湖北省武汉市部分学校2019-2020学年度第一学期九年级上册数学元月调考模拟(2)测试题含答案解析
武汉市部分学校2019-2020学年度元月调考九年级英语试题(含答案)
2019〜2020学年度武汉市部分学校九年级质量检测英语试卷亲爱的同学,在你答题前,请认真阅读下面的注意事项:1.本试卷由第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分组成。全卷共10页,七大题,满分120分。考试用时120分钟。2.答题前,请将你的姓名、准考证号填写在“答题卡”相应位置,并在“答题卡”背面左上角填写姓名和座位号。3.答第Ⅰ卷(选择题)时,选出每小题答案后,用2B铅笔把“答题卡”上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案。答在“试卷”上无效。4.答第Ⅱ卷(非选择题)时,答案用0.5毫米黑色笔迹签字笔书写在“答题卡”上。答在“试卷”上无效。5.认真阅读答题卡上的注意事项。预祝你取得优异成绩!第Ⅰ卷(选择题共85分)第一部分听力部分一、听力测试部分(共三节,满分25分)第一节(共5小题;每小题1分,满分5分)听下面5个问题,每个问题后有三个答语,从题中所给的A、B、C三个选项中选出最佳选项。
听完每个问题后,你都有5秒钟的时间来作答和阅读下一小题。
每小题仅读一遍。
1.A.I like it. B.So late. C.By school bus.2.A.He’s14. B.This Friday. C.A big cake.3.A.Clean the garden. B.With my father. C.To the East Lake.4.A.To make a plan. B.Mary’s idea. C.It’s a hard job.5.A.Very expensive. B.The blue one. C.On both sides.第二节(共7小题,每小题1分,满分7分)听下面7段对话,每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项。
听完每段对话后,你都有10秒钟的时间来作答和阅读下一小题。
每个对话仅读一遍。
6.Where are most probably the two speakers?A.At a swimming pool.B.In a library.C.At a clothing store.7.What can we know about Bill?A.He got seriously hurt.B.He broke his feet.C.He tried to slip on the floor.8.What are they mainly talking about?A.A job.B.A person.C.A book.9.What does the woman mean?A.She will give a talk.B.Jackson is ready.C.Jackson is busy now.10.How is the woman now?A.Quite alright.B.A little better.C.Even worse.11.When will the bus reach the town?A.In about30minutes.B.In about40minutes.C.In about70minutes.12.What will Tim do tonight?A.To go to a movie.B.To prepare for an exam.C.To borrow some materials.第三节(共13小题,每小题1分,满分13分)听下面4段对话,每段对话后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项。
2016年武汉市元月调考九年级数学试卷(答案)
武汉市部分学校九年级元月调研测试数学试卷一、选择题(共10小题,每小题3分,共30分)1.将方程x 2-8x =10化为一元二次方程的一般形式,其中二次项系数为1,一次项系数、常数项分别是( )A .-8、-10B .-8、10C .8、-10D .8、10 2.如图汽车标志中不是中心对称图形的是( )A .B .C .D .3.袋子中装有10个黑球、1个白球,它们除颜色外无其他差别,随机从袋子中摸出一个球,则( ) A .这个球一定是黑球 B .摸到黑球、白球的可能性的大小一样 C .这个球可能是白球 D .事先能确定摸到什么颜色的球 4.抛物线y =-3(x -1)2-2的对称轴是( ) A .x =1 B .x =-1 C .x =2 D .x =-25.某十字路口的交通信号灯每分钟绿灯亮30秒,红灯亮25秒,黄灯亮5秒.当你抬头看信号灯时,是绿灯的概率为( )A .121 B .61 C .125 D .21 6.如图,四边形ABCD 为⊙O 的内接四边形,已知∠BOD =100°, 则∠BCD 的度数为( ) A .50° B .80° C .100° D .130°7.圆的直径为10 cm ,如果点P 到圆心O 的距离是d ,则( ) A .当d =8 cm 时,点P 在⊙O 内 B .当d =10 cm 时,点P 在⊙O 上 C .当d =5 cm 时,点P 在⊙O 上 D .当d =6 cm 时,点P 在⊙O 内8.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是13,则每个支干长出( ) A .2根小分支 B .3根小分支 C .4根小分支 D .5根小分支 9.关于x 的方程(m -2)x 2+2x +1=0有实数根,则m 的取值范围是( ) A .m ≤3 B .m ≥3 C .m ≤3且m ≠2 D .m <310.如图,扇形OAB 的圆心角的度数为120°,半径长为4,P 为弧AB 上的动点,PM ⊥OA ,PN ⊥OB ,垂足分别为M 、N ,D 是△PMN 的外心.当点P 运动的过程中,点M 、N 分别在半径上作相应运动,从点N 离开点O 时起,到点M 到达点O 时止,点D 运动的路径长为( ) A .π32B .πC .2D .32二、填空题(本大题共6个小题,每小题3分,共18分)11.在平面直角坐标系中,点A (-3,2)关于原点对称点的坐标为__________12.如图,转盘中8个扇形的面积都相等,任意转动转盘1次.当转盘停止转动时,指针指向大于5的数的概率为__________13.某村种的水稻前年平均每公顷产7 200 kg ,今年平均每公顷产8 450 kg .设这两年该村水稻每公顷产量的年平均增长率为x ,根据题意,所列方程为________________________14.在直角坐标系中,将抛物线y =-x 2-2x 先向下平移一个单位,再向右平移一个单位,所得新抛物线的解析式为____________________15.如图,要拧开一个边长为a =12 mm 的六角形螺帽,扳手张开的开口b 至少要________mm 16.我们把a 、b 、c 三个数的中位数记作Z |a ,b ,c |,直线y =kx +21(k >0)与函数y =Z |x 2-1,x +1,-x +1|的图象有且只有2个交点,则k 的取值为__________ 三、解答题(共8题,共72分)17.(本题8分)已知3是一元二次方程x 2-2x +a =0的一个根,求a 的值和方程的另一根18.(本题8分)有6张看上去无差别的卡片,上面分别写着1、2、3、4、5、6(1) 一次性随机抽取2张卡片,用列表或画树状图的方法求出“两张卡片上的数都是偶数”的概率(2) 随机摸取1张后,放回并混在一起,再随机抽取1张,直接写出“第二次取出的数字小于第一次取出的数字”的概率19.(本题8分)如图,AB 为⊙O 的直径,C 为⊙O 上一点,AD 和过点C 的切线互相垂直,垂足为D ,AD 交⊙O 于点E.(1) 求证:AC 平分∠DAB ;(2) 连接CE ,若CE =6,AC =8,直接写出⊙O 直径的长20.(本题8分)如图,正方形ABCD和直角△ABE,∠AEB=90°,将△ABE绕点O旋转180°得到△CDF (1) 在图中画出点O和△CDF,并简要说明作图过程。
湖北省武汉市江夏区第一中学2023-2024学年九年级(上)期末数学试卷(元月调考)(含答案)
2023-2024学年湖北省武汉市江夏一中九年级(上)期末数学试卷(元月调考)一、选择题(共10小题,每小题3分,共30分)下列各题中有且只有一个正确答案,请在答题卡上将正确答案的标号涂黑.1.(3分)抛掷一枚质地均匀的硬币,落地后正面朝上,这个事件是( )A.必然事件B.不可能事件C.随机事件D.确定性事件2.(3分)下列图形是中心对称图形的是( )A.B.C.D.3.(3分)⊙O的半径是5cm,圆心O到直线a的距离为8cm,直线a与⊙O的公共点个数是( )A.0B.1C.2D.1或24.(3分)解一元二次方程x2﹣6x﹣4=0,配方后得到(x﹣3)2=p,则p的值是( )A.13B.9C.5D.45.(3分)下列一元二次方程有两个互为倒数的实数根的是( )A.2x2﹣3x+1=0B.x2﹣x+1=0C.x2+x﹣1=0D.x2﹣3x+1=06.(3分)已知点A(x1,y1),B(x2,y2),C(x3,y3)在抛物线y=x2+2x﹣3上.当x1<﹣3,﹣1<x2<0,0<x3<1时,y1,y2,y3三者之间的大小关系是( )A.y1<y2<y3B.y2<y3<y1C.y3<y1<y2D.y2<y1<y3 7.(3分)下表给出了二次函数y=ax2+bx+c的自变量x与函数值y的部分对应值:x…1 1.1 1.2 1.3 1.4…y…﹣1﹣0.67﹣0.290.140.62…那么关于x的方程ax2+bx+c=0的一个根的近似值可能是( )A.1.07B.1.17C.1.27D.1.378.(3分)甲口袋中装有2张卡片,它们分别写有汉字“数”、“学”;乙、丙口袋中各装有3张卡片,它们分别写有汉字“数”、“学”、“美”.从这三个口袋中各随机取出1张卡片,取出的3张卡片恰好有“数”、“学”、“美”三个字的概率是( )A.B.C.D.9.(3分)如图,在△ABC中,∠BAC=64°,将△ABC绕顶点A顺时针旋转,得到△ADE.若点D恰好落在边BC上,且AE∥BC,则旋转角的大小是( )A.51°B.52°C.53°D.54°10.(3分)如图,从一张圆形纸片上剪出一个小圆形和一个扇形分别作为圆锥的底面和侧面,其中小圆的直径是大圆的半径.下列剪法恰好能配成一个圆锥的是( )A.B.C.D.二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答题卡指定的位置.11.(3分)写出一个两根是互为相反数的一元二次方程 .12.(3分)如图,阴影部分是分别以正方形ABCD的顶点和中心为圆心,以正方形边长的一半为半径作弧形成的封闭图形.在正方形ABCD上做随机投针试验,针头落在阴影部分区域内的概率是 .13.(3分)某款“不倒翁”(图1)的主视图是图2,PA,PB分别与所在圆相切于点A,B.若该圆半径是18cm,∠P=50°,则的长是 cm.14.(3分)《九章算术》第三章“衰分”介绍了比例分配问题,“衰分”是按比例递减分配的意思,通常称递减的比例为“衰分比”.例如:已知A,B,C三人分配奖金的衰分比为10%,若A分得奖金1000元,则B,C所分得奖金分别为900元和810元.某科研所三位技术人员甲、乙、丙攻关成功,共获得奖金175万元,甲、乙、丙按照一定的“衰分比”分配奖金,若甲分得奖金100万元,则“衰分比”是 .15.(3分)已知抛物线y=ax2+bx+c(a>0)与x轴交于点(m,0),(2,0),其中0<m<1.下列结论:①bc>0;②2b+3c<0;③不等式的解集为0<x<2;④若关于x的方程a(x﹣m)(x﹣2)=﹣1有实数根,则b2﹣4ac≥4a.其中正确的是 .(填写序号)16.(3分)如图是某游乐场一个直径为50m的圆形摩天轮,最高点距离地面55m,其旋转一周需要12分钟.圆周上座舱P距离地面50m处,逆时针旋转5分钟后,距离地面的高度是 m(结果根据“四舍五入”法精确到0.1).(参考数据:≈1.732)三、解答题(共8小题,共72分)17.(8分)关于x的一元二次方程x2+bx﹣12=0有一个根是x=2,求b的值及方程的另一个根.18.(8分)如图,在△ABC中,D是BC的中点.(1)画出△ABD关于点D对称的图形;(2)若AB=6,AD=4,AC=10,求证:∠BAD=90°.19.(8分)一个不透明的布袋中装有红、白两种颜色的袜子各一双,它们除颜色外其余都相同.(1)从布袋中随机摸出一只袜子,直接写出颜色是白色的概率;(2)用列表或画树状图法,求从布袋中随机一次摸出两只袜子恰好是同色的概率.20.(8分)如图,A,B,C,D是⊙O上四点,AC=AB.(1)如图(1),∠BAC=60°,BD是直径,BD交AC于点E.若BD=d,先用含字母d的式子直接表示CD和DE的长,再比较CD+DE与BE之间的大小;(2)如图(2),过点A作AE⊥BD,垂足为E.若CD=3,DE=1,求BE的长.21.(8分)用无刻度的直尺完成下列画图.(1)如图(1),△ACD的三个顶点在⊙O上,AC=AD,∠CAD=36°,F是AC的中点.先分别画出CD,AD的中点G,H,再画⊙O的内接正五边形ABCDE;(2)如图(2),正五边形ABCDE五个顶点在⊙O上,过点A画⊙O的切线AP.22.(10分)某一抛物线形隧道,一侧建有垂直于地面的隔离墙,其横截面如图所示,并建立平面直角坐标系.已知抛物线经过(0,3),,三点.(1)求抛物线的解析式(不考虑自变量的取值范围);(2)有一辆高5m,顶部宽4m的工程车要通过该隧道,该车能否正常通过?并说明理由;(3)现准备在隧道上A处安装一个直角形钢架BAC,对隧道进行维修.B,C两点分别在隔离墙和地面上,且AB与隔离墙垂直,AC与地面垂直,求钢架BAC的最大长度.23.(10分)在四边形ABCD中,AD∥BC,E是AB上一动点(不与点B重合),连接CE,DE.(1)如图(1),AB=BC,∠ABC=∠DCE=60°,求证:AD=BE.(2)如图(2),CD=ED,∠ABC=∠DCE=45°.①通过特例可以猜想一般结论.请你画出一个符合条件的特殊图形,猜想AD与BE的数量关系;②在一般情形下,证明你的猜想.24.(12分)如图(1),抛物线L1:y=x2﹣6x+c与x轴交于A,B两点,且AB=4.将抛物线L1向左平移a(a>0)个单位得到抛物线L2,C是抛物线L2与y轴的交点.(1)求c的值;(2)过点C作射线CD∥x轴,交抛物线L1于点D,E两点,点D在点E的左侧.若DE =2CD,直接写出a的值;(3)如图(2),若C是抛物线L2的顶点,直线y=mx与抛物线L2交于F,G两点,直线y=nx分别交直线CF,CG于点M,N.若OM=ON,试探究m与n的数量关系.参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)下列各题中有且只有一个正确答案,请在答题卡上将正确答案的标号涂黑.1.(3分)抛掷一枚质地均匀的硬币,落地后正面朝上,这个事件是( )A.必然事件B.不可能事件C.随机事件D.确定性事件【解答】解:硬币落地后可能正面朝上,也可能反面朝上,这个事件是随机事件,故选:C.2.(3分)下列图形是中心对称图形的是( )A.B.C.D.【解答】解:选项A、B、C均不能找到一个点,使图形绕某一点旋转180°后与原来的图形重合,所以不是中心对称图形;选项D能找到一个点,使图形绕某一点旋转180°后与原来的图形重合,所以是中心对称图形;故选:D.3.(3分)⊙O的半径是5cm,圆心O到直线a的距离为8cm,直线a与⊙O的公共点个数是( )A.0B.1C.2D.1或2【解答】解:∵⊙O的半径为5cm,点O到直线a的距离为8cm,5<8,∴⊙O与直线a的位置关系是相离,直线a与⊙O的公共点个数是0个,故选:A.4.(3分)解一元二次方程x2﹣6x﹣4=0,配方后得到(x﹣3)2=p,则p的值是( )A.13B.9C.5D.4【解答】解:∵x2﹣6x﹣4=0,∴x2﹣6x=4,则x2﹣6x+9=4+9,即(x﹣3)2=13,∴p=13,故选:A.5.(3分)下列一元二次方程有两个互为倒数的实数根的是( )A.2x2﹣3x+1=0B.x2﹣x+1=0C.x2+x﹣1=0D.x2﹣3x+1=0【解答】解:A、∵在2x2﹣3x+1=0中,Δ=(﹣3)2﹣4×2×1=1>0,∴该方程有两个不相等的实数根,∵=,∴该方程的两个实数根不是互为倒数;故选项A不合题意;B、在方程x2﹣x+1=0中,Δ=(﹣1)2﹣4×1×1=﹣3<0,故选项B不合题意;∴该方程有两个相等的实数根;C、∵在方程x2+x﹣1=0中,Δ=12﹣4×1×(﹣1)=5>0,∴该方程有两个不相等的实数根,∵=﹣1,∴该方程的两个实数根不是互为倒数;故选项C不合题意;D、∵在方程x2﹣3x+1=0中,Δ=(﹣3)2﹣4×1×1=5>0,∴该方程有两个不相等的实数根,∵=1,∴该方程的两个实数根是互为倒数;故选项D符合题意;故选:D.6.(3分)已知点A(x1,y1),B(x2,y2),C(x3,y3)在抛物线y=x2+2x﹣3上.当x1<﹣3,﹣1<x2<0,0<x3<1时,y1,y2,y3三者之间的大小关系是( )A.y1<y2<y3B.y2<y3<y1C.y3<y1<y2D.y2<y1<y3【解答】解:∵抛物线y=x2+2x﹣3=(x+1)2﹣4,∴抛物线开口向上,对称轴x=﹣1,顶点坐标为(﹣1,﹣4),当y=0时,(x+1)2﹣4=0,解得x=1或x=﹣3,∴抛物线与x轴的两个交点坐标为:(1,0),(﹣3,0),∴x1<﹣3,﹣1<x2<0,0<x3<1,∴y2<y3<y1,故选:B.7.(3分)下表给出了二次函数y=ax2+bx+c的自变量x与函数值y的部分对应值:x…1 1.1 1.2 1.3 1.4…y…﹣1﹣0.67﹣0.290.140.62…那么关于x的方程ax2+bx+c=0的一个根的近似值可能是( )A.1.07B.1.17C.1.27D.1.37【解答】解:∵x=1.2时,y=ax2+bx+c=﹣0.29;x=1.3时,y=ax2+bx+c=0.14;∴抛物线y=ax2+bx+c与x轴的一个交点在(1.2,0)和点(1.3,0)之间,且更靠近点(1.3,0),∴方程ax2+bx+c=0有一个根约为1.27.故选:C.8.(3分)甲口袋中装有2张卡片,它们分别写有汉字“数”、“学”;乙、丙口袋中各装有3张卡片,它们分别写有汉字“数”、“学”、“美”.从这三个口袋中各随机取出1张卡片,取出的3张卡片恰好有“数”、“学”、“美”三个字的概率是( )A.B.C.D.【解答】解:画树状图如下:共有18种等可能的结果,其中取出的3张卡片恰好有“数”、“学”、“美”三个字的结果有:(数,学,美),(数,美,学),(学,数,美),(学,美,数),共4种,∴取出的3张卡片恰好有“数”、“学”、“美”三个字的概率为=.故选:C.9.(3分)如图,在△ABC中,∠BAC=64°,将△ABC绕顶点A顺时针旋转,得到△ADE.若点D恰好落在边BC上,且AE∥BC,则旋转角的大小是( )A.51°B.52°C.53°D.54°【解答】解:∵将△ABC绕顶点A顺时针旋转,得到△ADE.∴AB=AD,∠BAC=∠DAE=64°,旋转角为∠BAD,∴∠ADB=∠ABD,∵AE∥BC,∴∠BDA=∠DAE=64°,∴∠BAD=180°﹣64°﹣64°=52°.故选:B.10.(3分)如图,从一张圆形纸片上剪出一个小圆形和一个扇形分别作为圆锥的底面和侧面,其中小圆的直径是大圆的半径.下列剪法恰好能配成一个圆锥的是( )A.B.C.D.【解答】解:设大圆的半径为R,则小圆的半径都为R,根据圆锥的底面圆的周长等于扇形弧长,只要图形中两者相等即可配成一个圆锥体,∴圆锥的底面圆的周长等于2πR=πR,扇形弧长为:=πR,∴n=180°,∴扇形圆心角等于180°,故只有D选项符合题意.故选:D.二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答题卡指定的位置.11.(3分)写出一个两根是互为相反数的一元二次方程 x2﹣1=0 .【解答】解:∵两根互为相反数的一元二次方程的一次系数为0,∴满足条件的一元二次方程为x2﹣1=0.故答案为x2﹣1=0.12.(3分)如图,阴影部分是分别以正方形ABCD的顶点和中心为圆心,以正方形边长的一半为半径作弧形成的封闭图形.在正方形ABCD上做随机投针试验,针头落在阴影部分区域内的概率是 .【解答】解:如图,令正方形的边长为2a,则阴影部分的面积为2××π•a2+2(a2﹣×π•a2)=πa2+2a2﹣πa2=2a2,所以针头落在阴影部分区域内的概率是=.故答案为:.13.(3分)某款“不倒翁”(图1)的主视图是图2,PA,PB分别与所在圆相切于点A,B.若该圆半径是18cm,∠P=50°,则的长是 23π cm.【解答】解:如图,设圆心为O,连接AO、BO,∵PA,PB分别与所在圆相切于点A,B,∴∠OAP=∠OBP=90°,∵∠P=50°,∴∠AOB=130°,∴优弧对应的圆心角为360°﹣130°=230°,∴优弧的长是:,故答案为:23π.14.(3分)《九章算术》第三章“衰分”介绍了比例分配问题,“衰分”是按比例递减分配的意思,通常称递减的比例为“衰分比”.例如:已知A,B,C三人分配奖金的衰分比为10%,若A分得奖金1000元,则B,C所分得奖金分别为900元和810元.某科研所三位技术人员甲、乙、丙攻关成功,共获得奖金175万元,甲、乙、丙按照一定的“衰分比”分配奖金,若甲分得奖金100万元,则“衰分比”是 50% .【解答】解:设“衰分比”是a.乙分配的奖金:100(1﹣a);丙分配的奖金:100(1﹣a)(1﹣a)∴100+100(1﹣a)+100(1﹣a)(1﹣a)=175,a=0.5或a=2.5(不符合题意,舍去),故答案为:50%.15.(3分)已知抛物线y=ax2+bx+c(a>0)与x轴交于点(m,0),(2,0),其中0<m<1.下列结论:①bc>0;②2b+3c<0;③不等式的解集为0<x<2;④若关于x的方程a(x﹣m)(x﹣2)=﹣1有实数根,则b2﹣4ac≥4a.其中正确的是 ②③④ .(填写序号)【解答】解:如图,∵a>0,抛物线与x轴交于点(m,0),(2,0),∴抛物线的对称轴在y的右侧,∴a、b异号,∴b<0,∴抛物线与y轴的交点在y轴的正半轴,∵c>0,∴bc<0,所以①错误;把(2,0)代入y=ax2+bx+c得4a+2b+c=0,∴a=,∵x=1时,y<0,∴a+b+c<0,∴+b+c<0,即2b+3c<0,所以②正确;∵抛物线与y轴的交点坐标为(0,c),直线y=﹣x+c经过点(0,c),(2,0),∴抛物线y=ax2+bx+c与直线y=﹣x+c相交于点(0,c),(2,0),∵0<x<2时,ax2+bx+c<﹣x+c,∴不等式ax2+bx+c<﹣x+c的解集为0<x<2,所以③正确;∵抛物线y=ax2+bx+c(a>0)与x轴交于点(m,0),(2,0),∴抛物线解析式可设为y=a(x﹣m)(x﹣2),当直线y=﹣1与抛物线y=a(x﹣m)(x﹣2)有交点时,关于x的方程a(x﹣m)(x﹣2)=﹣1有实数根,∴抛物线的顶点在直线y=﹣1的下方或在直线y=﹣1上,即≤﹣1,而a>0,∴b2﹣4ac≥4a,所以④正确.故答案为:②③④.16.(3分)如图是某游乐场一个直径为50m的圆形摩天轮,最高点距离地面55m,其旋转一周需要12分钟.圆周上座舱P距离地面50m处,逆时针旋转5分钟后,距离地面的高度是 21.2 m(结果根据“四舍五入”法精确到0.1).(参考数据:≈1.732)【解答】解:如图,设⊙O为摩天轮,MN为地面,AB为它的直径,且AB⊥MN于点C,由题意得:AB=50m,AC=55m,则BC=5m,OC=30m.圆周上座舱P距离地面50m处,逆时针旋转5分钟后旋转到点P′处.∵摩天轮旋转1周需要12分钟,∴每分钟旋转360°÷12=30°,∴5分钟转过150°,∴∠POP′=150°.连接OP,过点P作PE⊥MN于点E,则PE=50m,延长P′O交PE于点F,则∠POF =30°,过点O作OG⊥PE于点G,过点P作PD⊥AB于点D,过点P′作P′K⊥AB 于点K,P′H⊥MN于点H,∵OG⊥PE,AB⊥MN,PE⊥MN,∴四边形OCEG为矩形,∴EG=OC=30m,∴PG=PE﹣GE=50﹣0=20m.同理:四边形ODPG为矩形,∴OD=PG=20m,∴PD=OG==15m.过点F作FQ⊥OP于点Q,则FQ=OF,设FQ=k,则OF=2k,OQ=k,PQ=25﹣k,∵∠PQF=∠PGO=90°,∠FPQ=∠OPG,∴△PQF∽△PGO,∴,,∴,∴k=.∴OF=2k=.∴,∴PF=,∴FG=PG﹣PF=20﹣=,∵P′K⊥AB,OG⊥PE,AB∥PE,∴∠OP′K=∠FOG,∵∠P′KO=∠OGF=90°,∴△P′OK∽△OFG,∴,∴,∴OK=≈9.82m,∴CK=OC﹣OK=21.18≈21.2m.∵P′K⊥AB,P′H⊥MN,AB⊥MN于点C,∴四边形P′HCK为矩形,∴P′H=CK=21.2m,∴座舱P距离地面的高度是21.2m,故答案为:21.2.三、解答题(共8小题,共72分)17.(8分)关于x的一元二次方程x2+bx﹣12=0有一个根是x=2,求b的值及方程的另一个根.【解答】解:设方程的另一个根为t,根据根与系数的关系得2+t=﹣b,2t=﹣12,解得t=﹣6,b=4,即b的值为4,方程的另一个根为﹣6.18.(8分)如图,在△ABC中,D是BC的中点.(1)画出△ABD关于点D对称的图形;(2)若AB=6,AD=4,AC=10,求证:∠BAD=90°.【解答】(1)解:如图,△A'CD即为所求.(2)证明:∵△ABD与△A'CD关于点D对称,∴△ABD≌△A'CD,∴A'C=AB=6,A'D=AD=4,∠CA'D=∠BAD,∴AA'=8,∵AC=10,∴AC2=AA'2+A'C2,∴∠CA'D=90°,∴∠BAD=90°.19.(8分)一个不透明的布袋中装有红、白两种颜色的袜子各一双,它们除颜色外其余都相同.(1)从布袋中随机摸出一只袜子,直接写出颜色是白色的概率;(2)用列表或画树状图法,求从布袋中随机一次摸出两只袜子恰好是同色的概率.【解答】解:(1)由题意得,从布袋中随机摸出一只袜子,颜色是白色的概率是=.(2)列表如下:红红白白红(红,红)(红,白)(红,白)红(红,红)(红,白)(红,白)白(白,红)(白,红)(白,白)白(白,红)(白,红)(白,白)共有12种等可能的结果,其中从布袋中随机一次摸出两只袜子恰好是同色的结果有:(红,红),(红,红),(白,白),(白,白),共4种,∴从布袋中随机一次摸出两只袜子恰好是同色的概率为=.20.(8分)如图,A,B,C,D是⊙O上四点,AC=AB.(1)如图(1),∠BAC=60°,BD是直径,BD交AC于点E.若BD=d,先用含字母d的式子直接表示CD和DE的长,再比较CD+DE与BE之间的大小;(2)如图(2),过点A作AE⊥BD,垂足为E.若CD=3,DE=1,求BE的长.【解答】解:(1)∵∠BAC=60°,BD是直径,∴∠D=∠BAC=60°,∠BCD=90°,在Rt△BCD中,∠D=60°,BD=d,∴cos∠D=,sin∠D=,∴CD=BD•cos∠D=d•cos60°=,BC=BD•sin∠D=d•sin60°=,∵∠BAC=60°,AC=AB,∴△ABC为等边三角形,∴∠ACB=60°,∴∠CEB=180°﹣(∠ACB﹣∠CBD)=180°﹣(60°+30°)=90°,在Rt△BCE中,∠CBD=30°,BC=,∴cos∠CBD=,∴BE=BC•cos∠CBD=•cos30°=,∴DE=BD﹣BE=d﹣=,∴CD+DE=+=,∴CD+DE=BE;(2)过点A作AF⊥CD交CD的延长线于F,连接AD,如图所示:∴∠ABD=∠ACD,即∠ABE=∠ACF,∵AE⊥BD,AF⊥CD,∴∠AEB=∠F=90°,在△ABE和△ACF中,,∴△ABE≌△ACF(AAS),∴AE=AF,BD=CF,在Rt△ADE和Rt△ADF中,,∴Rt△ADE≌Rt△ADF(HL),∴DE=DF,∵CD=3,DE=1,∴CF=CD+DF=CD+DE=3+1=4,∴BE=CF=4.21.(8分)用无刻度的直尺完成下列画图.(1)如图(1),△ACD的三个顶点在⊙O上,AC=AD,∠CAD=36°,F是AC的中点.先分别画出CD,AD的中点G,H,再画⊙O的内接正五边形ABCDE;(2)如图(2),正五边形ABCDE五个顶点在⊙O上,过点A画⊙O的切线AP.【解答】解:(1)连接AO并延长交CD于G,连接DF交AG于K,连接CK并延长交AD于H,连接OF并延长交⊙O于B,连接并延长OH交⊙O于E,如图:点G即为CD中点,点H即为AD中点,五边形ABCDE即为⊙O的内接正五边形;理由:由圆和等腰三角形的对称性可知G为CD中点;∵F是AC中点,∴K为△ABC重心,∴H为AD中点;∵AC=AD,∠CAD=36°,∴∠ACD=∠ADC=72°,=,=72°,∵F为AC中点,H为AD中点;∴====72°,∴====,∴CD=AB=BC=AE=DE,∴五边形ABCDE即为⊙O的内接正五边形;(2)延长BA,DE交于M,连接OM交AE于N,连接BN,CE并延长交于P,过A,P 作直线AP,如图:直线AP即为所求;理由:由圆和正五边形的对称性可知,N为AE的中点,∵正五边形每个内角为108°,∴∠ABC=∠BCD=108°=∠CDE,∴∠ECD=(180°﹣108°)÷2=36°,∴∠BCE=72°,∴∠ABC+∠BCE=180°,∴AB∥CE,∴∠BAN=∠NEP=108°,∠ABN=∠EPN,∴△ABN≌△EPN(AAS),∴AB=PE,∴AE=AB=PE,∴∠EAP=∠EPA=(180°﹣108°)÷2=36°,∵∠OAB=∠OAE=108°÷2=54°,∴∠OAE+∠EAP=90°,∴OA⊥AP,∵OA是⊙O半径,∴直线AP是⊙O的切线.22.(10分)某一抛物线形隧道,一侧建有垂直于地面的隔离墙,其横截面如图所示,并建立平面直角坐标系.已知抛物线经过(0,3),,三点.(1)求抛物线的解析式(不考虑自变量的取值范围);(2)有一辆高5m,顶部宽4m的工程车要通过该隧道,该车能否正常通过?并说明理由;(3)现准备在隧道上A处安装一个直角形钢架BAC,对隧道进行维修.B,C两点分别在隔离墙和地面上,且AB与隔离墙垂直,AC与地面垂直,求钢架BAC的最大长度.【解答】解:(1)由题意,设抛物线的解析式为y=ax2+bx+c,∴.∴.∴抛物线的解析式为y=﹣x2+2x+3.(2)工程车不能正常通过.理由如下:∵工程车高5m,∴令y=5,即5=﹣x2+2x+3.∴x=3±.∴纵坐标为5时,两点的距离为3+﹣(3﹣)=2≈3.46<4.故高5m,顶部宽4m的工程车不能正常通过.(3)由题意,如图,设A(m,﹣m2+2m+3).当OB=3时,令y=3=﹣m2+2m+3,∴m=0或m=6.∴B(0,﹣m2+2m+3).∵B在墙面上,∴m≥6.由AB+AC=m﹣m2+2m+3=﹣m2+3m+3=﹣(m﹣)2+,又当m>时,(AB+AC)的值随m的增大而减小,∴当m=6时,(AB+AC)取最大值,最大值为9.∴钢架BAC的最大长度为9m.23.(10分)在四边形ABCD中,AD∥BC,E是AB上一动点(不与点B重合),连接CE,DE.(1)如图(1),AB=BC,∠ABC=∠DCE=60°,求证:AD=BE.(2)如图(2),CD=ED,∠ABC=∠DCE=45°.①通过特例可以猜想一般结论.请你画出一个符合条件的特殊图形,猜想AD与BE的数量关系;②在一般情形下,证明你的猜想.【解答】(1)证明:连接AC,∵AB=BC,∠ABC=60°,∴△ABC是等边三角形,∴BC=AC,∠ACB=60°,∵∠DCE=60°,∴∠BCE=∠ACD,∵AD∥BC,∴∠CAD=∠ACB=60°,∴∠CAD=∠ABC,∴△BCE≌△ACD(ASA),∴AD=BE;(2)①解:猜想:BE=AD,证明:连接AC,当AB⊥AC时,如图,∵∠ABC=45°,∴△ABC是等腰直角三角形,∴BC=AC,∴∠ACB=45°,∵∠DCE=45°,∴∠BCE=∠ACD,∵AD∥BC,∴∠CAD=∠ACB=45°,∴∠CAD=∠ABC,∴△BCE∽△ACD,∴,∴BE=AD;②证明:过点D作DF⊥AD,交BA的延长线于F,∵AD∥BC,∠ABC=∠DCE=45°.∴∠FAD=∠ABC=45°,∠CEB+∠BCE=45°.∴∠F=∠FAD=45°,∴∠ABC=∠F=45°,AD=FD,∵CD=ED,∠DCE=45°.∴∠CED=45°.∴∠CDE=90°,∠CEB+FED=135°,∴CE=ED,∠BCE=∠FED,∴△BCE∽△FED,∴,∴BE=FD,∵AD=FD,∴BE=AD.24.(12分)如图(1),抛物线L1:y=x2﹣6x+c与x轴交于A,B两点,且AB=4.将抛物线L1向左平移a(a>0)个单位得到抛物线L2,C是抛物线L2与y轴的交点.(1)求c的值;(2)过点C作射线CD∥x轴,交抛物线L1于点D,E两点,点D在点E的左侧.若DE =2CD,直接写出a的值;(3)如图(2),若C是抛物线L2的顶点,直线y=mx与抛物线L2交于F,G两点,直线y=nx分别交直线CF,CG于点M,N.若OM=ON,试探究m与n的数量关系.【解答】解:(1)当y=0时,x2﹣6x+c=0,∴x A+x B=6,x A•x B=c,∴AB==4,解得c=5;(2)∵c=5,∴抛物线L1的解析式为y=x2﹣6x+5,∵将抛物线L1向左平移a(a>0)个单位得到抛物线L2,∴抛物线L2的解析式为y=(x﹣3+a)2﹣4,∴C(0,a2﹣6a+5),∵CD∥x轴,∴D(3﹣,a2﹣6a+5),E(3+,a2﹣6a+5),∴DE=2,CD=3﹣,∵DE=2CD,∴2=6﹣2,解得a=或a=;(3)∵C是抛物线L2的顶点,∴3﹣a=0,解得a=3,∴抛物线L2的解析式为y=x2﹣4,设F(x F,﹣4),G(x G,﹣4),当x2﹣4=mx时,x2﹣mx﹣4=0,∴x F+x G=m,直线CF的解析式为y=x F x﹣4,直线CG的解析式为y=x G x﹣4,当x F x﹣4=nx时,M(,),当x G x﹣4=nx时,N(,),∵OM=ON,∴x F+x G=2n,∴m=2n.。
湖北省武汉市武昌区2019--2020学年中考数学模拟试卷(一)(含答案)
2020年湖北省武汉市武昌区中考数学模拟试卷(一)一.选择题(每题3分,满分30分)1.﹣的绝对值是()A.﹣2019 B.2019 C.﹣D.2.若代数式有意义,则x的取值范围是()A.x>﹣1且x≠1 B.x≥﹣1 C.x≠1 D.x≥﹣1且x≠1 3.下列事件中,属于必然事件的是()A.三角形的外心到三边的距离相等B.某射击运动员射击一次,命中靶心C.任意画一个三角形,其内角和是180°D.抛一枚硬币,落地后正面朝上4.下列图案中是中心对称图形但不是轴对称图形的是()A.B.C.D.5.下列四个立体图形中,左视图为长方形的()A.①③B.①④C.②③D.③④6.小明乘车从南充到成都,行车的速度v(km/h)和行车时间t(h)之间的函数图象是()A.B.C.D.7.已知点(﹣2,y1),(﹣1,y2),(1,y3)都在反比例函数y=的图象上,那么y1,y 2与y3的大小关系是()A.y3<y1<y2B.y3<y2<y1C.y1<y2<y3D.y1<y3<y28.如图,两个转盘中指针落在每个数字的机会均等.现在同时自由转动甲、乙两个转盘,转盘停止后,指针各自指向一个数字,用甲所指的数字作为横坐标x,乙所指的数字作为纵坐标y,则点(x,y)在反比例函数y=图象上的概率为()A.B.C.D.9.如图,已知一次函数y=ax+b与反比例函数y=图象交于M、N两点,则不等式ax+b >解集为()A.x>2或﹣1<x<0 B.﹣1<x<0C.﹣1<x<0或0<x<2 D.x>210.对于每个非零自然数n,抛物线y=x2﹣x+与x轴交于A n,B n两点,以A n Bn表示这两点间的距离,则A1B1+A2B2+A3B3+…+A2019B2019的值是()A.B.C.D.二.填空题(满分18分,每小题3分)11.算术平方根等于它本身的数是.12.某次数学测试,某班一个学习小组的六位同学的成绩如下:84、75、75、92、86、99,则这六位同学成绩的中位数是.13.计算:=.14.如图,在平面直角坐标系中,△ABC和△A′B′C′是以坐标原点O为位似中心的位似图形,且点B(3,1),B′(6,2),若点A′(5,6),则A的坐标为.15.四边形ABCD中,AB=BC=CD,∠ABC=60°,点E在AB上,∠AED=∠CEB,AD=5,DE+CE =,则BD的长为.16.已知:如图,四边形ABCD中,AD∥BC,AB=BC=4,∠B=60°,∠C=105°,点E为BC的中点,以CE为弦作圆,设该圆与四边形ABCD的一边的交点为P,若∠CPE=30°,则EP的长为.三.解答题17.(8分)计算:(﹣a2)3+a2•a3+a8÷(﹣a2)18.(8分)如图,要在长方形钢板ABCD的边AB上找一点E,使∠AEC=150°,应怎样确定点E的位置?为什么?19.(8分)重庆八中为了了解“校园文明监督岗”的值围情况,对全校各班级进行了抽样调查,过程如下:收集数据:从三个年级中随机抽取了20个班级,学校对各班的评分如下:92 71 89 82 69 82 96 83 77 8380 82 66 73 82 78 92 70 74 59整理、描述数据:按如下分数段整理、描述这两组样本数据:分数段x<60 60≤x<70 70≤x<80 80≤x<90 90≤x≤100 班级数 1 2 a8 b (说明:成绩90分及以上为优秀,80≤x<90分为良好,60≤x<80分为合格,60分以下为不合格)分析数据:样本数据的平均数、中位数、众数、极差如下表,绘制扇形统计图:平均数中位数众数极差79 c82 d请根据以上信息解答下列问题:(1)填空:a=,b=,d=,n=.(2)若我校共120个班级,估计得分为优秀的班级有多少个?(3)为调动班级积极性,决定制定一个奖励标准分,凡到达或超过这个标准分的班级都将受到奖励.如果要使得半数左右的班级都能获奖,奖励标准分应定为多少分?并简述其理由20.(8分)如图,在每个小正方形的边长均为1的方格纸中,其中端点A、B均在小正方形的顶点上.(1)在图中画出平行四边形ABCD,点C和点D均在小正方形的顶点上,且平行四边形ABCD的面积为12;(2)在图中画出以AB为腰的等腰直角△ABE,且点E在小正方形的顶点上;(3)连接DE,直接写出∠CDE的正切值.21.(8分)如图,在⊙O中,AB是⊙O的直径,F是弦AD的中点,连结OF并延长OF交⊙O 于点E,连结BE交AD于点G,延长AD至点C,使得GC=BC,连结BC.(1)求证:BC是⊙O的切线.(2)⊙O的半径为10,sin A=,求EG的长.22.(10分)某公司生产的一种商品其售价是成本的1.5倍,当售价降低5元时商品的利润率为25%.若不进行任何推广年销售量为1万件.为了获得更好的利益,公司准备拿出一定的资金做推广,根据经验,每年投入的推广费x万元时销售量y(万件)是x的二次函数:当x为1万元时,y是1.5(万件).当x为2万元时,y是1.8(万件).(1)求该商品每件的的成本与售价分别是多少元?(2)求出年利润与年推广费x的函数关系式;(3)如果投入的年推广告费为1万到3万元(包括1万和3万元),问推广费在什么范同内,公司获得的年利润随推广费的增大而增大?23.(10分)定义:连结菱形的一边中点与对边的两端点的线段把它分成三个三角形,如果其中有两个三角形相似,那么称这样的菱形为自相似菱形.(1)判断下列命题是真命题,还是假命题?①正方形是自相似菱形;②有一个内角为60°的菱形是自相似菱形.③如图1,若菱形ABCD是自相似菱形,∠ABC=α(0°<α<90°),E为BC中点,则在△ABE,△AED,△EDC中,相似的三角形只有△ABE与△AED.(2)如图2,菱形ABCD是自相似菱形,∠ABC是锐角,边长为4,E为BC中点.①求AE,DE的长;②AC,BD交于点O,求tan∠DBC的值.24.(12分)如图已知直线y=x+与抛物线y=ax2+bx+c相交于A(﹣1,0),B(4,m)两点,抛物线y=ax2+bx+c交y轴于点C(0,﹣),交x轴正半轴于D点,抛物线的顶点为M.(1)求抛物线的解析式;(2)设点P为直线AB下方的抛物线上一动点,当△PAB的面积最大时,求△PAB的面积及点P的坐标;(3)若点Q为x轴上一动点,点N在抛物线上且位于其对称轴右侧,当△QMN与△MAD 相似时,求N点的坐标.参考答案一.选择题 1.解:||=.故的绝对值是.故选:D .2.解:由题意得:x +1≥0,且x ﹣1≠0, 解得:x ≥﹣1,且x ≠1, 故选:D .3.解:A 、三角形的外心到三角形的三个顶点的距离相等,三角形的内心到三边的距离相等,只有三角形是等边三角形时才符合,故本选项不符合题意;B 、某射击运动员射击一次,命中靶心是随机事件,故本选项不符合题意;C 、三角形的内角和是180°,是必然事件,故本选项符合题意;D 、抛一枚硬币,落地后正面朝上,是随机事件,故本选项不符合题意;故选:C .4.解:A 、是中心对称图形,也是轴对称图形,不符合题意;B 、不是中心对称图形,是轴对称图形,不符合题意;C 、是中心对称图形,不是轴对称图形,符合题意;D 、不是轴对称图形,也不是中心对称图形,不符合题意.故选:C .5.解:正方体左视图为正方形,也属于长方形,球左视图为圆;圆锥左视图是等腰三角形;圆柱左视图是长方形, 故选:B .6.解:∵v =(t >0), ∴v 是t 的反比例函数, 故选:B .7.解:把点(﹣2,y 1),(﹣1,y 2),(1,y 3)分别代入y =得y 1=﹣=3,y 2=﹣=6,y 3=﹣=﹣6,所以y 3<y 1<y 2. 故选:A .8.解:树状图如图所示.由树状图知,则点(2,3)和(3,2)在反比例函数y =图象上, 所以点(x ,y )在反比例函数y =图象上的概率为=, 故选:B .9.解:由图可知,x >2或﹣1<x <0时,ax +b >. 故选:A .10.解:当y =0时,x 2﹣x +=0,(x ﹣)(x ﹣)=0, 解得x 1=,x 2=,∴A n ,B n 两点为(,0),(,0),∴A n B n =﹣,∴A 1B 1+A 2B 2+A 3B 3+…+A 2019B 2019=1﹣+﹣+﹣+…+﹣=1﹣ =.故选:D . 二.填空题11.解:算术平方根等于它本身的数是0和1.12.解:将这6位同学的成绩重新排列为75、75、84、86、92、99,所以这六位同学成绩的中位数是=85,故答案为:85.13.解:原式===1,故答案为:114.解:∵点B(3,1),B′(6,2),点A′(5,6),∴A的坐标为:(2.5,3).故答案为:(2.5,3).15.解:连接AC,延长DE至F,使EF=CE,作正三角形ADG,使B、G分别在AD两侧,连接AF、BF、BG,如图所示:∵∠AED=∠CEB,∠BEF=∠AED,∴∠BEF=∠AED=∠CEB,在△BEF和△BEC中,,∴△BEF≌△BEC(SAS),∴∠ABF=∠ABC=60°,BF=BC=AB,∴△ABF是等边三角形,∴AF=AB,∠BAF=60°,∵△ADG是等边三角形,∴∠ADG=∠DAG=60°=∠BAF,AG=AD=5,∴∠DAF=∠DAB+∠BAF=∠DAB+∠DAG=∠GAB,在△DAF和△GAB中,,∴△DAF≌△GAB(SAS),∴BG=DF=DE+EF=DE+CE=,∵AB=BC,∠ABC=60°,∴△ABC是等边三角形,∴AC=BC=DC,∠ACB=60°,∴点C是△ABD的外心,∴∠ADB =∠ACB =30°, ∴∠BDG =∠ADB +∠ADG =90°, ∴BD ===7;故答案为:7.16.解:如图,连接AC ,AE , ∵AB =BC =4,∠B =60°, ∴△ABC 是等边三角形, ∵点E 为BC 的中点,∴BE =CE =2,AE ⊥BC ,∠EAC =30°, ∴AC 是以CE 为弦的圆的直径, 设圆心为O ,当⊙O 与CD 边交于P 1,则∠EP 1C =30°, ∵∠ECP 1=105°, ∴∠P 1EC =45°, 过C 作CH ⊥P 1E 于H , ∴EH =CH =CE =,∴P 1H =HC =,∴P 1E =+;当⊙O 与AD 交于P 2,A (P 3), ∵AD ∥CE ,∴∠ECP 2=∠AP 2C =90°, ∴四边形AECP 2是矩形, ∴P 2E =AC =4,P 3E =P 1E =2,当⊙O 与AB 交于P 4,∵∠AP 4C =90°,∠EP 4C =30°,∴∠BP 4E =60°,∴△BP 4E 是等边三角形,∴P 4E =BE =2,综上所述,若∠CPE =30°,则EP 的长为或4或2或2, 故答案为:或4或2或2.三.解答题17.解:原式=﹣a 6+a 5﹣a 6=﹣2a 6+a 5.18.解:以CD 为始边,在长方形的内部,利用量角器作∠DCF =30°,射线CF 与AB 交于点E ,则点E 为所找的点;理由如下:如图所示:∵四边形ABCD 是长方形,∴AB ∥CD ,∴∠DCE +∠AEC =180°,∵∠DCE =∠DCF =30°,∴∠AEC =180°﹣∠DCE =180°﹣30°=150°.19.解:(1)由题意:a =6,b =3,d =96﹣59=37,=40%,n =40故答案为6,3,37,40.(2)120×=18(个),估计得分为优秀的班级有18个.(3)要使得半数左右的班级都能获奖,奖励标准分应定为81分.理由因为这组数据的中位数为81.20.解:(1)如图所示:四边形ABCD为所求;(2)△ABE即为所求;(3)设AE与CD交于F,∵AB∥CD,∠BAF=90°,∴∠AFD=∠BAF=90°,==AE•DF=3,∵S△ADE∵AE==2,∴DF=,∵平行四边形ABCD的面积为12,∴AF==,∴EF=AE﹣AF=,∴∠CDE的正切值===.21.(1)证明:连结OD,∵OA=OD,F是弦AD的中点,∴OF⊥AD,∴∠EFG=90°,∴∠E+∠FGE=90°,∵BC=GC,∴∠BGC=∠GBC,∵∠FGE=∠BGC,∴∠GBC=∠FGE,∵OE=OB,∴∠ABE=∠E,∴∠ABE+∠GBC=90°,∴∠ABC=90°,∴BC是⊙O的切线;(2)解:∵sin A=,OA=10,∴AF=8,OF=6,BC=GC=15,AC=25,∴AG=10,EF=4,∴FG=2,由勾股定理,得EG=2.22.解:(1)设该商品每件的的成本为a元,则售价为元1.5a元,根据题意,得1.5a﹣5﹣a=25%a,解得a=20,则1.5a=30,答:该商品每件的的成本与售价分别是20元、30元.(2)根据题意每年投入的推广费x万元时销售量y(万件)是x的二次函数,设y=ax2+bx+c∵不进行任何推广年销售量为1万件,即当x=0时,y=1(万件),当x为1万元时,y是1.5(万件).当x为2万元时,y是1.8(万件).∴解得所以销售量y与推广费x的函数解析式为y=﹣x2+x+1.所以设公司获得的年利润为w万元,答:年利润与年推广费x的函数关系式为w=10y=﹣x2+6x+10.(3)公司获得的年利润为w万元,根据题意,得w=10y﹣x=10(﹣x2+x+1)﹣x=﹣x2+5x+10=﹣(x﹣)2+∵1≤x≤3,∴当1≤x≤2.5时,w随x的增大而增大,答:推广费在1万元到2.5万元(包括1万元和2.5万元)时,公司获得的年利润随推广费的增大而增大.23.解:(1)①正方形是自相似菱形,是真命题;理由如下:如图3所示:∵四边形ABCD是正方形,点E是BC的中点,∴AB=CD,BE=CE,∠ABE=∠DCE=90°,在△ABE和△DCE中,,∴△ABE≌△DCE(SAS),∴△ABE∽△DCE,∴正方形是自相似菱形;②有一个内角为60°的菱形是自相似菱形,是假命题;理由如下:如图4所示:连接AC,∵四边形ABCD是菱形,∴AB=BC=CD,AD∥BC,AB∥CD,∵∠B=60°,∴△ABC是等边三角形,∠DCE=120°,∵点E是BC的中点,∴AE⊥BC,∴∠AEB=∠DAE=90°,∴只能△AEB与△DAE相似,∵AB∥CD,∴只能∠B=∠AED,若∠AED=∠B=60°,则∠CED=180°﹣90°﹣60°=30°,∴∠CDE=180°﹣120°﹣30°=30°,∴∠CED=∠CDE,∴CD=CE,不成立,∴有一个内角为60°的菱形不是自相似菱形;③若菱形ABCD是自相似菱形,∠ABC=α(0°<α<90°),E为BC中点,则在△ABE,△AED,△EDC中,相似的三角形只有△ABE与△AED,是真命题;理由如下:∵∠ABC=α(0°<α<90°),∴∠C>90°,且∠ABC+∠C=180°,△ABE与△EDC不能相似,同理△AED与△EDC也不能相似,∵四边形ABCD是菱形,∴AD∥BC,∴∠AEB=∠DAE,当∠AED=∠B时,△ABE∽△DEA,∴若菱形ABCD是自相似菱形,∠ABC=α(0°<α<90°),E为BC中点,则在△ABE,△AED,△EDC中,相似的三角形只有△ABE与△AED;(2)①∵菱形ABCD是自相似菱形,∠ABC是锐角,边长为4,E为BC中点,∴BE=2,AB=AD=4,由(1)③得:△ABE∽△DEA,∴==,∴AE2=BE•AD=2×4=8,∴AE=2,DE===4,②过E作EM⊥AD于M,过D作DN⊥BC于N,如图2所示:则四边形DMEN是矩形,∴DN=EM,DM=EN,∠M=∠N=90°,设AM=x,则EN=DM=x+4,由勾股定理得:EM2=DE2﹣DM2=AE2﹣AM2,即(4)2﹣(x+4)2=(2)2﹣x2,解得:x=1,∴AM=1,EN=DM=5,∴DN=EM===,在Rt△BDN中,∵BN=BE+EN=2+5=7,∴tan∠DBC==.24.解:(1)将点B(4,m)代入y=x+,∴m=,将点A(﹣1,0),B(4,),C(0,﹣)代入y=ax2+bx+c,解得a=,b=﹣1,c=﹣,∴函数解析式为y=x2﹣x﹣;(2)设P(n,n2﹣n﹣),则经过点P且与直线y=x+垂直的直线解析式为y=﹣2x+n2+n﹣,直线y=x+与其垂线的交点G(n2+n﹣,n2+n+),∴GP=(﹣n2+3n+4),当n=时,GP最大,此时△PAB的面积最大,∴P(,),∵AB=,PG=,∴△PAB的面积=××=;(3)∵M(1,﹣2),A(﹣1,0),D(3,0),∴AM=2,AB=4,MD=2,∴△MAD是等腰直角三角形,∵△QMN与△MAD相似,∴△QMN是等腰直角三角形,设N(t,t2﹣t﹣)①如图1,当MQ⊥QN时,N(3,0);②如图2,当QN⊥MN时,过点N作NR⊥x轴,过点M作MS⊥RN交于点S,∵QN=MN,∠QNM=90°,∴△MNS≌△NMS(AAS)∴t﹣1=﹣t2+t+,∴t=±,∴t>1,∴t=,∴N(,1﹣);③如图3,当QN⊥MQ时,过点Q作x轴的垂线,过点N作NS∥x轴,过点N作NR∥x轴,与过M点的垂线分别交于点S、R;∵QN=MQ,∠MQN=90°,∴△MQR≌△QNS(AAS),∴SQ=QR=2,∴t+2=1+t2﹣t﹣,∴t=5,∴N(5,6);④如图4,当MN⊥NQ时,过点M作MR⊥x轴,过点Q作QS⊥x轴,过点N作x轴的平行线,与两垂线交于点R、S;∵QN=MN,∠MNQ=90°,∴△MNR≌△NQS(AAS),∴SQ=RN,∴t2﹣t﹣=t﹣1,∴t=2±,∵t>1,∴t=2+,∴N(2+,1+);综上所述:N(3,0)或N(2+,1+)或N(5,6)或N(,1﹣).。
2022-2023学年度武汉市部分学校九年级调研考试数学试卷(word版)
2022-2023学年度武汉市部分学校九年级调研考试数学试卷一、选择题(共10小题,每小题3分,共30分)1.“守株待兔”这个事件是()A.随机事件B.确定性事件C.必然事件D.不可能事件2.下列图形是中心对称图形的是()3.解一元二次方程x2-2x-4=0,配方后正确的是()A.(x-1)2=3B.(x-1)2=4C.(x-1)2=5D.(x-2)2=84.已知一元二次方程x2+4x-1=0的两根分别为m,n,则mn-m-n的值是()A.5B.3C.-3D.-5 5.如图,已知⊙O的半径为5,直线AB经过⊙O上一点P,下列条件不能判定直线AB与⊙O相切的是()A.OP=5B.∠APO=∠BPO C.点O到直线AB的距离是5D.OP⊥AB6.某品牌手机原来每部售价为1999元,经过连续两次降价后,该手机每部售价为1360元,设平均每次降价的百分率为x,根据题意,所列方程正确的是()A.1999x2=1360B.1999(1-x2)=1360C.1999(1-x)2=1360D.1999(1-2x)=13607.如图,在平面直角坐标系中,矩形ABCO的两边与坐标轴重合,OA=2,O C=1.将矩形ABCO绕点O逆时针旋转,每次旋转90°,则第2023次旋转结束时,点B的坐标是()A.(-2,-1)B.(-1,2)C.(-2,1)D.(1,-2)第5题图第7题图第9题图第13题图8.在二次函数y=-x2+2x中,若函数值大于0,则结合函数图象判断x的取值范围是()A.x<0或x>2B.x>0或x<-2C.-2<x<0D.0<x<29.如图,在圆内接四边形ABCD中,AB=AD,∠BAD=90°.若四边形ABCD的面积是S,AC的长是x,则S与x之间的数关系式是()A.S=x2B.S=12x2C.S22D.S=23x210.根据频率估计概率原理,可以用随机摸拟的方法对圆周率π进行估计.用计算机随机产生m个有序数对(x,y)(0≤x≤1,0≤y≤1),它们对应的点金部在平面直角坐标系中某一个正方形的边界及其内部.若统计出这些点中到原点的距离小于或等于1的点有n个,则可估计π的值是()A.mnB.nmC.2nmD.4nm二、填空题(共6小题,每小题3分,共18分)11.在平面直角坐标系中,点P(-3,4)关于原点对称的点的坐标是________.12.若一个长方形的长比宽多2,且面积为80,则宽是_________.13.如图,⊙O是△ABC的内切圆,∠C=40°,则∠AOB的大小是____________.14.甲、乙、丙三位同学把自己的数学课本故在一起,每人从中随机抽取一本(不放回),三位同学抽到的课本都是自己课本的概率是_______.15.已知抛物线y=ax2+bx+c(a,b,c是常数,0<a<c)经过点(-1,0),下列结论:①b>0:②关于x的一元二次方程ax2+bx+c=0有两个不相等的实数根;③当x<-1时,y随x的增大而减小;④m为任意实数,若c=3a,则代数式am2+bm+c的最小值是-a.其中正确的是________(填写序号).16.如图,D是△ABC内一点,∠BDC=90°,BD=CD,AB=20,AC=21,AD 132,则BC的长是_____________.三、解答题(共8小题,共72分)17.(本小题满分8分)关于x的一元二次方程x2+bx+8=0有一个根是x=2,求b的值及方程的另一个根.18.(本小题满分8分)如图,在△ABC中,AC=BC,将△ABC绕点A逆时针旋转60°,得到△ADE,连接BD,BE.(1)判断△ABD的形状;(2)求证:BE平分∠AB D.19.(本小题满分8分)一个不透明的布袋中装有1个红球,1个黑球和若干个白球,它们除颜色外其余都相同.从中任意摸出1个球,是白球的概率为12.(1)直接写出布袋中白球的个数;(2)从布袋中先摸出一个球后放回,再摸出一个球,请用列表或画树状图法求两次摸到的球都是白球的概率.20.(本小题满分8分)如图,AB,CD是⊙O的两条弦,∠AOB+∠COD=180°.(1)在图(1)中,∠AOB=120°,CD=6,直接写出图中阴影部分的面积;(2)在图(2)中,E是AB的中点,判断OE与CD的数量关系,并证明你的结论.21.(本小题满分8分)如图是由小正方形组成的7×6网格,每个小正方形的顶点叫做格点.仅用无刻度的直尺在给定网格中完成画图.(1)在图(1)中,A,B,C三点是格点,画经过这三点的圆的圆心O,并在该圆上画点D,使AD=BC;(2)在图(2)中,A,E,F三点是格点,⊙I经过点A.先过点F画AE的平行线交⊙I于M,N两点,再画弦MN的中点G.22.(本小题满分10分))燃放烟花是一种常见的喜庆活动.如图,武汉数学小杰燃放一种手持烟花,这种烟花每隔2 s发射一枚花弹,每枚花弹的飞行路径视为同一条抛物线,飞行相同时间后发生爆炸,小杰发射出的第一枚花弹的飞行高度h(单位:m)随飞行时间(单位:s)变化的规律如下表:飞行时间t/s00.51 4.5……飞行高度h/m29.51633.5……(1围);(2)当第一枚花弹到达最高点时,求第二枚花弹到达的高度;(3)为了安全,要求花弹爆炸时的高度不低于30m.小杰发现在第一枚花弹爆炸的同时,第二枚花弹与它处于同一高度,请分析花弹的爆炸高度是否符合安全要求.23.(本小题满分10分)操作与思考如图(1),在△ABC中,AB=AC,∠BAC=α,D是异于A,B的一点,且∠ADB=90°.武汉数学将线段AD绕点A逆时针旋转α,画出对应线段AE,连接DE交BC于点F,猜想BF与CF的数量关系,并证明你的猜想:迁移与运用如图(2),在△ABC和△CDE中,AC=BC,CD=CE,∠ACB=∠DCE=90°,AC10CD2ED的延长线交AB于点F,且∠BDC=90°,直接写出EF的长.24.(木题满分12分)如图,抛物线y=x2-2x-6与x轴分别相交于A,B两点(点A在点B的左侧),C是AB的中点,平行四边形CDEF的顶点D,E均在抛物线上.(1)直接写出点C的坐标;(2)如图(1),若点D的横坐标是-2,点B在第三象限,平行四边形CDEF的面积是13,求点F的坐标;(3)如图(2),若点F在抛物线上,连接DF,求证:直线DF过一定点.。
武汉市部分学校2020-2021学年度九年级元月调研测试数学试卷答案
2020-2021学年湖北省武汉市部分学校九年级(上)期末数学试卷(元月调考)参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.(3分)将一元二次方程2x2﹣1=3x化成一般形式后,二次项系数和一次项系数分别是()A.2,﹣1B.2,0C.2,3D.2,﹣3【分析】先化成一般形式,即可得出答案.【解答】解:将一元二次方程2x2﹣1=3x化成一般形式是2x2﹣3x﹣1=0,二次项的系数和一次项系数分别是2和﹣3,故选:D.【点评】本题考查了一元二次方程的一般形式,能化成一元二次方程的一般形式是解此题的关键,注意:说项的系数带着前面的符号.2.(3分)下列垃圾分类标识中,是中心对称图形的是()A.B.C.D.【分析】利用中心对称图形的定义进行解答即可.【解答】解:A、不是中心对称图形,故此选项不合题意;B、是中心对称图形,故此选项符合题意;C、不是中心对称图形,故此选项不合题意;D、不是中心对称图形,故此选项不合题意;故选:B.【点评】此题主要考查了中心对称图形,关键是掌握把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.3.(3分)下列四个袋子中,都装有除颜色外无其他差别的10个小球,从这四个袋子中分别随机摸出一个球,摸到红球可能性最小的是()A.B.C.D.【分析】要求可能性的大小,只需求出各自所占的比例大小即可.求比例时,应注意记清各自的数目.【解答】解:第一个袋子摸到红球的可能性=;第二个袋子摸到红球的可能性==;第三个袋子摸到红球的可能性==;第四个袋子摸到红球的可能性==.故选:A.【点评】本题主要考查了可能性大小的计算,用到的知识点为:可能性等于所求情况数与总情况数之比,难度适中.4.(3分)已知⊙O的半径等于3,圆心O到点P的距离为5,那么点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O外C.点P在⊙O上D.无法确定【分析】根据①点P在圆外⇔d>r.②点P在圆上⇔d=r.③点P在圆内⇔d<r,即可判断.【解答】解:∵r=3,d=5,∴d>r,∴点P在⊙O外.故选:B.【点评】本题考查点与圆的位置关系,解题的关键是熟练掌握基本知识,属于中考基础题.5.(3分)一元二次方程x2﹣4x﹣1=0配方后可化为()A.(x+2)2=3B.(x+2)2=5C.(x﹣2)2=3D.(x﹣2)2=5【分析】移项,配方,即可得出选项.【解答】解:x2﹣4x﹣1=0,x2﹣4x=1,x2﹣4x+4=1+4,(x﹣2)2=5,故选:D.【点评】本题考查了解一元二次方程的应用,能正确配方是解此题的关键.6.(3分)在平面直角坐标系中,抛物线y=(x+2)(x﹣4)经变换后得到抛物线y=(x﹣2)(x+4),则下列变换正确的是()A.向左平移6个单位B.向右平移6个单位C.向左平移2个单位D.向右平移2个单位【分析】根据变换前后的两抛物线的顶点坐标找变换规律.【解答】解:y=(x+2)(x﹣4)=(x﹣1)2﹣9,顶点坐标是(1,﹣9).y=(x﹣2)(x+4)=(x+1)2﹣9,顶点坐标是(﹣1,﹣9).所以将抛物线y=(x+2)(x﹣4)向左平移2个单位长度得到抛物线y=(x﹣2)(x+4),故选:C.【点评】此题主要考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.7.(3分)如图,将△ABC绕点C按逆时针方向旋转至△DEC,使点D落在BC的延长线上.已知∠A=33°,∠B=30°,则∠ACE的大小是()A.63°B.58°C.54°D.52°【分析】先根据三角形外角的性质求出∠ACD=63°,再由△ABC绕点C按逆时针方向旋转至△DEC,得到△ABC≌△DEC,证明∠BCE=∠ACD,利用平角为180°即可解答.【解答】解:∵∠A=33°,∠B=30°,∴∠ACD=∠A+∠B=33°+30°=63°,∵△ABC绕点C按逆时针方向旋转至△DEC,∴△ABC≌△DEC,∴∠ACB=∠DCE,∴∠BCE=∠ACD,∴∠BCE=63°,∴∠ACE=180°﹣∠ACD﹣∠BCE=180°﹣63°﹣63°=54°.故选:C.【点评】本题考查了旋转的性质,三角形外角的性质,解决本题的关键是由旋转得到△ABC≌△DEC.8.(3分)三个不透明的口袋中各有三个相同的乒乓球,将每个口袋中的三个乒乓球分别标号为1,2,3.从这三个口袋中分别摸出一个乒乓球,出现的数字正好是等腰三角形三边长的概率是()A.B.C.D.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的乒乓球标号相同,并且三个标号符合三角形三边关系的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有27种等可能的结果,两次摸出的乒乓球标号相同,并且三个标号符合三角形三边关系的有15种结果,∴出现的数字正好是等腰三角形三边长的概率是=.故选:B.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.9.(3分)如图,PM,PN分别与⊙O相切于A,B两点,C为⊙O上一点,连接AC,BC.若∠P=60°,∠MAC=75°,AC=,则⊙O的半径是()A.B.C.D.【分析】连接OA、OC,过A点作AH⊥OC于H,如图,设⊙O的半径为r,根据切线的性质得到∠OAM=90°,则∠OAC=15°,再计算出∠AOH=30°,则可表示出AH =r,OH=r,利用勾股定理得到(r)2+(r+r)2=(+1)2,然后解方程即可.【解答】解:连接OA、OC,过A点作AH⊥OC于H,如图,设⊙O的半径为r,∵PM与⊙O相切于A点,∴OA⊥PM,∴∠OAM=90°,∵∠MAC=75°,∴∠OAC=15°,∵OA=OC,∴∠OAC=∠OCA=15°,∴∠AOH=30°,在Rt△AOH中,AH=OA=r,OH=AH=r,在Rt△ACH中,(r)2+(r+r)2=(+1)2,解得r=,即⊙O的半径为.故选:A.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了解直角三角形.10.(3分)已知二次函数y=2020x2+2021x+2022的图象上有两点A(x1,2023)和B(x2,2023),则当x=x1+x2时,二次函数的值是()A.2020B.2021C.2022D.2023【分析】根据题意得出x=x1+x2=﹣,代入函数的解析式即可求得二次函数的值.【解答】解:∵二次函数y=2020x2+2021x+2022的图象上有两点A(x1,2023)和B(x2,2023),∴x1、x2是方程2020x2+2021x+2022=2023的两个根,∴x1+x2=﹣,∴当x=x1+x2时,二次函数y=2020x2+2021x+2022=2020(﹣)2+2021•(﹣)+2022=2022.故选:C.【点评】本题考查了一元二次方程根与系数的关系以及二次函数图象上点的坐标特征,图象上的点符合解析式.二、填空题(共6小题,每小题3分,共18分)11.(3分)在直角坐标系中,点(﹣1,2)关于原点对称点的坐标是(1,﹣2).【分析】根据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),可得答案.【解答】解:在直角坐标系中,点(﹣1,2)关于原点对称点的坐标是(1,﹣2),故答案为:(1,﹣2).【点评】本题考查了关于原点对称的点的坐标,关于原点的对称点,横纵坐标都变成相反数.12.(3分)如图,平行四边形ABCD的对角线交于点O,过点O的直线EF分别交边AB,CD于E,F两点,在这个平行四边形上做随机投掷图钉试验,针头落在阴影区域内的概率是.【分析】用阴影部分的面积除以平行四边形的总面积即可求得答案.【解答】解:∵四边形是平行四边形,∴对角线把平行四边形分成面积相等的四部分,观察发现:图中阴影部分面积=S四边形ABCD,∴点A落在阴影区域内的概率为,故答案为:.【点评】此题主要考查了几何概率,以及平行四边形的性质,用到的知识点为:概率=相应的面积与总面积之比.13.(3分)国家实施“精准扶贫”政策以来,贫困地区经济快速发展,贫困人口大幅度减少.某地区2018年初有贫困人口4万人,通过社会各界的努力,2020年初贫困人口减少至1万人.则2018年初至2020年初该地区贫困人口的年平均下降率是50%.【分析】设2018年初至2020年初该地区贫困人口的年平均下降率为x,根据该地区2018年初及2020年初贫困人口的数量,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【解答】解:设2018年初至2020年初该地区贫困人口的年平均下降率为x,依题意得:4(1﹣x)2=1,解得:x1=0.5=50%,x2=1.5(不合题意,舍去).故答案为:50%.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.14.(3分)已知O,I分别是△ABC的外心和内心,∠BOC=140°,则∠BIC的大小是125°或145°.【分析】利用圆周角定理得到∠BAC=70°或∠BAC=110°,由于I是△ABC的内心,则∠BIC=90°+∠BAC,然后把∠BAC的度数代入计算即可.【解答】解:∵O是△ABC的外心,∴∠BAC=∠BOC=×140°=70°(如图1)或∠BAC=180°﹣70°=110°,(如图2)∵I是△ABC的内心,∴∠BIC=90°+∠BAC,当∠BAC=70°时,∠BIC=90°+×70°=125°;当∠BAC=110°时,∠BIC=90°+×110°=145°;即∠BIC的度数为125°或145°.故答案为125°或145°.【点评】本题考查了三角形的内切圆与内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.也考查了三角形的外心.15.(3分)如图,放置在直线l上的扇形OAB,由图①滚动(无滑动)到图②,再由图②滚动到图③,若半径OA=1,∠AOB=90°,则点O所经过的路径长是π.【分析】点O所经过的路径是三个圆周长.【解答】解:点O所经过的路径长=3×=π.故答案为:π.【点评】本题考查轨迹,弧长公式等知识,解题的关键是理解题意,灵活运用所学知识解决问题.16.(3分)下列关于二次函数y=x2﹣2mx+1(m为常数)的结论:①该函数的图象与函数y=﹣x2+2mx的图象的对称轴相同;②该函数的图象与x轴有交点时,m>1;③该函数的图象的顶点在函数y=﹣x2+1的图象上;④点A(x1,y1)与点B(x2,y2)在该函数的图象上.若x1<x2,x1+x2<2m,则y1<y2.其中正确的结论是①③(填写序号).【分析】利用二次函数的性质一一判断即可.【解答】解:①∵二次函数y=x2﹣2mx+1的对称轴为直线x=﹣=m,二次函数y =﹣x2+2mx的对称轴为直线x=﹣=m,故结论①正确;②∵函数的图象与x轴有交点,则△=(﹣2m)2﹣4×1×1=4m2﹣4≥0,∴m≥1,故结论②错误;③∵y=x2﹣2mx+1=(x﹣m)2+1﹣m2,∴顶点为(m,﹣m2+1),∴该函数的图象的顶点在函数y=﹣x2+1的图象上,故结论③正确;④∵x1+x2<2m,∴<m,∵二次函数y=x2﹣2mx+1的对称轴为直线x=m∴点A离对称轴的距离大于点B离对称轴的距离∵x1<x2,且a=1>0∴y1>y2故结论④错误;故答案为①③.【点评】本题考查抛物线与x轴的交点、二次函数的性质,二次函数图象上点的坐标特征,解题的关键是熟练掌握基本知识,属于中考常考题型.三、解答题(共8小题,共72分)17.(8分)若关于x的一元二次方程x2﹣bx+2=0有一个根是x=1,求b的值及方程的另一个根.【分析】把x=1代入方程计算求出b的值,进而求出另一根即可.【解答】解:∵关于x的一元二次方程x2﹣bx+2=0有一个根是x=1,∴1﹣b+2=0,解得:b=3,把b=3代入方程得:x2﹣3x+2=0,设另一根为m,可得1+m=3,解得:m=2,则b的值为3,方程另一根为x=2.【点评】此题考查了根与系数的关系,以及一元二次方程的解,熟练掌握根与系数的关系是解本题的关键.18.(8分)如图,将△ABC绕点C顺时针旋转得到△DEC,点D落在线段AB上.求证:DC平分∠ADE.【分析】利用全等三角形的性质以及等腰三角形的性质即可解决问题.【解答】证明:由旋转可知,△ABC≌△DEC,∴∠A=∠CDE,AC=DC,∴∠A=∠ADC,∴∠ADC=∠CDE,即DC平分∠ADE.【点评】本题考查旋转的性质,全等三角形的性质,等腰三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.19.(8分)小刚参加某网店的“翻牌抽奖”活动,如图,四张牌分别对应价值2,5,5,10(单位:元)的四件奖品.(1)如果随机翻一张牌,直接写出抽中5元奖品的概率;(2)如果同时随机翻两张牌,求所获奖品总值不低于10元的概率.【分析】(1)根据概率公式计算可得;(2)画树状图列出所有等可能结果,再从中确定所获奖品总值不低于10元的结果数,利用概率公式计算可得.【解答】解:(1)∵在价值为2,5,5,10(单位:元)的四件奖品,价值为5元的奖品有2张,∴抽中5元奖品的概率为=;(2)画树状图如下:由树状图可知共有12种等可能结果,其中所获奖品总值不低于10元的有8种,∴所获奖品总值不低于10元的概率为=.【点评】此题还考查了列举法与树状图法求概率,解答此类问题的关键在于列举出所有可能的结果,画出树形图是解题的关键.20.(8分)如图是由小正方形构成的6×6网格,每个小正方形的顶点叫做格点.⊙P经过A,B两个格点,仅用无刻度的直尺在给定网格中按要求画图(画图过程用虚线表示,画图结果用实线表示).(1)在图(1)中,⊙P经过格点C,画圆心P,并画弦BD,使BD平分∠ABC;(2)在图(2)中,⊙P经过格点E,F是⊙P与网格线的交点,画圆心P,并画弦FG,使FG=F A.【分析】(1)取格点T,连接AT交BC于点P,连接AC,取AC的中点W,作射线PW 交⊙P于点D,线段BD即为所求作.(2)取格点J,连接AB,AJ延长AJ交⊙P于Q,连接BQ可得圆心P,取格点R,⊙P 与格线的交点D,连接FR,DR,作DR交⊙P于G,连接FG,可证F A=FR=FG,线段FG即为所求作.【解答】解:(1)如图,点P,线段BD即为所求作.(2)如图,点P,线段FG即为所求作.【点评】本题考查作图﹣应用与设计垂径定理,圆周角定理,线段的垂直平分线的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.21.(8分)如图,正方形ABCD内接于⊙O,E是的中点,连接AE,DE,CE.(1)求证:AE=DE;(2)若CE=1,求四边形AECD的面积.【分析】(1)欲证明AE=DE,只要证明=.(2)连接BD,过点D作DF⊥DE交EC的延长线于F.证明△ADE≌△CDF(AAS),推出AE=CF,推出S△ADE=S△CDF,推出S四边形AECD=S△DEF,再利用等腰三角形的性质构建方程求出DE,即可解决问题.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=CD,∴=,∵E是的中点,∴=,∴+=+,即=,∴AE=DE.(2)解:连接BD,AO,过点D作DF⊥DE交EC的延长线于F.∵四边形ABCD是正方形,∴∠DBC=∠DEC=45°,DA=DC,∵∠EDF=90°,∴∠F=∠EDF﹣∠DEF=90°﹣45°=45°,∴DE=DF,∵∠AED=∠AOD=45°,∴∠AED=∠F=45°,∵∠ADC=∠EDF=90°,∴∠ADE+∠EDC=∠CDF+∠EDC=90°,∴∠ADE=∠CDF在△ADE和△CDF中,,∴△ADE≌△CDF(AAS),∴AE=CF,∴S△ADE=S△CDF,∴S四边形AECD=S△DEF,∵EF=DE=EC+DE,EC=1,∴1+DE=DE,∴DE=+1,∴S四边形AECD=S△DEF=DE2=+.【点评】本题考查正多边形与圆,正方形的性质,全等三角形的判定和性质,等腰直角三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.22.(10分)疫情期间,按照防疫要求,学生在进校时必须排队接受体温检测.某校统计了学生早晨到校情况,发现学生到校的累计人数y(单位:人)随时间x(单位:分钟)的变化情况如图所示,y可看作是x的二次函数,其图象经过原点,且顶点坐标为(30,900),其中0≤x≤30.校门口有一个体温检测棚,每分钟可检测40人.(1)求y与x之间的函数解析式;(2)校门口排队等待体温检测的学生人数最多时有多少人?(3)检测体温到第4分钟时,为减少排队等候时间,在校门口临时增设一个人工体温检测点.已知人工每分钟可检测12人,人工检测多长时间后,校门口不再出现排队等待的情况(直接写出结果).【分析】(1)由顶点坐标为(30,900),可设y=a(x﹣30)2+900,再将(0,0)代入,求得a的值,则可得y与x之间的函数解析式;(2)设第x分钟时的排队等待人数为w人,根据w=y﹣40x及(1)中所得的y与x之间的函数解析式,可得w关于x的二次函数,将其写成顶点式,按照二次函数的性质可得答案;(3)设人工检测m分钟时间后,校门口不再出现排队等待的情况,由于检测体温到第4分钟时,在校门口临时增设一个人工体温检测点,则体温检测棚的检测时间为(m+4)分钟,则学生到校的累计人数与人工检测m分钟后两种检测方式的检测人数之和相等时,校门口不再出现排队等待的情况,据此可列出关于m的方程,求解并根据问题的实际意义作出取舍即可.【解答】解:(1)∵顶点坐标为(30,900),∴设y=a(x﹣30)2+900,将(0,0)代入,得:900a+900=0,解得a=﹣1,∴y=﹣(x﹣30)2+900;(2)设第x分钟时的排队等待人数为w人,由题意可得:w=y﹣40x=﹣(x﹣30)2+900﹣40x=﹣x2+60x﹣900+900﹣40x=﹣x2+20x=﹣(x﹣10)2+100,∴当x=10时,w的最大值为100,答:排队等待人数最多时是100人;(3)设人工检测m分钟时间后,校门口不再出现排队等待的情况,由题意得:﹣(4+m)2+60(4+m)﹣40×4﹣(40+12)m=0,整理得:﹣m2+64=0,解得:m1=8,m2=﹣8(舍).答:人工检测8分钟时间后,校门口不再出现排队等待的情况.【点评】本题主要考查了二次函数在实际问题中的应用,熟练掌握待定系数法求二次函数的解析式及二次函数的性质是解题的关键.23.(10分)问题背景如图(1),△ABD,△AEC都是等边三角形,△ACD可以由△AEB通过旋转变换得到,请写出旋转中心、旋转方向及旋转角的大小.尝试应用如图(2),在Rt△ABC中,∠ACB=90°,分别以AC,AB为边,作等边△ACD和等边△ABE,连接ED,并延长交BC于点F,连接BD.若BD⊥BC,求的值.拓展创新如图(3),在Rt△ABC中,∠ACB=90°,AB=2,将线段AC绕点A顺时针旋转90°得到线段AP,连接PB,直接写出PB的最大值.【分析】问题背景由等边三角形的性质得出∠BAD=60°,∠CAE=60°,AD=AB,AC=AE,证得△ACD ≌△AEB(SAS),由旋转的概念可得出答案;尝试应用证明△ADE≌△ACB(SAS),由全等三角形的性质得出∠ADE=∠ACB=90°,DE=CB,得出∠BDF=30°,由直角三角形的性质得出BF=DF,则可得出答案;拓展创新过点A作AE⊥AB,且使AE=AD,连接PE,BE,由直角三角形的性质求出BE,PE的长,则可得出答案.【解答】问题背景解:∵△ABD,△AEC都是等边三角形,∴∠BAD=60°,∠CAE=60°,AD=AB,AC=AE,∴∠BAD+∠BAC=∠CAE+∠BAC,∴∠DAC=∠BAE,∴△ACD≌△AEB(SAS),∴△ACD可以由△AEB绕点A顺时针旋转60°得到,即旋转中心是点A,旋转方向是顺时针,旋转角是60°;尝试应用∵△ACD和△ABE都是等边三角形,∴AC=AD,AB=AE,∠CAD=∠BAE=60°,∴∠CAB=∠DAE,∴△ADE≌△ACB(SAS),∴∠ADE=∠ACB=90°,DE=CB,∵∠ADE=90°,∴∠ADF=90°,∵∠ADC=∠ACD=60°,∴∠DCF=∠CDF=30°,∴CF=DF,∵BD⊥BC,∴∠BDF=30°,∴BF=DF,设BF=x,则CF=DF=2x,DE=3x,∴;拓展创新∵∠ACB=90°,∴点C在以AB为直径的圆上运动,取AB的中点D,连接CD,∴CD=AB=1,如图,过点A作AE⊥AB,且使AE=AD,连接PE,BE,∵将线段AC绕点A顺时针旋转90°得到线段AP,∴∠P AC=90°,P A=AC,∵∠EAD=90°,∴∠P AE=∠CAD,∴△CAD≌△P AE(SAS),∴PE=CD=1,∵AB=2,AE=AD=1,∴BE===,∴BP≤BE+PE=+1,当且仅当P、E、B三点共线时取等号,∴BP的最大值为+1.【点评】本题是几何变换综合题,考查了旋转的性质,等边三角形的性质,全等三角形的判定与性质,勾股定理,直角三角形的性质,熟练掌握旋转的性质是解题的关键.24.(12分)如图,经过定点A的直线y=k(x﹣2)+1(k<0)交抛物线y=﹣x2+4x于B,C两点(点C在点B的右侧),D为抛物线的顶点.(1)直接写出点A的坐标;(2)如图(1),若△ACD的面积是△ABD面积的两倍,求k的值;(3)如图(2),以AC为直径作⊙E,若⊙E与直线y=t所截的弦长恒为定值,求t的值.【分析】(1)由A为直线y=k(x﹣2)+1上的定点,可得k的系数为0,从而求得x值,则点A的坐标可得;(2)先求得顶点D的坐标,可得AD⊥x轴.分别过点B,C作直线AD的垂线,垂足分别为M,N,设B,C的横坐标分别为x1,x2由△ACD的面积是△ABD面积的两倍得出2x1+x2=6.将抛物线解析式与直线y=k(x﹣2)+1解析式联立,得出关于x的一元二次方程,方法一可以直接解方程,再结合2x1+x2=6求得答案;方法二可以用韦达定理及2x1+x2=6求得答案;(3)设⊙E与直线y=t交于点G,H,点C的坐标为(a,﹣a2+4a),用含a的式子表示出点E的坐标,再由勾股定理得出关于a的方程;分别过点E,A作x轴,y轴的平行线交于点F,过点E作PE⊥GH,垂足为P,连接EH,用含a的式子表示GH2,根据GH为定值,可得答案.【解答】解:(1)∵A为直线y=k(x﹣2)+1上的定点,∴A的坐标与k无关,∴x﹣2=0,∴x=2,此时y=1,∴点A的坐标为(2,1);(2)∵y=﹣x2+4x=﹣(x﹣2)2+4,∴顶点D的坐标为(2,4),∵点A的坐标为(2,1),∴AD⊥x轴.如图(1),分别过点B,C作直线AD的垂线,垂足分别为M,N,设B,C的横坐标分别为x1,x2,∵△ACD的面积是△ABD面积的两倍,∴CN=2BM,∴x2﹣2=2(2﹣x1),∴2x1+x2=6.联立,得x2+(k﹣4)x﹣2k+1=0,①解得x1=,x2=,∴2×+=6,化简得:=﹣3k,解得k=﹣.另解:接上解,由①得x1+x2=4﹣k,又由2x1+x2=6,得x1=2+k.∴(2+k)2+(k﹣4)(2+k)﹣2k+1=0,解得k=±.∵k<0,∴k=﹣;(3)如图(2),设⊙E与直线y=t交于点G,H,点C的坐标为(a,﹣a2+4a).∵E是AC的中点,∴将线段AE沿AC方向平移与EC重合,∴x E﹣x A=x C﹣x E,y E﹣y A=y C﹣y E,∴x E=(x A+x C),y E=(y A+y C).∴E(1+,).分别过点E,A作x轴,y轴的平行线交于点F,在Rt△AEF中,由勾股定理得:EA2=+=+,过点E作PE⊥GH,垂足为P,连接EH,∴GH=2PH,EP2=,又∵AE=EH,∴GH2=4PH2=4(EH2﹣EP2)=4(EA2﹣EP2)=4[+﹣]=4[﹣a+1+﹣(﹣a2+4a+1)+1﹣+t(﹣a2+4a+1)﹣t2]=4[(﹣t)a2+(4t﹣5)a+1+t﹣t2].∵GH的长为定值,∴﹣t=0,且4t﹣5=0,∴t =.【点评】本题属于二次函数综合题,综合考查了一次函数、二次函数、一元二次方程、勾股定理及圆的性质等知识点,数形结合并熟练掌握相关性质定理是解题的关键.菁优网APP 菁优网公众号菁优网小程序第21页(共21页)。
2019-2020武汉市部分学校九年级中考质量检测(五调)语文试卷(附参考答案)
2019—2020学年度武汉市部分学校九年级质量检测语文试卷武汉市教育科学研究院命制2020.5.28(参考答案附卷后)亲爱的同学,在你答题前,请认真阅读下面的注意事项:1. 本试卷由第I卷(选择题)和第I卷(非选择题)两部分组成。
全卷共8页,七大题,满分120分。
考试用时150分钟。
2.答题前,请将你的娃名、准考证号填写在“答题卡"相应位置,并在“答题卡”背面左上角填写姓名和座位号。
3.答第I卷(选择题)时,选出每小题答案后,用2B铅笔把“答题卡”上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案。
答在“试卷”上无效。
4.答第Ⅱ卷(非选择题)时,答案用0.5毫米黑色笔迹签字笔书写在“答题卡"上。
答在“试卷”上无效。
5.认真阅读答题卡上的注意事项。
预祝你取得优异成绩!第I卷(选择题共30分)一、(共9分,每小题3分)1.依次填入下面横线处的词语,恰当的一组是()目前,_______“战时计划”,_______教援行动,阻断疫情蔓延,______科学合作,探索诊疗方法,_______医疗防护物资的供应,是世界各国的当务之急。
A. 统筹制定协调促进B. 促进统筹制定协调C. 协调促进统筹制定D. 制定协调促进统筹2.下列各句中有语病的一项是()A.随着疫情防控形势的逐步好转,日前,完成援汉救助任务的医疗队陆续踏上了归途。
B.武汉市公共交通停运之后,一些私家车主决定为抗疫医务人员免费接送他们上下班。
C.拟定有规律的时间表,减少耗费在社交媒体上的时间,是保持身心健康的有效方式。
D.面对疫情,中国秉持“人类命运共同体”理念,愿向其他国家提供力所能及的援助。
3.下列各句标点符号使用不规范的一项是()A.作为综合性的媒介,电影是了解传统文化和异域文化的重要载体。
电影能让我们看到不同文化的交流和碰撞,能让我们理解文化的多样性和包容性。
B.泥泞田埂中,他手托麦穗问收成;在大山深处,他按下电商扶贫快进键;乡间小路上,他给村民指引致富路……习总书记始终牵挂着贫困地区的乡亲们。
2019年度武汉元调数学试卷及其规范标准答案(精校版)
2018-2019学年度武汉市部分学校九年级元月调考数学试卷一、选择题(共10小题,每小题3分,共30分) 1.下列一元二次方程化成一般形式后,其中二次项系数是3,一次项系数是-6,常数项是1的方程式是( ) A .2316x x += B . 2316x x -= C . 2361x x += D . 2361x x -= 2.下列图形中,是中心对称图形的是( )3.若将抛物线2y x =先向右平移1个单位长度,再向上平移2个单位长度,就得到抛物线( )A .2(1)2y x =-+B . 2(1)2y x =--C . 2(1)2y x =++D . 2(1)2y x =+-4.投掷两枚质地均匀的骰子,骰子的六个面上分别有刻有1和6的点数,则下列事件为随机事件的是( ) A .两枚骰子向上一面的点数之和大于1 B .两枚骰子向上一面的点数之和等于1 C .两枚骰子向上一面的点数之和大于12 D .两枚骰子向上一面的点数之和等于125.已知O e 的半径等于8cm ,圆心O 到直线l 的距离为9cm ,则直线l 与O e 的公共点的个数为( ) A .0 B . 1 C . 2 D . 无法确定6.如图,“圆材埋壁” 是我国古代著名数学著作《九章算术》中的问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何.”用几何语言可表述为:CD 为O e 的直径,弦AB 垂直CD 于点E ,CE =1寸,AB =10寸,则直径CD 的长为( )A .12.5寸B . 13寸C . 25寸D . 26寸7.假定鸟卵孵化后,雏鸟为雌鸟与雄鸟的概率相同.如果3枚鸟卵全部成功孵化,那么3只雏鸟中恰有2只雄鸟的概率是( )A .16B .38C .58D .238.如图,将半径为1,圆心角为120°的扇形OAB 绕点A 逆时针旋转一个角度,使点O 的对应点D 落在»AB 上,点B 的对应点为C ,连接BC ,则图中CD ,BC 和»BD围成的封闭图形面积是( ) A6p B .6p C .8pD .3p 9.古希腊数学家欧几里得的《几何原本》记载,形如22x ax b +=的方程的图解是:如图,画Rt ABC D ,∠ACB =90°,2a BC =,AC b =,再在斜边AB 上截取2aBD =.则该方程的一个正根是( )A .AC 的长B . BC 的长 C . AD 的长 D .CD 的长10.已知抛物线2(0)y ax bx c a =++<的对称轴为1x =-,与x 轴的一个交点为(2,0).若关于x 的一元一次方程2(0)ax bx c p p ++=>有整数根,则p 的值有( )D .C .B .A.CAA .2个B .3个C . 4个D .5个二、填空题(本大题共6个小题,每小题3分,共18分)11.已知3是一元二次方程2x p =的一个根,则另一个根是________.12.在平面直角坐标系中,点P 的坐标是(-1,-2),则点P 关于原点对称的点的坐标是________.13.一个口袋中有3个黑球和若干个白球,在不允许将球倒出来的前提下,小刚为估计其中的白球数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色,…….,不断重复上述过程,小刚共摸了100次,其中20次摸到黑球,根据上述数据,小刚可估计口袋中的白球大约有________个.14.第七届世界军人运动会将于2019年10月18日至27日在中国武汉举行.小明幸运获得了一张军运会吉祥物“兵兵”的照片,如图,该照片(中间的矩形)长29cm ,宽为20cm ,他想为此照片配一个四条边宽度相等的镜框(阴影部分),且镜框所占面积为照片面积的14,为求镜框的宽度,他设镜框的宽度为x cm ,依题意列方程,化成一般式为________.15.如图是抛物线拱桥,当拱顶离水面2m 时,水面宽4m ,水面下降2.5m ,水面宽度增加________m .16.如图,正方形ABCD 的边长为4,点E 是CD 边上一点,连接AE ,过点B 作BG ⊥AE 于点G ,连接CG 并延长交AD 于点F ,则AF 的最大值是________.三、解答题(共8题,共72分)17.(本题8分)解方程:2310x x --=18.(本题8分)如图,A ,B ,C ,D 是⊙O 上四点,且AD =CB ,求证:AB =C D .19.(本题8分)武汉的早点种类丰富,品种繁多.某早餐店供应甲类食品有:“热干面”、“面窝”、“生煎包”、“锅贴饺”(分别记为A ,B ,C ,D );乙类食品有:“米粑粑”、“烧梅”、“欢喜坨”、“发糕”(分别记为E ,F ,G ,H ),共八种美食.小李和小王同时去品尝美食,小李准备在“热干面”、“面窝”、“米粑粑”、“烧梅”(即A ,B ,E ,F )这四种美食中选择一种,小王准备在“生煎包”、“锅贴饺”、“欢喜坨”、“发糕”(即C ,D ,G ,H )这四种美食中选择一种.用列举法求小李和小王同时选择的美食都是甲类食品的概率.GDA20.(本题8分)如图,在边长为1的正方形网格中,点A 的坐标为(1,7),点B 的坐标为(5,5),点C 的坐标为(7,5),点D 的坐标为(5,1).(1)将线段AB 绕点B 逆时针旋转,得到对应线段BE ,当BE 与CD 第一次平行时,画出点A 运动的路径,并直接写出点A 运动的路径长;(2)小贝同学发现:线段AB 与线段CD 存在一种特殊关系,即其中一条线段绕着某点旋转一个角度可以得到另一条线段,直接写出这个旋转中心的坐标.21.(本题8分)如图,在四边形ABCD 中,AD BC P ,AD CD ⊥,AC AB =,O e 为ABC ∆的外接圆. (1)如图1,求证:AD 是O e 的切线;(2)如图2,CD 交O e 于点E ,过点A 作AG BE ⊥,垂足为F ,交BC 于点G . ①求证:AG BG =②若2AD =,3CD =,求FG 的长.图1 图222.(本题10分)某商家销售一种成本为20元的商品,销售一段时间后发现,每天的销量y (件)与当天的销售单价x (元/件)满足一次函数关系,并且当x =25时,y =550元;当x =30时,y =500.物价部门规定,该商品的销售单价不能超过48元/件. (1)求出y 与x 的函数关系式;(2)问销售单价定为多少元时,商家销售该商品每天获得的利润是8000元? (3)直接写出商家销售该商品每天获得的最大利润.23.(本题10分)如图,等边ABC ∆与等腰EDC ∆有公共顶点C ,其中120EDC ∠=︒,AB CE ==BE ,P 为BE 的中点,连接PD AD 、.(1)小亮为了研究线段AD 与PD 的数量关系,将图1中的EDC ∆绕点C 旋转一个适当的角度,使CE 与CA 重合,如图2,请直接写出AD 与PD 的数量关系;(2)如图1,(1)中的结论是否依然成立?若成立,请给出证明,若不成立,请说明理由; (3)如图3,若45ACD ∠=︒,求PAD ∆的面积.图1图2 图3BBB24.(本题12分)如图,在平面直角坐标系中,抛物线2(1)y x m x m =+--交x 轴于A B 、两点(点A 在点B 的左边),交y 轴负半轴于点C .(1)如图1,3m =.①直接写出A B C 、、三点的坐标;②若抛物线上有一点D ,45ACD ∠=︒,求点D 的坐标.(2)如图2,过点(2)E m ,作一直线交抛物线于P Q 、两点,连接AP AQ 、,分别交y 轴于M N 、两点, 求证:OM ON ⋅是一个定值.图1图22018-2019学年度武汉市部分学校九年级元月调考数学试卷参考答案9解析:设AD 为x ,根据Rt ABC D ,222()()22x b +=+, 得:222244a a x axb ++=+,22x ax b +=,所以可以求出x ,所以AD 即所求. 10解析:依图形可知二、填空题(本大题共6个小题,每小题3分,共18分) 11. -3 12.(1,2) 13. 12 14.24981450x x +-= 15. 2 16.115.解析:以抛物线的顶点为原点,建立平面直角坐标系.则A (2,-2),B (-2,-2)∴212y x =-,令 4.5y =-,解得3x =±.∴此时水面宽度为6米,增加了2米 16.解析:∵∠AGB=90°,AB =4,∴G 在以AB 为直径的圆上运动 当CF 与圆相切时,∠BCF 最大,此时AF 最大 设AF =FG =x ,BC =CG=4,,则DF =4-x在Rt △FDC 中,DC 2+DF 2=FC 2,42+(4-x )2=(4+x )2,解得:x =1∴AF =1三、解答题(共8题,共72分) 17.解:∵a =1,b =-3,c =-1∴22=4(3)41(1)94130b ac ∆-=--⨯⨯-=+=> ∴x ==∴1x =2x =B A18.证明:∵AD =CB∴»»AD CB= ∴»»»»AD BD CB BD +=+ 即¼¼ADB CBD= ∴AB =CD19. 解:由树状图可知,小李和小王选择美食共有16种情况,且每种情况出现的可能性相等,同时都是甲类食品的情况共4种.∴P (两种都是甲类食品)=416=1420. 解:(画法如下)(2)情况一:作AD 和BC 的垂直平分线,交点即为旋转中心(6,6) 情况二:作AC 和BD 的垂直平分线,交点即为旋转中心(3,3)21(1)如图所示:连OC ,OB ,连AO 延长交BC 于点H ∵AB =AC ,∴点A 在BC 的垂直平分线上 又∵OB =OC , ∴O 在BC 的垂直平分线上∴AO 垂直平分BC , ∴AO ⊥BC ,CH =BH , ∴∠AHC =90° 又∵AD ∥BC , ∴∠OAD =90°, ∴AD 为O e 的切线 (2)如图所示:①法一:由(1)可知AH ⊥BC ,∴∠HAB +∠ABH =90° ∵AG ⊥BE ,∴∠F AB +∠ABF =90° ∵AO =BO ,∴∠HAB =∠FBA ∴∠ABH =∠F AB ,∴AG =BG法二:8字倒角可得:∠F AO =∠HBO ,又∵∠OAB =∠OBA ∴∠GAB =∠GBA ,∴AG =BG ②由(1)可知四边形ADCH 为矩形. ∴AH =CD =3,CH =HB =AD =2 ∴Rt ABH ∆中 AB=在AGH ∆和BGF ∆中90AHG BFG AGH BGFAG BG ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴()AGH BGF AAS ∆∆≌ ∴GF GH =设GH =x ,∴AG =BG =2+x∴在Rt AGH ∆中:()22232x x +=+, 22944x x x +=++,∴54x =,∴54FG GH ==22. 解:(1)设y kx b =+将(25,550)和(30,500)代入可得: 550 =2550030k b k b +⎧⎨=+⎩ 解得:10800k b =-⎧⎨=⎩∴y 与x 的函数关系式为:10800y x =-+ (2)设利润为w 元.()()2010800w x x =--+ 21080020016000w x x x =-++- 210100016000w x x =-+-∴2800010100016000x x =-+- 即210024000x x -+= ∴()()40600x x --=解得:140x =,260x =,∵该商品的销售单价不能超过48元/件.∴x =40答:当销售单价定为40元时,商家销售该商品每天获得的利润是8000元. (3)8960元 23.(1)解:AD =2PD (2)仍然成立。
湖北省武汉市武珞路中学2023-2024学年九年级上学期月考数学试题
湖北省武汉市武珞路中学2023-2024学年九年级上学期月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.“水中捞月”这个事件是()A .不可能事件B .随机事件C .必然事件D .无法判断2.下列图形中,为中心对称图形的是()A .B .C .D .3.解一元二次方程x 2-6x -4=0,配方后正确的是()A .(x +3)2=13B .(x -3)2=5C .(x -3)2=4D .(x -3)2=134.已知O 的半径为5,圆心O 到直线l 的距离为4,则直线l 与O 的位置关系是()A .相交B .相切C .相离D .无法确定5.某树主干长出若干数目的支干,每个支干又长出同样数目小分支,主干、支干和小分支总数共91.若设主干长出x 个支干,则可列方程正确的是()A .(1+x )2=91B .1+x +x 2=91C .1+x 2=91D .x +x 2=916.若一个圆锥的侧面积是底面积的2倍,则圆锥侧面展开图的扇形的圆心角为()A .120°B .180°C .240°D .300°7.如果m n 、是一元二次方程230x x --=的两个实数根,则多项式2n mn m -+的值是()A .3-B .4C .5D .78.二次函数22y x x c =--+,在32x -≤≤的范围内有最小值5-,则C 的值是()A .3B .4C .5D .7A .3B .2310.已知抛物线22y x mx =--点,则m 的取值范围为(A .53210m -<≤或4m =-C .53210m -≤<或2m =二、填空题11.在平面直角坐标系中,点(-12.参加一次聚会的每两人都握了一次手,13.《九章算术》被尊为古代数学不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?如图,大意是,今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深尺,问圆形木材的直径是多少?(答:圆形木材的直径三、解答题17.关于x 的一元二次方程280x bx ++=有一个根是2x =,求b 的值及方程的另一个根.18.如图,已知OCD 是AOB 绕点O 顺时针方向旋转(090)αα︒︒<︒<︒后所得的图形,点C 恰好在AB 上,590AOD COB ∠∠== .(1)求AOC ∠的度数;(2)求证:OC 平分ACD∠19.为了深入推动大众旅游,满足人民群众美好生活需要,我市举办中国旅游日惠民周活动,活动主办方在活动现场提供免费门票抽奖箱,里面放有4张相同的卡片,分别写有景区:A .宜兴竹海,B .宜兴善卷洞,C .阖闾城遗址博物馆,D .锡惠公园.抽奖规则如下:搅匀后从抽奖箱中任意抽取一张卡片,记录后放回,根据抽奖的结果获得相应的景区免费门票.(1)小明获得一次抽奖机会,他恰好抽到景区A 门票的概率是_________.(2)小亮获得两次抽奖机会,求他恰好抽到景区A 和景区B 门票的概率.20.如图,AC 为O 的直径,CD 为O 的弦,BE CD ⊥于点E ,BE 是O 的切线.(1)求证: BDBA =(2)若4,1AD EC ==,求BD 的长.(1)在图1中,点C在圆上,请在直径在直径AB下方的圆上画出点E,使(2)在图2中,D为格点,在直径AB下方的圆上画出点段AD上画出点H,使得AH AB=.22.嘉嘉和淇淇在玩沙包游戏,某同学借此情境编制了一道数学题,请解答这道题.如图,在平面直角坐标系中,一个单位长度代表成点)抛出,其运动路线为抛物线1C的一部分,距高地面垂直距离2米时,达到最大高度将沙包回传,其运动路线为抛物线2C(1)求1C 解析式,并求c 的值;(2)当沙包沿抛物线1C 运动时,若身高1.6米的小新正好站在抛物线1C 的正下方,到淇淇水平距离1米处,沙包会砸到小新吗?为什么?(3)若嘉嘉在x 轴上方1m 的高度上,且到点A 水平距离不超过1m 的范围内可以接到回传回来的沙包,请直接写出n 范围.23.矩形ABCD 中,6,8CB AB ==,矩形ABCD 绕点A 逆时针旋转得到矩形AB C D '''(B 与B '对应,C 与C '对应),连接CC '、BB '交于点M .∥(1)如图1,当D ¢落在边AB 上时,BB '与C D ''交于点N ,求证:MC MC '=(2)当矩形AB C D '''旋转到如图2时,若点E 为AC 的中点,连接ME ,求ME 的长;(3)将矩形ABCD 绕点A 逆时针旋转一周的过程中,当60ACC ∠=' 时,则B M '的长为_____.①请直接写出抛物线的解析式式及点D 的坐标;②如图,点E 和点C 关于抛物线对称轴对称,若点标平面内一点,在对称轴右侧的抛物线上存在点G 四边形是菱形,且60EFG ∠= ,请先直接写出点G (2)直线y x m =+与抛物线223y x x =-++交于一点P ,使90MPN ∠= ,求m 的值.。
湖北省部分重点中学(省实验、武汉三中、武汉一中---)2019-2020学年高三上学期第一次联考考数学(理)试题
湖北省部分重点中学2020届高三第一次联考高三数学试卷(理科)一、选择题:(本大题共12小题,每小题5分共60分;在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.集合{}260A x x x =--<,集合{}2|log 1B x x =<,则A B = ()A.()2,3-B.(),3-∞C.()2,2-D.()0,22.已知a 是实数,1a ii +-是纯虚数,则a 等于() A.2- B.1- C.2 D.13.若2sin cos 12x x π⎛⎫-+= ⎪⎝⎭,则cos 2x =()A.89- B.79- C.79 D.-14.已知{}n a 为等比数列,若3528a a ==,,则78a a +=()A.-32B.96C.-32或96D.-96或325.点P 是ABC △所在平面上一点,若2355AP AB AC =+,则ABP △与ACP △的面积之比是()A.35 B.52 C.32 D.236.下列说法正确的个数是()①命题“若4a b + ,则a ,b 中至少有一个不小于2”的逆命题是真命题②命题“设a b R ∈,,若5a b +≠,则3a ≠或2b ≠”是一个真命题③“20000x R x x ∃∈-<,的否定是“20x R x x ∀∈->,”④已知x ,y 都是实数,“||||1x y + ”是“221x y + ”的充分不必要条件A.1B.2C.3D.47.下列函数中,既是偶函数,又在(),0-∞内单调递增的为()A .2||y x x =- B.||2x y = C.22x x y -=- D.212log ||y x x =-8.已知定义在R 上的奇函数21()2x x f x a-=+,则不等式()2(2)40f x f x -+-<的解集为()A.(-1,6) B.(-6,1) C.(-2,3) D.(-3,2)9.AOB 中,OA a OB b == ,,满足||2a b a b ⋅=-= ,则AOB ∆的面积的最大值为() A.3 B.2 C.23 D.2210.已知函数log (1),(11)()(2)1,(13)a x x f x f x a x +-<<⎧=⎨-+-<<⎩(0a >且1a ≠),若12x x ≠,且()()12f x f x =,则12x x +的值()A .恒小于2 B.恒大于2 C.恒等于2 D.以上都不对11.已知函数22()2sin cos sin (0)24x f x x x ωπωωω⎛⎫=⋅--> ⎪⎝⎭在区间25,36ππ⎡⎤-⎢⎥⎣⎦上是增函数,且在区间[0]π,上恰好取得一次最大值1,则ω的取值范围是()A.30,5⎛⎤ ⎥⎝⎦ B.13,25⎡⎤⎢⎥⎣⎦ C.13,24⎡⎤⎢⎥⎣⎦ D.15,22⎡⎫⎪⎢⎣⎭12.已知对任意实数x 都有()2()(0)1x f x e f x f '=+=-,,若不等式()(1)f x a x <-,(其中1a <)的解集中恰有两个整数,则a 的取值范围是()A.3,12e ⎡⎫⎪⎢⎣⎭ B.3,12e ⎡⎫-⎪⎢⎣⎭ C.253,32e e ⎡⎫⎪⎢⎣⎭ D.25,13e ⎡⎫⎪⎢⎣⎭二、填空题(本大题共4个小题,共20分)13.已知实数x ,y 满足约束条件30,20,2,x y x y x -+⎧⎪+⎨⎪⎩则3z x y =+的最小值为___________.14.非零向量a 和b 满足2a b = ,()a ab ⊥+ ,则a 与b 的夹角为___________.15.已知函数()2sin 23f x x π⎛⎫=+⎪⎝⎭在区间173a π⎛⎫ ⎪⎝⎭,上是单调函数,则实数a 的最大值为__________.16.已知函数21()ln()22x x f x g x e -=+=,,若(0)m R n ∀∈∃∈+∞,,使得()()g m f n =成立则n m -的最小值是__________.三、解答题(本大题共6小题共70分解答应写出证明过程或算步)17.已知数列{}n a 满足11a =,135n n a a n ++=+,1,2,3n =(1)证明:113n n a a +--=,2,3n = ;(2)求和:12233445212122n n n n a a a a a a a a a a a a +--+-+-+ 18.如图,在ABC △中,M 是边BC 的中点,57cos 14BAM ∠=,27cos 7AMC ∠=-.(1)求B Ð的大小;(2)若7AM =,求ABC △的面积.19.已知四棱锥P ABCD -中,侧面PAD ⊥底面ABCD ,PB AD ⊥,PAD △是边长为2的正三角形底面ABCD 是菱形,点M 为PC 的中点(1)求证:PA 平面MDB ;(2)求二面角A PB C --的余弦值.20.已知椭圆2222:1x y C a b +=的离心率为22其右顶点为A ,下顶点为B ,定点()02C ,,ABC △的面积为322过点C 作与y 轴不重合的直线l 交椭圆C 于P Q ,两点,直线BP BQ ,分别与X 轴交于M N ,两点.(1)求椭圆C 的方程;(2)试探究M N ,的横坐标的乘积是否为定值,说明理由.21.某汽车公司最近研发了一款新能源汽车,并在出厂前对100辆汽车进行了单次最大续航里程的测试。
武汉市部分学校2021-2022学年度元月调考九年级语文参考答案及评分标准-1
2021~2022学年度武汉市部分学校九年级调研考试语文学科参考答案及评价标准一、(9分)1.D (基于“不会对谁格外开恩”“只回馈那些珍惜它、善待它的人”的语意宜选择“公正”;基于“只要你愿意从头来过”“仍然”“陪伴”等语意宜选择“不计前嫌”和“一笔勾销”。
)2.B (句式杂糅。
“结合自己的特点”和“从自己的特点入手”杂糅。
)3. C (“公众利益”后面的分号应为句号,第一分句和后文是总分关系。
)二、(9分)4.B (百科全书式小说的特点与其篇幅无关。
)5. B (作家要了解作用于小说人物的相关知识,指作家要掌握小说中会涉及到的知识内容,不等于作家的知识水平要与小说人物相一致。
)6. D (文中未提及“人际关系”变得“日益复杂”。
)三、(12分)7.B (领联的意思是:从弟经常夸宣州的风光好,邀请诗人去敬亭山游玩。
结合最后两联,可知诗人之前并没有和从弟一起去过。
)8. C (累:多次。
)9. B10.C (司马昭并未向王基认错,也不是赞赏他的“神机妙算”。
)四、(6分)11.共6分,“谏”“万安”“是以”“难”各1分,语意通顺2分。
诸位的劝谏,是非常稳妥的计谋,因此我才奖赏你们,以后你们不要对提意见感到为难(或“因为想提意见感到为难”“以后不要不愿意提意见”“以后不要害怕提意见”)。
【参考译文】曹操亲自(率兵)攻打乌桓,属下将领们都劝阻。
打败乌桓归来之后,(曹操)查问当时劝阻他的人,众人不明白他这样做的缘故,个个都很害怕。
曹操都重赏了他们,(并对他们)说:“这次我率兵出征,冒着很大危险并且是侥幸(获胜),虽然取胜,是上天在帮助我,却不可当作常例。
诸位的劝谏,是非常稳妥的计谋,因此我才奖赏你们,以后你们不要对提意见感到为难。
”魏国(准备)攻打吴国,征南大将军王昶、征东大将军胡遵、镇南大将军母丘俭纷纷献计献策,司马师下诏征求尚书傅的意见。
傅暇说:“(将士们)希望求取战功得到赏赐,(没有进行周密的策划)先去作战,然后才想办法取得胜利,这不是保全军队的长久计策。
2019学年湖北省武汉市元月九年级调考数学试卷【含答案及解析】
2019学年湖北省武汉市元月九年级调考数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 方程5x2﹣4x﹣1=0的二次项系数和一次项系数分别为()A.5和4B.5和﹣4C.5和﹣1D.5和12. 桌上倒扣着背面相同的5张扑克牌,其中3张黑桃、2张红桃.从中随机抽取一张,则()A.能够事先确定抽取的扑克牌的花色B.抽到黑桃的可能性更大C.抽到黑桃和抽到红桃的可能性一样大D.抽到红桃的可能性更大3. 抛物线y=x2向下平移一个单位得到抛物线()A.y=(x+1)2B.y=(x﹣1)2C.y=x2+1D.y=x2﹣14. 用频率估计概率,可以发现,抛掷硬币,“正面朝上”的概率为0.5,是指()A.连续掷2次,结果一定是“正面朝上”和“反面朝上”各1次B.连续抛掷100次,结果一定是“正面朝上”和“反面朝上”各50次C.抛掷2n次硬币,恰好有n次“正面朝上”D.抛掷n次,当n越来越大时,正面朝上的频率会越来越稳定于0.55. 如图,在⊙O中,弦AB,AC互相垂直,D,E分别为AB,AC的中点,则四边形OEAD为()A.正方形B.菱形C.矩形D.直角梯形6. 在平面直角坐标系中,点A(﹣4,1)关于原点的对称点的坐标为()A.(4,1)B.(4,﹣1)C.(﹣4,﹣1)D.(﹣1,4)7. 圆的直径为13cm,如果圆心与直线的距离是d,则()A.当d=8 cm,时,直线与圆相交B.当d=4.5 cm时,直线与圆相离C.当d=6.5 cm时,直线与圆相切D.当d=13 cm时,直线与圆相切8. 用配方法解方程x2+10x+9=0,配方正确的是()A.(x+5)2=16B.(x+5)2=34C.(x﹣5)2=16D.(x+5)2=259. 如图,在平面直角坐标系中,抛物线y=ax2+bx+5经过A(2,5),B(﹣1,2)两点,若点C在该抛物线上,则C点的坐标可能是()A.(﹣2,0)B.(0.5,6.5)C.(3,2)D.(2,2)10. 如图,在⊙O中,弦AD等于半径,B为优弧AD上的一动点,等腰△ABC的底边BC所在直线经过点D.若⊙O的半径等于1,则OC的长不可能为()A.2﹣B.﹣1C.2D.+1二、填空题11. 经过某丁字路口的汽车,可能左拐,也可能右拐,如果这两种可能性一样大,则三辆汽车经过此路口时,全部右拐的概率为.12. 方程x2﹣x﹣=0的判别式的值等于.13. 抛物线y=﹣x2+4x﹣1的顶点坐标为.14. 某村的人均收入前年为12 000元,今年的人均收入为14 520元.设这两年该村人均收入的年平均增长率为x,根据题意,所列方程为.15. 半径为3的圆内接正方形的边心距等于.16. 圆锥的底面直径是8cm,母线长9cm,则它的侧面展开图的圆心角的度数为.三、计算题17. 解方程:x2+2x﹣3=0.四、解答题18. 不透明的袋子中装有红色小球1个、绿色小球2个,除颜色外无其他差别.(1)随机摸出一个小球后,放回并摇匀,再随机摸出一个,用列表或画村状图的方法求出“两球都是绿色”的概率;(2)随机摸出两个小球,直接写出两次都是绿球的概率.19. 如图,在⊙O中,半径OA⊥弦BC,点E为垂足,点D在优弧上.(1)若∠AOB=56°,求∠ADC的度数;(2)若BC=6,AE=1,求⊙O的半径.20. 如图,E是正方形ABCD中CD边上任意一点.(1)以点A为中心,把△ADE顺时针旋转90°,画出旋转后的图形;(2)在BC边上画一点F,使△CFE的周长等于正方形ABCD的周长的一半,请简要说明你取该点的理由.21. 如图,某建筑物的截面可以视作由两条线段AB,BC和一条曲线围成的封闭的平面图形.已知AB⊥BC,曲线是以点D为顶点的抛物线的一部分,BC=6m,点D到BC,AB的距离分别为4m和2m.(1)请以BC所在直线为x轴(射线BC的方向为正方向),AB所在直线为y轴建立平面直角坐标系,求出抛物线的解析式,并直接写出自变量的取值范围;(2)求AB的长.22. 某种商品每件的进价为30元,在某段时间内若以每件x元出售,可卖出(100﹣x)件.设这段时间内售出该商品的利润为y元.(1)直接写出利润y与售价x之间的函数关系式;(2)当售价为多少元时,利润可达1000元;(3)应如何定价才能使利润最大?23. 如图,△ABC为等边三角形.O为BC的中垂线AH上的动点,⊙O经过B,C两点,D为弧上一点,D,A两点在BC边异侧,连接AD,BD,CD.(1)如图1,若⊙O经过点A,求证:BD+CD=AD;(2)如图2,圆心O在BD上,若∠BAD=45°;求∠ADB的度数;(3)如图3,若AH=OH,求证:BD2+CD2=AD2.24. 如图,抛物线y=(x+m)2+m,与直线y=﹣x相交于E,C两点(点E在点C的左边),抛物线与x轴交于A,B两点(点A在点B的左边).△ABC的外接圆⊙H与直线y=﹣x相交于点D.(1)若抛物线与y轴的交点坐标为(0,2),求m的值;(2)求证:⊙H与直线y=1相切;(3)若DE=2EC,求⊙H的半径.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】第24题【答案】。
2019-2020年九年级数学上学期第一次调研考试试题新人教版
2019-2020年九年级数学上学期第一次调研考试试题新人教版注意事项:1.答卷前,考生务必将自己的姓名、考号填写在答题卡上。
2. 将答案写在答题卡上。
写在本试卷上无效。
3. 考试结束后,将答题卡交回。
一、选择题(本大题共12小题,每小题3分,共36分)1.抛物线y=-(x+)2-3的顶点坐标是()A.(,-3)B.(-,-3)C.(,3)D.(-,3)2.若将抛物线y=5x2先向右平移2个单位,再向上平移1个单位,得到的新抛物线的表达式为()A.y=5(x-2)2+1B.y=5(x+2)2+1C.y=5(x-2)2-1D.y=5(x+2)2-13.下列关于抛物线y=-x2+2的说法正确的是()A.抛物线开口向上B.顶点坐标为(-1,2)C.在对称轴的右侧,y随x的增大而增大D.抛物线与x轴有两个交点4.下列方程中,是一元二次方程的是()A.2x-y=3B.x2+=2C.x2+1=x2-1D.x(x-1)=05.若抛物线y=x2-2x+m与x轴有交点,则m的取值范围是()A.m>1B.m≥1C.m<1D.m≤16.抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=1,且经过点(3,0),则a-b+c的值为()A.-1B.0C.1D.27.某景点的参观人数逐年增加,据统计,xx年为10.8万人次,xx年为16.8万人次.设参观人次的平均年增长率为x,则()A.10.8(1+x)=16.8B.16.8(1-x)=10.8C.10.8(1+x)2=16.8D.10.8[(1+x)+(1+x)2]=16.88.如图,将△ABC绕顶点A旋转到△ADE处,若∠BAD=40°,则∠ADB的度数是()A.50°B.60°C.70°D.80°9.在同一直角坐标系中,一次函数y=ax+c和二次函数y=ax2+c的图象大致为()A. B. C. D.10. 已知抛物线y=x2-x-2与x轴的一个交点为(m,0),则代数式m2-m+xx的值为()A.xxB.xxC.2019D.202011.已知点(-1,y1)、(-2,y2)、(2,y3)都在二次函数y=-3x2-6x+12的图象上,则y1、y2、y3的大小关系为( )A.y1>y3>y2B.y3>y2>y1C.y3>y1>y2D.y1>y2>y312.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0;②b>a+c;③9a+3b+c>0;④c<-3a;⑤a+b≥m(am+b),其中正确的有()A.2个B.3个C.4个D.5个二、填空题(本大题共8小题,每小题3分,共24分)13.飞机着陆后滑行的距离s(单位:米)关于滑行的时间t(单位:秒)的函数解析式是s=60t-t2,则飞机着陆后滑行的最长时间为 ______ 秒.14.如图,直线y=mx+n与抛物线y=ax2+bx+c交于A(-1,p),B(4,q)两点,则关于x的不等式mx+n>ax2+bx+c的解集是 ______ .15.正三角形绕其中心至少旋转 ______ 度能与原三角形重合.16.已知二次函数y=ax2+bx+c(a≠0)中,函数值y与自变量x的部分对应值如下表:x…-5 -4 -3 -2 -1 …y… 3 -2 -5 -6 -5 …17. 已知关于x的方程(m-1)x+2x-3=0是一元二次方程,则m的值为 ______ .18.已知关于x的方程x2-(m+2)x+m2+1=0的两个实数根的平方和为5,则实数m的取值是______ .19.与抛物线y=-(x-2)2-4关于原点对称的抛物线的解析式为 ______ .20.用配方法把二次函数y=2x2+2x-5化成y=a(x-h)2+k的形式为 ______ .三、(本大题共6小题,共60分)21.(8分)解方程:①3x(2x+1)=4x+2②x2-5x+1=0.22. (8分)二次函数的图象经过A(-1,0),B(1,-8),C(3,0)三点:(1)求这个函数的解析式;(2)求抛物线与坐标轴的交点围成的三角形的面积.23.(10分)某超市销售一种牛奶,进价为每箱24元,规定售价不低于进价.现在的售价为每箱36元,每月可销售60箱.市场调查发现:若这种牛奶的售价每降价1元,则每月的销量将增加10箱,设每箱牛奶降价x元(x为正整数),每月的销量为y箱.(1)写出y与x中间的函数关系书和自变量x的取值范围;(2)超市如何定价,才能使每月销售牛奶的利润最大?最大利润是多少元?24(10分).如图,抛物线y=x2+bx+c与x轴交于A,B两点,点A的坐标为(-1,0),与y轴交于点C(0,-2).(1)求抛物线的解析式及顶点D的坐标;(2)点M(m,0)是x轴上的一个动点,当MC+MD的值最小时,求m的值.25.(12分)“4.20芦山地震”发生后,各地积极展开抗震救援工作,一支救援车队经过如图1所示的一座拱桥,拱桥的轮廓是抛物线型,拱高6m,跨度20m,相邻两支柱间的距离均为5m,将抛物线放在所给的直角坐标系中(如图2所示),拱桥的拱顶在y轴上.(1)求拱桥所在抛物线的解析式;(2)求支柱MN的长度;(3)拱桥下地平面是双向行车道(正中间是一条宽2米的隔离带),其中的一条行车道能否并排行驶宽2m、高2.4m的三辆汽车(隔离带与内侧汽车的间隔、汽车间的间隔、外侧汽车与拱桥的间隔均为0.5m)?请说说你的理由.26.(12分)如图,在平面直角坐标系中,二次函数的图象交坐标轴于A(-1,0),B(4,0),C(0,-4)三点,点P是直线BC下方抛物线上一动点.(1)求这个二次函数的解析式;(2)是否存在点P,使△POC是以OC为底边的等腰三角形?若存在,求出P点坐标;若不存在,请说明理由;(3)动点P运动到什么位置时,△PBC面积最大,求出此时P点坐标和△PBC的最大面积.-----如有帮助请下载使用,万分感谢。
湖北省武汉市部分学校2021-2022学年九年级上学期调研考试数学试卷
2021~2022学年度武汉市部分学校九年级调研考试数学试卷一、选择题(共10小题,每小题3分,共30分)1.下列图形中,不是中心对称图形的是()A.B.C.D.2.有两个事件,事件(1):购买1张福利彩票,中奖;事件(2):掷一枚六个面的点数分别为1,2,3,4,5,6的骰子,向上一面的点数不大于6.下列判断正确的是()A.(1)(2)都是随机事件B.(1)(2)都是必然事件C.(1)是必然事件,(2)是随机事件D.(1)是随机事件,(2)是必然事件3.已知⊙O的半径等于5,圆心O到直线l的距离为6,那么直线l与⊙O的公共点的个数是()A.0B.1C.2D.无法确定4.解一元二次方程x2-6x-4=0,配方后正确的是()A.(x+3)2=13B.(x-3)2=5C.(x-3)2=4D.(x-3)2=135.在平面直角坐标系中,将抛物线y=x2向上平移一个单位长度,再向右平移一个单位长度,得到的抛物线解析式是()A.y=(x-1)2-1B.y=(x-1)2+1C.y=(x+1)2-1D.y=(x+1)2+16.已知一元二次方程x2-4x-1=0的两根分别为m,n,则m+n-mn的值是()A.5B.3C.-3D.-47.抛掷一枚质地均匀的硬币三次,恰有两次正面向上的概率是()A.18B.14C.38D.588.已知二次函数y=ax2-2ax+1(a为常数,且a>0)的图象上有三点A(-2,y1),B(1,y2),C(3,y3),则y1,y2,y3的大小关系是()A.y1<y2<y3B.y1<y3<y2C.y2<y1<y3D.y2<y3<y19.在设计人体雕像时,使雕像上部(腰部以上)与下部(腰部以下)的高度比,等于下部与全部的高度比,可以增加视觉美感.如图,按此比例设计一座高度为2m的雷锋雕像,那么该雕像的下部设计高度约是()A.0.76m B.1.24mC.1.36m D.1.42m 10.如图是一个含有3个正方形的相框,其中∠BCD=∠DEF=90°,AB=2,CD=3,EF=5,将它镶嵌在一个圆形的金属框上,使A,G,H三点刚好在金属框上,则该金属框的半径是()A.5102B .752C.52D.1122二、填空题(共6小题,每小题3分,共18分)11.在平面直角坐标系中,点P(3,-2)关于原点对称的点的坐标是___________.12.下图是由9个小正方形组成的图案,从图中随机取一点,这点在阴影部分的概率是________.第12题第13题第15题13.如图,PM,PN分别与⊙O相切于A,B两点,C为⊙O上异于A,B的一点,连接AC,BC.若∠P =58°,则∠ACB的大小是___________.14.“降次”是解一元二次方程的基本思想,用这种思想解高次方程x3-x=0,它的解是_____________.15.如图,已知圆锥的母线AB长为40cm,底面半径OB长为10cm,若将绳子一端固定在点B,绕圆锥侧面一周,另一端与点B重合,则这根绳子的最短长度是______________.参考数据:2≈1.4143≈1.7325≈2.23616.下列关于二次函数y=x2-2mx+2m-3(m为常数)的结论:[公众号:武汉数学]①该函数的图象与x轴总有两个公共点;②若x>1时,y随x的增大而增大,则m=1;③无论m为何值,该函数的图象必经过一个定点;④该函数图象的顶点一定不在直线y=-2的上方.其中正确的是_____________(填写序号).三、解答题(共8小题,共72分)17.(本小题满分8分)若关于x的一元二次方程x2+bx-2=0有一个根是x=2,求b的值及方程的另一个根.18.(本小题满分8分)如图,将△ABC绕点A逆时针旋转得到△ADE,点D在BC上,已知∠B=70°,求∠CDE的大小.19.(本小题满分8分)一个不透明的口袋中有三个完全相同的小球,把它们分别标号为1,2,3.甲从口袋中随机摸取一个小球,记下标号m,然后放回,再由乙从口袋中随机摸取一个小球,记下标号n,组成一个数对(m,n).(1)用列表法或画树状图法,写出(m,n)所有可能出现的结果;(2)甲、乙两人玩游戏,规则如下:按上述要求,两人各摸取一个小球,小球上标号之和为奇数则甲赢,小球上标号之和为偶数则乙赢.你认为这个游戏规则公平吗?请说明理由.20.(本小题满分8分)如图,A,P,B,C是⊙O上的四点,∠APC=∠CPB=60°.(1)判断△ABC的形状,并证明你的结论;(2)求证:PA+PB=P C.21.(本小题满分8分)如图是由小正方形组成的9×7网格,每个小正方形的顶点叫做格点,A,B,C三个格点都在圆上.仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示.(1)画出该圆的圆心O,并画出劣弧 AB的中点D;(2)画出格点E,使EA为⊙O的一条切线,并画出过点E的另一条切线EF,切点为F.22.(本小题满分10分)跳绳是大家喜爱的一项体育运动,当绳子甩到最高处时,其形状视为一条抛物线.如图是小涵与小军将绳子甩到最高处时的示意图,已知两人拿绳子的手离地面的高度都为1m,并且相距4m,现以两人的站立点所在的直线为x轴,建立如图所示的平面直角坐标系,其中小涵拿绳子的手的坐标是(0,1).身高1.50 m的小丽站在绳子的正下方,且距小涵拿绳子的手1m时,绳子刚好经过她的头顶.[公众号:武汉数学](1)求绳子所对应的抛物线的解析式(不要求写自变量的取值范围);(2)身高1.70m的小兵,能否站在绳子的正下方,让绳子通过他的头顶?(3)身高1.64m的小伟,站在绳子的正下方,他距小涵拿绳子的手s m,为确保绳子通过他的头顶,请直接写出s的取值范围.23.(本小题满分10分)[公众号:武汉数学]问题背景如图1,在△ABC与△ADE中,若AB=AC,AD=AE,∠BAC=∠DAE,则存在一对全等三角形,请直接写出这对全等三角形.尝试运用如图2,在等边△ABC中,BC=12,点D在BC上,以AD为边在其右侧作等边△ADE,F是DE的中点,连接BF,若BD=4,求BF的长.拓展创新如图3,在等腰Rt△ABC中,∠BAC=90°,BC=12,点D在BC上,以AD为斜边在其右侧作等腰Rt△ADE,连接BE.设BD=x,BE2=y,直接写出y关于x的函数关系式(不要求写自变量的取值范围).24.(本小题满分12分)如图,抛物线y=-12x2+32x+2与x轴负半轴交于点A,与y轴交于点B.(1)求A.B两点的坐标;(2)如图1,点C在y轴右侧的抛物线上,且AC=BC,求点C的坐标;(3)如图2,将△ABO绕平面内点P顺时针旋转90°后,得到△DEF(点A,B,O的对应点分别是点D,E,F),D,E两点刚好在抛物线上.公众号:武汉数学①求点F的坐标;②直接写出点P的坐标.2022武汉元调数学1.下列图形中,不是中心对称图形的是()A.B.C.D.答案:C2.有两个事件,事件(1):购买1张福利彩票,中奖;事件(2):掷一枚六个面的点数分别为1,2,3,4,5,6的骰子,向上一面的点数不大于6.下列判断正确的是()A.(1)(2)都是随机事件B.(1)(2)都是必然事件C.(1)是必然事件,(2)是随机事件D.(1)是随机事件,(2)是必然事件答案:D3.已知⊙O的半径等于5,圆心O到直线l的距离为6,那么直线l与⊙O的公共点的个数是()A.0 B.1 C.2 D.无法确定答案:A4.解一元二次方程x2-6x-4=0,配方后正确的是()A.(x+3)2=13 B.(x-3)2=5 C.(x-3)2=4 D.(x-3)2=13答案:D5.在平面直角坐标系中,将抛物线y=x2向上平移一个单位长度,再向右平移一个单位长度,得到的抛物线解析式是()A.y=(x-1)2-1 B.y=(x-1)2+1 C.y=(x+1)2-1 D.y=(x+1)2+1答案:B6.已知一元二次方程x2-4x-1=0的两根分别为m,n,则m+n-mn的值是()A.5 B.3 C.-3 D.-4答案:A7.抛掷一枚质地均匀的硬币三次,恰有两次正面向上的概率是()A.18B.14C.38D.58答案:C8.已知二次函数y=ax2-2ax+1(a为常数,且a>0)的图象上有三点A(-2,y1),B(1,y2),C(3,y3),则y1,y2,y3的大小关系是()A.y1<y2<y3B.y1<y3<y2C.y2<y1<y3D.y2<y3<y1答案:D9.在设计人体雕像时,使雕像上部(腰部以上)与下部(腰部以下)的高度比,等于下部与全部的高度比,可以增加视觉美感.如图,按此比例设计一座高度为2 m的雷锋雕像,那么该雕像的下部设计高度约是()参考数据:≈1.414 .732 ≈2.236A .0.76 mB .1.24 mC .1.36 mD .1.42 m答案:B10.如图是一个含有3个正方形的相框,其中∠BCD =∠DEF =90°,AB =2,CD =3,EF =5,将它镶嵌在一个圆形的金属框上,使A ,G ,H 三点刚好在金属框上,则该金属框的半径是( )AB.C. D答案:A11.在平面直角坐标系中,点P (3,-2)关于原点对称的点的坐标是___________.答案:(-3,2)12.下图是由9个小正方形组成的图案,从图中随机取一点,这点在阴影部分的概率是________.答案:5913.如图,PM ,PN 分别与⊙O 相切于A ,B 两点,C 为⊙O 上异于A ,B 的一点,连接AC ,B C .若∠P =58°,则∠ACB 的大小是___________.答案:61°或119°14.“降次”是解一元二次方程的基本思想,用这种思想解高次方程x 3-x =0,它的解是_____________. 答案:x 1=0或x 2=115.如图,已知圆锥的母线AB 长为40 cm ,底面半径OB 长为10 cm ,若将绳子一端固定在点B ,绕圆锥侧面一周,另一端与点B 重合,则这根绳子的最短长度是______________.J IH GFE D CBA答案:16.下列关于二次函数y =x 2-2mx +2m -3(m 为常数)的结论: ①该函数的图象与x 轴总有两个公共点;②若x >1时,y 随x 的增大而增大,则m =1; ③无论m 为何值,该函数的图象必经过一个定点;④该函数图象的顶点一定不在直线y =-2的上方. 其中正确的是_____________(填写序号). 答案:①③④17.若关于x 的一元二次方程x 2+bx -2=0有一个根是x =2,求b 的值及方程的另一个根. 答案:b =-1,x =-118.如图,将△ABC 绕点A 逆时针旋转得到△ADE ,点D 在BC 上,已知∠B =70°,求∠CDE 的大小.答案:40°19.一个不透明的口袋中有三个完全相同的小球,把它们分别标号为1,2,3.甲从口袋中随机摸取一个小球,记下标号m ,然后放回,再由乙从口袋中随机摸取一个小球,记下标号n ,组成一个数对(m ,n ). (1)用列表法或画树状图法,写出(m ,n )所有可能出现的结果;(2)甲、乙两人玩游戏,规则如下:按上述要求,两人各摸取一个小球,小球上标号之和为奇数则甲赢,小球上标号之和为偶数则乙赢.你认为这个游戏规则公平吗?请说明理由.9种情况 (2)P甲赢=49,P 乙赢=59∵P 甲赢≠P乙赢∴不公平20.如图,A ,P ,B ,C 是⊙O 上的四点,∠APC =∠CPB =60°. (1)判断△ABC 的形状,并证明你的结论; (2)求证:PA +PB =P C .21.如图是由小正方形组成的9×7网格,每个小正方形的顶点叫做格点,A ,B ,C 三个格点都在圆上.仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示. (1)画出该圆的圆心O ,并画出劣弧AB 的中点D ;EBDCA(2)画出格点E ,使EA 为⊙O 的一条切线,并画出过点E 的另一条切线EF ,切点为F .答案:22.跳绳是大家喜爱的一项体育运动,当绳子甩到最高处时,其形状视为一条抛物线.如图是小涵与小军将绳子甩到最高处时的示意图,已知两人拿绳子的手离地面的高度都为1 m ,并且相距4 m ,现以两人的站立点所在的直线为x 轴,建立如图所示的平面直角坐标系,其中小涵拿绳子的手的坐标是(0,1).身高1.50 m 的小丽站在绳子的正下方,且距小涵拿绳子的手1 m 时,绳子刚好经过她的头顶. (1)求绳子所对应的抛物线的解析式(不要求写自变量的取值范围);(2)身高1.70m 的小兵,能否站在绳子的正下方,让绳子通过他的头顶?(3)身高1.64m 的小伟,站在绳子的正下方,他距小涵拿绳子的手s m ,为确保绳子通过他的头顶,请直接写出s 的取值范围.答案:(1)212-163y x x =++ (2)()215--263y x =+ ∵1.7>53 ∴不能 (3)1.6≤s ≤2.4 23.问题背景 如图1,在△ABC 与△ADE 中,若AB =AC ,AD =AE ,∠BAC =∠DAE ,则存在一对全等三角形,请直接写出这对全等三角形.尝试运用 如图2,在等边△ABC 中,BC =12,点D 在BC 上,以AD 为边在其右侧作等边△ADE ,F 是DE 的中点,连接BF ,若BD =4,求BF 的长.拓展创新 如图3,在等腰Rt △ABC 中,∠BAC =90°,BC =12,点D 在BC 上,以AD 为斜边在其右侧作等腰Rt △ADE ,连接BE .设BD =x ,BE 2=y ,直接写出y 关于x 的函数关系式(不要求写自变量的取值范围).ABC答案:(1)△ABD ≌△ACE (2)(3)y =x 2+6x +3624.如图,抛物线y =-12x 2+32x +2与x 轴负半轴交于点A ,与y 轴交于点B . (1)求A .B 两点的坐标;(2)如图1,点C 在y 轴右侧的抛物线上,且AC =BC ,求点C 的坐标;(3)如图2,将△ABO 绕平面内点P 顺时针旋转90°后,得到△DEF (点A ,B ,O 的对应点分别是点D ,E ,F ),D ,E 两点刚好在抛物线上.①求点F 的坐标;②直接写出点P 的坐标.答案:(1)A (-1,0).B (0,2)(2)(2+2,1--44) (3)①F (1,2)或(12,218) ②P (32,12)或(2516,1116)图1 EDC B A图2 F D E A B C 图3 CE D BA 图1图2。
2020武汉元调数学试卷及答案(Word精校版)
第1页 / 共12页2019-2020学年度武汉市部分学校九年级元月调考数学试卷一、选择题(共10小题,每小题3分,共30分)1.将一元二次方程2514x x 化成一般形式后,二次项系数和一次项系数分别是( ) A .5,-1 B .5,4 C .5,-4 D .5,12.下列四张扑克牌的牌面,不是中心对称图形的是( )A .B .C .D .3.抛物线22y x 与22yx 相同的性质是( ) A .开口向下 B .对称轴是y 轴 C .有最低点 D .对称轴是x 轴4.一个不透明的袋子中只有4个黑球,2个白球,每个球除颜色外都相同,从中任意摸出3个球,下列事件为必然事件的是( )A .至少有1个球是黑球B .至少有1个球是白球C .至少有2个球是黑球D .至少有2个球是白球5.已知O 的半径等于3cm ,圆心O 到点P 的距离为5cm ,那么点P 与O 的位置关系是( ) A .点P 在O 内 B . 点P 在O 外 C .点P 在O 上 D .无法确定6.要将抛物线2y x 平移后得到抛物线223y x x ,下列平移方法正确的是( ) A .向左平移1个单位,再向上平移2个单位 B .向左平移1个单位,再向下平移2个单位 C .向右平移1个单位,再向上平移2个单位 D .向右平移1个单位,再向下平移2个单位7.如图,将△ABC 绕顶点C 逆时针旋转角度得到A B C ,且点B 刚好落在A B 上,若∠A =28°,BCA =43°,则等于( )A .36°B .37°C .38°D .39°8.小明上学要经过三个十字路口,每个路口遇到红灯、绿灯的可能性都相等,小明上学经过三个路口时,不全是红灯的概率是( )A .38 B . 12 C . 58 D . 789.如果m 、n 是一元二次方程24x x +=的两个实数根,那么多项式222n mn m --的值是( )A .16B .14C .10D .610.如图,△ABC 的两个顶点A ,B的O 上,∠A =60°,∠B =30°.若固定点A ,点B 在O 上运动,则OC 的最小值是( )A第2页 / 共12页A .B .C .D .二、填空题(本大题共6个小题,每小题3分,共18分)11.在平面直角坐标系中,点P (1,2)关于原点对称的点坐标是________. 12. 一个盒子中有10枚黑棋子和若干枚白棋子,这些棋子除颜色外无其他差别,从盒中随机取出一枚棋子,记下颜色,再放回盒子中,不断重复上述过程,一共取了300次,其中有100次取到黑棋子,由此估计盒中约有________枚白棋子.13.如图,四边形ABCD 是⊙O 的内接四边形,∠BOD =100°,∠BCD 的大小是 .14.为响应全民阅读活动,某校面向社会开放图书馆,自开放以来,进馆人次逐月增加,第一个月进馆200人次,前三个月累计进馆872人次,若进馆人次的月增长率相同,为求进馆人次的月增长率,设进馆人次的月增长率为x ,依题意可列方程为 .15.已知二次函数()20y ax bx c c =++<的图像开口向上,对称轴为直线1x =,下列结论中,一定正确的 是 (填序号即可).①0b <; ②420a b c ++<; ③a c b +>; ④()a b t at b +≤+(t 是一个常数).16.我国魏晋时期的数学家刘徽首创“割圆术”,利用圆的内接正多边形逐步逼近圆来近似计算圆的周长,进而确定圆周率,某圆半径为R ,其内接正十二边形的周长为C . 若R ,则C = ,2CR≈ ,(结果精确到0.01 2.449≈ 1.414≈).三、解答题(共8题,共72分)17.(本题8分)若关于x 的一元二次方程x 2+2x +m =0有两个相等的实数根,求m 的值及此时方程的根.B第3页 / 共12页18. (本题8分)如图,A .B .C 三点在半径为1的O 上,四边形ABCD 是菱形,求的长.19. (本题8分)在5种同型号的产品中,有1件不合格品和4件合格品. (1)从这5件产品中随机选取1件,直接写出抽到合格品的概率; (2)从这5件产品中随机选取2件,求抽到都是合格品的概率.20.(本题8分)请仅用无刻度的直尺完成下列画图,不写画法,保留画图痕迹(用虚线表示画图过程,实线表示画图结果). (1)如图(1),P 是平行四边形ABCD 边AD 上一点,过点P 画一条直线把这个四边形分成面积相等的两部分; (2)如图(2),五边形ABCDE 是正五边形,画一条直线把这个五边形分成面积相等的两部分; (3)如图(3),△ABC 的外接圆的圆心是点O ,D 是的中点,画一条直线把△ABC 分成面积相等的两部分.(1)(2)(3)AED CBAD21.(如图8分)如图,P A,PB 分别与O相切于A,B两点,AC 是O的直径,AC=AP,连接OP交AB于点D,连接PC 交O于点E,连接DE.(1)求证:△ABC≌△PDA;(2)求BDDE的值.22.(本题10分)某公司经过市场调查,整理出来某种商品在某个月的第x天的销售价与销售量的相关信息如(1)求y与x的函数关系式;(2)问销售该商品第几天时,日销售利润为2250元?(3)问在当月有多少天的日销售利润不低于2400元,请直接写出结果.第4页 / 共12页23.(本题10分)问题背景:如图(1),在四边形ABCD中,若BC=CD,∠BAD=∠BCD=90°,则AC平分∠BAD,小明为了证明这个结论,将△ABC绕点C顺时针旋转90°,请帮助小明完成他的作图.迁移应用:如图(2),在五边形ABCDE中,∠A=∠C=90°,AB=BC,AE+CD=DE,求证:BD平分∠CDE.联系拓展:如图(3),在Rt△ABC中,AC=BC,若点D满足1013AD AB,BD=AB,点P是AD的中点,直接写出PCAB的值.(1) (2) (3)BB第5页 / 共12页24.(本题12分)如图,在平面直角坐标系中,圆心为P(x,y)的动圆经过点A(m,2m+4)(m>-2),且与x轴相切于点B.y与x之间存在一种确定的函数关系,其图象是一条常见的曲线,记做曲线F.(1)如图(1),①当y=32时,直接写出P的半径;②当m=-1,x=-2时,直接写出P的半径.(2)求曲线F最低点的坐标(用含有m的式子表示);(3)如图(2),若曲线F最低点总在直线y=12x+3的下方,点C(-2,y1),D(1,y2)都在曲线F上,试比较y1与y2的大小.3第6页 / 共12页第7页 / 共12页2019-2020学年度武汉市部分学校九年级元月调考数学试卷参考答案9.答案:B 解析:∵m ,n 为方程x ²+x =4的解∴m +n =-1;mn =-4,且代n 到原式,得n ²=4-n∴原式=2(4-n )-mn -2m =8-2n -2m -mn =8-2(m +n )-mn =8+2+4 =1410.答案:A 解析:延长BC 交圆O 与D ,连O D .取AD 的中点E ,连OE ,连CE ∵ ∠B =30°,∴∠DOA =60°,∴△DAO 为等边三角形 ∵3OA ,∴3AD∵∠DCA =90°,∴点C 在以点E为半径的圆上运动∵OC OE CE ,∴3322OC ,故答案选A二、填空题(本大题共6个小题,每小题3分,共18分) 11. ()1,2-- 12.20 13.130°14.()()220020012001872x x ++++=15.①②④16.答案:24; 3.1116.解析:过C 作CD ⊥AB 于D , 正十二边形中心角∠CAD =30°B第8页 / 共12页∴12CD AC ==AD ==,BD AB AD =- 在Rt △CDB中,2CB =,∴24C =, 3.112CR≈三、解答题(共8题,共72分) 17. m =1,方程的根为x 1=x 2=-118. 23π19.(1)45;(2)3520. (1)(2)(作法不唯一)(3)21. 证明:(1)∵P A 为O 切线,∴∠P AO =90° ∵AC 为O 直径,∴∠ABC =90°∴∠BAC +∠ACB =∠BAC +∠P AD ,∴ ∠ACB =∠P ADBE第9页 / 共12页∵P A ,PB 为O 切线,∴P A =PB∵OA =OB ,P A =PB ,∴OP ⊥AB ,∴∠ADP =90° 在△ABC 和△PDA 中 ∠=∠=⎧⎪⎨⎪⎩=∠∠ACB PAD AC PA ABC PDA ∴△ABC ≌△PDA (AAS )解:(2)连接AE ,连接BE 交DP 于点F ∵∠ADO =∠ABC =90°,∴OP ∥BC ,∴∠BCE =∠FPE ,∵AC 为直径,∴∠AEC =90°, ∵∠P AO =90°,AC =AP ,∴∠ACE =45°,CE =PE 在△CEB 和△PEF 中 ∠=∠=∠⎧⎪⎨⎩=∠⎪BCE FPE CE PECEB PEF ∴△CEB ≌△PEF (ASA ) ∴BE =FE∵∠ABE =∠ACE =45°,∠BDP =∠ADP =90°,∴BD =DF 在Rt △BDF 中,222+=BD DF BF ,∴222=BD BF ,∴BF∵BE =EF ,∴BDDE22. 解:(1)y =[(x +40)-20](100-2x ) ,∴y =-2x 2+60x +2000 (2)由(1)知y =-2x 2+60x +2000当日销售利润为2250元时,有-2x 2+60x +2000=2250 解得:x 1=5; x 2=25故该销售商品第5天或第25天时,日销售利润为2250元. (3)11天当销售利润为2400时,有-2x 2+60x +2000=2400 解得:x 1=10; x 2=20 由二次函数图像性质可知:共有11天(第10天到第20天),销售利润不低于2400元.23. (1) 解:第10页 / 共12页(2) 证明:延长DC 至点F ,使CF =AE ,连接BE ,BF在△ABE 和△CBF 中 ==BCF =AB BC A AE CF ⎧⎪⎨⎪⎩∠∠ ∴△ABE ≌△CBF (SAS ),∴BE =BF 又∵DE =AE +CD 且AE =CF ,∴DE =DF 在△BDE 和△BDF 中 BE BF DE DF BD BD =⎧⎪=⎨⎪=⎩∴△BDE ≌△BDF (SSS )∴∠BDE =∠BDF ,∴BD 平分∠CDE (3)①当D 在AB 左侧时连接CP ,过点C 作CE ⊥CP ,交DA 的延长线于E 点∵AB =BD ,且P 是AD 的中点,∴BP ⊥AD ,即∠CBP =∠CAE∵AD =1013AB ,∴AP =12AD =513AB ,BP1213AB∵=ACE PCB ∠∠,在△BCP 和△ACE 中第11页 / 共12页CBP CAE BC ACBCP ACE =⎧⎪=⎨⎪=⎩∠∠∠∠ ∴△BCP ≌△ACE (ASA )∴AE =PB =1213AB ,PE =AP +AE =1713AB ∵PC =CE ,PC ⊥CE ,∴△PCE 为等腰直角三角形PCPE,即PC AB ②当D 在AB 右侧时连接CP ,过点C 作CQ ⊥CP 交BP 于点Q由①可知:∠APB =∠ACB =90°,AP =513AB ,PB =1213AB ∵PC ⊥CQ ,∴∠PCQ =∠ACB =90°,∴∠ACP =∠BCQ ∵∠APB =∠ACB ,∴∠CAP =∠CBQ在△ACP 和△BCQ 中CAP CBQ AC BCACP BCQ =⎧⎪=⎨⎪=⎩∠∠∠∠ ∴△ACP ≌△BCQ (ASA )∴BQ =AP =513AB PQ =BP -BQ =713AB ,PC =PQ ∵PC ⊥CQ ,∴△PCQ 为等腰直角三角形∴PCPQAB ,即PC = 综上所述:PC AB =24.解:(1)①32②54(2)依题意得:PB =P Ay = B D第12页 / 共12页 ()()22224y y m x m ---=-,∴()()21242y x m m m =-+++, 即顶点(m ,m +2)(3)方法一:顶点(m ,m +2)在直线y =x +2运动 又∵最低点一直在132y x =+下方,x +2<132x +,即m <2,∴-2<m <2 ∵C (-2,y 1),D (1,y 2),∴()()212242m y m m +=+++,()()221242m y m m =+++- ()()()()()2212213214242m m m y y m m +--+-==++,令y 1=y 2,解得12m =- ①当-2<m <12-时,()()32142m m ++<0 ,即y 1-y 2<0,故y 1<y 2; ②当12m =-时,()()32142m m ++=0,y 1=y 2; ③当-12<m <2时,()()32142m m ++>0,y 1>y 2. 综上①当-2<m <12-时,y 1<y 2;②当12m =-时,y 1=y 2;③当-12<m <2时,y 1>y 2. 方法二:(3)函数值的大小可以比较点到对称轴的距离当m =12-时,y 1=y 2 ;当-2<m <12-时,y 1<y 2 ;当-12<m <2时,y 1>y 2.。
2019年—2020年学年度武汉市九年级元月调考数学试卷(含标准答案)
2019年—2020年学年度武汉市九年级元月调考数学试卷(含标准答案)考试时间:2019年1月17日14:00~16:00 一、选择题(共10小题;每小题3分;共30分)1.将下列一元二次方程化成一般形式后;其中二次项系数是3;一次项系数是-6;常数项是1的方程是( ) A .3x 2+1=6xB .3x 2-1=6xC .3x 2+6x =1D .3x 2-6x =12.下列图形中;是中心对称图形的是( )A .B .C .D .3.若将抛物线y =x 2先向右平移1个单位长度;再向上平移2个单位长度;就得到抛物线( )A .y =(x -1)2+2 B .y =(x -1)2-2C .y =(x +1)2+2D .y =(x +1)2-24.投掷两枚质地均匀的骰子;骰子的六个面上分别刻有1到6的点数;则下列事件为随机事件的是( )A .两枚骰子向上一面的点数之和大于1B .两枚骰子向上一面的点数之和等于1C .两枚骰子向上一面的点数之和大于12D .两枚骰子向上一面的点数之和等于12 5.已知⊙O 的半径等于8 cm ;圆心O 到直线l 的距离为9 cm ;则直线l 与⊙O 的公共点的个数为( ) A .0B .1C .2D .无法确定6.如图;“圆材埋壁”和我国古代著名数学著作《九章算术》中的问题:“今有圆材;埋在壁中;不知大小;以锯锯之;深一寸;锯道长一尺;问径几何”用几何语言可表述为:CD 为 ⊙O 的直径;弦AB 垂直CD 于点E ;CE =1寸;AB =10寸;则直径CD 的长为( ) A .12.5寸B .13寸C .25寸D .26寸第6题图 第8题图 第9题图7.假定鸟卵孵化后;雏鸟为雌鸟与雄鸟的概率相同.如果3枚鸟卵全部成功孵化;那么3只雏鸟中恰有2只雄鸟的概率是( ) A .61B .83 C .85 D .32 8.如图;将半径为1;圆心角为120°的扇形OAB 绕点A 逆时针旋转一个角度;使点O 的对应点D 落在弧AB 上;点B 的对应点为C ;连接BC ;则图中CD 、BC 和弧BD 围成的封闭图形 面积是( ) A .63π-B .623π- C .823π- D .33π-9.古希腊数学家欧几里得的《几何原本》记载;形如x 2+ax =b 2的方程的图解法是:如图;画Rt △ABC ;∠ACB =90°;BC =2a ;AC =b ;再在斜边AB 上截取BD =2a;则该方程的一个 正根是( ) A .AC 的长B .BC 的长C .AD 的长 D .CD 的长10.已知抛物线y =ax 2+bx +c (a <0)的对称轴为x =-1;与x 轴的一个交点为(2;0).若关于x 的一元二次方程ax 2+bx +c =p (p >0)有整数根;则p 的值有( ) A .2个B .3个C .4个D .5个二、填空题(本大题共6个小题;每小题3分;共18分)11.已知3是一元二次方程x 2=p 的一个根;则另一根是___________12.在平面直角坐标系中;点P 的坐标是(-1;-2);则点P 关于原点对称的点的坐标是_____ 13.一个口袋中有3个黑球和若干个白球;在不允许将球倒出来数的前提下;小刚为估计其中的白球数;采用了如下的方法:从口袋中随机摸出一球;记下颜色;然后把它放回口袋中;摇 匀后再随机摸出一球;记下颜色……;不断重复上述过程;小刚共摸了100次;其中20次摸 到黑球;根据上述数据;小刚可估计口袋中的白球大约有___________个14.第七届世界军人运动会将于2019年10月18日至27日在中国武汉举行;小明幸运获得了一张军运会吉祥物“兵兵”的照片.如图;该照片(中间的矩形)长29 cm ;宽为20 cm ;他 想为此照片配一个四条边宽度相等的镜框(阴影部分);且镜框所占面积为照片面积的41. 为求镜框的宽度;他设镜框的宽度为x cm ;依题意列方程;化成一般式为_____________第14题图 第15题图 第16题图15.如图是抛物线形拱桥;当拱顶离水面2 m 时;水面宽4 m .水面下降2.5 m ;水面宽度增加___________m16.如图;正方形ABCD 的边长为4;点E 是CD 边上一点;连接AE ;过点B 作BG ⊥AE 于点G ;连接CG 并延长交AD 于点F ;则AF 的最大值是___________三、解答题(共8题;共72分) 17.(本题8分)解方程:x 2-3x -1=018.(本题8分)如图;A 、B 、C 、D 是⊙O 上四点;且AD =CB ;求证:AB =CD第18题图19.(本题8分)武汉的早点种类丰富;品种繁多;某早餐店供应甲类食品有:“热干面”、“面窝”、“生煎包”、“锅贴饺”(分别记为A;B;C;D);乙类食品有:“米粑粑”、“烧梅”、“欢喜坨”、“发糕”(分别记为E、F、G、H);共八种美食.小李和小王同时去品尝美食;小李准备在“热干面”、“面窝”、“米粑粑”、“烧梅”(即A;B;E;F)这四种美食中选择一种;小王准备在“生煎包”、“锅贴饺”、“欢喜坨”、“发糕”(即C;D;G;H)这四种美食中选择一种;用列举法求小李和小王同时选择的美食都会是甲类食品的概率20.(本题8分)如图;在边长为1的正方形网格中;点A的坐标为(1;7);点B的坐标为(5;5);点C的坐标为(7;5);点D的坐标为(5;1)(1) 将线段AB绕点B逆时针旋转;得到对应线段BE.当BE与CD第一次平行时;画出点A运动的路径;并直接写出点A运动的路径长(2) 小贝同学发现:线段AB与线段CD存在一种特殊关系;即其中一条线段绕着某点旋转一个角度可以得到另一条线段;直接写出这个旋转中心的坐标第20题图21.(本题8分)如图;在四边形ABCD中;AD∥BC;AD⊥CD;AC=AB;⊙O为△ABC的外接圆(1) 如图1;求证:AD是⊙O的切线(2) 如图2;CD交⊙O于点E;过点A作AG⊥BE;垂足为F;交BC于点G①求证:AG=BG②若AD=2;CD=3;求FG的长22.(本题10分)某商家销售一种成本为20元的商品;销售一段时间后发现;每天的销量y(件)与当天的销售单价x(元/件)满足一次函数关系;并且当x=25时;y=550;当x=30时;y=500.物价部门规定;该商品的销售单价不能超过48元/件(1) 求出y与x的函数关系式(2) 问销售单价定为多少元时;商家销售该商品每天获得的利润是8000元?(3) 直接写出商家销售该商品每天获得的最大利润23.(本题10分)如图;等边△ABC与等腰三角形△EDC有公共顶点C;其中∠EDC=120°;AB=CE=62;连接BE;P为BE的中点;连接PD、AD(1) 小亮为了研究线段AD与PD的数量关系;将图1中的△EDC绕点C旋转一个适当的角度;使CE与CA重合;如图2;请直接写出AD与PD的数量关系(2) 如图1;(1)中的结论是否仍然成立?若成立;请给出证明;若不成立;请说明理由(3) 如图3;若∠ACD=45°;求△PAD的面积24.(本题12分)如图;在平面直角坐标系中;抛物线y=x2+(1-m)x-m交x轴于A;B两点(点A在点B的左边);交y轴负半轴于点C(1) 如图1;m=3①直接写出A;B;C三点的坐标②若抛物线上有一点D;∠ACD=45°;求点D的坐标(2) 如图2;过点E(m;2)作一直线交抛物线于P;Q两点;连接AP;AQ;分别交y轴于M;N两点;求证:OM·ON是一个定值。
湖北省武汉市武昌区武汉大学附属外语学校2024-2025学年九年级上学期10月月数学考试
武汉市武昌区武大外校2024-2025学年第一学期九年级10月月考数学试卷一、选择题(3分x10-30分)1.方程2x 2+1=6x 化成一般形式后,若二次项系数为2,则一次项系数为( ). A.-6 B.6 C.-1 D. 12.若方程(m-1)x 2+x-2=0是关于x 的一元二次方陧,则m 的取值范围是( ). A. m>1 B. m ≥1 C. m=1 D.,m ≠13.用配方法解方程x 2-10x+24=0,变形后结果正确的是( ). A.(x-5)2=1 B.(x-5)2=25 C.(x-10)2=1 D.(x+10)2=494.将抛物线y=3x 2向右平移2个单位,再向上平移1个单位,得到新抛物线的顶点坐标为( )A. (-2,-1)B. (2,-1)C. (-2,1)D. (2,1)5.某校去年对实验器材的投资为2万元,预计今明两年的投资总额为8万元.若设该校今明两年在实验器材投资的年平均增长率是x,则所列方程正确的是( A. 2(1+x)2=8 B. 2(1+x)+2(1+x)2=8 B. 2(1+x/%)2=8 C. 2(1+x/%)+2(1+x/%)2=86.二次函数y=-x 2+2x+3,当-1≤x ≤2时,y 的最大值为m,最小值为n,则m+n=( ) A.3 B.4 C.7 D. 17.菱形ABCD 的一条对角线长为5,边AB 的长是方程x 2-5x+6=0的一个根,则菱形ABCD 的周长为( )A.8B. 11C. 12D.12或88.若二次函数y=a 2-6ax+c (a<0)的图象过A(2,y 1)、B(a,y 2)、(3+√2,y 3)三点,则y 1、y 2、y 3大小关系为( )A.y 2<y 3 <y 1B. y 2 <y 1 <y 3C.y 3 <y 1<y 2D.y 1 <y 2<y 39.小明和小红一起做作业,在解一道一元二次方程时,小明在化简过程中写错了常数项,得到两个根分别是2和5;小红在化简过程中写错了一次项系数,得到两个根分别是2和6.则此方程正确的解为( )A.x 1=x 2=2B.x 1=5,x 2=6C.x 1=3,x 2=4D.此方程无解 10.如图,抛物线y=ー√3x 2+√3x+2√3与x 轴正半轴交于点A,与y 轴交于点B,将第一象限的抛物线沿AB 翻折,翻折后的抛物线与y 轴交于点C,则点C 的坐标为( ) A. (0,√3) B. (0,8√39) C. (0,4√33) D.(0,10√39) 二、填空题(3分x6=18分)11.一元二次方程x 2+2x-3=0的判别式的值为______________. 12.二次函数y=x 2-8x+16的顶点坐标为_____________.13.学校组织篮球赛,参赛的每两队之间都要比赛一场.赛程计划安排4天,每天安排9场比赛,问共有多少个队参赛?设共有x 个队参赛,根据题意可列出方程并化为一般式为_____________.14.如图1是我国著名建筑“东方之门”,它通过简单的几何曲线处理,将传统文化与现代建筑融为一体,最大程度地传承了中国的历史文化.“门”的内侧曲线呈抛物线形,如图2,已知其底部宽度AB为80米,高度为200米,则离地面128米处的水平宽度(即CD的长)为__________米.15.“黄金分割”给人以美感,它在建筑、艺术等领域有着广泛的应用.如图1,点C把线段AB分成AC,BC两部分,如果BC:A C = A C :A B= k ,那么称点C是线段AB的黄金分割点,k的值为黄金分割数.在顶角为36°的等腰三角形中,底与腰的比值为黄金分割数,所以我们常称这类三角形为“黄金三角形”.如图2,ΔDEF,ΔEFG,ΔGKF均为“黄金三角形”,若 D E = 1,则KF的长是16.抛物线y = a x2+ b x + c( a ,.b,,c是常数,a < 0 )经过A ( - 2 ,0),B ( m ,0),且2 < m < 3,顶点为D点,下列结论:①a b c < 0;②9 a + 6 b + c < 0 ;x + c的解集为- 2 < x < 0;③不等式- a x2 + b x + c >c2④连接DA,DB,若4 5°≤∠ D A B ≤6 0°,则4 a + 4 ≤ c≤4 a + 4 √3.其中正确的结论是________________.三、解答题(共8小题,共72分)17.(本小题满分8分)解下列方程:(1)(1)x2 + 2 x - 8 = 0 ;(2)2 x2 - 2 x - 3 = 0 .18.(本小题满分8分)如图,已知二次函数图象的顶点为(1,-4),且过(-1 0).(1)求这个二次函数的解析式;(2)观察图象,当- 3 < y≤ 0时,x的取值范围为__________(直接写出答案).19.(本小题满分8分)如图,小明要设计一个宽20cm,长30cm的图案,其中有两横两竖的彩条,横彩条与竖彩条的宽度比为2:3.(1)若设一条横彩条宽度为2xcm,则一条竖彩条的宽度为_____cm,彩条所占面积为__________c㎡;(用含x的式子表示,化简后按x的降幂排列)(2)如果彩条所占面积为216c㎡,小明应如何设计彩条的宽度?20.(本小题满分8分,如图是由边长为1的小正方形构成的网格,每个小正方形的顶点叫做格点,抛物线C1过格点A,B,C,.D,其中O(0,0),D ( 1 , 0 ) .(1)建立平面直角坐标系,直接写出C1的解析式____________;(2)用无刻度的直尺在OB上画一点E,使∠ A E B = ∠C E O ;(保留作图的痕迹,不要求说明理由)(3)将抛物线C1平移至C2,使A与B对应,直接写出C2的解析式____________. 21.(本小题满分8分)已知关于x的方程x2 - ( 2 k - 3 ) x + k2 + 3 = 0有实数根x1,x2.(1)求k的取值范围;(2)已知点A ( x1 ,0 ) 、B ( x2,0 ),若O A + O B = O A×O B - 1,求k的值;(3)若m =x12 + 3x1 + 2 k x2则m的最小值为________(直接写出答案), 22.(本小题满分10分)如图,一小球从斜坡O 点以一定的方向弹出,球的飞行路线可以用二次函数y 1 = a x 2 + b x ( a <0)刻画,斜坡可以用一次函数y 2= 13 x 刻画,小球飞行的水平距离x (米)与小球飞行的高度y 1(米)变化规律如下表:(1)①直接写出a ,b 的值: a =_______,b =________;②小球在斜坡上的落点是A ,求点A 的坐标.(2)小球飞行高度y 1(米)与飞行时间t (秒)满足关系y 1 = - 5 t 2 + v t . ①小球飞行的最大高度为______米; ②求v 的值.23.(本小题满分10分) 经典再现图1是我们熟悉的“赵爽弦图”,此图可用“出入相补法”证明勾股定理.即图1是四个全等的直角三角形围成大正方形ABCD 和小正方形EFGH ,设AE=a ,BE=b ,AB=c.(1)请结合图1证明勾股定理:a 2+b 2=c 2; 经典延伸将图1经过拉伸可得到图2,图2或以看成两组全等的三角形围成四边形ABCD 和四边形EFGH ,若四边形ABCD 为平行四边形,四边形EFGH 为菱形,且∠EFG=60°,EF=2,AE=m ,BH=n.(2)当m=2n ,平行四边形ABCD 的面积为16√3时,求n 的值; (3)当m+n=8时,直接写出平行四边形ABCD 面积的最大值.24.如图,抛物线y = a x 2-6 a x + 8 a 与x 轴交于点A ,B 两点(A 在B 的左侧),与y 轴正半轴交于点C ,.x 0 3 6 9 ⋯y 0 9 m 9 ⋯(1)当OC=4AO时:①直接写出该抛物线的解析式__________________;②设D点是抛物线上一点,连接DB,DC,当ΔDBC的面积等于6时,求D点的横坐标;(2)若点P(1,t)为抛物线上一点,过(5,6)作一直线与抛物线交于M,N 两点,连PM,PN,设直线PM的解析式为:y=k1x+b1,直线PN的解析式为:y=k2x+b2,求 k1k2的最小值.备用。
湖北省武汉市洪山区北片2023-2024学年九年级上学期月考数学试题
湖北省武汉市洪山区北片2023-2024学年九年级上学期月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题.....下列成语所描述的事件属于不可能事件的是().守株待兔.水滴石穿.一元二次方程2x).有两个不相等的实数根.有两个相等的实数根.没有实数根.无法确定.一个布袋里装有个白球,每个球除颜色外均相同,从中任意摸出一个球,则摸出的球是白球的概率是(2.2A .()3,2B .()3,2--9.已知抛物线y =ax 2+bx +c (a <0)的对称轴为关于x 的一元二次方程ax 2+bx +c =p (p >A .2个B .3个10.如图,将弧AB 沿弦AB 翻折过圆心O 点,交弦的长为()二、填空题14.我国魏晋时期数学家刘徽在《九章算术注》中提到了著名的割圆术:所失弥少.割之又割,以至于不可割,则与圆周合体,而无所失矣微积分思想,他用这种思想得到了圆周率运用“割圆术”,以圆内接正六边形面积近似估计若用圆内接正十二边形作近似估计,可得15.如图所示是抛物线2y ax =轴的一个交点在点(3,0)和(4,0)③24()b a c n =-;④若()1,t y ,确的是(填写序号).16.如图,已知MON ∠三、解答题17.若关于x的一元二次方程根.18.如图将ABC绕点A1AB=,求BD的长.19.李老师将1个黑球和若干个白球(球除颜色外其他均相同)放人一个不透明的口袋并搅匀,让学生进行摸球试验,每次从中随机摸出一个球,记下颜色后;放回,如表所示是试验得到的一组统计数据.摸球的次数n100摸到黑球的次数m23摸到黑球的频率mn0.23(1)补全表中的有关数据,并根据表中数据估计从袋中摸出一个黑球的概率是(2)估算袋中白球的个数;(3)在(2)的条件下,若小强同学有放回地连续两次摸球,用画树状图或列表的方法计算出摸出一个黑球一个白球的概率.20.如图,AB为O的直径,为D.(1)求证:AC 平分DAB ∠(2)若3DE =,4CD =21.如图,在边长为均在格点上,仅用无刻度的直尺,完成下列作图(不写作法,保留作图痕迹)(1)在图1中,①作 AB 的中点M :②作»BN ,使得 BN AB =;③取格点C ,使CB 为O 的一条切线.(做出符合题意的一点即可)(2)在图2中,作直径AD ,E 为O 外任一点,过E 22.行驶中的汽车,在刹车后由于惯性作用还会继续前行,向前滑行一段距离后才能停止,这段距离称为“刹车距离”.下表是一辆行驶中的汽车在刹车后行驶的速度刹车距离()m S 与行驶的时间()s t 的一些数据:()s t 0.51 1.52V ()m/s 2418126()m S 13.52431.536(1)经过研究分析,我们发现,刹车后行驶的速度V S 与时间t 成二次函数关系,请直接写出刹车后行驶的速度间t 的函数关系式(不需要写出自变量的取值范围)(2)若该汽车司机行驶中发现前方37米处有危险从而紧急刹车,问该司机紧急刹车后,(1)为了研究线段AP 与PD 的关系,将图1中的EDC △绕点C 旋转一个适当的角度,使CE 与CA 重合,如图2,请直接写出AP 与PD 的关系;(2)如图1,(1)中的结论是否仍然成立?若成立,请给出证明:若不成立,请说明理由.(3)如图3,若45ACD ∠=︒,直接写出PAD 的面积.24.如图1,抛物线213222y x x =+-与x 轴交于A 和B 两点,与y 轴交于C .(1)直接写出A ,B ,C 三点的坐标;(2)连接AC 、BC ,D 点为抛物线上第三象限内一动点,且2180ACD ABC ∠+∠=︒点D 坐标;(3)如图2,直线4y kx k t =++交抛物线于P 、Q 两点(P 、Q 不与A 、B 重合),直线BQ 分别交y 轴于点M 、点N ,若M 、N 两点的纵坐标分别为m ,n ,试探究m ,t 之间的数量关系.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
武汉市部分学校2019-2020学年度元月调考模拟(2)九年级数学试卷一、选择题(每小题3分,共30分)01.关于x的方程(m-1)x2+2mx-3=0是一元二次方程,则m的取值范围是()A.任意实数B.m>1 C.m≠-1 D.m≠102.下列四种图案中,不是中心对称图形的为()03.下列事件中,是随机事件的是()A.通常加热到100℃时,水沸腾B.随意翻到一本书的某页,这页的页码是偶数C.任意画一个三角形,其内角和是360°D.明天太阳从东方升起04.已知⊙O的半径为4,点O到直线m的距离为3,则直线m与⊙O公共点的个数为()A.0个B.1个C.2个D.3个05.以下说法合理的是()A.小明做了3次搠图钉实验,发现2次钉尖朝上,由此他说钉尖朝上的概率是2 3B.某彩票的中奖概率是5%,那么买100张彩票一定有5张中奖C.某运动员射击一次只有两种可能的结果:中靶与不中靶,所以他击中靶的概率是1 2由此频率表可知,这名球员投篮一次,投中的概率约是0.60 06.扇形的弧长为20πcm2,那么扇形的半径是()A.6cm B.12cm C.24cm D.28cm07.关于方程x2+2x-4=0的根的情况,下列结论错误的是()A.有两个不相等的实数根B.两实数根的和为-2C.两实数根的差为D.两实数的积为-408.用长8m 的铝合金条制成如图开关的矩形窗框,使窗户的透光面积最大,那么这个窗户的最大透光面积是( )A .6425m 2 B .43m 2 C .83m 2 D .4 m 209.如图,⊙O 的直径AB =8cm ,AM 和BN 是它的两条切线,切点分别为A 、B ,DE 切⊙O 于E ,交AM 于D ,交BN 于C .设AD =x ,BC =y ,则y 与x 的函数图像是( ) A .xy =16 B .y =2x C .y =2x 2 D .xy =8 10.设一元二次方程(x -2)(x -3)-p 2=0的两实根分别为α、β(α<β),则α、β满足( )A .2<α≤βB .α≤2且β≥3C .α≤β<3D .α<2且β>3二、填空题(每小题分,共18分)11.方程2(x -1)=0的根为 12.如图⊙O 是正△ABC 的外接圆,若正△ABC 的边心距为1,则⊙O 的周长为13.把抛物线y =-2(x -2)-2先向左平移1个单位,再向下平移1个单位,得到的抛物线解析式为 14.践行“十九大”,确保“全脱贫”向阳村2016年的人均收入为3500元,2018年的人均收入为5040元.设人均收入的平均增长率为x ,则依题意所列的方程为 15.点A (x 1,y 1)、B (x 2,y 2)在抛物线y =x 2+2mx +2上,当2<x 1<x 2时,满足y 1<y 2,则m 的取值范围为16.已知⊙O 的直径AB 为4cm ,点C 是⊙O 上的动点,点D 是BC 的中点,AD 延长线交⊙O 于点E ,则BE 的最大值为三、解答题(共72分) 17.(8分)用公式法解方程:x 2-4x +2=0.第8题图第9题图第12题图AB第16题图18.(8分)如图,⊙O 的直径AB 为10cm ,点E 是圆内接正△ABC 的内心,CE 的延长线交⊙O 于点D .⑴求AD 的长;⑵求DE 的长;19.(8分)如图,转盘被分成面积相等的三个扇形,每个扇形分别标有数字1、2、3,甲、乙、丙三人开始玩一个可以自由转动的转盘游戏,转盘停止后,则记录下针指向的数字. ⑴甲转动转盘一次,则指针指向数字2的概率为 ;⑵甲转动转盘一次,记下指针指向数字,接着乙也转动团一次,再记下指针指向数字,利用画树状图或列表格的方法求两次记录的数字和小于数字4的概率; ⑶甲转动转盘一次,记下指针指向数字,接着乙也转动转盘一次,再记下指针指向数字,两继续转动转盘一次,同样记下指针指向数字,则三次记录的数学和为5的概率是 .20.(8分)如图,在平面直角坐标系中,点A (a ,a )且0<a <4,点B (4,0),线段CD 与AB 关于原点O 中心对称,其中A 、B 的对应点分别为C 、D . ⑴在图中画出线段CD ,保留作图痕迹; ⑵当a = 时,四边形ABCD 为矩形;⑶将线段CD 向右平移 个单位长度时,四边形ABCD 可以成为正方形.BADBAD21.(8分)如图,在四边形ABCE 中,AB ∥CE ,∠BCE =90°,以AE 为直径的⊙O 切BC 于点F ,交CE 于点D .⑴求证:AC =DF ;⑵若AB =1,AD =4,求DE 的长.22.(8分)某商家按市场价格10元/千克在该市收购了1800千克产品,经市场调查:产品的市场价格每天每千克将上涨0.5元,但仓库存放这批产品时每天需要支出各种费用合计240元,同时平均每天有6千克的产品损耗不能出售(产品在库中最多保存90天).⑴设存放x 天后销售,则这批产品出售的数量为 千克,这批产品出售价为 元; ⑵商家想获得利润22500元,需将这批产品存放多少天后出售?⑶商家将这批产品存入多少天后出售可获得最大利润?最大利润是多少?BFBD F23.(10分)已知正方形ABCD ,∠EAF =45°.⑴如图1,当点E 、F 分别在边BC 、CD 上,连接EF ,求证:EF =BE +DF ; 小明同学是这样思考的,请你和他一起完成如下解答:证明:将△ADF 绕点A 顺时针旋转90°,得△ABG ,所以△ADF ≌△ABG ;⑵如图2,点M 、N 分别在AB 、CD 上,且BN =DM .当点E 、F 分别在BM 、DN 上,连接EF ,探究三条线段EF 、BE 、DF 之间满足的数量关系,并证明你的结论;⑶如图3,当点E 、F 分别在对角线BD 、边CD 上,若FC =2,则BE 的长为 .G FE DCBA图1图2A BC DE FNM图3ABCDEF24.(12分)已知一次函数y=kx+b的图象1l与抛物线F:y=ax2分别交于A、B两点,与x轴,y轴分别交于点C、D两点,记点A(m,n),且m≠0.⑴若m=-32,n=98,k=34,求a、b的值及点B的坐标;⑵如图1,若a=12,k=-12m,求CDBD的值;⑶如图2,若k=-am,过点A的直线2l与抛物线F只有一个公共点,与y轴交于点E,连接BO,求证:∠AED=∠BOD.武汉市部分学校2019-2020学年度元月调考模拟(2)九年级数学试卷一、选择题(每小题3分,共30分)01.关于x的方程(m-1)x2+2mx-3=0是一元二次方程,则m的取值范围是()A.任意实数B.m>1 C.m≠-1 D.m≠1答案:D02.下列四种图案中,不是中心对称图形的为()答案:D03.下列事件中,是随机事件的是()A.通常加热到100℃时,水沸腾B.随意翻到一本书的某页,这页的页码是偶数C.任意画一个三角形,其内角和是360°D.明天太阳从东方升起答案:B04.已知⊙O的半径为4,点O到直线m的距离为3,则直线m与⊙O公共点的个数为()A.0个B.1个C.2个D.3个答案:C05.以下说法合理的是()A.小明做了3次搠图钉实验,发现2次钉尖朝上,由此他说钉尖朝上的概率是2 3B.某彩票的中奖概率是5%,那么买100张彩票一定有5张中奖C.某运动员射击一次只有两种可能的结果:中靶与不中靶,所以他击中靶的概率是1 2由此频率表可知,这名球员投篮一次,投中的概率约是0.60答案:D06.扇形的弧长为20πcm2,那么扇形的半径是()A.6cm B.12cm C.24cm D.28cm答案:C07.关于方程x2+2x-4=0的根的情况,下列结论错误的是()A.有两个不相等的实数根B.两实数根的和为-2C.两实数根的差为D.两实数的积为-4答案:C08.用长8m 的铝合金条制成如图开关的矩形窗框,使窗户的透光面积最大,那么这个窗户的最大透光面积是( )A .6425m 2 B .43m 2 C .83m 2 D .4 m 2答案:C09.如图,⊙O 的直径AB =8cm ,AM 和BN 是它的两条切线,切点分别为A 、B ,DE 切⊙O 于E ,交AM 于D ,交BN 于C .设AD =x ,BC =y ,则y 与x 的函数图像是( ) A .xy =16 B .y =2x C .y =2x 2 D .xy =8 答案:A10.设一元二次方程(x -2)(x -3)-p 2=0的两实根分别为α、β(α<β),则α、β满足( )A .2<α≤βB .α≤2且β≥3C .α≤β<3D .α<2且β>3 答案:B提示:如图所示,也可用求根公式分析.二、填空题(每小题分,共18分)11.方程2(x -1)=0的根为 答案:x 1=x 2=112.如图⊙O 是正△ABC 的外接圆,若正△ABC 的边心距为1,则⊙O 的周长为 答案:4π13.把抛物线y =-2(x -2)-2先向左平移1个单位,再向下平移1个单位,得到的抛物线解析式为 答案:y =-2(x -1)-3 14.践行“十九大”,确保“全脱贫”向阳村2016年的人均收入为3500元,2018年的人均收入为5040元.设人均收入的平均增长率为x ,则依题意所列的方程为 答案:35002(x +1)=5040 15.点A (x 1,y 1)、B (x 2,y 2)在抛物线y =x 2+2mx +2上,当2<x 1<x 2时,满足y 1<y 2,则m 的取值范围为 答案:-2≤m第8题图第9题图C B第12题图16.已知⊙O的直径AB为4cm,点C是⊙O上的动点,点D是BC的中点,AD延长线交⊙O于点E,则BE的最大值为答案:4 3三、解答题(共72分)17.(8分)用公式法解方程:x2-4x+2=0.解:x1=22,x2=22,18.(8分)如图,⊙O的直径AB为10cm,点E是圆内接正△ABC的内心,CE的延长线交⊙O于点D.⑴求AD的长;⑵求DE的长;解:⑴连接OD,∵点E是圆内接△ABC的内心,∴∠ACD=∠BCD,∴∠AOD=∠BOD.在Rt△AOD中,AD=A B第16题图=p2BADB AD⑵连接AE ,∠CAE =∠BAE ,∠BAD =∠BCD =∠DCA , ∠DAE =∠DEA ,AD =DE =19.(8分)如图,转盘被分成面积相等的三个扇形,每个扇形分别标有数字1、2、3,甲、乙、丙三人开始玩一个可以自由转动的转盘游戏,转盘停止后,则记录下针指向的数字. ⑴甲转动转盘一次,则指针指向数字2的概率为 ;⑵甲转动转盘一次,记下指针指向数字,接着乙也转动团一次,再记下指针指向数字,利用画树状图或列表格的方法求两次记录的数字和小于数字4的概率; ⑶甲转动转盘一次,记下指针指向数字,接着乙也转动转盘一次,再记下指针指向数字,两继续转动转盘一次,同样记下指针指向数字,则三次记录的数学和为5的概率是 .解:⑴13.⑵由题意,可列如下树状图:由此可知,共有9种等可事件,其中两次记录的数字和小于数字4的只有3种, ∴P (两次记录的数字和小于数字4)=39=13.⑶2920.(8分)如图,在平面直角坐标系中,点A (a ,a )且0<a <4,点B (4,0),线段CD 与AB 关于原点O 中心对称,其中A 、B 的对应点分别为C 、D . ⑴在图中画出线段CD ,保留作图痕迹; ⑵当a = 时,四边形ABCD 为矩形;⑶将线段CD 向右平移 个单位长度时,四边形ABCD 可以成为正方形.乙甲312321233211解:⑴在图中画出线段CD ,保留作图痕迹. ⑵a =.⑶4. 21.(8分)(2019-9-1 36501)如图,在四边形ABCE 中,AB ∥CE ,∠BCE =90°,以AE 为直径的⊙O 切BC 于点F ,交CE 于点D .⑴求证:AC =DF ;⑵若AB =1,AD =4,求DE 的长.解:略 22.(8分)某商家按市场价格10元/千克在该市收购了1800千克产品,经市场调查:产品的市场价格每天每千克将上涨0.5元,但仓库存放这批产品时每天需要支出各种费用合计240元,同时平均每天有6千克的产品损耗不能出售(产品在库中最多保存90天).⑴设存放x 天后销售,则这批产品出售的数量为 千克,这批产品出售价为 元; ⑵商家想获得利润22500元,需将这批产品存放多少天后出售?⑶商家将这批产品存入多少天后出售可获得最大利润?最大利润是多少?解:⑴(1800-6x )千克;(10+0.5x )元/千克.⑵简解:由题意得:-3x 2+840x +18000-10×1800-240x =22500, 解方程得:x 1=50,x 2=150(不全题意,舍去), 故需将这批产品存放50天后出售. ⑶简解:设利润为w ,由题意得:w =-3x 2+840x +18000-10×1800-240x =-32(x -100)+30000. ∵a =-3<0,∴抛物线开口方向向下, ∴x =90时,w 最大=29700,∴商家将这批产品存放90天后出售可获得最大利润,最大利润是29700元.BFBF23.(10分)已知正方形ABCD ,∠EAF =45°.⑴如图1,当点E 、F 分别在边BC 、CD 上,连接EF ,求证:EF =BE +DF ; 小明同学是这样思考的,请你和他一起完成如下解答:证明:将△ADF 绕点A 顺时针旋转90°,得△ABG ,所以△ADF ≌△ABG ;⑵如图2,点M 、N 分别在AB 、CD 上,且BN =DM .当点E 、F 分别在BM 、DN 上,连接EF ,探究三条线段EF 、BE 、DF 之间满足的数量关系,并证明你的结论;⑶如图3,当点E 、F 分别在对角线BD 、边CD 上,若FC =2,则BE 的长为 .⑴证明:将△ADF 绕点A 顺时针旋转90°,得△ABG ,∴△ADF ≌△ABG ,可得DF =BG ,易知△AFE ≌△AGE ,术EF =GE ,∴EF =BE +DF . ⑵解法1:猜测:EF 2=BE 2+DF 2.理由:过点A 作AG ⊥AF 且AG =AF ,连接BG 、EG ,延长FN 交BG 于H ,易知△AFD ≌△AGB 和△AFE ≌△AGE . 在△AND 与△NHB 中,可得FH ⊥BG ,而BM ∥DN ,∴BE ⊥BG . 在Rt △BEG 中,得EF 2=BE 2+DF 2.解法2:作AH =AD 且∠F AH =∠DAF ,连接EH ,易知△AFD ≌△AFH 和△AEB ≌△AEH ,G FE DCBA图1图2A BC DE FNM图3ABCDEFH MNFE DC BA 图2GMNFE DCB A 图2H⑶解:当点E 、F 分别在对角线BD 、边CD 上,若FC =3cm ,则BE.24.(12分)已知一次函数y =kx +b 的图象1l 与抛物线F :y =ax 2分别交于A 、B 两点,与x 轴,y 轴分别交于点C 、D 两点,记点A (m ,n ),且m ≠0. ⑴若m =-32,n =98,k =34,求a 、b 的值及点B 的坐标; ⑵如图1,若a =12,k =-12m ,求CDBD的值;⑶如图2,若k =-am ,过点A 的直线2l 与抛物线F 只有一个公共点,与y 轴交于点E ,连接BO ,求证:∠AED =∠BOD .⑴解:F :y =12x 2,1l :y =34x +94,B (3,92). ⑵解:∵A (m ,n )在抛物线上,∴A (m ,12m 2),则1l :y =-12mx +m 2. 联立221212y mx m y x ⎧⎪⎪⎨⎪⎪⎩=-+=,∴x A +x B =-m ,x B =-2m .又x C =2m ,作BH ⊥y 轴于H ,得△COD ≌△BHD ,∴CD =BD ,CDBD=1. ⑶证明:∵A (m ,n )在抛物线上,∴A (m ,a m 2),k =-am ,则1l :y =-am (x -m )+am 2=-amx +2am 2,FEDCBA图3G图3ABCD EFNM图3ABCDEF联立22y mx m y ax⎧⎪⎨⎪⎩=-a +2a =,∴x A +x B =-m ,x B =-2m ,y B =4am 2.则点B 关于y 轴对称点B '(2m ,4am ), ∴OB l :y =2amx .∵直线2l 过点A ,设2l : y =k 2(x -m )+am 2, 联立222AE y x m m y ax⎧⎪⎨⎪⎩=k (-)+a =, ∴∆=0,∴k 2=2am ,∴AE ∥O B ',即∠AEO =∠B 'OD =∠BOD .。