三阶系统的瞬态响应及稳定性分析

合集下载

《自动控制理论》实验报告

《自动控制理论》实验报告
此次实验,采用直接测量方法测量对象的闭环波特图及间接测量方法测量对象的开环波特图。将信号源单元的“ST”插针分别与“S”插针和“+5V”插针断开,运放的锁零控制端“ST”此时接至示波器单元的“SL”插针处,锁零端受“SL”来控制。实验过程中“SL”信号由虚拟仪器自动给出。
1.实验接线:按模拟电路图2-5接线,检查无误后方可开启设备电源。
五、实验过程记录(数据、图表、计算等)
1、观察电机转速及示波器上给定值与反馈值的波形,分析其响应特性,结果记录在表4-1中。
2、记录较好的一组较好的控制参数,结果记录在表4-1中。
项目参数
IBAND
KPP
KII
KDD
超调
稳定<2%时间
例程中参数响应特性
0060H
1060H
1010H
0020H
自测一组较好参数
2.直接测量方法(测对象的闭环波特图)
(1)将示波器单元的“SIN”接至图2-5中的信号输入端,“CH1”路表笔插至图2-5中的4#运放的输出端。
(2)打开集成软件中的频率特性测量界面,弹出时域窗口,点击 按钮,在弹出的窗口中根据需要设置好几组正弦波信号的角频率和幅值,选择测量方式为“直接”测量,每组参数应选择合适的波形比例系数,具体如下图所示:
点击极坐标图按钮 ,可以得到对象的闭环极坐标图。
(5)根据所测图形可适当修改正弦波信号的角频率和幅值重新测量,达到满意的效果。
3.间接测量方法:(测对象的开环波特图)
将示波器的“CH1”接至3#运放的输出端,“CH2”接至1#运放的输出端。按直接测量的参数将参数设置好,将测量方式改为间接测量。此时相位差是指反馈信号和误差信号的相位差,应将两根游标放在反馈和误差信号上。测得对象的开环波特图。

实验四三阶系统的瞬态响应及稳定性分析

实验四三阶系统的瞬态响应及稳定性分析

实验四三阶系统的瞬态响应及稳定性分析引言:实际工程中经常遇到三阶系统,对三阶系统的瞬态响应及稳定性进行分析能够帮助我们更好地设计和优化控制系统。

本实验旨在通过实验,研究三阶系统的瞬态响应及稳定性,并加深对其理论知识的理解和掌握。

实验一:三阶系统的瞬态响应1.实验目的:通过三阶系统的瞬态响应实验,观察系统的输出响应情况,了解系统的动态特性。

2.实验仪器:示波器、波形发生器、三阶系统实验箱3.实验原理:三阶系统的瞬态响应是指系统在初始状态发生突变时,输出的响应情况。

三阶系统的瞬态响应主要涉及到系统阶跃响应、系统脉冲响应。

4.实验步骤:a.将波形发生器的正弦波信号输入三阶系统实验箱。

b.设置示波器的观测通道,将示波器的探头连接到三阶系统实验箱的输出端口。

c.调节波形发生器的频率和幅度,观察示波器上得到的输出响应波形。

5.数据处理:a.根据示波器上输出的响应波形,可以观察到系统的超调量、调整时间等指标,根据公式可以计算得到这些指标的具体数值。

b.将实验得到的数据记录下来,进行分析和比较。

1.实验目的:通过三阶系统的稳定性分析实验,了解系统的稳定性及稳定性判据。

2.实验仪器:示波器、三阶系统实验箱3.实验原理:三阶系统的稳定性是指系统在初始状态发生突变或受到外部扰动时,系统是否能够回到稳定状态。

常见的稳定性分析方法包括极点判据、频率响应法等。

4.实验步骤:a.将示波器的探头连接到三阶系统实验箱的输出端口。

b.调节系统的输入信号,观察示波器上得到的系统输出响应波形。

c.根据观察到的输出波形,分析系统的稳定性。

5.数据处理:a.根据实验得到的数据和观察到的波形,可以从输入输出关系中提取出系统的稳定性信息,比如振荡频率、稳定的输出值等。

b.根据提取出的信息,判断系统的稳定性。

实验三:实验结果和分析1.通过实验一,我们可以观察到三阶系统的瞬态响应,并根据输出波形,计算得到系统的超调量、调整时间等指标。

通过对比不同输入频率和幅度下的响应波形,可以分析系统的动态特性。

三阶系统的瞬态响应和稳定性

三阶系统的瞬态响应和稳定性

南昌大学实验报告学生姓名:王智广学号:6100308038 专业班级:电力系统081实验类型:■验证□综合□设计□创新实验日期:2010.11.30 实验成绩:一、实验项目名称:三阶系统的瞬态响应和稳定性二、实验要求1.了解和掌握典型三阶系统模拟电路的构成方法及Ⅰ型三阶系统的传递函数表达式。

2.熟悉劳斯(ROUTH)判据使用方法。

3.应用劳斯(ROUTH)判据,观察和分析Ⅰ型三阶系统在阶跃信号输入时,系统的稳定、临界稳定及不稳定三种瞬态响应。

三、主要仪器设备及耗材1.计算机一台(Windows XP操作系统)2.AEDK-labACT自动控制理论教学实验系统一套3.LabACT6_08软件一套四、实验内容和步骤本实验用于观察和分析三阶系统瞬态响应和稳定性。

Ⅰ型三阶闭环系统模拟电路如图3-1-8所示。

它由积分环节(A2)、惯性环节(A3 和A5)构成。

图3-1-11 Ⅰ型三阶闭环系统模拟电路图图3-1-11的Ⅰ型三阶闭环系统模拟电路的各环节参数及系统的传递函数:积分环节(A2 单元)的积分时间常数Ti=R1*C1=1S,惯性环节(A3 单元)的惯性时间常数T1=R3*C2=0.1S,K1=R3/R2=1惯性环节(A5 单元)的惯性时间常数T2=R4*C3=0.5S,K2=R4/R=500k/R该系统在A5 单元中改变输入电阻R来调整增益K,R分别为30K、41.7K、100K 。

闭环系统的特征方程为:1+ G(S) = 0,⇒ S 3 +12S 2 + 20S + 20K = 0 (3-1-6)特征方程标准式:错误!未找到引用源。

(3-1-7)由ROUTH 判据,得 0<K<12⇒R>41.7kΩ系统稳定K=12⇒R=41.7kΩ系统临界稳定K>12⇒R<41.7kΩ系统不稳定Ⅰ型三阶闭环系统模拟电路图见图3-1-11,分别将(A11)中的直读式可变电阻调整到30K、41.7K、100K,跨接到A5 单元(H1)和(IN)之间,改变系统开环增益进行实验。

控制工程基础实验指导书(答案) 2讲解

控制工程基础实验指导书(答案) 2讲解

实验二二阶系统的瞬态响应分析一、实验目的1、熟悉二阶模拟系统的组成。

2、研究二阶系统分别工作在ξ=1,0<ξ<1,和ξ> 1三种状态下的单位阶跃响应。

3、分析增益K对二阶系统单位阶跃响应的超调量σP、峰值时间tp和调整时间ts。

4、研究系统在不同K值时对斜坡输入的稳态跟踪误差。

5、学会使用Matlab软件来仿真二阶系统,并观察结果。

二、实验仪器1、控制理论电子模拟实验箱一台;2、超低频慢扫描数字存储示波器一台;3、数字万用表一只;4、各种长度联接导线。

三、实验原理图2-1为二阶系统的原理方框图,图2-2为其模拟电路图,它是由惯性环节、积分环节和反号器组成,图中K=R2/R1,T1=R2C1,T2=R3C2。

图2-1 二阶系统原理框图图2-1 二阶系统的模拟电路由图2-2求得二阶系统的闭环传递函1222122112/() (1)()/O i K TT U S K U S TT S T S K S T S K TT ==++++ :而二阶系统标准传递函数为(1)(2), 对比式和式得n ωξ==12 T 0.2 , T 0.5 , n S S ωξ====若令则。

调节开环增益K 值,不仅能改变系统无阻尼自然振荡频率ωn 和ξ的值,可以得到过阻尼(ξ>1)、临界阻尼(ξ=1)和欠阻尼(ξ<1)三种情况下的阶跃响应曲线。

(1)当K >0.625, 0 < ξ < 1,系统处在欠阻尼状态,它的单位阶跃响应表达式为:图2-3 0 < ξ < 1时的阶跃响应曲线(2)当K =0.625时,ξ=1,系统处在临界阻尼状态,它的单位阶跃响应表达式为:如图2-4为二阶系统工作临界阻尼时的单位响应曲线。

(2) +2+=222nn nS S )S (G ωξωω1()1sin( 2-3n to d d u t t tgξωωωω--=+=式中图为二阶系统在欠阻尼状态下的单位阶跃响应曲线etn o n t t u ωω-+-=)1(1)(图2-4 ξ=1时的阶跃响应曲线(3)当K < 0.625时,ξ> 1,系统工作在过阻尼状态,它的单位阶跃响应曲线和临界阻尼时的单位阶跃响应一样为单调的指数上升曲线,但后者的上升速度比前者缓慢。

控制工程基础实验指导书[答案解析]

控制工程基础实验指导书[答案解析]

控制工程基础实验指导书自控原理实验室编印(内部教材)实验项目名称:(所属课程:)院系:专业班级:姓名:学号:实验日期:实验地点:合作者:指导教师:本实验项目成绩:教师签字:日期:(以下为实验报告正文)一、实验目的简述本实验要达到的目的。

目的要明确,要注明属哪一类实验(验证型、设计型、综合型、创新型)。

二、实验仪器设备列出本实验要用到的主要仪器、仪表、实验材料等。

三、实验内容简述要本实验主要内容,包括实验的方案、依据的原理、采用的方法等。

四、实验步骤简述实验操作的步骤以及操作中特别注意事项。

五、实验结果给出实验过程中得到的原始实验数据或结果,并根据需要对原始实验数据或结果进行必要的分析、整理或计算,从而得出本实验最后的结论。

六、讨论分析实验中出现误差、偏差、异常现象甚至实验失败的原因,实验中自己发现了什么问题,产生了哪些疑问或想法,有什么心得或建议等等。

七、参考文献列举自己在本次准备实验、进行实验和撰写实验报告过程中用到的参考文献资料。

格式如下:作者,书名(篇名),出版社(期刊名),出版日期(刊期),页码实验一 控制系统典型环节的模拟一、实验目的1、掌握比例、积分、实际微分及惯性环节的模拟方法;2、通过实验熟悉各种典型环节的传递函数和动态特性;3、了解典型环节中参数的变化对输出动态特性的影响。

二、实验仪器1、控制理论电子模拟实验箱一台;2、超低频慢扫描数字存储示波器一台;3、数字万用表一只;4、各种长度联接导线。

三、实验原理以运算放大器为核心元件,由其不同的R-C 输入网络和反馈网络组成的各种典型环节,如图1-1所示。

图中Z1和Z2为复数阻抗,它们都是R 、C 构成。

图1-1 运放反馈连接基于图中A 点为电位虚地,略去流入运放的电流,则由图1-1得:21()o i u ZG s u Z ==-(1-1) 由上式可以求得下列模拟电路组成的典型环节的传递函数及其单位阶跃响应。

1、比例环节实验模拟电路见图1-2所示图1-2 比例环节传递函数:21()R G s K R =-=- 阶跃输入信号:-2V 实验参数:(1) R 1=100K R 2=100K (2) R 1=100K R 2=200K 2、 惯性环节实验模拟电路见图1-3所示图1-3 惯性环节传递函数:2212211211()11R CS R Z R K CS G s Z R R R CS TS +=-=-=-=-++阶跃输入:-2V 实验参数:(1) R 1=100K R 2=100K C=1µ f23、积分环节实验模拟电路见图1-4所示图1-4 积分环节传递函数:21111()Z CS G s Z R RCS TS=-=-=-= 阶跃输入信号:-2V 实验参数:(1) R=100K C=1µ f (2) R=100K C=2µ f 4、比例微分环节实验模拟电路见图1-5所示图1-5 比例微分环节传递函数:22211111()(1)(1)1D Z R R G S R CS K T S R Z R CS R CS =-=-=-+=-++ 其中 T D =R 1C K=12R R 阶跃输入信号:-2V 实验参数:12(2)R1=100K R2=200K C=1µ f四、实验内容与步骤1、分别画出比例、惯性、积分、比例微分环节的电子电路;2、熟悉实验设备并在实验设备上分别联接各种典型环节;3、按照给定的实验参数,利用实验设备完成各种典型环节的阶跃特性测试,观察并记录其单位阶跃响应波形。

实验二、控制系统的瞬态响应及其稳定性分析

实验二、控制系统的瞬态响应及其稳定性分析

实验报告课程名称:_______控制理论实验_______指导老师:___________成绩:__________________ 实验名称:___控制系统的瞬态响应及其稳定性分析__实验类型:___同组学生姓名:_______一、实验目的1.学习瞬态性能指标的测试方法;2.记录不同开环增益时二阶系统的阶跃响应曲线,并测出超调量σP %、峰值时间t p 和调节时间t s ;3.了解闭环控制系统的稳定和不稳定现象,并加深理解线性系统的稳定性与其结构和参量有关,而与外作用无关的性质。

二、实验原理对二阶系统加入阶跃信号时,其响应将随着系统参数变化而变化。

其特性由阻尼比ξ、无阻尼自然频率ωn 来描述。

当两个参数变化时,将引起系统的调节时间、超调量、振荡次数的变化。

二阶系统方框图如图4-2-1图4-2-1 二阶系统方框图其闭环传递函数的标准形式为 { EMBED Equation.3 |222122)1()()(nn n s s K s T s T Ks R s C ωξωω++=++=无阻尼自然频率阻尼比本实验中为0.2s ,为0.5s . 因此这就是说K 值的变化,就可以得到不同ξ值的阶跃响应曲线。

三阶系统的框图如图4-2-2所示。

其开环传递函数为若取=0.2s =0.5s改变惯性时间常数T 2和开环增益K ,可以得到不同的阶跃响应。

若调节K 值大小,可改变系统的稳定性。

如在实验中,取=0.2s =0.1s =0.5s4-2-2三阶系统方框图专业:____电自_______ 姓名:____王强________学号:__3110103065___ 日期:_____11、1____ 地点:___教二-213_______ +_+则得系统的特征方程用劳斯判据求出系统临界稳定的开环增益为7.5,即K<7.5时,系统稳定K>7.5时,系统不稳定。

控制系统本身的参数对阶跃响应性能有直接影响。

以上述三阶系统为例,开环增益和三个时间常数的变化都将使输出响应变化。

自动控制原理实验(1)

自动控制原理实验(1)

实验一 典型环节的电路模拟一、实验目的1.熟悉THKKL-5型 控制理论·计算机控制技术实验箱及“THKKL-5”软件的使用; 2.熟悉各典型环节的阶跃响应特性及其电路模拟;3.测量各典型环节的阶跃响应曲线,并了解参数变化对其动态特性的影响。

二、实验设备1.THKKL-5型 控制理论·计算机控制技术实验箱;2.PC 机一台(含“THKKL-5”软件)、USB 数据采集卡、37针通信线1根、16芯数据排线、USB 接口线。

三、实验内容1.设计并组建各典型环节的模拟电路;2.测量各典型环节的阶跃响应,并研究参数变化对其输出响应的影响。

四、实验原理自控系统是由比例、积分、微分、惯性等环节按一定的关系组建而成。

熟悉这些典型环节的结构及其对阶跃输入的响应,将对系统的设计和分析十分有益。

本实验中的典型环节都是以运放为核心元件构成,其原理框图 如图1-1所示。

图中Z 1和Z 2表示由R 、C 构成的复数阻抗。

1.比例(P )环节比例环节的特点是输出不失真、不延迟、成比例地复现输出信号的变化。

图1-1 它的传递函数与方框图分别为:KS U S U S G i O ==)()()(当U i (S)输入端输入一个单位阶跃信号,且比例系数为K 时的响应曲线如图1-2所示。

2.积分(I )环节 图1-2积分环节的输出量与其输入量对时间的积分成正比。

它的传递函数与方框图分别为:设U i (S)为一单位阶跃信号,当积分系数为T 时的响应曲线如图1-3所示。

TsS U S Us G i O1)()()(==图1-33.比例积分(PI)环节比例积分环节的传递函数与方框图分别为:)11(11)()()(21211212CSR R R CSR R R CSR CS R S U S U s G i O +=+=+==其中T=R 2C ,K=R 2/R 1设U i (S)为一单位阶跃信号,图1-4示出了比例系数(K)为1、积分系数为T 时的PI 输出响应曲线。

自动控制原理第三节2_高阶系统

自动控制原理第三节2_高阶系统

例如:(s)
(s2
n2(s z) 2 ns n2 )(s
p)
如果: z 5以及 p 5
n
n
z p
则:
(s)
p(s2
z n 2 2 ns n2 )
n
j d jd
说明:假设输入为单位阶跃函数,则化简前后的稳态值如下
lim s 1 s (s2
s0
n2(s z) 2 ns n2 )(s
[例如]: p1,2 1 n1 jn1
1
2 1
jd
为某高阶系统
的主导极点,则单位阶跃响应近似为:
c(t) a0 et (1 cosdt 1 sin dt)
利用主导极点的概念可以对高阶系统的特性做近似的估计分析。 高阶系统近似简化原则: 在近似前后,确保输出稳态值不变;
在近似前后,瞬态过程基本相差不大。
阶系统的单位阶跃响应取决于闭环系统的零、极点分布。
[定性分析]:
对于闭环极点全部位于s左半平面的高阶系统(否则系统不 稳定),极点为实数(指数衰减项)和共轭复数(衰减正弦项) 的衰减快慢取决于极点离虚轴的距离。远,衰减的快;近,衰 减的慢。所以,近极点对瞬态响应影响大。
高阶系统分析,主导极点
系数 a j , l , l 取决于零、极点分布。有以下几种情况: 若极点远离原点,则系数小; 极点靠近一个零点,远离其他极点和零点,系数小; 极点远离零点,又接近原点或其他极点,系数大。
C(s)
(s)
1 s
(s2
n2 p3 2 ns n2 )(s
p3 )
1 s
1 s
s2
A1s A2
2 ns n2
s
A3 p3
式中:A1, A2 , A3 系)有关。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验四 三阶系统的瞬态响应及稳定性分析
一、实验目的
(1)熟悉三阶系统的模拟电路图。

(2)由实验证明开环增益K 对三阶系统的动态性能及稳定性的影响。

(3)研究时间常数T 对三阶系统稳定性的影响。

图8-16 三阶系统原理框图
图8-17 三阶系统模拟电路
图8-16为三阶系统的方框图,它的模拟电路如图8-17所示,对应的闭环传递函数为: 该系统的特征方程为:
T 1T 2T 3S³+T 3(T 1+T 2)S²+T 3S+K=0
其中K=R 2/R 1,T 1=R 3C 1,T 2=R 4C 2,T 3=R 5C 3。

若令T 1=0.2S ,T 2=0.1S ,T 3=0.5S ,则上式改写为
用劳斯稳定判据,求得该系统的临界稳定增益K=7.5。

这表示K>7.5时,系统为不稳定;K<7.5时,系统才能稳定运行;K=7.5时,系统作等幅振荡。

除了开环增益K 对系统的动态性能和稳定性有影响外,系统中任何一个时间常数的变化对系统的稳定性都有影响,对此说明如下:
令系统的剪切频率为
ωc ,则在该频率时的开环频率特性的相位为:
ϕ(ωc )= - 90︒ - tg -1T 1ωc – tg -1T 2ωc
相位裕量γ=180︒+ϕ(ωc )=90︒- tg -1T 1ωc- tg -1T 2ωc
K
)S T )(S T (S T K )S (U )S (U i o +1+1+=2130=100+50S +15S +S 23Κ
由上式可见,时间常数T 1和T 2的增大都会使γ减小。

四、思考题
(1)为使系统能稳定地工作,开环增益应适当取小还是取大?
(2)系统中的小惯性环节和大惯性环节哪个对系统稳定性的影响大,为什么?
(3)试解释在三阶系统的实验中,输出为什么会出现削顶的等幅振荡?
(4)为什么图8-13和图8-16所示的二阶系统与三阶系统对阶跃输入信号的稳态误差都为零?
(5)为什么在二阶系统和三阶系统的模拟电路中所用的运算放大器都为奇数?
五、实验方法
图8-16所示的三阶系统开环传递函数为:
(1)按K=10,T 1=0.2S, T 2=0.05S, T 3=0.5S 的要求,调整图8-17中的相应参数。

(2)用慢扫描示波器观察并记录三阶系统单位阶跃响应曲线。

(3)令T 1=0.2S , T 2=0.1S , T 3=0.5S ,用示波器观察并记录K 分别为5、7.5和10三种情况下的单位阶跃响应曲线。

(4)令K=10,T 1=0.2S ,T 3=0.5S ,用示波器观察并记录T 2分别为0.1S 和0.5S 时的单位阶跃响应曲线。

六实验报告
(1)作出K=5、7.5和10三种情况下的单位阶跃响应波形图,据此分析K 的变化对系统动态性能和稳定性的影响。

(2)作出K=10,T1=0.2S ,T3=0.5S ,T 2分别为0.1S 和0.5S 时的单位阶跃响应波形图,并分析时间常数T 2的变化对系统稳定性的影响。

(3)写出本实验的心得与体会。

)1)(1()(213++=S T S T S T K S G。

相关文档
最新文档