应的正交变换的特性
① 保内积性质 ② 保长度性质 ③ 保角度性质
(Q u) (Q v) u v
(Q u) (Q u) u u
l i
Tii
J2
1 2!
T T ij l
lm i
m j
1 2
(TiiTll
TliTil )
J3
1 3!
T T ijk l
lmn i
Tm n
j k
det(T )
【张量分析ppt课件】张量分析课件第一章 线性空间-50页精选文档
(2)∵ x y z ( x 1 y 1 ) z 1 , , ( x n y n ) z n
( x 1 y 1 z 1 , ,x n y n z n )
x ( y z ) ( x 1 ( y 1 z 1 ) , , ( x n ( y n z n ))
( x 1 y 1 z 1 , ,x n y n z n )
∴ x + (y + z )= ( x + y )+ z = x + y + z (4)∵ o(0, ,0)V0 x o (x 1 0 , x n 0 )(x1, ,xn)
∴ xox
(5)∵ ()x ()(x 1 , ,xn) (()x 1 , ,()xn)
∴
(x 1 , ,xn) (x 1 ), ,)xn)
第一章 线性空间
若记实数集合为F,F中的元素记为a、b、c、…。
则加法法则将F中的任意两个元素 a, bF ; c F
+ (a, b)c
abc
乘法法则将F中的任意两个元素 a, bF ; c F
× (a, b)c
abc
显然具有加法法则和乘法则所确定的实数集中元
素间确定关系使得实数集构成一个空间。并记为:
所有以x点为起点的矢量按:
u x yu x z(y 1 x 1 , ,y n x n ) (z 1 x 1 , ,z n x n )
(y 1 ( x 1 ) (z 1 x 1 ) ,,(y n x n ) (z n x n ))
u xy (y1x1, ,ynxn) ((y1x1) ,,(ynxn)) F
a, b,xF
(6) (a b ) x a x b x
a, b,xF
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
其中 g1、g2 不一定是单位矢量。
P
矢量 P可表示为:
P P1g1 P2 g2
2
P g P g 1
斜角直线坐标系的基矢量与矢量分量
➢ 平面内斜角直线坐标系的协变基矢量和逆变基矢量
P P g :哑指标
1章 矢量与张量
x2
(x1, x2 ) Einstein求和约定
计算功(功率)
可交换性: 运算次序的无关性
uv u v
(许瓦兹不等式)
对称性 不变性
矢量及其代数运算
1章 矢量与张量
➢ 矢量的乘法
矢量的外积
定义式(实体形式,几何表达) :w u v
w uv
u v u v sin
u v v u (反交换性)
计算式(分量形式,代数表达) :
w uv
由 dr
r xi
dxi
gidxi
可定
义协变基矢量 gi 为
gi
r xi
g1 g2 g3 g1 g2 g3 g
g是正实数(右手系)
斜角直线坐标系的基矢量与矢量分量
1章 矢量与张量
➢ 三维空间中的斜角直线坐标系和基矢量
定义逆变基矢量 g j,满足对偶条件:
g j gi ij (i, j = 1, 2,3)
u
v
uv v
u
平行四边形法则
矢量及其代数运算
➢ 直线坐标系与矢径
笛卡尔坐标系:直角直线 费马坐标系:斜角直线
1章 矢量与张量
z r:矢径
r xi yj zk
r u 矢径 r确定了基矢量:i、 j、k
k
j i
x 笛卡尔坐标系
y 矢量u可表示为:
u uxi uy j uzk
矢量及其代数运算
v u
u
v
w 2
ux vx
uy vy
uz vz
u u
x y
vx vy
wx u u
wz
vu
uv vv
uw vw
wx wy wz uz vz wz w u w v w w
u v w v w u w u v u w v v u w w v u
斜角直线坐标系的基矢量与矢量分量
问题:已知 gi,如何求 g j ?
※ 根据几何图形直接确定
由对偶条件可知, g1与 g2 、g3 均正交,因此正交于 g2与 g3所
确定的平面;其模的大小等于
g1 1
g1 cos
g1 g1
2 g2
2
g3
斜角直线坐标系的基矢量与矢量分量
➢ 三维空间中的斜角直线坐标系和基矢量
问题:已知 gi,如何求 g j ?
1章 矢量与张量
➢ 矢量的乘法
u
矢量的内积
定义式(实体形式,几何表达):
u v u v cos
v cos
u v v u (可交换性)
计算式(分量形式,代数表达): u cos
v
u uxi uy j uzk
v vxi vy j vzk
物理意义:
u v uxvx uyvy uzvz
矢量及其代数运算
1章 矢量与张量
➢ 矢量和矢量的模
u 、v、w u 、v 、w ➢ 矢量的加法: 平行四边形法则 uv vu (u v) w u (v w) u v u (v) u (u) 0 (a b)u au bu a(u v) au av (ab)u a(bu)
➢ 从直角直线坐标系到斜角直线坐标系(平面内)
1章 矢量与张量
x2
(x1, x2 )
x2
(x1, x2 )
r
j
i
x1
笛卡尔坐标系
r
P
g2
g1 x1
费马坐标系
斜角直线坐标系的基矢量与矢量分量
➢ 平面内斜角直线坐标系和矢径
x2
r
g2
g1 x1
费马坐标系
1章 矢量与张量
(
x1
,
x
2
)
r
矢径
x1g1 x2 g2
一定在 v 、w 构成的平面
v
u (v w) v w
u (v w)
(u w)v (u v)w (u v) w
数形结合
矢量及其代数运算
➢ 矢量的乘法 矢量的混合积
1章 矢量与张量
u v w u v w群 u论的v 轮w换次序不变性w
ux uy uz u ux vx wx
vx vy vz uy v顺y 时w针z 轮换 wx wy wwz uzv vz wz
※ 由协变基矢量求逆变基矢量
1章 矢量与张量
由于 g1正交于 g2与 g3,则 g1必定平行于 g2 g3,可
设 g1 g2 g3,利用下式:
g1 g1
1 g1 g1 (g2 g3 ) g1 g
可计算出:
g1
1 g
( g2
g3 )
g2
1 g
( g3
g1 )
2 g2
2
g3
v u
i jk ux uy uz
vx vy vz
物理意义: 计算面积
计算 v u时换行。
矢量及其代数运算
➢ 矢量的乘法 三个矢量u、v 、w 之间的运算
1章 矢量与张量
如何计算 u (v w)?
vw
观察右图,可知 v w正交于
u
v、w构成的平面,而 u (v w)
w
正交于 v w,因此,u (v w)
x2
P2 g2
P2 g2
P
x2
P2 g2
P
2
P1g1
x1
2
P1 g1
2
P2 g2
2
P1 g1
2
2
P1g1 x1
斜角直线坐标系的基矢量与矢量分量
➢ 三维空间中的斜角直线坐标系和基矢量
x3
x3 g3
r
x2
x2 g2
O x1g1
x1
三维空间中的 斜角直线坐标系
1章 矢量与张量
r x1g1 x2 g2 x3 g3 xi gi
r
g2
g:协变基矢量
P
基于简化的思想,
引入逆变基矢量 g
g1 x1
费马坐标系
存在对偶关系:
g
g
0 1
斜角直线坐标系的基矢量与矢量分量
➢ 平面内斜角直线坐标系下矢量的协变分量与逆变分量
P P g P g P P g
称为矢量P的逆变分量
1章 矢量与张量
P P g
称为矢量P的协变分量
g3
1 g
( g1
g2 )
斜角直线坐标系的基矢量与矢量分量
➢ 三维空间中的斜角直线坐标系和基矢量
问题:已知 gi,如何求 g j ?
※ 由协变基矢量求逆变基矢量
将 g1在 g1, g2 , g3 标架下分解:
g1 g11g1 g12 g2 g13 g3 g1 j g j
1章 矢量与张量
第1章 矢量与张量
2021年3月10日
张量的两种表达形式
实体形式
分量形式
1章 矢量与张量
几何形式 定义式
代数形式 计算式
概念的内涵和外 延(定量)
怎样计算?
1章 矢量与张量
主要内容
➢ 矢量及其代数运算 ➢ 斜角直线坐标系的基矢量与矢量分量 ➢ 曲线坐标系及坐标转换关系 ➢ 并矢与并矢式 ➢ 张量的基本概念 ➢ 张量的代数运算 ➢ 张量的矢积