实际问题与一元二次方程
一元二次方程与实际问题
一元二次方程与实际问题一元二次方程与实际问题引言•什么是一元二次方程?•为什么一元二次方程与实际问题相关?解决实际问题的重要性•为什么解决实际问题是数学的重要组成部分?•为什么一元二次方程是解决实际问题的有效工具?实际问题的建模•如何将实际问题转化为一元二次方程的模型?•介绍一些实际问题的例子,如抛物线运动、面积计算等。
解决一元二次方程的方法•介绍求解一元二次方程的方法,如配方法、因式分解和求根公式。
•每种方法的适用场景和特点。
实际问题的解答与解释•如何使用一元二次方程解答实际问题?•如何解释一元二次方程的解对于实际问题的意义?一元二次方程的应用•介绍一些实际领域中广泛应用的问题,如物理学、工程学和经济学等。
•这些问题如何借助一元二次方程得到解决?结论•总结一元二次方程与实际问题之间的关系。
•强调学习一元二次方程对于解决实际问题的重要性。
通过以上方式,我们可以对一元二次方程与实际问题之间的关系进行全面的介绍和说明。
读者可以更好地理解一元二次方程的应用价值,以及如何通过数学工具解决实际问题。
引言一元二次方程是数学中的重要概念,广泛应用于实际问题的解决。
在本文中,我们将探讨一元二次方程与实际问题之间的关系,以及如何使用一元二次方程解决实际问题。
解决实际问题的重要性解决实际问题是数学的重要组成部分,它帮助我们理解现实世界中的现象和规律,并为我们提供了解决实际困难的工具和方法。
无论是在科学研究、工程设计还是商业决策中,数学都发挥着重要的作用。
为什么一元二次方程与实际问题相关?一元二次方程是实际问题建模的常用工具,它能够描述许多自然界和社会现象中的关系。
抛物线运动、物体自由落体、流体力学等都可以通过一元二次方程进行建模和求解。
因此,熟练掌握一元二次方程的求解方法对于理解和解决实际问题至关重要。
实际问题的建模将实际问题转化为数学模型是解决实际问题的第一步。
一元二次方程可以帮助我们建立与实际问题有关的数学模型。
实际问题与一元二次方程初中数学经典课件
探究
经调查,2000年全球绿化面积大约是38亿 公顷,在2000年至2017年间全球绿化面积增 加了5%. (1)2017年全球绿化面积大约是多少亿公顷?
38×(1+5%)=39.9 (亿公顷).
(2)如果保持这个增长率,那么到2034年, 全球绿化面积预计有多少亿公顷? 38×(1+5%)2=41.895 (亿公顷).
100%
增长后数量 = 增长前数量 +增长前数量增长率
增长率
=
增长后数量 -增长前数量 增长前数量
100%
增长后数量 = 增长前数量(1+增长率)
若连续两轮增长 增长后数量 = 增长前数量(1+增长率)2
下降率
=
下降前数量 -下降后数量 下降前数量
100%
下降后数量 =下降前数量 -下降前数量× 下降率
下降率
=
下降前数量 -下降后数量 下降前数量
100%
下降后数量 =下降前数量(1-下降率)
若连续两轮下降 下降后数量 =下降前数量(1-下降率)2
连续两轮变化时: 增长后数量 = 增长前数量(1+增长率)2 下降后数量 =下降前数量(1-下降率)2
变化前数量×( 1± x )²=变化后数量.
练习
2000年 2017年
2034年
38 38×(1+5%)
38×(1+5%)2
探究
2000年 2017年 38 38×(1+5%)
2034年 38×(1+5%)2
如果增长率是6%,那么2017年和2034年的全 球绿化面积又该怎么表示呢?
2000年 2017年
2034年
38 38×(1+6%)
实际问题与一元二次方程-(含答案)
实际问题与一元二次方程-(含答案)实际问题与一元二次方程列一元二次方程解应用题与列一元一次方程解应用题类似。
都是根据问题中的相等关系列出方程,解方程,并能根据具体问题的实际意义检验结果的合理性,进一步提高分析问题、解决问题的意识和能力。
在利用一元二次方程解决实际问题时,特别要对方程的解注意检验,根据实际做出正确取舍,以保证结论的准确性。
主要研究下列两个内容:1.列一元二次方程解决实际问题。
一般情况下,列方程解决实际问题的一般步骤为:审、设、列、解、验、答六个步骤。
找出相等关系的关键是审题,审题是列方程(组)的基础,找出相等关系是列方程(组)解应用题的关键。
2.一元二次方程根与系数的关系。
一般地,如果一元二次方程ax^2+bx+c=(a≠0)的两个根是x1和x2,那么x1+x2=-b/a,x1•x2=c/a。
知识链接点击一:列方程解决实际问题的一般步骤应用题考查的是如何把实际问题抽象成数学问题,然后用数学知识和方法加以解决的一种能力。
列方程解应用题最关键的是审题,通过审题弄清已知量与未知量之间的等量关系,从而正确地列出方程。
概括来说就是实际问题——数学模型——数学问题的解——实际问题的答案。
一般情况下列方程解决实际问题的一般步骤如下:1) 审:是指读懂题目,弄清题意和题目中的已知量、未知量,并能够找出能表示实际问题全部含义的等量关系。
2) 设:是在理清题意的前提下,进行未知量的假设(分直接与间接)。
3) 列:是指列方程,根据等量关系列出方程。
4) 解:就是解所列方程,求出未知量的值。
5) 验:是指检验所求方程的解是否正确,然后检验所得方程的解是否符合实际意义,不满足要求的应舍去。
6) 答:即写出答案,不要忘记单位名称。
总之,找出相等关系的关键是审题,审题是列方程(组)的基础,找出相等关系是列方程(组)解应用题的关键。
点击二:一元二次方程根与系数的关系一元二次方程根与系数的关系。
一般地,如果一元二次方程ax^2+bx+c=(a≠0)的两个根是x1和x2,那么x1+x2=-b/a,x1•x2=c/a。
一元二次方程与实际问题
一元二次方程与实际问题一元二次方程是形如ax²+bx+c=0的方程,其中a≠0,x是未知数,a、b、c是已知的实数常数。
它在数学中被广泛应用,尤其在解决实际问题时,具有重要的意义。
一元二次方程与实际问题的关联在于它可以描述许多物理、经济、工程和自然科学现象。
下面将介绍一些常见的实际问题,并用一元二次方程解决它们。
1. 自由落体问题:考虑一个物体从高度h自由落下,并以初速度为0的条件下落。
重力以加速度g=9.8m/s²的恒定速度使物体加速下落。
通过运用运动学公式,可以将物体的下落时间t与下落距离h之间的关系表示为:h=gt²/2。
整理得到ht²-2h=0,这是一个一元二次方程。
通过求解该方程,可以得到物体下落的时间和下落的距离。
2. 抛物线轨迹问题:许多物理和运动问题都涉及抛物线轨迹。
例如,一个抛射物体的运动轨迹可以用一元二次方程来描述。
给定抛射角度θ和初速度v,可以得到抛射物体的运动轨迹方程y=x*tanθ - (g*x²) /(2v²*cos²θ)。
这是一个一元二次方程,其中x表示水平方向的距离,y表示竖直方向的高度。
通过解这个方程,可以计算出物体在不同时间和位置的高度。
3. 经济成本问题:一元二次方程也可以用于经济领域的成本分析。
例如,考虑一个企业的总成本函数C(x)=ax²+bx+c,其中x表示生产的数量,a、b、c是已知的实数常数。
通过求解C'(x)=0,即求解一阶导数为零的方程,可以找到企业的最低成本点。
这个点对应的x值就是企业的最优生产数量。
以上只是一些例子,实际应用一元二次方程的问题非常广泛。
通过将实际问题转化为数学模型,应用一元二次方程的解法,可以更好地理解和解决各种现实问题。
实际问题与一元二次方程知识点总结及重难点精析
实际问题与一元二次方程知识点总结及重难点精析一、知识点总结1.在九年级数学中,实际问题与一元二次方程这一章知识点主要包括:一元二次方程的基本概念、性质及其在实际问题中的应用。
2.一元二次方程的基本概念:一元二次方程是一个含有未知数x 的整式方程,其一般形式为ax²+bx+c=0(a≠0)。
其中a、b、c为常数,a≠0.且x的最高次数为2.3.一元二次方程的性质:一元二次方程有四个性质,分别是:(1) 有两个解,即x1和x2;(2) 两解的和为-b/a;(3) 两解的积为c/a;(4) 判别式△=b²-4ac,当△>0时,方程有两个不相等的实数解;当△=0时,方程有两个相等的实数解;当△<0时,方程没有实数解。
4.一元二次方程的应用:在实际问题中,一元二次方程通常用于解决一些二次关系的问题,比如物体的运动轨迹、建筑物的面积和体积、经济利润最大化等问题。
二、重难点精析在本章节中,重难点主要包括如何将实际问题转化为数学问题、一元二次方程的解法以及根的性质和应用。
1.如何将实际问题转化为数学问题:在解决实际问题时,需要从题目中提取出有用的信息,并转化为数学语言。
这需要学生具备一定的阅读理解能力和数学建模能力。
2.一元二次方程的解法:一元二次方程的解法有公式法和因式分解法两种。
公式法是通过公式直接求解,但需要学生记忆公式。
因式分解法是通过将方程左边分解成两个一次因式的乘积,再分别令每个因式等于0来求解。
这种方法更直观易懂,但需要学生掌握因式分解的技巧。
3.根的性质和应用:根的性质包括前面提到的两个解的和、积和判别式。
这些性质在解决实际问题时具有重要应用。
例如,利用判别式可以判断方程是否有实数解,从而确定实际问题是否有解;利用两解的和可以计算实际问题的某些物理量,如位移等。
三、总结通过以上知识点总结和重难点精析,我们可以看到实际问题与一元二次方程这一章知识点的重要性和应用价值。
21.3实际问题与一元二次方程教案
21.3实际问题与一元二次方程教案篇一:21.3实际问题与一元二次方程教学设计教案教学准备1.教学目标知识技能1.能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界的一个有效的数学模型.2.能根据具体问题的实际意义,检验结果是否合理.过程方法经历将实际问题抽象为代数问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述。
情感态度与价值观通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用.2.教学重点/难点教学重点:列一元二次方程解有关传播问题的应用题教学难点:发现传播问题中的等量关系3.教学用具制作课件,精选习题4.标签教学过程一、导入新课师:同学们好,我们已经学过用一元一次方程来解决实际问题,你还记得列一元一次方程解决实际问题的步骤吗?生:审题、设未知数、找等量关系、列方程、解方程,最后答题.试:同一元一次方程、二元一次方程(组)等一样,一元二次方程也可以作为反映某些实际问题中数量关系的数学模型.这一节我们就讨论如何利用一元二次方程解决实际问题.二、探索新知【问题情境】有一人患了流感,经过两轮传染后,有121人患了流感,每轮传染中平均一个人传染了几个人?【分析】(1)本题中有哪些数量关系?(2)如何理解“两轮传染”?(3)如何利用已知的数量关系选取未知数并列出方程?(4)能否把方程列得更简单,怎样理解?(5)解方程并得出结论,对比几种方法各有什么特点?【解答】设每轮传染中平均一个人传染了x个人,则依题意第一轮传染后有x+1人患了流感,第二轮传染后有x(1+x)人患了流感。
于是可列方程:1+x+x(1+x)=121解方程得x1=10,x2=-12(不合题意舍去)因此每轮传染中平均一个人传染了10个人.【思考】如果按这样的传播速度,三轮传染后有多少人患了流感?【活动方略】教师提出问题学生分组,分别按问题(3)中所列的方程来解答,选代表展示解答过程,并讲解解题过程和应注意问题.【设计意图】使学生通过多种方法解传播问题,验证多种方法的正确性;通过解题过程的对比,体会对已知数量关系的适当变形对解题的影响,丰富解题经验.三、例题分析例1、某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支、主干,如果支干和小分支的总数是91,每个支干长出多少小分支?解:设每个支干长出x个小分支,则1+x+xx=91,即x2+x-90=0.解得x1=9,x2=-10(不合题意,舍去)答:每个支干长出9个小分支.例2、参加足球联赛的每两队之间都进行了两次比赛(双循环比赛),共要比赛90场,共有多少个队参加了比赛?例3、学校组织了一次篮球单循环比赛(每两队之间都进行了一次比赛),共进行了15场比赛,那么有几个球队参加了这次比赛?【分析】(1)两题中有哪些数量关系?(2)由这些数量关系还能得到什么新的结论?你想如何利用这些数量关系?为什么?如何列方程?(3)对比两题,它们有什么联系与区别?【活动方略】教师活动:操作投影,将例题显示,组织学生讨论.学生活动:合作交流,讨论解答。
实际问题与一元二次方程(简析版)
实际问题与一元二次方程一、“握手问题”1、节日聚会中,每人都和其他人握手一次,现在有若干人共握手45次,问共有多少人参加聚会?分析:设共有x 人参加聚会,可列方程:45)1(21=-x x 2、某校足球联赛,采用单循环的赛制,一共比赛10场,问一共有多少支球队参加比赛? 分析:设共有x 支球队参加比赛,可列方程:10)1(21=-x x 3、参加商品交易会的每两家公司之间都签订一份合同,所有公司共签订了45分合同,问共有多少家公司参加商品交易会?分析:共有x 家公司参加商品交易会,可列方程:45)1(21=-x x 4、新年到来,几位朋友相互赠送贺卡,共送出贺卡72张,问这群朋友共有几人? 分析:设这群朋友共有x 人,可列方程:72)1(=-x x二、“平均增长率”问题。
1、某电脑公司2001年的各项经营中,一月份的营业额为200万元,一月、二月、三月的营业额共950万元,如果平均每月营业额的增长率相同,求这个增长率. 分析:设平均增长率为x ,可列方程:950)1(200)1(2002002=++++x x2、某工厂第一季度的一月份生产电视机是1万台,第一季度生产电视机的总台数是3.31万台,求二月份、三月份生产电视机平均增长的百分率是多少? 分析:设二月份、三月份生产电视机平均增长的百分率是x 可列方程: 31.3)1()1(12=++++x x3、一只感染病毒的白鼠经过两天传染后发现共有256只小白鼠患病,问在每天的传染中平均一只小白鼠传染多少只白鼠?分析:设平均一只小白鼠传染x 只白鼠,可列方程:256)1(2=+x4、某人将2000元人民币按一年定期存入银行,到期后支取1000元用于购物,剩下的1000元及应得利息又全部按一年定期存入银行,若存款的利率不变,到期后本金和利息共1320元,求这种存款方式的年利率.分析:设种存款方式的年利率为x ,利息=本金×利率×存期到期后的本息和=本金+利息=(第一年剩余的1000元+第一年的利息)+第二年的利息 可列方程:1320)20001000(20001000=+++x x x5、两年前生产1吨甲种药品的成本是5000元,生产1吨乙种药品的成本是6000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3000元,生产1吨乙种药品的成本是3600元,哪种药品的年平均下降额较大?哪种药品的年平均下降率较大? 分析:甲种药品的平均下降额为:1000230005000=-元乙种药品的平均下降额为:1200236006000=-元设甲种药品的平均下降率为x ,乙种药品的平均下降率为y可列方程:3000)1(50002=-x ;3600)1(60002=-y6.一个容器盛满纯药液63L ,第一次倒出一部分纯药液后用水加满,第二次又倒出同样多的药液,再加水补满,这时容器内剩下的纯药液是28L ,设每次倒出液体xL ,则列出的方程是________ 分析:原有纯药液:63升,容器容积63升第一次操作:倒出纯药液x 升,容器内还有纯药液)63(x -升,溶液浓度%1006363⨯-x第二次操作:倒出纯药液6363xx -⋅升, 容器内还有纯药液63)63(63)63()63(2x x x x -=---升,由此可列方程:2863)63(2=-x三、商品营销问题1、某商场礼品柜台春节期间购进甲、乙两种贺年卡,甲种贺年卡平均每天可售出500张,每张盈利0.3元,乙种贺年卡平均每天可售出200张,每张盈利0.75元,为了尽快减少库存,商场决定采取适当的降价措施,调查发现,如果甲种贺年卡的售价每降价0.1元,那么商场平均每天可多售出100张;如果乙种贺年卡的售价每降价0.25元,那么商场平均每天可多售出34张.如果商场要想每种贺年卡平均每天盈利120元,那么哪种贺年卡每张降价的幅度大?(每每问题)分析:设甲种贺年卡每张降价x 元,乙种贺年卡每张降价y 元 每天的盈利=单张贺卡的利润×每天的销量 可列方程:120)1001.0500)(3.0(=⨯+-x x ,120)3425.0200)(75.0(=⨯+-y y2、两年前生产1t 甲种药品的成本是5000元,生产1t 乙种药品的成本是6000元,随着生产技术的进步,现在生产1t 甲种药品的成本是3000元,生产1t 乙种药品的成本是3600元,哪种药品成本的年平均下降率较大?3、新华商场销售甲、乙两种冰箱,甲种冰箱每台进货价为2500元,市场调研表明:当销售价为2900元时,平均每天能售出8台;而当销售价每降低50元时,平均每天就能多售出4台.乙种冰箱每台进货价为2000元,市场调研表明:当销售价为2500元时,平均每天能售出8台;而当销售价每降低45元时,平均每天就能多售出4台,商场要想使这两种冰箱的销售利润平均每天达到5000元,那么两种冰箱的定价应各是多少? 分析:设甲种冰箱每台定价x 元,则:每台冰箱可盈利)2500(-x 元;比原售价降低)2900(x -元; 实际每天销量比原来增加:4502900⨯-x从而列方程:5000)45029008)(2500(=⨯-+-xx 同理可求出乙种冰箱的定价。
实际问题与一元二次方程-(含答案)
实际问题与一元二次方程列一元二次方程解应用题与列一元一次方程解应用题类似,都是根据问题中的相等关系列出方程,解方程,并能根据具体问题的实际意义检验结果的合理性,进一步提高分析问题、解决问题的意识和能力。
在利用一元二次方程解决实际问题,特别要对方程的解注意检验,根据实际做出正确取舍,以保证结论的准确性.主要学习下列两个内容:1. 列一元二次方程解决实际问题。
一般情况下列方程解决实际问题的一般步骤:审、设、列、解、验、答六个步骤,找出相等关系的关键是审题,审题是列方程(组)的基础,找出相等关系是列方程(组)解应用题的关键.2. 一元二次方程根与系数的关系。
一般地,如果一元二次方程ax 2+bx +c =0(a ≠0)的两个根是1x 和2x ,那么ac x x a b x x =•,=+2121-.知识链接点击一: 列方程解决实际问题的一般步骤应用题考查的是如何把实际问题抽象成数学问题,然后用数学知识和方法加以解决的一种能力,列方程解应用题最关键的是审题,通过审题弄清已知量与未知量之间的等量关系,从而正确地列出方程.概括来说就是实际问题——数学模型——数学问题的解——实际问题的答案.一般情况下列方程解决实际问题的一般步骤如下:(1)审:是指读懂题目,弄清题意和题目中的已知量、未知量,并能够找出能表示实际问题全部含义的等量关系.(2)设:是在理清题意的前提下,进行未知量的假设(分直接与间接). (3)列:是指列方程,根据等量关系列出方程. (4)解:就是解所列方程,求出未知量的值.(5)验:是指检验所求方程的解是否正确,然后检验所得方程的解是否符合实际意义,不满足要求的应舍去.(6)答:即写出答案,不要忘记单位名称.总之,找出相等关系的关键是审题,审题是列方程(组)的基础,找出相等关系是列方程(组)解应用题的关键.针对练习1: 某城市2006年底已有绿化面积300公顷,经过两年绿化,绿化面积逐年增加,到2008年底增加到363公顷.设绿化面积平均每年的增长率为x ,由题意,所列方程正确的是( )A .300(1+x )=363B .300(1+x )2=363C .300(1+2x )=363D .363(1-x )2=300点击二:一元二次方程根与系数的关系一元二次方程根与系数的关系。
实际问题与一元二次方程(握手、面积问题)
01
02
03
建立数学模型
通过实际问题抽象出一元 二次方程,将实际问题转 化为数学问题。
解方程
根据一元二次方程的解法, 求解方程得到最优解。
解释结果
将求解结果代入实际问题 中,解释其意义和影响。
实际问题中一元二次方程的应用案例分析
投资收益问题
假设某投资者有一定资金, 需要选择不同的投资方式, 通过一元二次方程可以计 算出最优投资方案。
02
面积问题
面积问题的背景
面积问题在日常生活和生产实 践中广泛存在,如土地测量、 建筑规划、经济活动等。
面积问题涉及到空间形态的定 量描述,需要运用数学工具进 行计算和表达。
面积问题具有多种表现形式, 如平面图形、立体图形等,需 要根据具体情况选择合适的数 学模型进行解决。
面积问题的数学模型
平面图形的面积计算
计算利润最大化问题
一元二次方程可以用来解决利润最大化问题,例如通过设定成本、 售价和销量之间的关系来求解最大利润。
求解最优化问题
一元二次方程可以用来解决最优化问题,例如在一定资源限制下, 通过调整资源配置来达到最优效果。
计算几何图形问题
一元二次方程可以用来解决几何图形问题,例如计算面积、周长等。
一元二次方程的解法与实际问题解决步骤的对应关系
一元二次方程在日常生活中的应用
建筑和设计
在建筑和设计领域,一元二次方程可 以用于计算物体的面积、体积和周长 等参数,例如计算矩形、圆形、三角 形等基本几何形状的面积和周长。
日常生活问题
一元二次方程还可以用于解决一些日 常生活中的问题,如路程、时间、速 度问题,以及工资、税收、保险等问 题。
谢谢观看
握手问题的数学模型
一元二次方程在实际问题中的应用
一元二次方程在实际问题中的应用一元二次方程是一种常见的数学方程,其形式为ax² + bx + c = 0,其中a、b、c为已知数,x为未知数。
在实际问题中,利用一元二次方程可以解决许多与现实生活相关的数学计算和建模问题。
本文将探讨一元二次方程在实际问题中的应用。
一、物体自由落体问题在物理学中,物体自由落体问题是应用一元二次方程的经典案例之一。
当一个物体自由下落时,根据重力作用,其运动可以用一元二次方程来描述。
假设一个物体从高度h自由落下,并且忽略了空气阻力。
根据运动学公式,可得到物体在t秒时的下落距离s为s = -gt²/2 + vt + h,其中g 为重力加速度,约为9.8 m/s²,v为物体的初始速度。
根据题目中的条件,可以列出一元二次方程来求解。
例如,一个物体从高度20m自由落下,求它落地时所需的时间。
根据以上所述的公式,可得到方程-4.9t² + 20 = 0,将该方程转化为一元二次方程的标准形式,即4.9t² - 20 = 0。
通过求解该方程,可以确定物体落地所需的时间。
二、几何问题一元二次方程也常用于解决几何问题。
例如,在平面几何中,我们常常需要求解关于长度、面积和体积的问题。
假设一个矩形的长度比宽度多6厘米,并且其面积为56平方厘米。
我们可以设矩形的宽度为x厘米,那么矩形的长度就是(x + 6)厘米。
根据矩形的面积公式,面积等于长度乘以宽度,可得到方程x(x + 6) = 56。
将该方程转化为一元二次方程的标准形式,即x² + 6x - 56 = 0。
通过求解该方程,可以确定矩形的宽度和长度。
类似地,一元二次方程也可以用来解决其他几何问题,如圆的面积、三角形的面积等。
三、投射问题投射问题是应用一元二次方程的另一个实际问题。
当物体沿着一个曲线进行投射运动时,我们可以利用一元二次方程来描述其运动轨迹和求解问题。
例如,一个投射物体以初速度v沿着角度θ的轨迹进行抛射,求解其到达地面所需的时间。
一元二次方程与实际问题题型归纳
一元二次方程与实际问题题型归纳在我们的数学学习中,一元二次方程是一个非常重要的知识点,它不仅在理论上有着重要的地位,而且在解决实际问题中也有着广泛的应用。
接下来,让我们一起来归纳一下一元二次方程在实际问题中的常见题型。
一、增长率问题增长率问题是一元二次方程在实际生活中常见的应用之一。
例如,某公司去年的利润为 100 万元,今年的利润比去年增长了 20%,明年预计在今年的基础上再增长 10%,求明年的利润。
设明年的利润为 x 万元,今年的利润为 100×(1 + 20%)= 120 万元,明年的利润为 120×(1 + 10%)= x 万元,整理可得方程:\\begin{align}120×(1 + 10%)&=x\\120×11&=x\\132&=x\end{align}\在这类问题中,通常设原来的量为 a,平均增长率为 x,增长后的量为 b,经过 n 次增长后的公式为:\(b = a(1 + x)^n\);若为平均降低率,则公式为:\(b = a(1 x)^n\)。
二、面积问题面积问题也是常见的题型之一。
比如,要在一块长方形的土地上建造一个花园,已知长方形的长比宽多 10 米,面积为 2400 平方米,求长方形的长和宽。
设长方形的宽为 x 米,则长为(x + 10)米,根据长方形面积公式可得方程:\\begin{align}x(x + 10)&=2400\\x^2 + 10x 2400&=0\\(x 40)(x + 60)&=0\end{align}\解得\(x = 40\)或\(x =-60\)(舍去),所以长方形的宽为 40 米,长为 50 米。
解决面积问题时,关键是要根据图形的形状和面积公式,找出等量关系,列出方程。
三、销售利润问题销售利润问题常常涉及到商品的进价、售价、销售量和利润等因素。
例如,某商品的进价为每件 20 元,售价为每件 30 元,每天可卖出 100 件。
实际问题与一元二次方程传播问题公式
实际问题与一元二次方程传播问题公式一、实际问题与一元二次方程在现实生活中,我们经常会遇到各种各样的问题,其中有些可以通过一元二次方程来进行建模和求解。
一元二次方程的一般形式为ax²+bx+c=0,其中a、b、c为实数且a≠0。
通过解一元二次方程,我们可以得到问题的解决方案,帮助我们更好地理解和应对实际问题。
下面就让我们通过一些实际问题,来看看一元二次方程在解决实际问题中的应用。
二、抛物线运动问题与一元二次方程抛物线运动是我们生活中常见的一种运动状态,比如抛出的物体在空中运动,下落到地面的运动轨迹就是一个抛物线。
而描述抛物线运动的运动方程,正是一元二次方程。
根据抛物线的运动特点,我们可以建立出物体的运动方程,进而解一元二次方程,从而求解出物体的运动轨迹、最大高度、最远距离等相关问题。
通过这样的方式,我们可以更好地理解抛物线运动问题,并且通过一元二次方程得到准确的解答。
三、满足条件问题与一元二次方程在某些情况下,我们遇到的问题可能会给出一些条件,要求我们找到满足这些条件的未知数的取值范围。
这时候,我们可以通过建立一元二次方程来解决这类问题。
某一数的平方与另一数之和的平方等于第三个数的平方,这就可以通过一元二次方程来建立并求解。
通过一元二次方程的解,我们可以找到满足条件的未知数取值范围,从而解决实际中的类似问题。
四、个人观点和总结通过以上的例子,我们可以看到一元二次方程在解决实际问题中的广泛应用。
在现实生活中,我们遇到的问题可能需要通过一元二次方程进行建模和求解,从而得到问题的解决方案。
通过掌握一元二次方程的应用,我们可以更深入地理解和应对实际问题,为实际问题的解决提供强有力的数学工具支持。
一元二次方程通过对实际问题的建模和求解,可以帮助我们更好地理解和应对现实生活中的各种问题,具有重要的理论和实际意义。
希望通过本文的共享,你能对实际问题与一元二次方程的传播问题公式有更深入的理解和认识。
一元二次方程是数学中的重要内容,它不仅在理论上有着重要的意义,更在实际生活中有着广泛的应用。
21-3 实际问题与一元二次方程 课件(共25张PPT)
2
5−1
− 5−1
或x2=
(不合题意,舍去),所以
2
2
小练习
例 4:邻边不等的矩形花圃ABCD,它的一边AD利用已有的围
墙,另外三边所围的栅栏的总长度是6m,若矩形的面积为
1
4m2,则AB的长度是____m(可利用的围墙长度超过6m)。
解析:设垂直墙的篱笆的AB为x,那么平行墙的篱笆BC长为(6-2x),
解方程,得:x1≈0.225,x2≈1.775(不合题意,舍去)。
则根据问题的额实际意义,甲乙两种药品成本的年平均下降率均为22.5%
知识梳理
知识点1:组合计算问题。
常见单循环赛问题,握手问题,签合同问题都有相同的规
1
律 x(x-1),送礼物和复循环赛规律相同,即x(x-1)。
2
例 1:某植物的主干长出若干数目的枝干,每个枝干又长
方程,a(1-x)2=49%a,整理得:x2-2x+0.51=0,解得:x1=1.7(舍去)
或x2=0.3,∴平均每次降价30%。故选D。
知识要点
列方程解应用题的一般步骤:①审题;②设未知数;③列方程;
④解方程;⑤检查作答。
组合计数问题:常见单循环问题,握手问题,签合同问题都有
1
相同的规律 x(x-1),送礼物和复循环赛规律相同,即x(x-1)。
1+x+x(1+x)
人中的每个人又传染了x个人,用代数式表示,第二轮后共有_________
个人患了流感。
列方程1+x+x(1+x)=121,
解方程,得x1=10,x2=-12(不合题意,舍去).
平均一个人传染了10个人。
教学新知
一元二次方程与实际问题
一元二次方程与实际问题一元二次方程是数学中的重要概念之一,广泛应用于实际问题的建模和求解。
在许多科学和工程领域,使用一元二次方程可以描述和解决各种实际问题,例如物理学、经济学、生物学等。
本文将讨论一元二次方程与实际问题之间的关系,并举例说明其应用。
我们来简单介绍一元二次方程。
一元二次方程的标准形式为ax^2 + bx + c = 0,其中a、b、c为已知常数,x为未知数。
求解一元二次方程的根是找出满足方程的x值,即使方程左边等于右边。
在解一元二次方程的过程中,可以利用求根公式或配方法来求解。
一元二次方程在实际问题中的应用非常广泛。
许多自然科学和社会科学领域都可以通过使用一元二次方程来建立和求解模型。
例如,在物理学中,一元二次方程可以描述物体在自由落体运动中的高度和时间的关系。
当物体从高度h0开始下落,经过时间t后,它的高度可以用h = h0 - 0.5gt^2来表示,其中g为重力加速度。
这个方程是一个一元二次方程,可以用来求解物体所需的时间和在不同高度下的运动情况。
在经济学中,一元二次方程可以用来描述供求关系和市场均衡。
例如,在确定某种商品的市场价格时,可以考虑市场需求和供应的关系。
一般来说,市场需求和供应都会受到价格的影响。
通过建立一元二次方程模型,可以根据需求和供应的函数来确定市场均衡价格和数量,从而更好地理解市场机制和调控经济。
生物学中的一些问题也可以通过一元二次方程进行建模和求解。
例如,生物种群的增长和衰减过程可以用一元二次方程来描述。
当一种生物种群在某个环境中繁殖和死亡时,可以通过建立一元二次方程来分析种群的数量和时间的关系。
这对于生物保护和生态平衡的研究具有重要意义。
一元二次方程是一种强大的工具,可以在许多实际问题的建模和求解中发挥重要作用。
通过学习和应用一元二次方程,我们可以更好地理解和解决实际问题,提高数学和科学的应用能力。
一元二次方程实际问题与一元二次方程
一元二次方程实际问题与一元二次方程一元二次方程是我们在代数学中常见的一种形式,它可以用来解决各种实际问题。
一元二次方程的一般形式为ax^2 + bx + c = 0,其中a、b、c分别为方程中的系数。
通过求解一元二次方程,我们可以得到方程的根,进而解决与方程相关的实际问题。
举一个关于一元二次方程的实际问题:假设一个物体自由下落,经过t秒后的高度为h米。
根据物体自由下落的运动规律,物体的高度与时间之间的关系可以表示为h = -4.9t^2 + v0t + h0,其中v0为物体的初始速度,h0为物体的初始高度。
如果我们知道物体的初始高度为10米,初始速度为0,要求物体落地时的高度为0,即求解方程-4.9t^2 + 10 = 0。
通过解一元二次方程-4.9t^2 + 10 = 0,我们可以得到物体落地时的时间t。
进而可以计算出物体自由落体到达地面时的速度、加速度等信息,为实际问题的分析提供依据。
另一个实际问题是关于二次方程的面积问题。
假设有一个矩形的面积为60平方米,且长比宽多5米。
我们可以建立方程表示这个矩形的长和宽,从而求解矩形的长和宽。
设矩形的长为x米,则宽为x-5米,根据矩形的面积公式面积=长*宽,可以得到方程x(x-5) = 60。
通过解一元二次方程x(x-5) = 60,我们可以得到矩形的长和宽,进而可以计算出矩形的周长、对角线长等信息,为实际问题的解决提供依据。
总的来说,一元二次方程在解决实际问题时具有重要的应用价值,通过建立方程、求解方程,我们可以得到问题的解决方案,为实际问题的分析和解决提供数学支持。
通过掌握一元二次方程的解法和应用,我们可以更好地理解和应用代数学知识,提高问题解决的能力和水平。
《实际问题与一元二次方程》的说课稿(通用15篇)
《实际问题与一元二次方程》的说课稿〔通用15篇〕篇1:《实际问题与一元二次方程》说课稿今天我说课的内容是人教版初中数学九年级上册第二十二章、第22.3节《实际问题与一元二次方程》的第四课时实验与探究。
它是继传播问题、百分率问题、长宽比例问题这几个根本问题的学习后的探究活动课,对于本节课我将从教材分析^p 与学生现实分析^p 、教学目的分析^p ,教法确实定与学法指导,教学过程这四个方面加以阐述。
(一)教材分析^p 与学生现实分析^p一元二次方程是中学数学的主要内容,在初中数学中占有重要地位,其中一元二次方程的实际应用在初中数学应用问题中极具代表性,它是一元一次方程应用的继续,又是二次函数学习的根底,它是研究现实世界数量关系和变化规律的重要模型。
本节课以一元二次方程解决的实际问题为载体,通过对它的进一步学习和研究表达数学建模的过程帮助学生增强应用认识。
一元二次方程解实际问题的应用相当广泛,在几何、物理及其它学科中都有应用,因此它成为了初中数学学习的重点。
这种应用的广泛性能激发学生学习数学的兴趣和热情,能让学生体会到学数学、做数学、用数学的快乐,本节课主要侧重于一元二次方程在几何方面的应用大量事实说明,学生解应用题最大的难点是不会将实际问题提炼为数学问题,而列一元二次方程解决实际问题的数量关系比可以用一元一次方程解实际问题的数量关系要复杂一些。
对于初中学生来说他们比拟缺乏社会生活经历,搜集信息处理信息的才能较弱,这就构成了本节课的难点。
〔二〕数学新课程标准要求:人人学有价值的数学,人人都获得必需的数学,不同的人在数学上得到不同的开展。
我根据新课标对方程的详细要求和初三学生的认知的特点,确定了如下教学目的的:1、知识与技能:能根据问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界某些问题的一个有效的数学模型。
以一元二次方程解决实际问题为载体,加强学生对数学建模的根本方法的掌握。
2、过程与方法:经历将实际问题抽象为数学问题的过程,探究问题中的数量关系,并能运用一元二次方程对之进展描绘。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
22.3 实际问题与一元二次方程(1)
教学内容
由“倍数关系”等问题建立数学模型,并通过配方法或公式法或分解因式法解决实际问题.
教学目标
掌握用“倍数关系”建立数学模型,并利用它解决一些具体问题.
通过复习二元一次方程组等建立数学模型,并利用它解决实际问题,引入用“倍数关系”建立数学模型,并利用它解决实际问题.
重难点关键
1.重点:用“倍数关系”建立数学模型
2.难点与关键:用“倍数关系”建立数学模型
教学过程
一、复习引入
(学生活动)问题1:列方程解应用题
下表是某一周甲、乙两种股票每天每股的收盘价(收盘价:股票每天交易结果时的价格):
某人在这周内持有若干甲、乙两种股票,若按照两种股票每天的收盘价计算(不计手续费、税费等),则在他帐户上,星期二比星期一增加200元,•星期三比星期二增加1300元,这人持有的甲、乙股票各多少股?
老师点评分析:一般用直接设元,即问什么就设什么,即设这人持有的甲、乙股票各x、y张,由于从表中知道每天每股的收盘价,因此,两种股票当天的帐户总数就是x或y 乘以相应的每天每股的收盘价,再根据已知的等量关系;星期二比星期一增加200元,星期三比星期二增加1300元,便可列出等式.
解:设这人持有的甲、乙股票各x、y张.
则
0.5(0.2)200
0.40.61300
x y
x y
+-=
⎧
⎨
+=
⎩
解得
1000(
1500(
x
y
=
⎧
⎨
=
⎩
股)
股)
答:(略)
二、探索新知
上面这道题大家都做得很好,这是一种利用二元一次方程组的数量关系建立的数学模型,那么还有没有利用其它形式,也就是利用我们前面所学过的一元二次方程建立数学模型解应用题呢?请同学们完成下面问题.
(学生活动)问题2:某工厂第一季度的一月份生产电视机是1万台,第一季度生产电视机的总台数是3.31万台,求二月份、三月份生产电视机平均增长的百分率是多少?
老师点评分析:直接假设二月份、三月份生产电视机平均增长率为x.•因为一月份是1万台,那么二月份应是(1+x)台,三月份应是在二月份的基础上以二月份比一月份增长的同样“倍数”增长,即(1+x)+(1+x)x=(1+x)2,那么就很容易从第一季度总台数列出等式.
解:设二月份、三月份生产电视机平均增长的百分率为x,则1+(1+x)+(1+x)2•=3.31 去括号:1+1+x+1+2x+x2=3.31
整理,得:x2+3x-0.31=0
解得:x=10%
答:(略)
以上这一道题与我们以前所学的一元一次、二元一次方程(组)、分式方程等为背景建立数学模型是一样的,而我们借助的是一元二次方程为背景建立数学模型来分析实际问题和解决问题的类型.
例1.某电脑公司2001年的各项经营中,一月份的营业额为200万元,一月、•二月、三月的营业额共950万元,如果平均每月营业额的增长率相同,求这个增长率.分析:设这个增长率为x,由一月份的营业额就可列出用x表示的二、三月份的营业额,又由三月份的总营业额列出等量关系.
解:设平均增长率为x
则200+200(1+x)+200(1+x)2=950
整理,得:x2+3x-1.75=0
解得:x=50%
答:所求的增长率为50%.
三、巩固练习
(1)某林场现有木材a立方米,预计在今后两年内年平均增长p%,那么两年后该林场有木材多少立方米?
(2)某化工厂今年一月份生产化工原料15万吨,通过优化管理,产量逐年上升,第一季度共生产化工原料60万吨,设二、三月份平均增长的百分率相同,均为x,可列出方程为__________.
四、应用拓展
例2.某人将2000元人民币按一年定期存入银行,到期后支取1000元用于购物,剩下的1000元及应得利息又全部按一年定期存入银行,若存款的利率不变,到期后本金和利息共1320元,求这种存款方式的年利率.
分析:设这种存款方式的年利率为x,第一次存2000元取1000元,剩下的本金和利息是1000+2000x·80%;第二次存,本金就变为1000+2000x·80%,其它依此类推.解:设这种存款方式的年利率为x
则:1000+2000x·80%+(1000+2000x·8%)x·80%=1320
整理,得:1280x2+800x+1600x=320,即8x2+15x-2=0
解得:x1=-2(不符,舍去),x2=1
8
=0.125=12.5%
答:所求的年利率是12.5%.
五、归纳小结
本节课应掌握:
利用“倍数关系”建立关于一元二次方程的数学模型,并利用恰当方法解它.
六、布置作业
1.教材P 53 复习巩固1 综合运用1.
2.选用作业设计.
作业设计
一、选择题
1.2005年一月份越南发生禽流感的养鸡场100家,后来二、•三月份新发生禽流感的养鸡场共250家,设二、三月份平均每月禽流感的感染率为x ,依题意列出的方程是( ).
A .100(1+x )2=250
B .100(1+x )+100(1+x )2=250
C .100(1-x )2=250
D .100(1+x )2
2.一台电视机成本价为a 元,销售价比成本价增加25%,因库存积压,•所以就按销售价的70%出售,那么每台售价为( ).
A .(1+25%)(1+70%)a 元
B .70%(1+25%)a 元
C .(1+25%)(1-70%)a 元
D .(1+25%+70%)a 元
3.某商场的标价比成本高p%,当该商品降价出售时,为了不亏损成本,•售价的折扣(即降低的百分数)不得超过d%,则d 可用p 表示为( ).
A .100p p +
B .p
C .1001000p p -
D .100100p p
+ 二、填空题
1.某农户的粮食产量,平均每年的增长率为x ,第一年的产量为6万kg ,•第二年的产量为_______kg ,第三年的产量为_______,三年总产量为_______.
2.某糖厂2002年食糖产量为at ,如果在以后两年平均增长的百分率为x ,•那么预计2004年的产量将是________.
3.•我国政府为了解决老百姓看病难的问题,•决定下调药品价格,•某种药品在1999年涨价30%•后,•2001•年降价70%•至a•元,•则这种药品在1999•年涨价前价格是__________.
三、综合提高题
1.为了响应国家“退耕还林”,改变我省水土流失的严重现状,2000年我省某地退耕还林1600亩,计划到2002年一年退耕还林1936亩,问这两年平均每年退耕还林的平均增长率2.洛阳东方红拖拉机厂一月份生产甲、乙两种新型拖拉机,其中乙型16台,•从二月份起,甲型每月增产10台,乙型每月按相同的增长率逐年递增,又知二月份甲、乙两型的产量之比是3:2,三月份甲、乙两型产量之和为65台,•求乙型拖拉机每月的增长率及甲型拖拉机一月份的产量.
3.某商场于第一年初投入50万元进行商品经营,•以后每年年终将当年获得的利润与当年年初投入的资金相加所得的总资金,作为下一年年初投入的资金继续进行经营.(1)如果第一年的年获利率为p,那么第一年年终的总资金是多少万元?(•用代数式
来表示)(注:年获利率=
年利润
年初投入资金
×100%)
(2)如果第二年的年获利率多10个百分点(即第二年的年获利率是第一年的年获利率与10%的和),第二年年终的总资金为66万元,求第一年的年获利率.
答案:
一、1.B 2.B 3.D
二、1.6(1+x)6(1+x)26+6(1+x)+6(1+x)2
2.a(1+x)2t
3.10039
a 三、1.平均增长率为x ,则1600(1+x )2=1936,x=10%
2.设乙型增长率为x ,甲型一月份产量为y :
则210316(1)2(20)16(1)65y x y x +⎧=⎪+⎨⎪+++=⎩
224141632290y x x y x =+⎧⎨++-=⎩ 即16x 2+56x-15=0,解得x=14
=25%,y=20(台) 3.(1)第一年年终总资金=50(1+P )
(2)50(1+P )(1+P+10%)=66,整理得:P 2+2.1P-0.22=0,解得P=10%。