离子晶体、分子晶体和原子晶体(一)
(立体图,好理解)分子晶体与原子晶体
例、如右图所示, 在石墨晶体的层 状结构中,每一 个最小的碳环完 全拥有碳原子数 2 为___,每个C 完全拥有C-C 数为___ 3
石墨中C-C夹 ☉ 角为120 , C-C键长为 1.42×10-10 m 层间距
3.35× 10-10 m
小结:金刚石、石墨的比较
项目 晶体形状 晶体中的键或作用力 由最少碳原子形成环的形状 与个数 碳原子成键数 键的平均数 金刚石 石墨
小结:
1、分子晶体:由分子构成。相邻分子靠分子间作用力 相互吸引。 2、分子晶体特点:低熔点、升华、硬度很小等。 3、常见分子晶体分类:(1)所有非金属氢化物 (2)部分非 金属单质, (3)部分非金属氧化物(4)几乎所有的酸(而碱 和盐则是离子晶体 (5)绝大多数有机物的晶体。 晶体分子结构特征
物质 熔点 沸点
干冰 很低 很低
金刚石 3550℃ 4827℃
二、原子晶体
1、定义:原子间以共价键相结合而形成的 空间网状结构的晶体。
2、构成微粒: 原子
3、微粒之间的作用:共价键 4、气化或熔化时破坏的作用力:共价键 5、物理性质: 熔沸点高,硬度大,难溶于一般溶剂。 (共价键键能越大,熔沸点越高,硬度越大)
(1)只有范德华力,无分子间氢键-分子密堆积(每 个分子周围有12个紧邻的分子,如:C60、干冰 、I2、O2 (2)有分子间氢键-不具有分子密堆积特征 (如:HF 、冰、NH3 )
1996年诺贝尔化学奖授予对发现C60有重大贡献的 三位科学家。C60分子是形如球状的多面体,分子 中每个碳原子只跟相邻的3个碳原子形成化学键; C60分子只含有五边形和六边形;碳与碳之间既有 单键又有双键,每个碳原子仍然满足四个价键饱 和;多面体的顶点数、面数和棱边数的关系,遵 循欧拉定理:顶点数+面数-棱边数=2。 请回答: (1)一个C60分子中有几个五边形和几个六边形? (2)一个C60分子中有多少个C=C? (3)已知C70分子的结构模型也遵循C60的那些规律, 请确定C70分子结构中上述几项参数。
离子晶体、分子晶体、原子晶体
2、物理特性:
(1)较低的熔点和沸点,易升华; (2)较小的硬度; (3)一般都是绝缘体,熔融状态也不导电。
原因:分子间作用力较弱
3、典型的分子晶体:
–非金属氢化物:H2O,H2S,NH3,CH4,HX –酸:H2SO4,HNO3,H3PO4 –部分非金属单质:X2,O2,H2, S8,P4, C60 –部分非金属氧化物: CO2, SO2, NO2, P4O6, P4O10 –大多数有机物:乙醇,冰醋酸,蔗糖
思考1 原子晶体的化学式是否可以代表其分子式?
不能。因为原子晶体是一个三维的网状结构,无 小分子存在。
思考2 以金刚石为例,说明原子晶体的微观结构与分 子晶体有哪些不同? (1)组成微粒不同,原子晶体中只存在原子,没有
分子。 (2)相互作用不同,原子晶体中存在的是共价键。
4、原子晶体熔、沸点比较规律
①二氧化硅中Si原子均以sp3杂化,分别 与4个O原子成键,每个O原子与2个Si原子 成键; ②晶体中的最小环为十二元环,其中有6 个Si原子和6个O原子,含有12个Si-O键; 每个Si原子被12个十二元环共有,每个O原 子被6个十二元环共有,每个Si-O键被6个 十二元环共有;每个十二元环所拥有的Si 原子数为6×1/12=1/2,拥有的O原子数为 6×1/6=1,拥有的Si-O键数为12×1/6=2, 则Si原子数与O原子数之比为1:2。
Na+
(1)NaCl的晶体结构
立方结构(基本结构单元是立方体)
晶胞:
讨论:
晶体中最小的重复单元
6 1、每个Na 离子周围有____个Cl-离子,每 个Cl- 离子周围有____个Na+ 离子。 6
+
2、每个Na+离子周围与Na+最近且等距离的 Na+有____个,每个Cl- 离子周围与Cl-最近且 12 12 等距离的Cl-有____个。
原子晶体分子晶体和离子晶体的判断
原子晶体分子晶体和离子晶体的判断原子晶体分子晶体和离子晶体
原子晶体是由原子组成的晶体。
它由沿有序排列且彼此间有固定距离的原子或分子组成,其中可以包括气体,液体或固体的微粒。
由于原子的吸引力,它们形成了一个非常稳定的晶格,具有独特的结构特征。
原子晶体常常表现为固体,例如石墨、金刚石和金红石,都是一种原子晶体。
分子晶体是由更大的分子组成的晶体。
它们由具有高度有序并彼此间有固定距离的原子或分子组成,是一种有形态的物质。
与原子晶体不同,它们以不同形体组合而成,例如,聚苯乙烯就是一种很常见的分子晶体,是由苯乙烯分子以奇数多功能组成而构成的晶体体系。
离子晶体是由带有负号或正号电荷的离子组成的晶体。
它在电场下会受到强烈的离子互斥力的作用,形成一定的有规律的晶体结构,结构较易被打乱,比较容易改变,在物理和化学上常有很大的许多区别。
例如,KCl、NaCl等常见的盐类离子晶体,以及数种酸类复合物的离子晶体。
总而言之,原子晶体由单个原子组成,分子晶体由更大的分子组成,离子晶体由带有负号或正号电荷的离子组成,但均具有有序的晶体结构,是一种稳定、有形态的物质。
离子晶体
①Cs+的配位数是8 ,构成 立方(正六面)体。Cl-的 配位数也是8。 ②每个Cs+ 周围最近且等距离的Cs+有6个(上, 下,左,右,前,后) 构成 正八面 体。
CaF2型晶体结构模型 ①Ca2+的配位数是8:
Ca2+ 周围8个F-成立方体;
F-的配位数是4:
①熔点1070 ℃,易溶于水,水溶液能导电 ②熔点10.31 ℃,液态不导电,水溶液导电 ③熔点112.8 ℃,沸点444.6 ℃,能溶于CS2 ④熔点97.81 ℃,质软,导电,密度0.97 g·cm-3 ⑤熔点-218 ℃,难溶于水 ⑥熔点3900 ℃,硬度很大,不导电 ⑦难溶于水,固态时导电,升温时导电能力减弱 ⑧难溶于水,熔点高,固体不导电,熔化时导电
Na+ClC- l-
NaC+ l-
Cl- NaN+a+NaCC+ll--
ClNa+ Cl-
Cl-
Na+
每个NaCl晶胞,平均占有 Na+ Na+:12×1/4+1=4
Cl-:8×1/8+6×1/2=4
离子化合物的化学式为离子最简个数比
3、常见离子晶体的总结
①Na+的配位数(等距离的Cl-)是6(上,下,左,右,前, 后),构成 正八面 体;同样,Cl-的配位数也是6。 ②每个Na+周围与它最近且等距离的Na+有12个 (三个平面各4个)。
性 熔、沸点
较高
较低
很高
质 导电性 溶解性
熔融或水溶 液中能导电
一般易溶 于水
不导电,部分 溶于水导电
部分溶 于水
不导电,个 别为半导体
不溶于任 何溶剂
离子晶体
6 2
4
这几个Na+在空间
构成的几何构型 为 正八面体 。
3
6
1
2
5
4
每个Cl- 周围 与之最接近且 距离相等的Na+ 共有 6 个。
1每个Na+周围最近且等距的Cl-有 6 个
它们围成的几何空间构型为 正八面体 2每个Cl-周围最近且等距的Na+有 6 个 它们围成的几何空间构型为 正八面体
3每个Na+周围最近且等距的Na+有 12 个 4每个Cl-周围最近且等距的Cl-有 12 个
离子键的强弱在一定程度上可 以用离子晶体的晶格能来衡量。
晶格能:定义是气态离子形成l摩离子晶 体释放的能量,通常取正值。
4、离子晶体的晶格能
仔细阅读课本 P80 表3—8,离子晶体的晶格能与哪些 因素有关?
(1)、影响晶格能大小因素
小结:离子晶体中 阴阳离子半径越小,所带电荷,越多 离子键越强,晶格能越大,简言之:晶格能的大
NaCl:95/181=0.525 CsCl:169/181=0.933
(2)电荷因素
由正负离子的电荷比影响 离子晶体的配位数学.科.网的因素, 称为电荷因素。
CaF2的晶胞
例和:F-C的aF个2的数晶之体比中_1_:,_2_C,a电2+ 荷数之比_2_:_1__,Ca2+配位 数是__8___,F-的配位数是
第四节 离子晶体
一、离子晶体
1、定义: 由阳离子和阴离子通过离子键结合 而成的晶体。
2、构成粒子: 阴、阳离子
3、相互作用力: 离子键
4、常见的离子晶体:强碱、 活泼金属氧化物、 大部分的盐类。
二、晶胞结构特点 1、几种常见的晶体类型
高中化学常见晶体
高中化学常见晶体篇一:高中化学----总结:四大晶体总结:四大晶体晶体类型离子晶体原子晶体分子晶体金属晶体概念离子间离子键原子间共价键分子间分子力金属离子和e金属键晶体质点阴、阳离子原子分子金属离子原子和e作用力离子键共价键分子间力金属键物理性质熔沸点较高很高很低一般高少数低硬度较硬很硬硬度小多数硬少数软溶解性易溶于水难溶任何溶剂相似相溶难溶导电性溶、熔可硅、石墨可部分水溶液可固、熔可实例盐MOH MO C Si SiO2 SiC HX XOn HXOn 金属或合金1.各种晶体中的化学键⑴离子晶体: 一定有离子键,可能有共价键(极性键、非极性键、配位键)⑵分子晶体:一定没有离子键,可能有极性键、非极性键、配位键; 也可能根本没有化学键。
⑶原子晶体:一定没有离子键,可能有极性键、非极性键.⑷金属晶体: 只有金属键2、物质熔沸点高低比较规律(1)晶体内微粒间作用力越大,熔沸点越高,只有分子晶体熔化时不破坏化学键。
(2)不同晶体(一般情况下):原子晶体>离子晶体>分子晶体熔点:上千度~几千度近千度~几百度多数零下最多几百度(3)相同条件下一般地说熔沸点:固态>液态>气态2、物质熔沸点高低比较规律(4)同种晶体离子晶体:比较离子键强弱,离子半径越小,电荷越多,熔沸点越高MgOMgCl2NaClKClKBr原子晶体:比较共价键强弱(看键能和键长)金刚石(C) 水晶(SiO2) SiC Si分子晶体:比较分子间力(和分子内的共价键的强弱无关)1)组成和结构相似时,分子量越大熔沸点越高F2<Cl2<Br2<I2; HCl< HBr <HI; CF4< CCl4 < CBr4 < CI4;N2<O2 ; 同系物熔沸点的比较2)同分异构体:支链越多熔沸点越低正戊烷异戊烷新戊烷金属晶体:比较金属键,金属原子半径越小,价电子数越多,熔沸点越高。
晶体结构(共78张PPT)
山东大学材料科学基础
共价键结合,有方 向性和饱和性,键 能约80kJ/mol
Si,InSb, PbTe
金属键结合, 无方向性,配 位数高,键能 约80kJ/mol
Fe,Cu,W
范得华力结合 ,键能低, 约 8-40 kJ /mol
Ar,H2,CO2
熔点高
强度和硬度由中到 高,质地脆
闪锌矿〔立方ZnS〕结构 S
Zn
属于闪锌矿结构的晶体有β-SiC,GaAs,AlP,InSb
山东大学材料科学基础
•
•
•
•
萤石〔CaF2〕型结构
立方晶系Fm3m空间群,
a0=0.545nm, Z=4。 AB2型化合物, rc/ra>0.732〔0.975〕 配位数:8:4
Ca2+作立方紧密堆积,
F-填入全部四面体 空隙中。 注意:所有八面 体空隙都未被占据。
山东大学材料科学基础
钙钛矿〔CaTiO3〕结构
Ti
ABO3型
立方晶系:以
•
一个Ca2+和3个
O2-作面心立方
Ca
密堆积,
Ti4+占1/4八面体C空aT隙iO3。晶胞 配位多面体连接与Ca2+配位数
Ti4+配位数6,rc/ra=0.436(0.414-0.732)
Ca2+配位数12,rc/ra=0.96
O2-配位数6;
取决温度、组成、掺杂等条件,钙钛矿结构呈现立方、
四方、正交等结构形式。
山东大学材料科学基础
许多化学式为ABO3型的化合物,其中A与B两种阳 离子的半径相差颇大时常取钙钛矿型结构。在钙钛矿 结构中实际上并不存在一个密堆积的亚格子,该结构 可以看成是面心立方密堆积的衍生结构。较小的B离 子占据面心立方点阵的八面体格位,其最近邻仅是氧 离子。
金属晶体分子晶体原子晶体离子晶体
金属晶体、分子晶体、原子晶体和离子晶体金属晶体:由金属键形成的单质晶体。
金属单质及一些金属合金都属于金属晶体,例如镁、铝、铁和铜等。
金属晶体中存在金属离子(或金属原子)和自由电子,金属离子(或金属原子)总是紧密地堆积在一起,金属离子和自由电子之间存在较强烈的金属键,自由电子在整个晶体中自由运动,金属具有共同的特性,如金属有光泽、不透明,是热和电的良导体,有良好的延展性和机械强度。
大多数金属具有较高的熔点和硬度,金属晶体中,金属离子排列越紧密,金属离子的半径越小、离子电荷越高,金属键越强,金属的熔、沸点越高。
例如周期系IA族金属由上而下,随着金属离子半径的增大,熔、沸点递减。
第三周期金属按Na、Mg、Al顺序,熔沸点递增。
根据中学阶段所学的知识。
金属晶体都是金属单质,构成金属晶体的微粒是金属阳离子和自由电子(也就是金属的价电子)。
分子晶体:分子间以范德华力相互结合形成的晶体。
大多数非金属单质及其形成的化合物如干冰(CO2)、I2、大多数有机物,其固态均为分子晶体。
分子晶体是由分子组成,可以是极性分子,也可以是非极性分子。
分子间的作用力很弱,分子晶体具有较低的熔、沸点,硬度小、易挥发,许多物质在常温下呈气态或液态,例如O2、CO2是气体,乙醇、冰醋酸是液体。
同类型分子的晶体,其熔、沸点随分子量的增加而升高,例如卤素单质的熔、沸点按F2、Cl2、Br2、I2顺序递增;非金属元素的氢化物,按周期系同主族由上而下熔沸点升高;有机物的同系物随碳原子数的增加,熔沸点升高。
但HF、H2O、NH3、CH3CH2OH等分子间,除存在范德华力外,还有氢键的作用力,它们的熔沸点较高。
分子组成的物质,其溶解性遵守“相似相溶[1]”原理,极性分子易溶于极性溶剂,非极性分子易溶于非极性的有机溶剂,例如NH3、HCl极易溶于水,难溶于CCl4和苯;而Br2、I2难溶于水,易溶于CCl4、苯等有机溶剂。
根据此性质,可用CCl4、苯等溶剂将Br2和I2从它们的水溶液中萃取、分离出来。
分子晶体和原子晶体
分子晶体和原子晶体
图2-15 金刚石原子晶体示意图
分子晶体和原子晶体
二氧化碳和方石英都是第Ⅳ A元素化合物, 由于前者是分子晶体,后者是原子晶体,导致 物理性质差别较大。CO2在-78.5 ℃时即升华, 而SiO2的熔点却高达1610 ℃,说明晶体结构 不同,微粒间的作用不同,物质的物理性质也 不同。
分子晶体和原子晶体
在原子晶体中,不存在独立的小分子,而只能把整个晶体看成是 一个大分子,没有确定的相对分子质量。由于共价键具有饱和性和方 向性,所以原子晶体的配位数一般不高。以典型的金刚石原子晶体为 例,每一个碳原子在成键时以sp3等性杂化形成4个sp3共价键,构成 正四面体,所以碳原子的配位数为4。无数的碳原子相互连接构成, 如图2-15所示晶体结构。原子晶体中,原子间以共价键相连,所以 表现出有较高的硬度和较高的熔点(金刚石硬度最大,熔点为3849 K)。 通常这类晶体不导电、不导热,熔化时也不导电,但硅、碳化硅等具 有半导体性质,可以有条件地导电。
分子晶体和原子晶体
图2-14 CO2分子晶体示意图
分子晶体和原子晶体
二、 原子晶体
在晶格结点上排列的微粒为原子,原子之间以 共价键结合构成的晶体称为原子晶体,如碳(金刚 石)、硅(单晶硅)、锗(半导体单晶)及第Ⅳ A族元素 的单质都属于原子晶体,化合物中的碳化硅(SiC)、 砷化镓(GaAs)、方石英(SiO2)等也属于原子晶体。
无机化学
分子晶体和原子晶体
一、 分子晶体
在晶格结点上排列着分子,通过分子间力而形成的晶体, 称为分子晶体,如非金属单质和非金属元素之间的固体化合物 CO2是分子晶体,其晶体结构如图2-14所示。分子晶体中存在 着独立的分子,分子晶体内是共价键,分子晶体间的作用力是 分子间力,由于分子间力很弱,因此分子晶体的熔点低,具有 较大的挥发性,硬度较小,易溶于非极性溶剂,通常是电的不 良导体。若干极性分子晶体在水中解离生成离子,则其水溶液 导电,如HCl溶液。
离子晶体、分子晶体、原子晶体
ClNa+
二、分子晶体
分子间作用力和氢键:(氢键的形成过程)
分子间作用力和氢键对一些物质的熔、沸点的关系
分子晶体:
分子间通过分子间作用力相 结合的晶体,叫做分子晶体。 实例:如干冰 定义:
分子晶体的物理性质:
熔、沸点低,硬度小,在水 形成分子晶体的物质:
中的溶解度存在很大的差异。 H2、Cl2、He 、HCl 、H2O、CO2等
原子晶体的物理性质:
熔沸点很高,硬度很大,难溶于水,一般不导电。
常见的原子晶体:
金刚石、金刚砂(SiC)、晶体硅、石英(SiO2)
Si
o
180º
109º 28´
共价键
109º 28´
共价键
小结
1、离子晶体、分子晶体、原子晶体结构与性质关系的比较: 晶体类型 结 构成晶体粒子 构 性
熔、沸点 导电性 粒子间的相互 作用力
离子晶体
分子晶体
原子晶体
硬 度
质
溶解性
2、化学键和分子间作用力的比较:
化学键 概念 能量 性质影响 分子间作用力
3、影响晶体物理性质的因素:
影
离子晶体 分子晶体 原子晶体
响
因 素
共价键
氢键
氢键的形成过程
返回
温度/℃ H2O 温度/100 ℃ 沸点/℃ 250 75 沸点 250 熔点 CBr 200 沸点 4 × × 50 200 150 I2 CI4 150 25 HF 100 CCl 熔点 × 100 4 × CBr4 I 0 H2Te 50 2 100 150Br 50 SbH3 2 -25 0 2Se 200 300 400 H 500 × NH3 100 H S HI 0 Br 2 2 200 -50 50 250 -50 CCl4 -50 × AsH Cl 3 相对分子质量 SnH4 2 -100 HCl 相对分子质量 -100 -75 HBr CF × Cl 4 2 -150 × PH3 GeH4 -150 × -100 -200 F2 CF 4 SiH 4× -200 -125 F2 -250 -250
不同晶体导电的原因
不同晶体导电的原因
不同晶体导电的原因与其内部的电子状态和晶体结构密切相关。
以下是针对几种不同类型晶体的解释:
1.金属晶体:金属内部存在大量可以自由移动的自由电子,这些自由电子在电场力的作用
下定向移动而形成电流,使金属能够导电。
典型的金属导体有铜、银和金。
2.半导体:半导体中的价带和导带之间有一个较小的禁带,使得一定数量的电子能在适当
的条件下(如温度或光照)跃迁到导带中,从而产生导电性。
此外,当电子从价带跃迁到导带时,价带会留下一个空位,称为“空穴”,空穴也可以作为一种载流子,对导电性有贡献。
典型的半导体有硅和锗。
3.离子晶体:离子晶体在固态时离子不能自由移动,因此不导电。
但是,当离子晶体熔融
或溶于水时,离子能够自由移动,从而在外界电场作用下导电。
4.分子晶体和原子晶体:这些晶体类型的导电性取决于它们是否能够电离出自由移动的离
子。
如果它们能够在水溶液中电离出离子,那么它们就可以导电。
然而,在固态下,分子晶体和原子晶体通常不导电。
此外,对于单晶体和多晶体而言,单晶体的导电性通常优于多晶体。
这是因为单晶体中的载流子遭受散射的几率较小,迁移率较高,因此导电性较好。
而多晶体中的晶粒间界会严重散射载流子,导致迁移率降低,导电性相对较差。
总之,不同类型晶体的导电性取决于其内部的电子状态和晶体结构以及外部条件(如温度、光照等)。
离子晶体分子晶体原子晶体的区别
离子晶体分子晶体原子晶体的区别
离子晶体、分子晶体和原子晶体都是晶体的类型,它们的区别主要在于晶体的组成和结构。
离子晶体是由正负离子通过离子键结合而成的晶体。
通常,离子晶体的成分是由金属离子和非金属离子组成的化合物。
离子晶体的结构可由阴离子和阳离子构成的空间排列组成。
这些空间交替排列,形成一种定期的三维晶格结构。
离子晶体的结构稳定,常常具有高熔点,高硬度和高电导率等特点。
分子晶体是由分子间通过范德华力相互作用形成的晶体。
通常,分子晶体的成分是由原子间共享电子而形成的分子。
这些分子通过弱的范德华力互相作用,并形成一种定期的三维晶格结构。
分子晶体的结构可由分子排列而成的晶格构成。
分子晶体的结构稳定,常常具有较低的熔点、较低的硬度和较低的电导率等特点。
原子晶体是由原子间通过金属键或共价键相互作用而形成的晶体。
通常,原子晶体的成分是由金属原子或非金属原子组成的晶体。
这些原子通过强的金属键或共价键相互作用,并形成一种定期的三维晶格结构。
原子晶体的结构可由原子排列而成的晶格构成。
原子晶体的结构稳定,常常具有高熔点、高硬度和良好的导电性能等特点。
总之,离子晶体、分子晶体和原子晶体的区别在于它们的组成和结构。
离子晶体
由离子间的离子键结合而成,分子晶体由分子间的范德华力相互作用形成,而原子晶体由原子间的金属键或共价键相互作用而形成。
2.2 晶体
4、性质:度、熔沸点较高,但差别较大; 硬
有良好的导电导热性和延展性。
同种晶体熔沸点的比较:
1. 离子晶体
组成相似的 离子电荷数越大 离子晶体 离子半径越小 例:NaCl > KCl; MgO > CaO 离子键越强
离子晶体的熔沸点越高
(一)金刚石和硅晶体——原子晶体
空间网状结构
金刚石
硬 金刚石是天然存在的最_____的物质,键角 共价键 109º28’ _______,每个C和___个C以______结合 4 正四面 成______体。金刚石中,最小环是__元环。 6 1:2 碳原子数: C—C键数:_______
比较金刚石和硅晶体:
3.微粒间作用力: 共价键
4.常见的原子晶体:金刚石、晶体硅、 二氧化硅、硼(B) 、 金刚砂(碳化硅)SiC
5.特征
(1)原子晶体是由原子直接构成,无单个 分子,只有化学式。 (2)硬度很大,熔沸点很高,难溶于一般 溶剂。 键长越短,键能越大,熔沸点越高。
(四) 金属晶体
1、定义: 通过金属键形成的晶体
方式如图,则该离子晶体的化学式是
AB3C
A : B : C = 1/8×8 : 12×1/4 : 1 = 1 : 3 : 1
(二)分子晶体
1、定义:分子间以范德华力相互结合而 形成晶体。
2、构成微粒: 分子或稀有气体原子 3、微粒间作用力: 范德华力(或还有氢键) 4、特点: (1)有单个分子存在,化学式就是分子式 (2)三态变化时只破坏分子间的作用力。
12. 最近,美国Lawrece Lirermore国家实验室(LLNL) 的L.Lota.C.S.Yoo和H.eynn成功地在高压下将CO2 转化为具有类似SiO2结构的原子晶体,下列关于 CO2的原子晶体说法正确的是( B ) A. CO2的原子晶体和分子晶体互为同素异形体
晶体的类型和性质
1、晶体类型判别:分子晶体:大部分有机物、几乎所有酸、大多数非金属单质、所有非金属氢化物、部分非金属氧化物。
原子晶体:仅有几种,晶体硼、晶体硅、晶体锗、金刚石、金刚砂(SiC)、氮化硅(Si3N4)、氮化硼(BN)、二氧化硅(SiO2)、氧化铝(Al2O3)、石英等;金属晶体:金属单质、合金;离子晶体:含离子键的物质,多数碱、大部分盐、多数金属氧化物;2、不同晶体的熔沸点由不同因素决定:离子晶体的熔沸点主要由离子半径和离子所带电荷数(离子键强弱)决定,分子晶体的熔沸点主要由相对分子质量的大小决定,原子晶体的熔沸点主要由晶体中共价键的强弱决定,且共价键越强,熔点越高。
3晶体熔沸点高低的判断?(1)不同类型晶体的熔沸点:原子晶体>离子晶体>分子晶体;金属晶体(除少数外)>分子晶体;金属晶体熔沸点有的很高,如钨,有的很低,如汞(常温下是液体)。
(2)同类型晶体的熔沸点:①原子晶体:结构相似,半径越小,键长越短,键能越大,熔沸点越高。
如金刚石>氮化硅>晶体硅。
②分子晶体:组成和结构相似的分子,相对分子质量越大,分子间作用力越强,晶体熔沸点越高。
如CI4>CBr4>CCl4>CF4。
若相对分子质量相同,如互为同分异构体,一般支链数越多,熔沸点越低,特殊情况下分子越对称,则熔沸点越高。
若分子间有氢键,则分子间作用力比结构相似的同类晶体强,故熔沸点特别高。
③ 金属晶体:所带电荷数越大,原子半径越小,则金属键越强,熔沸点越高。
如Al >Mg >Na >K 。
④ 离子晶体:离子所带电荷越多,半径越小,离子键越强,熔沸点越高。
如KF >KCl >KBr >KI 。
1.60C 与现代足球(如图6-1)有很相似的结构,它与石墨互为 ( ) A .同位素 B .同素异形体 C .同分异构体 D .同系物2.下列物质为固态时,必定是分子晶体的是 ( )A .酸性氧化物B .非金属单质C .碱性氧化物D .含氧酸 3.金属的下列性质中,不能用金属晶体结构加以解释的是 ( ) A .易导电 B .易导热 C .有延展性 D .易锈蚀4.氮化硅(43N Si )是一种新型的耐高温耐磨材料,在工业上有广泛的用途,它属于 ( ) A .原子晶体 B .分子晶体 C .金属晶体 D .离子晶体5.水的状态除了气、液和固态外,还有玻璃态。
原子晶体、分子晶体、离子晶体的比较 PPT
3.物理性质:①熔沸点低[破坏分子间的作用力],硬度小。
②一般不导电,在固态和熔融状态下也不导电
③溶解性一般符合“相似相溶规律”
二、常见的晶体结构分析:
(一)干冰: 1.分子堆积方式: 分子密堆积(只含范德华力) 2.均摊法计算CO2分子数:
顶角—— 8个 面心—— 6个 1个晶胞中CO2分子数= 8×18+6×12= 4 3.每个CO2分子周围离该分子距离最近且相等的 CO2分子有:12个 [同层+上层+下层]×4=12 (二)冰:
配位数: 8 配位空间构型:正六面体
离其最近的Cs+的个数为: 6
[上、下、左、右、前、后]
2.Cl-为中心:离其最近的Cs+的个数为: 8
配位数:8 配位空间构型:正六面体
离其最近的Cl-的个数为:6
3.均摊法计算1个晶胞中:
Cs+个数:8×18= 1
Cl-个数:1
二、三种常见的离子晶体的结构:
2.晶胞的结构:——均摊法 结合《课本》P64/图3-8
体心粒子—— 完全属于该晶胞
面心粒子—— 有12属于该晶胞
棱心粒子—— 有14该晶胞
顶角粒子—— 有18属于该晶胞
二、晶胞:
3.晶胞中微粒个数的计算:
1个金属铜晶胞
的原子数
=8×18+6×12= 4
X2Y
ACB3
DE
4.晶胞的基本类型:
简单立方
③熔点: ④能使X-
有固定的熔 射线产生衍
沸点
射
最科学的
鉴别依据
⑤均一性:组成和密度一致 ⑥对称性: ⑦稳定性: 晶格能
一、晶体:
5.形成途径: ①熔融状态物质凝固(注意凝固的速率适当)
离子晶体+分子晶体+原子晶体综合复习
H2Te SbH3
NH3
H2S
HCl PH3 SiH4 ×
H2Se AsH3 HBr
HI
×
GeH4
SnH4
×
-100
-125 -150 CH4
×
2
3
4
5
周期
一些氢化物的沸点
三、氢键
N、O、F原子与H原子之间的相互作用。
化学键> >氢键>分子间作用力 含有氢键的物质熔化、汽化时需要破坏
氢键和分子间作用力,所以NH3、H2O、
温度/℃ 250 200
沸点
I2
150
100 50 100 150Br 2
熔点
I2
0
-50 -100 -150
50
Cl2
Br2 200 250
相对分子质量 Cl2
-200
-250
F2 F2
卤素单质的熔、沸点与 相对分子质量的关系
沸点/℃
100 75 50 25 0 -25 -50 -75 HF
H2O
一、离子晶体 1、定义: 阴、阳离子间通过离子键结合
而成的晶体叫做离子晶体。
2、构成离子晶体的微粒及微粒间的作用力: 微 粒:阴阳离子
作用力: 离子键。 3、离子晶体包括:强碱、绝大多数盐、低价
金属氧化物。
4、离子晶体的特征:
①无单个分子存在;NaCl 、CsCl不表示分子式。
②熔沸点较高,硬度较大,难以压缩。
③固态不导电,水溶液或者熔融状态下均导电。
5、离子键强弱取决于: 离子半径、离子所带的电荷 离子半径越小、离子所带的电荷越 多,离子键越强。 6、离子键强弱决定:
离子晶体的硬度、熔沸点。(熔化时破坏 或削弱离子键)
离子晶体、分子晶体和原子晶体
离子晶体、分子晶体和原子晶体攀钢一中 高从俊【教学目标】1、了解离子晶体、分子晶体和原子晶体的初步知识.2、懂得离子晶体和原子晶体不存在单个分子的原因.3、能从组成晶体的微粒、相互作用、物理性质入手,对离子晶体、分子晶体和原 子晶体进行比较,并能进行晶体类型和熔沸点的相互判断.【知识讲解】一、离子晶体定义:离子间通过离子键结合而成的晶体.说明:①以离子键结合的化合物就是离子化合物.离子化合物在室温下以晶体形式 存在.②离子晶体中微粒间的作用力为离子键.③在离子晶体中,阴、阳离子按一定规律在空间排列(见课本NaCl 、CsCl 的晶体结构).④离子晶体的化学式只表示晶体中阴、阳离子的个数比.而不是表示分子组成的化学式.⑤一般说来,离子间存在较强的离子键,因此一般说来,离子晶体硬度较高、密度较大,难于压缩,难于挥发、有较高的熔点和沸点.⑥离子化合物熔沸点比较,其实质是比较阴阳离子间的作用力.例1、 关于化学键的下列叙述中正确的是A 、 离子化合物可能含有共价键B 、共价化合物可能含离子键C 、 离子化合物只含离子键D 、共价化合物中不含离子键解析:由简单离子构成的离子化合物是不含共价键的,由复杂离子(如NO 3-、 SO 42-、NH 4+、HS -等)构成的离子化合物是含有共价键的,所以A 对C 错.在共价化合物中只含有共价键,不含离了键,B 错.答案:AD例2、某物质晶体中,含A 、B 、C 三种元素,其排列方式如图所示(其中前后两面心上的B 原子不能画出).晶体中A 、B 、CA 、1:3:1B 、2:3:1C 、2:2:3D 、1:3:3解析:在所给图中,A 被8每个晶胞中平均含A :8×81=1,B 为2个重复单元所共用,在每个晶胞中面心B 占21,每个晶胞中平均含B :21×6=3,每个晶胞中含C 为1,则A:B:C=1:3:1.答案:A例3、比较下列三组物质的熔点:①NaCl 和KCl ②NaCl 和NaI ③NaF 和KBr 解析:阴离子相同时,比较阳离子的半径,离子半径大则与阴离子的作用力小,离子键弱、熔点低.阳离子相同时,比较阴离子半径,阴离子半径大则与阳离子的作用力小,离子键弱则熔点低.如果相比较阳离子、阴离子半径均小子,则离子键必然相对强,熔点也必然相对高.答案:熔点:NaCl>KCl、NaCl>NaI、NaF>KBr二、分子晶体定义:分子间以分子间作用力(范德华力)相互结合的晶体.说明:①分子晶体可以是单质,也可是化合物②分子晶体中微粒间的作用力为范德华力(分子间作用力)③由于分子晶体中微粒间的作用力较小,因此分子晶体具有较低的熔、沸点和较小的硬度.④分子晶体中分子按一定规律在空间排列(见课本固态二氧化碳的晶体结构示意图).⑤组成结构相似的物质,其化学式量越大,分子间作用力越大,该分子晶体的熔、沸点相对越高.①钠的卤化物及碱金属的氯化物的熔点与卤离子及碱金属离子的______有关,随着______的增大,熔点依次降低.②硅的卤化物及硅、锗、锡、铅的氯化物熔点与_____有关,随着______增大,______增大,故熔点依次升高.③钠的卤化物的熔点比相应的硅的卤化物的熔点高得多,这与______有关,因为一般______比______熔点高.解析:第一栏熔点高,均为离子晶体;第二栏熔点低,可判断为分子晶体.由熔点变化规律及晶体类型,可总结出熔点变化规律的原因.答案:①半径,半径. ②分子相对质量,分子相对质量,分子间作用力. ③晶体类型,离子晶体、分子晶体.三、原子晶体定义:相邻原子间以共价键相结合而成空间网状结构的晶体.说明:①原子晶体可以为单质,也可是化合物②原子晶体中微粒间的作用力为共价键③由于原子晶体中,原子间用较强的共价键相结合,因而熔、沸点较高、硬度较大,并难溶于溶剂④原子晶体中,原子按一定规律在空间排列(见课本金刚石和石墨晶体结构示意图)⑤原子晶体熔点的比较其实质为键能的比较可视作为成键的两原子核间距离的比较即键长的比较.例5、比较三种原子晶体,金刚石、晶体硅、金刚砂(SiC)的熔沸点高低.解析:碳原子半径小于硅原子半径,C—C键长比Si—Si键键长短则键能大,键断裂吸收能量高,因此金刚石的熔沸点高于晶体硅的熔沸点,而C—Si键长介于C—C键和Si—Si键之间,因此熔沸点也介于之间.答案:熔沸点:金刚石>金刚砂>晶体硅.四、三种晶体的比较。
离子晶体、分子晶体和原子晶体(一)
离子晶体、分子晶体和原子晶体(一)一、学习目的1.使学生了解离子晶体、分子晶体和原子晶体的晶体构造模型及其性质的一般特点。
2.使学生理解离子晶体、分子晶体和原子晶体的晶体类型与性质的关系3.使学生了解分子间作用力对物质物理性质的影响4.常识性介绍氢键及其物质物理性质的影响。
二、重点难点重点:离子晶体、分子晶体和原子晶体的构造模型;晶体类型与性质的关系难点:离子晶体、分子晶体和原子晶体的构造模型;氢键三、学习过程(一)引入新课[复习发问]1.写出NaCl 、CO2 、H2O的电子式。
2.NaCl晶体是由Na+和Cl—通过形成的晶体。
[课习题板书] 第一节离子晶体、分子晶体和分子晶体(有课件)一、离子晶体1、概念:离子间通过离子键形成的晶体2、空间构造以NaCl 、CsCl为例来,以媒体为手段,攻克离子晶体空间构造这一难点[针对性练习][例1]如图为NaCl晶体构造图,图中直线交点处为NaCl晶体中Na+与Cl-所处的位置(不考虑体积的大小)。
(1)请将其代表Na+的用笔涂黑圆点,以完成NaCl晶体构造示意图。
并确定晶体的晶胞,分析其构成。
(2)从晶胞中分Na+四周与它最近时且距离相等的Na+共有多少个? [解析]下图中心圆甲涂黑为Na+,与之相隔均要涂黑(1)分析图为8个小立方体构成,为晶体的晶胞,(2)计算在该晶胞中含有Na+的数目。
在晶胞中心有1个Na+外,在棱上共有4个Na+,一个晶胞有6个面,与这6个面相接的其他晶胞还有6个面,共12个面。
又因棱上每个Na+又为四周4个晶胞所共有,所以该晶胞独占的是12×1/4=3个.该晶胞共有的Na+为4个。
晶胞中含有的Cl-数:Cl-位于顶点及面心处,每.个平面上有4个顶点与1个面心,而每个顶点上的氯离于又为8个晶胞(本层4个,上层4个)所共有。
该晶胞独占8×1/8=1个。
一个晶胞有6个面,每面有一个面心氯离子,又为两个晶胞共有,所以该晶胞中独占的Cl-数为6×1/2=3。
高中化学知识总结离子晶体、分子晶体和原子晶体
离子晶体、分子晶体和原子晶体[学法指导]在学习中要加强对化学键中的非极性键、极性键、离子键、晶体类型及结构的认识与理解;在掌握粒子半径递变规律的基础上,分析离子晶体、原子晶体、分子晶体的熔点、沸点等物理性质的变化规律;并在认识晶体的空间结构的过程中,培养空间想象能力及思维的严密性和抽象性。
同时,关于晶体空间结构的问题,很容易与数学等学科知识结合起来,在综合题的命题中具有广阔的空间,因此,一定要把握基础、领会实质,建立同类题的解题策略和相应的思维模式。
[要点分析]一、晶体固体可以分为两种存在形式:晶体和非晶体。
晶体的分布非常广泛,自然界的固体物质中,绝大多数是晶体。
气体、液体和非晶体在一定条件下也可转变为晶体。
晶体是经过结晶过程而形成的具有规则的几何外形的固体。
晶体中原子或分子在空间按一定规律周期性重复的排列,从而使晶体内部各个部分的宏观性质是相同的,而且具有固定的熔点和规则的几何外形。
NaCl晶体结构食盐晶体金刚石晶体金刚石晶体模型钻石C60分子二、晶体结构1.几种晶体的结构、性质比较2.几种典型的晶体结构:(1)NaCl晶体(如图1):每个Na+周围有6个Cl-,每个Cl-周围有6个Na+,离子个数比为1:1。
(2)CsCl晶体(如图2):每个Cl-周围有8个Cs+,每个Cs+周围有8个Cl-;距离Cs+最近的且距离相等的Cs+有6个,距离每个Cl-最近的且距离相等的Cl-也有6个,Cs+和Cl-的离子个数比为1:1。
(3)金刚石(如图3):每个碳原子都被相邻的四个碳原子包围,以共价键结合成为正四面体结构并向空间发展,键角都是109°28',最小的碳环上有六个碳原子。
(4)石墨(如图4、5):层状结构,每一层内,碳原子以正六边形排列成平面的网状结构,每个正六边形平均拥有两个碳原子。
片层间存在范德华力,是混合型晶体。
熔点比金刚石高。
(5)干冰(如图6):分子晶体。
(6)SiO2:原子晶体,空间网状结构,Si原子构成正四面体,O原子位于Si-Si键中间。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
离子晶体、分子晶体和原子晶体(一)一、学习目标1.使学生了解离子晶体、分子晶体和原子晶体的晶体结构模型及其性质的一般特点。
2.使学生理解离子晶体、分子晶体和原子晶体的晶体类型与性质的关系3.使学生了解分子间作用力对物质物理性质的影响4.常识性介绍氢键及其物质物理性质的影响。
二、重点难点重点:离子晶体、分子晶体和原子晶体的结构模型;晶体类型与性质的关系难点:离子晶体、分子晶体和原子晶体的结构模型;氢键三、学习过程(一)引入新课[复习提问]1.写出NaCl 、CO2 、H2O 的电子式。
2.NaCl晶体是由Na+和Cl—通过形成的晶体。
[课题板书] 第一节离子晶体、分子晶体和分子晶体(有课件)一、离子晶体1、概念:离子间通过离子键形成的晶体2、空间结构以NaCl 、CsCl为例来,以媒体为手段,攻克离子晶体空间结构这一难点[针对性练习][例1]如图为NaCl晶体结构图,图中直线交点处为NaCl晶体中Na+与Cl-所处的位置(不考虑体积的大小)。
(1)请将其代表Na+的用笔涂黑圆点,以完成 NaCl晶体结构示意图。
并确定晶体的晶胞,分析其构成。
(2)从晶胞中分Na+周围与它最近时且距离相等的 Na+共有多少个?[解析]下图中心圆甲涂黑为Na+,与之相隔均要涂黑(1)分析图为8个小立方体构成,为晶体的晶胞,(2)计算在该晶胞中含有Na+的数目。
在晶胞中心有1个Na+外,在棱上共有4个Na+,一个晶胞有6个面,与这6个面相接的其他晶胞还有6个面,共12个面。
又因棱上每个Na+又为周围4个晶胞所共有,所以该晶胞独占的是12×1/4=3个.该晶胞共有的Na+为4个。
晶胞中含有的Cl-数:Cl-位于顶点及面心处,每.个平面上有4个顶点与1个面心,而每个顶点上的氯离于又为8个晶胞(本层4个,上层4个)所共有。
该晶胞独占8×1/8=1个。
一个晶胞有6个面,每面有一个面心氯离子,又为两个晶胞共有,所以该晶胞中独占的Cl-数为6×1/2=3。
不难推出,n(Na+):n(Cl-)=4:4:1:1。
化学式为NaCl.(3)以中心Na+为依据,画上或找出三个平面(主个平面互相垂直)。
在每个平面上的Na+都与中心 Na+最近且为等距离。
每个平面上又都有4个Na+,所以与Na+最近相邻且等距的Na+为3×4=12个。
[答案](1)含8个小立方体的NaCl晶体示意图为一个晶胞(2)在晶胞中Na+与Cl-个数比为1:1.(3)12个3、离子晶体结构对其性质的影响(1)离子晶体熔、沸点的高低取决于离子键的强弱,而离子晶体的稳定性又取决于什么?在离子晶体中,构成晶体的粒子和构成离子键的粒子是相同的,即都是阴、阳离子。
离子晶体发生三态变化,破坏的是离子键。
也就是离子键强弱即决定了晶体熔、沸点的高低,又决定了晶体稳定性的强弱。
(2)离子晶体中为何不存在单个的小分子?在离子晶体中,阴、阳离子既可以看作是带电的质点,又要以看作是带电的球体,其中,阳离子总是尽可能的多吸引阴离子、阴离子又总是尽可能多的吸引阴离子(只要空间条件允许的话)这种结构向空间延伸,即晶体多大,分子就有多大,晶体内根本不存在单个的小分子,整个晶体就是一个大分子。
4、离子晶体的判断及晶胞折算(1)如何判断一种晶体是离子晶体方法一:由组成晶体的晶格质点种类分:离子化合物一定为离子晶体。
方法二:由晶体的性质来分:①根据导电性:固态时不导电而熔化或溶解时能导电的一般为离子晶体。
②根据机械性能:具有较高硬度,且脆的为离子晶体。
(2)什么是晶胞?如何由晶胞来求算晶体的化学式?构成晶体的结构粒子是按着一定的排列方式所形成的固态群体。
在晶体结构中具有代表性的最小重复单位叫晶胞。
根据离子晶体的晶胞,求阴、阳离子个数比的方法?①处于顶点上的离子:同时为8个晶胞共有,每个离子有1/8属于晶胞。
②处于棱上的离子:同时为4个晶胞共有,每个离子有1/4属于晶胞。
③处于面上的离子;同时为2个晶胞共有,每个离子有1/2属于晶胞。
④处于体心的离子:则完全属于该晶胞。
[学生练习]题目:在高温超导领域中,有一种化合物叫钙钛矿,其晶体结构中有代表性的最小单位结构如图所示试回答:(1)在该晶体中每个钛离子周围与它最近且相等距离的钛离子有多少个?(2)在该晶体中氧、钙、钛的粒子个数化是多少?[解析]由图看出,在每个钛离于的同层左、右与前后、上下各层中都紧密排列着完全相同的钛离子,共有晶胞边长的6个钛离子。
至于同一晶胞中独占三元素粒子个数比,则从每种元素粒子是晶胞中的位置考虑。
Ca2+位于立方体的中央为一个晶胞所独占;钛离子位于晶胞的顶点上,为相邻两层8个晶胞所共有(左右、前后、上中下、左右前后4个而上下中相同重复共8个),而每个晶胞独占有8×1/8=1个。
氧离子位于棱上,在同一晶胞中,每个氧离子为同层的4个晶胞所共有,一个晶胞独占12×1/4=3个。
故氧、钙、钛的粒子数之比为 3:1:1[答案]6 3:1:15、总结1.离子间通过离子键结合而成的晶体叫离子晶体。
构成离子晶体的微粒是阳离子和阴离子。
离子晶体中,阳离子和阴离子间存在着较强的离子键,因此,离子晶体一般硬度较高,密度较大,熔、沸点较高。
2.一般地讲,化学式与结构相似的离子晶体,阴、阳离子半径越小,离子键越强,熔、沸点越高。
如:KCI NaCI NaF。
离子晶体针对性训练一、选择题1.下列性质中,可以证明某化合物内一定存在离子键的是 ( )A.可溶于水B.有较高的熔点C.水溶液能导电D.熔融状态能导电2.下列物质中,含有极性键的离子化合是。
A.CaCl2B.Na202C.NaOHD.K2S3.Cs是IA族元素,F是VIIA族元素,估计Cs和F形成的化合物可能是A.离子化合物B.化学式为CsF2C. 室温为固体D.室温为气体4.某物质的晶体中含A、B、C三种元素,其排列方式如图所示(其中前后两面心上的B原子未能画出),晶体中A、B、C的中原子个数之比依次为A.1:3:1B.2:3:1C.2:2:1D.1:3:35.NaF,Nal,MgO均为离子化合物,根据下列数据,这三种化合物的熔点高低顺序是 ( )6.在NaCl晶体中与每个Na+距离等同且最近的几个Cl-所围成的空间几何构型为 ( )A.正四面体B.正六面体C.正八面体D.正十二面体7.如图是氯化铯晶体的晶胞(晶体中最小的重复单元),已知晶体中2个最近的Cs+离子核间距为a cm,氯化铯的式量为M,NA为阿伏加德罗常数,则氯化铯晶体的密度为B. C. D.二、填空题8.参考下列熔点数据回答:钠的卤化物从NaF到NaI及碱金属的氯化物从NaCl到CsCl的熔点逐渐____________这与__________有关。
随__________增大__________减小,故熔点__________逐渐。
9.某离子晶体晶胞结构如下图所示,x位于立方体的顶点,Y位于立方体中心。
试分析:(1)晶体中每个Y同时吸引着__________个X,每个x同时吸引着__________个Y,该晶体的’化学式为__________ 。
(2)晶体中在每个X周围与它最接近且距离相等的X共有__________个。
(3)晶体中距离最近的2个X与1个Y形成的夹角∠XYX的度数为__________。
(4)设该晶体的摩尔质量为M g·mol-1,晶体密度为ρ·cm-3,阿伏加德罗常数为NA则晶体中两个距离最近的X中心间的距离为__________ 。
10.晶体具有规则的几何外型、晶体中最基本的重复单位称为晶胞。
NaCl晶体结构如图所示。
已知FexO晶体晶胞结构为NaCl型,由于晶体缺陷,x值小于1测知FexO晶体密度为ρ=5.71 g·cm-3,晶胞边长为4.28×10-10 m。
(1)FexO中x值(精确至O.01)为(2)晶体中的Fe分别为Fe2+、Fe3+,在Fe2+和Fe3+的总数中,Fe2+所占分数(用小数表示,精确至0.001)为 ______________。
(3)此晶体的化学式为 _____________。
(4)与某个Fe2+(或Fe3+)距离最近且等距离的O2-围成的空间几何形状是_____________。
(5)在晶体中,铁元素间最短距离为_____________cm11.有一种蓝色晶体,它的结构特征是Fe2+和Fe3+分别占据立方体互不相邻的顶点,而CN-离子位于立方体的棱上。
(1)根据晶体结构特点,推出其化学式(用最简单整数表示)__________________________。
(2)此化学式带何种电荷?用什么样的离子(用Mn+表示)与其结合成中性的化学式?写出此电中性的化学式。
答:(3)指出(2)中添加离子在晶体结构中的什么位置。
答:12.1986年,瑞士两位科学家发现一种性能良好的金属氧化物超导体,使超导工作取得突破性进展,为此两位科学家获得了1987年的Nobel物理学奖。
其晶胞结构如图。
(1)根据图示晶胞结构,推算晶体中Y,Cu,Ba和O原子个数比,确定其化学式(2)根据(1)所推出的化合物的组成,计算其中Cu原子的平均化合价(该化合物中各元素的化合价为Y+3,Ba+2,Cu+2和Cu+3)试计算化合物中这两种价态Cu 原子个数比离子晶体针对性练习答案一、选择题1.D2.C3.AC4.A5.B6.C7.C二、填空题8.降低阴离子半径由F-到I-逐渐增大离半径阴、阳离子相互吸引降低9.(1)4 8 XY2(或Y2X)(2)12 (3)109°28’(4)10.(1)0.92 (2)0.826(3)(4)正八面体(5)3.03×10-1011.(1)FeFe(CN)6-(2)带一个单位负电荷,可用Na+,K+,Rb+ (用M+表示)与之结合MFeFe(CN)6(3)M+在每隔一个立方体的体心上。
12.(1)YBa2Cu3O7(2)Cu2+:Cu3+=2:1。