[理学]大学数学实验11-线性规划
线性规划(3)
解线性规划问题的步骤:
(1)画:画出线性约束条件所表示的可行域; (2)移:在线性目标函数所表示的一组平行 线中,利用平移的方法找出与可行域有公共 点且纵截距最大或最小的直线; (3)求:通过解方程组求出最优解; (4)答:作出答案。
可行域上的最优解 应用
解下列线性规划问题:
1、求 Z = 3x -y 的最大值和最小值,使式中
Z = 3x - y 的最值
y
y=x 1
作直线 y = 3x
y
o
x
有关概念
由x,y 的不等式(或方程)组成的不等式组称为x, y 的约束条件。关于x,y 的一次不等式或方程组 成的不等式组称为x,y 的线性约束条件。欲达
到最大值或最小值所涉及的变量x,y 的解析式 称为目标函数。关于x,y 的一次目标函数称为 线性目标函数。求线性目标函数在线性约束条件
下的最大值或最小值问题称为线性规划问题。满 足线性约束条件的解(x,y)称为可行解。所有 可行解组成的集合称为可行域。使目标函数取得 最大值或最小值的可行解称为最优解。
y=4
x O
x=6 y = 0.9x
3x 4 y 28
0 x6
0 y 4
Z = 0.9x + y 为最小 y 3x + 4y -28 = 0
y=4
Z min = 7. 6 此时应派A、B O 卡车各4 辆
x
x=6 y = -0.9x
y x
x
y
1
y 1
(3)如果你是公司的经理,为使公司所花的成 本费最小,每天应派出A型卡车、B型卡车各 为多少辆
2、某木器厂生产圆桌和衣柜两种木料,第一 种有 72 米 3,第二种有 56 米 3,假设生产每 种产品都需要用两种木料,生产一张圆桌和
数学建模教案--线性规划PPT课件
在满足约束条件下尽可能的给最左上角的变量最大值.
销地
产地
B1
B2
B3
B4 产量
4
12
4
11
A1 8
8
16
2
10
3
9
A2
64
10
8
5
11
6
A3
8
14
22
销量
8
14
12
14
48
所以,初始基可行解为:……目标函数值Z=372
表上作业法
1、初始基可行解--沃格尔法
最小元素法,有时按某一最小单位运价优先安排 物品调运时,却可能导致不得不采用运费很高的其他 供销点,从而使整个运输费用增加。
ai b j
mn
min z
Cij xij
i1 j1
n
xij ai
i 1,2,...m
j 1
m
(Ⅰ ) xij bj
j 1,2,...n
i 1
xij 0
i 1,2,..., m; j 1,2,..., n
其中ai , b j Cij 0
运输问题及其数学模型
该模型是一个线性规划模型,可以用单纯形法 求解。但是变量数目非常多。如3个产地,4个销地。 变量数目会有19个之多。
(3)所有结构约束条件都是等式约束; (4)各产地产量之和等于各销地销量之和。 秩 ( A) =m+n-1 运输问题的基可行解中应包含m+n-1个基变量.
表上作业法
表上作业法是一种迭代法,迭代步骤为: 1、先按某种规则找出一个初始解(初始调运方案); 2、再对现行解作最优性判别; 3、若这个解不是最优解,就在运输表上对它进行调整 改进,得出—个新解; 4、再判别,再改进; 5、直至得到运输问题的最优解为止。 迭代过程中得出的所有解都要求是运输问题的基可行解。
数学实验题集
数学实验题集一.线性规划1.某厂有一台制杯机,可生产两种型号的杯子,A 型杯每6小时可生产100箱,B 型杯每5小时可生产100箱,这台机器每周生产时间为60小时,生产出的产品堆放在仓库里,库容量为15000立方米,A 型杯每箱占有空间10立方米,B 型杯每箱占有空间20立方米,生产A 型杯每箱可获利5元,B 型杯每箱可获利4.5元,客户每周到仓库提货一次,其中A 型杯需求量不超过800箱,B 型杯有多少需要多少,问每周各应生产多少箱A 、B 型杯子,使工厂获利最多。
参考答案:线性规划模型:max 215.45x x + s.t.601005100621=+x x 150********≤+x x 8001≤x 0,21≥x x 程序:ConstrainedMax 5x1 4.5x2,6100x15100x260,10x120x215000,x1800,x1,x2运行结果:5142.86,x1642.857,x2428.5712.某工厂在计划计划期内要安排生产A 、B 两种产品。
A 产品每件可获利6元,B 产品每件可获利4元,生产这两种产品每件需机器的台时数分别为2和3个单位,需劳动工时数分别为4和2个单位。
已知该厂在计划期内可提供100个单位的机器台时数和120个单位的劳动工时数。
问如何安排生产计划,才能使这个工厂获利最大。
参考答案:线性规划模型:max 2146x x +s.t. 1003221≤+x x1202421≤+x x 0,21≥x x程序:ConstrainedMax 6x14x2,2x13x2100,4x12x2120,x1,x2运行结果:200,x120,x2203.问如何安排生产计划,使得到的利润最大?参考答案:线性规划模型:max 2132x x + s.t. 122221≤+x x 8221≤+x x 1641≤x 1242≤x 0,21≥x x程序:ConstrainedMax 2x13x2,2x12x212,x12x28,4x116,4x212,x1,x2运行结果:14,x14,x224.某工厂生产A 、B 两种产品,已知制造产品A 一百桶分别需要原料P 、Q 、R5千克、300千克、12千克,可得利润8000元。
线性规划PPT课件
基解:令所为 有 0, 非求 基出 变的 (1量 .2)的 满解 足 称为基解。
基可行解与可行 足基 (1.3): 的满 基解称为基可 对应基可行解的 为基 可, 行称 基。基 显可 然 解的数目 基解的数 C目 nm
基本最优解与最优基 满: 足(1.1) 的基可行解称为基本 优最 解,
对应m,如果 B是矩A中 阵的一 mm个 阶非奇异 (|B子 |0)矩 ,则阵 称 B是线性规 题的一个基。
基向量与非基向B量 中: 的基 列向量称为,基向 矩阵A中除B之外各列即为非,基 A中 向共 量 有nm个非基向量。
基变量与非基 基变 向P量 j量 对: 应与 的xj变 称量 为基变量;否 基则 变称 量为 。非
将文件存储并命名后,选择菜单 “Solve” 并对提示 “ DO RANGE(SENSITIVITY)ANALYSIS? ”回答“是”,即 可得到如下输出:
“资源” 剩余 为零的约束为 紧约束(有效 约束)
OBJECTIVE FUNCTION VALUE
1)
3360.000
VARIABLE VALUE REDUCED COST
可行解 基 解
基可行解
1.4 线性规划问题的图解法
下面结合例1的求解来说明图解法步骤。
例1
max Z 4 x1 3 x2
2 x1 3 x2 24
s. t 3 x1 2 x2 26
x2
x1, x2 0
Q3(6,4)
第一步:在直角坐标系中分
别作出各种约束条件,求出
3x1+2x2=26
Q2(6,4)
B
条 件
3x1 100
x1,x2 0
l3:3x1 100 l4
l4:x10,l5:x200
线性规划实验报告
一、实验目的通过本次实验,了解线性规划的基本原理和方法,掌握线性规划模型的建立和求解过程,提高解决实际问题的能力。
二、实验内容1. 线性规划模型的建立2. 利用Lingo软件进行线性规划模型的求解3. 分析求解结果,进行灵敏度分析三、实验步骤1. 建立线性规划模型以某公司生产问题为例,建立线性规划模型。
设该公司有三种产品A、B、C,每种产品分别需要原材料X1、X2、X3,且原材料的价格分别为p1、p2、p3。
公司拥有一定的生产设备,每种产品的生产需要消耗一定的设备时间,设备时间的价格为p4。
设A、B、C产品的生产量分别为x1、x2、x3,原材料消耗量分别为y1、y2、y3,设备使用量分别为z1、z2、z3。
目标函数:最大化利润Z = p1x1 + p2x2 + p3x3 - p4(z1 + z2 + z3)约束条件:(1)原材料消耗限制:y1 ≤ 10x1,y2 ≤ 8x2,y3 ≤ 5x3(2)设备使用限制:z1 ≤ 6x1,z2 ≤ 4x2,z3 ≤ 3x3(3)非负限制:x1 ≥ 0,x2 ≥ 0,x3 ≥ 0,y1 ≥ 0,y2 ≥ 0,y3 ≥ 0,z1 ≥ 0,z2 ≥ 0,z3 ≥ 02. 利用Lingo软件进行线性规划模型的求解打开Lingo软件,按照以下步骤输入模型:① 在“Model”菜单中选择“Enter Model”;② 输入目标函数:@max = p1x1 + p2x2 + p3x3 - p4(z1 + z2 + z3);③ 输入约束条件:@and(y1 <= 10x1, y2 <= 8x2, y3 <= 5x3);@and(z1 <= 6x1, z2 <= 4x2, z3 <= 3x3);@and(x1 >= 0, x2 >= 0, x3 >= 0, y1 >= 0, y2 >= 0, y3 >= 0, z1 >= 0, z2 >= 0, z3 >= 0);④ 在“Model”菜单中选择“Solve”进行求解。
数学建模线性规划
线性规划1.简介:线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法.在经济管理、交通运输、工农业生产等经济活动中,提高经济效果是人们不可缺少的要求,而提高经济效果一般通过两种途径:一是技术方面的改进,例如改善生产工艺,使用新设备和新型原材料.二是生产组织与计划的改进,即合理安排人力物力资源.线性规划所研究的是:在一定条件下,合理安排人力物力等资源,使经济效果达到最好.规划问题。
一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域。
在优化模型中,如果目标函数f(x)和约束条件中的gi(x)都是线性函数,则该模型称为线性规划。
2.线性规划的3个基本要素(1)决策变量(2)目标函数f(x)(3)约束条件(gi(x)≤0称为约束条件)3.建立线性规划的模型(1)找出待定的未知变量(决策变量),并用袋鼠符号表示他们。
(2)找出问题中所有的限制或者约束,写出未知变量的线性方程或线性不等式。
(3)找到模型的目标或判据,写成决策变量的线性函数,以便求出其最大值或最小值。
以下题为例,来了解一下如何将线性规划用与实际的解题与生活中。
生产计划问题某工厂生产甲乙两种产品,每单位产品消耗和获得的利润如表试拟订生产计划,使该厂获得利润最大解答:根据解题的三个基本步骤(1)找出未知变量,用符号表示:设甲乙两种产品的生产量分别为x1与x2吨,利润为z万元。
(2)确定约束条件:在这道题目当中约束条件都分别为:钢材,电力,工作日以及生产量不能为负的限制钢材:9x 1+5 x 2≤360,电力:4x 1+5 x 2≤200,工作日:3x 1+10 x 2≤300,x 1 ≥0 ,x 2 ≥0,(3)确定目标函数:Z=7x 1+12 x 2所以综合上面这三步可知,这个生产组合问题的线性规划的数学模型为:max Z=7x 1+12 x 2s.t.⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥≤+≤+≤+00300103200543605921212121x x x x x x x x4.使用MATLAB 解决线性规划问题依旧是以上题为例,将其用MATLAB 来表示出来1.将目标函数用矩阵的乘法来表示max Z=(7 12)⎪⎪⎭⎫ ⎝⎛21x x 2.将约束条件也用矩阵的乘法表示s.t.⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎭⎫ ⎝⎛≤⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛≤⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛2121003002003601035459x x x x 编写MATLAB 的程序如下:c=[-7 -12]; (由于是max 函数,因此将目标函数的系数全部变为负数)A=[9,5;4,5;3,10];b=[360;200;300];Aeq=[];beq=[];vlb=[0;0];vub=[];[x,fval]=linprog(c,A,b,Aeq,beq,vlb,vub)其运行结果显示如下:x =20.000024.0000fval =-428.00005.MATLAB 求解线性规划的语句(1)c=[ ] 表示目标函数的各个决策变量的系数(2)A=[ ] 表示约束条件中≥或≤的式子中的各个决策变量的系数。
线性规划综合性实验报告
《线性规划综合性实验》报告一、实验目的与要求掌握线性规划建模的方法以及至少掌握一种线性规划软件的使用,提高应用线性规划方法解决实际问题的实践动手能力。
通过实验,更深入、直观地理解和掌握线性规划的基本概念及基本理论和方法。
要求能对一般的线性规划问题建立正确的线性规划数学模型,掌握运筹学软件包WinQSB中Linear and Integer Programming模块的操作方法与步骤,能对求解结果进行简单的应用分析。
二、实验内容与步骤1.确定线性规划问题(写出线性规划问题)2.建立线性规划模型(写出线性规划数学模型)3.用WinQSB中Linear and Integer Programming模块求解线性规划模型(写出求解的具体步骤)4.对求解结果进行应用分析(指出最优方案并作出一定的分析)三、实验题目、实验具体步骤及实验结论(一)线性规划问题某集团摩托车公司产品年度生产计划的优化研究1)问题的提出某集团摩托车公司是生产各种类型摩托车的专业厂家,有30多年从事摩托车生产的丰富经验。
近年来,随着国内摩托车行业的发展,市场竞争日趋激烈,该集团原有的优势逐渐丧失,摩托车公司的生存和发展面临严峻的挑战。
为此公司决策层决心顺应市场,狠抓管理,挖潜创新,从市场调查入手,紧密结合公司实际,运用科学方法对其进行优化组合,制定出1999年度总体经济效益最优的生产计划方案。
2)市场调查与生产状况分析1998年,受东南亚金融风暴的影响,国内摩托车市场出现疲软,供给远大于需求,该集团的摩托车生产经营也出现开工不足、库存增加和资金周转困难等问题。
该集团共有三个专业厂,分别生产轻便摩托车、普通两轮车和三轮摩托车三大系列产品。
在市场调查的基础上,从企业实际出发普遍下调整车出厂价和目标利润率,有关数据如下表1资金占用情况如下表2由于发动机改型生产的限制,改型车M3和M6两种车1999年的生产量预测数分别为20000辆和22000辆。
数学实验报告——利用MALTAB进行线性规划
数学实验报告——利用M A L T A B进行线性规划(总12页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--数学实验报告——利用MALTAB进行线性规划实验六线性规划一、债券投资㈠问题描述给定可供购进的证券以及其信用等级、到期年限、收益。
市政证券的收益可以免税,其他证券的收益需按50%的税率纳税。
此外还有以下限制:(1) 政府及代办机构的证券总共至少要购进400万元;(2) 所购证券的平均信用等级不超过1.4;(3) 所购证券的平均到期年限不超过5年。
1、若经理有1000万元资金,应如何进行投资?2、如果能以2.75%的利率借到不超过100万元资金,该经理应如何操作?3、在1000万元资金情况下,若证券A的税前收益增加为4.5%,投资应够改变?若证券C的税前收益减少为4.8%,投资应否改变?㈡简要分析本题是一个比较简单的线性规划+扰动分析问题,对所谓问题进行建模,可以得到线性规划如下:设分别购入A、B、C、D、E五种证券a、b、c、d、e万元。
于是对第1问有b+c+d≥4002a+2b+c+d+5e≤1.4(a+b+c+d+e)9a+15b+4c+3d+2e≤5(a+b+c+d+e)a+b+c+d+e≤100a,b,c,d,e≥0max f=4.3%a+5.4%×50%b+5%×50%c+4.4%×50%d+4.5%e对第2问,增设a1,b1,c1,d1,e1分别表示用借来的资金购买证券的金额,于是规划变为b+c+d+b1+c1+d1≥4002(a+a1)+2(b+b1)+c+c1+d+d1+5(e+e1)≤1.4(a+b+c+d+e+a1+b1+c1+d1+e1) 9(a+a1)+15(b+b1)+4(c+c1)+3(d+d1)+2(e+e1)≤5(a+b+c+d+e+a1+b1+c1+d1+e1)a+b+c+d+e≤1000a1+b1+c1+d1+e1≤100a,b,c,d,e,a1,b1,c1,d1,e1≥0max f=4.3%(a+a1)+5.4%×50%(b+b1)+5%×50%(c+c1)+4.4%×50%(d+d1)+4.5%(e+e1)−2.75%(a1+b1+c1+d1+e1)对第三问,仅需将第一问中的规划做一点修改即可。
数学实验——线性规划
实验5 线性规划分1 黄浩 43一、实验目的1.掌握用MATLAB工具箱求解线性规划的方法2.练习建立实际问题的线性规划模型二、实验内容1.《数学实验》第二版(问题6)问题叙述:某银行经理计划用一笔资金进行有价证券的投资,可供购进的证券以及其信用等级、到期年限、收益如下表所示。
按照规定,市政证券的收益可以免税,其他证券的收益需按50%的税率纳税。
此外还有如下限制:(1).政府及代办机构的证券总共至少要购进400万元;(2).所购证券的平均信用等级不超过1.4(信用等级数字越小,信用程度越高);(3).所购证券的平均到期年限不超过5年I.若该经理有1000万元资金,该如何投资?II.如果能够以2.75%的利率借到不超过100万元资金,该经理应如何操作?III.在1000万元资金情况下,若证券A的税前收益增加为4.5%,投资应否改变?若证券C的税前收益减少为4.8%,投资应否改变?模型转换及实验过程:I.设经理对于上述五种证券A 、B 、C 、D 、E 的投资额分别为:x 1、x 2、x 3、x 4、x 5(万元),全部到期后的总收益为z 万元。
由题目中的已知条件,可以列出约束条件为:{ x 2+x 3+x 4≥4002x 1+2x 2+x 3+x 4+5x 5≤1.4(x 1+x 2+x 3+x 4+x 5)9x 1+15x 2+4x 3+3x 4+2x 5≤5(x 1+x 2+x 3+x 4+x 5)x 1+x 2+x 3+x 4+x 5≤1000}而决策变量x =(x 1,x 2,x 3,x 4,x 5)T 的上下界约束为:x i ∈[0,1000]目标函数z =0.043x 1+0.027x 2+0.025x 3+0.022x 4+0.045x 5 将上述条件转变为matlab 的要求形式:使用matlab 解上述的线性规划问题(程序见四.1),并整理成表格:得出结论:当经理对A 、B 、C 、D 、E 五种证券分别投资218.18、0、736.36、0、45.45万元时,在全部收回时可得到29.836万元的税后收益,而且这种投资方式所得收益是最大的。
[理学]1线性规划
2019年2月18日
经济管理学院
-4-
---第 1 章 线性规划---
1.1
一般线性规划问题及数学模型(3)
1.1.1 问题的提出 例:某企业计划生产甲、乙两种产品,该两种产品均需经A、B、C、D四 种不同设备上加工,按工艺资料规定,在各种不同设备上的加工时间及设 备加工能力、单位产品利润如表中所示。问:如何安排产品的生产计划,才能 使企业获利最大?
2 x1+2 x2 12 x1+2 x2 8 4 x1 16 4 x2 12 x10, x2 0
经济管理学院
-6-
2019年2月18日
---第 1 章 线性规划---
1.1.2 线性规划问题的一般数学模型
1.相关概念
(1)决策变量:指模型中要求解的未知量,简称变 量。
(2)目标函数:指模型中要达到的目标的数学表达 式。
2019年2月18日
3 7.4
0
1 7.3
0.1
2 7.2
0.2
经济管理学院
3 6.6
0.8
-21-
模型:
---第 1 章 线性规划---
设 xj 为第j种方案用料的数量,则 Min z=0x1+0.1x2+0.2x3+0.3x4+0.8x5 st. x1+2x2 + x4 =100 2x3+2x4+ x5=100 3x1+ x2+2x3 +3x5=100 xj0, (j=1,2,---,5)
2019年2月18日
经济管理学院
-17-
---第 1 章 线性规划---
模型:
设 第j 种硫酸需购买 xj 吨,则 Min z=400x1+700x2+1400x3+1900x4+2500x5 st. x1+x2+x3+x4+x5=100 30x1+45x2+73x3+85 x4+92x5=10080 x10, x20, x30, x40, x50
数学建模-线性规划实验
3 线性规划实验3.1实验目的与要求●学会建立线性规划模型●学会LINGO软件的基本使用方法,求解线性规划问题●学会对线性规划问题进行灵敏度分析,以及影子价格的意义3.2基本实验1.生产计划安排与灵敏度分析解:(1)假设最后总生产得到的Ⅰ型产品为x1kg,Ⅱ型产品为x2kg,那么它们必须同时满足以下条件:Max Z=130x1+400x2-100(x1+x2/0.33)x1+(x2)/0.33≤902x1+3(x2)/0.33≤200x2≤40LINGO程序:Max =130*x1+400*x2-100*(x1+x2/0.33);x1+x2/0.33<=90;2*x1+3*x2/0.33<=200;x2<=40;结果:Global optimalsolutionfound.Objective value:2740.000Infeasibilities: 0.000000Total solver iterations:3ModelClass:LPTotal variables: 2Nonlinear variables: 0Integer variables: 0Total constraints: 4Nonlinear constraints: 0Total nonzeros:7Nonlinear nonzeros:0VariableValue Reduced CostX170.000000.000000X2 6.6000000.000000Row Slack orSurplus Dual Price1 2740.0001.00000020.00000026.000003 0.0000002.000000433.40000 0.000000即:最优的方案是Ⅰ型产品为70kg,Ⅱ型产品为6.6kg。
(2)Max Z=130x1+400x2-100(x1+x2/0.33)x1+(x2)/0.33≤872x1+3(x2)/0.33≤200x2≤40LINGO程序:Max=130*x1+400*x2-100*(x1+x2/0.33);x1+x2/0.33<=87;2*x1+3*x2/0.33<=200;x2<=40;结果:Variable Value Reduced CostX1 61.00000 0.000000X28.580000 0.000000Row Slack or Surplus Dual Price1 2662.000 1.00000020.000000 26.000003 0.000000 2.000000431.420000.000000那么公司得到的利润为:2662元(3)如果产品Ⅱ的销售价格变为395元/千克,最优解没有变化。
线性规划实验报告
线性规划实验报告线性规划实验报告1.路径规划问题第一步:在excel表格中建立如下表格,详细列名各节点路线及其权重。
起点终点权数0-1 节点进出和V1 V2 5 V1 1V1 V3 2 V2 0V2 V4 2 V3 0V2 V5 7 V4 0V3 V4 7 V5 0V3 V6 4 V6 0V4 V5 6 V7 -1V4 V6 2V5 V6 1V5 V7 3V6 V7 6 目标第二步:在进出和一列以公式表示各节点的进出流量和。
V1=V12+V13;V2=V24+V25-V12;V3=V34+V36-V13;V4=V45+V46-V24-V34;V5=V56+V57-V25-V45;V6=V67-V36-V46-V56V7=-V57-V67.第三步:设置目标函数为SUMPRODUCT(C2:C12,D2:D12)第四步:设置可变单元格和限制条件。
选定0-1一列,D2:D12为可变单元格。
可变单元格数值介于0-1之间,且为整数。
进出和数值与设定值相等。
第五步:规划求解,结果如下。
由表可知,从V1至V7的最短路径为V1——V3——V6——V7,最小目标值为12。
起点终点权重0-1 节点进出和V1 V2 5 0 V1 1 = 1 V1 V3 2 1 V2 0 = 0 V2 V4 2 0 V3 0 = 0 V2 V5 7 0 V4 0 = 0 V3 V4 7 0 V5 0 = 0 V3 V6 4 1 V6 0 = 0 V4 V5 6 0 V7 -1 = -1 V4 V6 2 0V5 V6 1 0V5 V7 3 0V6 V7 6 1 目标函数12Microsoft Excel 11.0 运算结果报告工作表 [复件 11.xls]Sheet2报告的建立: 2013-12-12 14:07:00目标单元格 (最小值)单元格名字初值终值$F$12 目标函数进出和12 12可变单元格单元格名字初值终值$D$2 V2 0-1 2.22E-16 0$D$3 V3 0-1 1 1$D$4 V4 0-1 0 0$D$5 V5 0-1 2.22045E-16 0$D$6 V4 0-1 0 0$D$7 V6 0-1 1 1$D$8 V5 0-1 0 0$D$9 V6 0-1 0 0$D$10 V6 0-1 0 0$D$11 V7 0-1 2.22045E-16 0$D$12 V7 0-1 1 1约束单元格名字单元格值公式状态型数值$F$2 V1 进出和 1 $F$2=$I$2 未到限制值$F$3 V2 进出和0 $F$3=$I$3 未到限制值$F$4 V3 进出和0 $F$4=$I$4 未到限制值$F$5 V4 进出和0 $F$5=$I$5 未到限制值$F$6 V5 进出和0 $F$6=$I$6 未到限制值$F$7 V6 进出和0 $F$7=$I$7 未到限制值$F$8 V7 进出和-1 $F$8=$I$8 未到限制值$D$2 V2 0-1 0 $D$2<=1 未到限制值1$D$3 V3 0-1 1 $D$3<=1 到达限制值$D$4 V4 0-1 0 $D$4<=1 未到限制值1$D$5 V5 0-1 0 $D$5<=1 未到限制值1$D$6 V4 0-1 0 $D$6<=1 未到限制值1$D$7 V6 0-1 1 $D$7<=1 到达限制值$D$8 V5 0-1 0 $D$8<=1 未到限制值1$D$9 V6 0-1 0 $D$9<=1 未到限制值1$D$10 V6 0-1 0 $D$10<=1 未到限制值1$D$11 V7 0-1 0 $D$11<=1 未到限制值1$D$12 V7 0-1 1 $D$12<=1 到达限制值$D$2 V2 0-1 0 $D$2>=0 到达限制值$D$3 V3 0-1 1 $D$3>=0 未到限制值1$D$4 V4 0-1 0 $D$4>=0 到达限制值$D$5 V5 0-1 0 $D$5>=0 到达限制$D$6 V4 0-1 0 $D$6>=0 到达限制值$D$7 V6 0-1 1 $D$7>=0 未到限制值1$D$8 V5 0-1 0 $D$8>=0 到达限制值$D$9 V6 0-1 0 $D$9>=0 到达限制值$D$10 V6 0-1 0 $D$10>=0 到达限制值$D$11 V7 0-1 0 $D$11>=0 到达限制值$D$12 V7 0-1 1 $D$12>=0 未到限制值1$D$2 V2 0-1 0 $D$2=整数到达限制值$D$3 V3 0-1 1 $D$3=整数到达限制值$D$4 V4 0-1 0 $D$4=整数到达限制值$D$5 V5 0-1 0 $D$5=整数到达限制值$D$6 V4 0-1 0 $D$6=整数到达限制值$D$7 V6 0-1 1 $D$7=整数到达限制值$D$8 V5 0-1 0 $D$8=整数到达限制$D$9 V6 0-1 0 $D$9=整数到达限制值$D$10 V6 0-1 0 $D$10=整数到达限制值$D$11 V7 0-1 0 $D$11=整数到达限制值$D$12 V7 0-1 1 $D$12=整数到达限制值2.运用Excel构建线性规划模型与求解实验报告一、实验目的1.掌握线性规划问题建模基本方法。
数学实验线性规划
32
第32页,本讲稿共67页
加工奶制品的生产计划
1桶 牛奶 或
12小时 8小时
3公斤A1 4公斤A2
获利24元/公斤 获利16元/公斤
决策变量 目标函数
约束条件
x1桶牛奶生产A1 获利 24×3x1
x2桶牛奶生产A2
获利 16×4 x2
每天获利
Mz a7 xx1 26x4 2
原料供应 劳动时间 加工能力 非负约束
2、运输问题;
特点:从若干可能的计划(方案)中寻求某种意义下的
最优方案,数学上将这种问题称为最优化问题( optimization).
2002.5.
12
第12页,本讲稿共67页
优化问题的表述
最优化是企业运作、科技研发和工程设计中常见的问题。 要表述一个最优化问题(即建立数学模型),应明
明确三样东西:决策变量、约束条件 和目标函数. 决策变量:它们是决策者(你)所控制的那些数量,它们取什么数值需要 决策者来决策,最优化问题的求解就是找出决策变量的最优取值。
a1
a2
…
ai
…
a7
s1
s2
si
s7
C11
C12
Ci,j
C1j
C1,15
…
…
A1
A2
Aj
A15
b1
b2
bj
b15
7 15
min
cij xij
i1 j 1
15
s.t.
xij ai, i1,2,...,7
j1
7
xij bj
i1
j1,2,...,15
2002.5.
x ij 0 ,i 1 , 7 , j 1 , ,1 5
线性规划(《数值计算方法》清华大学出版社)
列向量线性无关, 已知 r ( Am × n ) = m , 不妨设 A的前 m 列向量线性无关,则可 取 B = ( P1 , P2 ,⋯ , Pm ) 为基,则 x1 ,⋯ , x m 为基变量。 为基, 为基变量。
(1 ) 一组决策变量; 一组决策变量; ( 2 ) 一个线性目标函数; 一个线性目标函数; ( 3 ) 一组线性的约束条件。 一组线性的约束条件。
的一般形式: 线性规划模型 ( LP )的一般形式:
min (max)
∑c x
i i =1
n
i
a11 x1 + a12 x 2 + ⋯ + a1n x n ≥ ( = , ≤ )b1 a x + a x + ⋯ + a x ≥ ( = , ≤ )b 22 2 2n n 2 21 1 ⋯ s .t . a x + a x + ⋯ + a x ≥ ( = , ≤ )b m2 2 mn n m m1 1 x i ≥ ( = , ≤ )0 , i = 1 , 2 ,⋯ , n
可行解
基本可行解
基本解
m 基本解数量 ≤ C n
定存在最优解? 是否在基本可行解中一 定存在最优解?
2 . 线性规划解的性质
定理 线性规划问题 ( LP )的解 x 是基本可行解的充分必 要条件 的顶点。 是 x 是 可行域 D 的顶点。
线性规划与最优解
线性规划与最优解线性规划(Linear Programming)是一种数学优化方法,旨在找到一个最优解以满足约束条件。
它广泛应用于经济学、管理学、工程学等领域,用于解决诸如资源分配、生产计划、运输问题等实际情景中的决策问题。
一、线性规划的基本概念线性规划的基本概念包括目标函数、约束条件和决策变量。
目标函数是要最小化或最大化的线性表达式,约束条件则是决策变量需满足的线性不等式或等式。
例如,假设某公司生产A和B两种产品,目标是最大化利润。
假设每单位产品A的利润为10元,每单位产品B的利润为15元。
同时,公司有以下约束条件:A产品的生产时间不得超过40小时,B产品的生产时间不得超过30小时,A和B产品的总产量不得超过1000个。
这个问题可以用线性规划来建模。
二、最优解的求解方法1. 图形法线性规划的最优解可以通过图形法求解。
在二维平面上,将目标函数和约束条件分别画出,找到它们的交点,即可确定最优解。
2. 单纯形法单纯形法是一种高效的求解线性规划问题的方法。
该方法通过一系列迭代计算,逐步接近最优解。
它的核心思想是通过调整决策变量的取值,使目标函数值逐步增大或减小,直到达到最优解。
三、线性规划的应用案例1. 资源分配问题线性规划可以应用于资源分配问题。
例如,某公司有限的资源需要在不同项目之间进行分配。
通过线性规划,可以找到满足约束条件下的最优资源分配方案。
2. 生产计划问题线性规划可以应用于生产计划问题。
例如,某工厂需要在不同生产线上安排不同产品的生产数量,以最大化利润或最小化生产成本。
3. 运输问题线性规划可以应用于运输问题。
例如,某物流公司需要决定不同运输路线的货物数量,以最小化运输成本或最大化运输效率。
四、线性规划的局限性虽然线性规划可以解决许多实际问题,但它也有一定的局限性。
首先,线性规划要求目标函数和约束条件都是线性的,无法处理非线性问题。
其次,线性规划的可行解和最优解并不唯一,可能存在多个相同的最优解。
高考线性规划知识点
高考线性规划知识点高考是对学生综合能力的一次全面考查,其中数学是不可避免的一项内容。
而线性规划作为数学中的一个重要章节,也广泛出现在高考中。
本文将围绕高考线性规划知识点展开讨论。
一、线性规划的定义和基本思想线性规划是一种数学优化方法,用于在一组线性约束条件下,求解一个线性目标函数的最大值或最小值。
其基本思想是将求解问题转化为求解函数的最值问题。
二、线性规划的基本要素1. 决策变量:表示问题中需要决策的量或者参数,常用字母表示。
2. 目标函数:表示问题的优化目标,通常是一个线性函数。
3. 约束条件:表示问题的限制条件,常常是一组线性不等式或等式。
4. 可行解集:满足所有约束条件的解的集合。
5. 最优解:在可行解集中使得目标函数取得最大或最小值的解。
三、线性规划的图形解法对于线性规划问题,我们可以通过图形解法快速找到最优解。
具体步骤如下:1. 根据约束条件,将可行解集用直线或者线段表示出来;2. 根据目标函数的方向,确定最优解在可行解集中的位置;3. 在可行解集与目标函数的交点中,寻找最优解。
四、单纯形法除了图形解法外,线性规划还可以通过单纯形法求解。
单纯形法是一种基于表格的算法,通过迭代计算不断逼近最优解。
具体步骤如下:1. 构造初始单纯形表格,包括决策变量、目标函数系数、约束条件等;2. 计算单纯形表格中的各个元素;3. 判断是否达到最优解,若未达到则进行下一次迭代;4. 重复上述步骤,直到获得最优解。
五、常见题型及解题方法在高考中,线性规划题目的形式多样,其中常见题型包括:1. 单纯形表格的构造与迭代计算;2. 最大最小值的求解;3. 边界条件下的最优解;4. 多目标线性规划等。
针对不同题型,我们需要选择合适的解题方法。
对于单纯形表格,按照步骤计算即可。
对于最大最小值的求解,可以使用图形解法或者单纯形法。
对于边界条件下的最优解,需要利用线性规划的基本性质进行推导。
对于多目标线性规划,可以通过目标函数的线性组合转化为单一目标的线性规划等。
数学建模实验报告之线性规划
数学模型实验报告——线性规划专业:数学与应用数学L081姓名: XXX 学号: 08L1002106姓名: XXX 学号: 08L1002109姓名: XXX 学号: 08L1002112数学模型实验报告(线性规划)一、 实验目的:1、了解线性规划的基本内容。
2、掌握用数学软件包求解线性规划问题。
二、实验内容:1、用MATLAB 优化工具箱解线性规划 ;2、两个例题;3、实验作业。
三、内容分析:(一)用MATLAB 优化工具箱解线性规划1、模型: min z=cXb AX t s ≤..命令:x=linprog (c ,A ,b )2、模型: min z=cXb AX t s ≤..beq X Aeq =⋅命令:x=linprog (c ,A ,b ,Aeq, beq ) 注意:若没有不等式:b AX ≤ 存在,则令A=[ ],b=[ ].3、模型:min z=cX b AX t s ≤..beq X Aeq =⋅VLB ≤X ≤VUB命令:[1] x=linprog (c ,A ,b ,Aeq,beq, VLB ,VUB )[2] x=linprog (c ,A ,b ,Aeq,beq, VLB ,VUB, X 0)注意:[1] 若没有等式约束: beq X Aeq =⋅, 则令Aeq=[ ], beq=[ ]. [2]其中X 0表示初始点4、命令:[x,fval]=linprog(…) 返回最优解x及x处的目标函数值fval.例1 max 6543216.064.072.032.028.04.0x x x x x x z +++++=85003.003.003.001.001.001.0..654321≤+++++x x x x x x t s70005.002.041≤+x x 10005.002.052≤+x x 90008.003.063≤+x x 6,2,10=≥j x j解 :编写M 文件程序如下:c=[-0.4 -0.28 -0.32 -0.72 -0.64 -0.6]; A=[0.01 0.01 0.01 0.03 0.03 0.03;0.02 0 0 0.05 0 0; 0 0.02 0 0 0.05 0; 0 0 0.03 0 0 0.08]; b=[850;700;100;900]; Aeq=[]; beq=[];vlb=[0;0;0;0;0;0]; vub=[];[x,fval]=linprog(c,A,b,Aeq,beq,vlb,vub)例2321436m in x x x z ++= 120..321=++x x x t s301≥x 5002≤≤x 203≥x解:编写M 文件程序如下: c=[6 3 4]; A=[0 1 0]; b=[50];Aeq=[1 1 1]; beq=[120]; vlb=[30,0,20];vub=[];[x,fval]=linprog(c,A,b,Aeq,beq,vlb,vub)运行结果如下:Optimization terminated. (最优解为) x =1.0e+004 * 3.5000 0.5000 3.0000 0.0000 0.0000 0.0000 fval =-2.5000e+004(二)例题例1:任务分配问题:某车间有甲、乙两台机床,可用于加工三种工件。
实验项目一 线性规划
实验项目一线性规划一.实验目的1.对于给定的实际应用问题,正确的建立线性规划问题数学模型,并用LINGO或MATLAB求解;2.掌握灵敏度分析以及资源的影子价格的相关分析方法.二.实验内容1、(合理下料问题)用7.4m长的钢筋,分别截取2.9m、2.1m、1.5m各至少100根,要求用料最少。
2、美佳公司计划制造I、II 两种家电产品。
已知各制造一件时分别占用设备A、B 的台时、调试时间、调试工序每天可用于这种家电的能力、各售出一件时的获利情况,如表1-1 所示。
1.问该公司应制造两种家电各多少件,使其获取的利润最大。
2. 如果资源出租,资源出租的最低价格至少是多少(即每种资源的影子价格是多少)。
3.若家电I 的利润不变,家电II 的利润在什么范围内变化时,则该公司的最优生产计划将不发生变化。
4. 若设备A 和B 每天可用能力不变,则调试工序能力在什么范围内变化时,问题的最优基不变。
3、用matlab 求解下面的线性规划问题1)123123123123123326442215006min z x x x x x x x x x s.t.x x x x ,x ,x =--+++=⎧⎪+-≤⎪⎨-+≤⎪⎪≥≥≤⎩ 2)123123123max 32527..2520,1,2,3iz x x x x x x s t x x x x i =+-++=⎧⎪-+≥⎨⎪≥=⎩三. 模型建立1、设 x j 分别代表采用切割方案1~8所需7.4米的钢筋的数量。
建立模型为:12345678min ()Z x x x x x x x x x =+++++++123423567134678123456782100232100..3234100,,,,,,,0x x x x x x x x x s t x x x x x x x x x x x x x x +++≥⎧⎪++++≥⎪⎨+++++≥⎪⎪≥⎩2、设制造 I 、II 两种家电产品的数量分别为x1,x2。
线性规划实验报告
精品文档课内实验报告课程名:运筹学任课教师:邢光军专业:信息管理与信息系统学号:B09110810姓名:陈倩宇2010/2011学年第 2 学期南京邮电大学经济与管理学院点击求解后,可得上表说明:整数规划问题有最优解,且最优解为126,2,max 10x x z === 。
下表是例1用Excell 工作表求解的求解结果,表中说明,为保证售货人员充分休息,售货人员每周工作五天,休息两天,并要求休息的两天是连续的,最少需配备的售货人员36人,星期一开始上班的12人,星期三开始上班的11人,星期五开始上班的5人,星期六开始上班的3人,星期日开始上班的5人.3 结果分析在实际应用中,最终我们得出的对于售货人员作息时间的安排,能够达到既满足工作需要,又使总共配备售货人员最少,即用最少的人力资源成本获取最大的利益。
由此我们可以发现诸如此类有关如何合理安排的问题,利用Excel进行求解既简便又快捷,表中数据可根据用户要求自行设置,在合理安排产品的生产决策上,对于研究如何合理使用企业各项经济资源,以及研究如何统筹安排,对人、财、物等现有资源进行优化组合,实现最大效能上都可以使用。
能有效地提高组织及决策的速度及准确性,并且Excel办公软件的普遍性优点使之更适合促进科学决策的信息化水平。
成绩评定:该生对待本次实验的态度□认真□良好□一般□比较差。
本次实验的过程情况□很好□较好□一般□比较差对实验结果的分析□很好□良好□一般□比较差文档书写符合规范程度□很好□良好□一般□比较差综合意见:成绩指导教师签名日期实验背景:某商场是个中型的百货商场,它对售货人员的需求经过统计分析如表1所示。
息的两天是连续的,问应该如何安排售货人员的作息,既满足了工作需要,又使配备的售货人员人数最少?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例1
max
s.t.
z 0.4x1 0.28x2 0.32x3 0.72x4 0.64x5 0.6x6 0.01x1 0.01x2 0.01x3 0.03x4 0.03x5 0.03x6 850 0.02x1 0.05x4 700 0.02x2 0.05x5 100 0.03x3 0.08x6 900 xj 0 j 1,2, ,6
[2] x=linprog(c,A,b,Aeq,beq, VLB,VUB, X0) 注意:[1] 若没有等式约束: Aeq X beq , 则令Aeq=[ ], beq=[ ]. [2]其中X0表示初始点 4. 命令:[x,fval]=linprog(…) 返回最优解x及x处的目标函数值fval.
返 回
用LINDO、LINGO优化工具箱解线性规划
一、LINDO软件包
下面我们通过一个例题来说明LINDO 软件包的使用方法.
LINDO和LINGO软件能求解的优化模型
优化模型
连续优化
整数规划(IP)
线性规划 (LP)
二次规划 (QP)
非线性规划 (NLP) LINGO
LINDO
例1
加工奶制品的生产计划
线性规划
优化问题,一般是指“最好”的方式,使用 或分配有限的资源,比如:劳动力、原材料、机 器、资源等,使得费用最小或者利润最大等。
两个引例 问题一 : 任务分配问题:某车间有甲、乙两台机床,可用
于加工三种工件.假定这两台车床的可用台时数分别为800和 900,三种工件的数量分别为400、600和500,且已知用三种 不同车床加工单位数量不同工件所需的台时数和加工费用如 下表.问怎样分配车床的加工任务,才能既满足加工工件的要 求,又使加工费用最低?
X2
30.000000
0.000000
ROW SLACK OR SURPLUS DUAL PRICES 2) 0.000000 48.000000
3)
4)
0 0 0.4 1.1 1 0 800 X 0 0 0 0 . 5 1 . 2 1 . 3 900
x1 x2 x 3 ,X 0 x4 x 5 x 6
1 0 0 1 0 0 400 0 1 0 0 1 0 X 600 0 0 1 0 0 1 500
问题
x1 min z 40 36 x 2 x1 s.t. 5 3 x (45) 2
0 x1 9 0 15 x 1
编写M文件xxgh4.m如下:
s.t. AX b
命令:x=linprog(c, A, b)
2. 模型:min z=cX s.t. AX b Aeq X beq 命令:x=linprog(c,A,b,Aeq,beq)
AX b 存在,则令A=[ ],b=[ ]. 注意:若没有不等式:
3. 模型:min z=cX s.t. AX b Aeq X beq VLB≤X≤VUB 命令:[1] x=linprog(c,A,b,Aeq,beq, VLB,VUB)
编写M文件xxgh3.m如下: f = [13 9 10 11 12 8]; A = [0.4 1.1 1 0 0 0 0 0 0 0.5 1.2 1.3]; b = [800; 900]; Aeq=[1 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 1]; To MATLAB (xxgh3) beq=[400 600 500]; vlb = zeros(6,1); vub=[]; [x,fval] = linprog(f,A,b,Aeq,beq,vlb,vub)
车床 类 型 甲 乙 单位工件所需加工台时数 工件 1 0.4 0.5 工件 2 1.1 1.2 工件 3 1.0 1.3 单位工件的加工费用 工件 1 13 11 工件 2 9 12 工件 3 10 8 可用台 时数 800 900
解
设在甲车床上加工工件1、2、3的数量分别为x1、x2、x3, 在乙车床上加工工件1、2、3的数量分别为x4、x5、x6,可建立以 下线性规划模型:
gi(x)0是约束条件
优化模型的分类
优化问题可以从不同的角度进行分类,由 (1) (2) 组成的模型称为约束优化,若只有(1)就是无约束优 化。 当模型中决策变量的所有分量均为实数,且f,gi
都是线性函数时,称为线性规划。若它们中至少有
一个是非线性函数,则称非线性规划。若决策变量
中至少有一个分量取整数,则称整数规划,线性规
称为可行解,满足(1) (2)的解称为最优解。
三要素:决策变量、目标函数、约束条件。
三要素:决策变量、目标函数、约束条件。
决策变量通常是指该问题要求解的那些未知量; 目标函数通常是该问题要优化的那个目标的数学 表达式,它是决策变量的函数; 约束条件由该问题对决策变量的限制条件给出, 即决策变量允许取值的范围,称可行域。 x是决策变量 f(x)是目标函数
min z (6
3
x1 4) x2 x 3
s.t.
1 0
解: 编写M文件xxgh2.m如下: c=[6 3 4]; A=[0 1 0]; b=[50]; Aeq=[1 1 1]; beq=[120]; To MATLAB (xxgh2) vlb=[30,0,20]; vub=[]; [x,fval]=linprog(c,A,b,Aeq,beq,vlb,vub)
线性 规划 模型 (LP)
模型求解
max 72x1+64x2
OBJECTIVE FUNCTION VALUE
st
2)x1+x2<50 3)12x1+8x2<480
1)
VARIABLE X1
3360.000
VALUE 20.000000 REDUCED COST 0.000000
4)3x1<100
end DO RANGE (SENSITIVITY) ANALYSIS? No
8 4 x1 8 3 x2 32 x1 24 x2
因检验员错检而造成的损失为:
(8 25 2% x1 8 15 5% x2 ) 2 8x1 12 x2
故目标函数为:
min z (32 x1 24 x2 ) (8x1 12 x2 ) 40 x1 36 x2
Aeq=[]; beq=[];
vlb=[0;0;0;0;0;0]; vub=[];
To MATLAB (xxgh1)
[x,fval]=linprog(c,A,b,Aeq,beq,vlb,vub)
例2
min z 6x1 3x2 4x3 s.t. x1 x2 x3 120 x1 30 0 x2 50 x3 20
x1 1 x2 1 0 x 3 x1 3 0 0 x 2 2 0 x3 1
120 50
例3 问题一的解答
改写为: s.t.
问题
min z 13 9 10 11 12 8X
结果为: x = 9.0000 0.00注:本问题应还有一个约束条件:x1、x2取整数.故它是
一个整数线性规划问题.这里把它当成一个线性规划来解, 求得其最优解刚好是整数:x1=9,x2=0,故它就是该整数 规划的最优解.若用线性规划解法求得的最优解不是整数, 将其取整后不一定是相应整数规划的最优解,这样的整数 规划应用专门的方法求解.
结果:
x =
0.0000 600.0000 0.0000 400.0000 0.0000 500.0000 fval =1.3800e+004
即在甲机床上加工600个工件2,在乙机床上加工400个工件1、 500个工件3,可在满足条件的情况下使总加工费最小为13800.
例2 问题二的解答
改写为:
解答
问题二: 某厂每日8小时的产量不低于1800件.为了进行质量
控制,计划聘请两种不同水平的检验员.一级检验员的标准为: 速度25件/小时,正确率98%,计时工资4元/小时;二级检验员 的标准为:速度15件/小时,正确率95%,计时工资3元/小时.检 验员每错检一次,工厂要损失2元.为使总检验费用最省,该工 厂应聘一级、二级检验员各几名? 解 设需要一级和二级检验员的人数分别为x1、x2人, 则应付检验员的工资为:
12小时 8小时 3千克A1 获利24元/千克
1桶 牛奶 或
4千克A2
获利16元/千克
每天: 50桶牛奶 时间: 480小时 至多加工100千克A1 制订生产计划,使每天获利最大 • 35元可买到1桶牛奶,买吗?若买,每天最多买多少? • 可聘用临时工人,付出的工资最多是每小时几元? • A1的获利增加到 30元/千克,是否应改变生产计划?
约束条件为:
8 25 x1 8 15 x2 1800 8 25 x 1800 1 8 15 x2 1800 x1 0, x2 0
线性规划模型:
min z 40 x1 36 x2
5 x1 3 x2 45 x 9 1 s.t. x2 15 x1 0, x2 0
划和非线性规划是连续规划,而整数规划是离散优 化(组合优化),它们统称数学规划。
数学规划 线性规划(LP) 0-1整数规划 二次规划(QP) 一般整数规划 非线性规划(NLP) 连续规划 纯整数规划(PIP) 混合整数规划(MIP)
整数规划(IP)
用MATLAB优化工具箱解线性规划
1. 模型:
min z=cX
c = [40;36]; A=[-5 -3]; b=[-45]; Aeq=[]; To MATLAB (xxgh4) beq=[]; vlb = zeros(2,1); vub=[9;15]; %调用linprog函数: [x,fval] = linprog(c,A,b,Aeq,beq,vlb,vub)