概率及其意义3
概率的定义及其确定方法
概率的定义及其确定⽅法1.2 概率的定义及其确定⽅法本节包括概率的公理化定义、排列与组合公式、确定概率的频率⽅法、古典⽅法、⼏何⽅法及主观⽅法。
主要介绍概率的定义,在排列、组合公式的基础上,利⽤频率⽅法、古典⽅法、⼏何⽅法及主观⽅法计算事件的概率。
概率是对随机事件发⽣可能性⼤⼩的数值度量。
1.随机事件的发⽣是带有偶然性的,但随机事件的发⽣的可能性是有⼤⼩之分的;2. 随机事件的发⽣的可能性是可以度量的,犹如长度和⾯积⼀样;3.在⽇常⽣活中往往⽤百分⽐来表⽰。
这⾥也是如此在概率论的发展史上,曾经有过概率的古典定义、概率的⼏何定义、概率的频率(统计)定义和概率的主观定义。
1933年,前苏联数学家柯尔莫哥洛夫⾸次提出了概率的公⾥化定义。
⼀、概率的公理化定义1.定义设Ω为⼀样本空间, F 为Ω上的某些⼦集组成的⼀个事件域,如果对任意事件A ∈F ,定义在F 上的⼀个实值函数P (A )满⾜:(1)⾮负性公理:()0;P A ≥(2)正则性公理:()1;P A =(3)可列可加性公理:若12,,,n A A A 两两互不相容,有11()();n n n n P A P A +∞+∞===∑则称P (A )为事件A 的概率,称三元素(,,)P ΩF 为概率空间。
1.并没有告诉我们应如何确定概率。
但概率的古典定义、概率的⼏何定义、概率的频率(统计)定义和概率的主观定义都是在⼀定的场合下确定概率的⽅法。
由于计算概率要⽤到排列与组合的公式。
2.概率是关于事件的函数。
⼆、排列与组合公式1.两⼤计数原理(1)乘法原理:如果某件事需要经过k 步才能完成,做完第⼀步有1m 种⽅法,做完第⼆步有2m 种⽅法,…,做完第k 步有k m 种⽅法,那么完成这件事共有12n m m m 种⽅法。
如某班共有45位同学,他们⽣⽇完全不相同的情况有365×364×363×…×321种。
(2)加法原理:如果某件事可由k 类不同的办法之⼀去完成,在第⼀类办法中有1m 种完成⽅法,在第⼆类办法中有2m 种⽅法,…,在第k 类办法中有k m种⽅法,那么完成这件事共有12n m m m +++ 种⽅法。
高中概率知识点总结
高中概率知识点总结高中概率知识点总结概率,又称或然率、机会率、机率(几率)或可能性,它是概率论的基本概念。
概率是对随机事件发生的可能性的度量,一般以一个在0到1之间的实数表示一个事件发生的可能性大小。
以下是小编整理的高中概率知识点总结,希望能够帮助到大家!高中概率知识点总结篇1一.算法,概率和统计1.算法初步(约12课时)(1)算法的含义、程序框图①通过对解决具体问题过程与步骤的分析(如,二元一次方程组求解等问题),体会算法的思想,了解算法的含义。
②通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程。
在具体问题的解决过程中(如,三元一次方程组求解等问题),理解程序框图的三种基本逻辑结构:顺序、条件分支、循环。
(2)基本算法语句经历将具体问题的程序框图转化为程序语句的过程,理解几种基本算法语句--输入语句、输出语句、赋值语句、条件语句、循环语句,进一步体会算法的基本思想。
(3)通过阅读中国古代中的算法案例,体会中国古代对世界发展的贡献。
3.概率(约8课时)(1)在具体情境中,了解随机事件发生的不确定性和频率的稳定性,进一步了解概率的意义以及频率与概率的区别。
(2)通过实例,了解两个互斥事件的概率加法公式。
(3)通过实例,理解古典概型及其概率计算公式,会用列举法计算一些随机事件所含的基本事件数及事件发生的概率。
(4)了解随机数的意义,能运用模拟(包括计算器产生随机数来进行模拟)估计概率,初步体会几何概型的意义(参见例3)。
(5)通过阅读材料,了解人类认识随机现象的过程。
2.统计(约16课时)(1)随机抽样①能从现实生活或其他学科中提出具有一定价值的统计问题。
②结合具体的实际问题情境,理解随机抽样的必要性和重要性。
③在参与解决统计问题的过程中,学会用简单随机抽样方法从总体中抽取样本;通过对实例的分析,了解分层抽样和系统抽样方法。
④能通过试验、查阅、设计调查问卷等方法收集数据。
(2)用样本估计总体①通过实例体会分布的意义和作用,在表示样本数据的过程中,学会列频率分布表、画频率分布直方图、频率折线图、茎叶图(参见例1),体会他们各自的特点。
16种常见概率分布概率密度函数、意义及其应用
目录1.均匀分布 (1)2.正态分布(高斯分布) (2)3.指数分布 (2)4.Beta 分布(分布) (2)5.Gamma分布 (3)6.倒Gamma分布 (4)7.威布尔分布 (Weibull分布、韦伯分布、韦布尔分布 ) (5)8.Pareto 分布 (6)9.Cauchy分布(柯西分布、柯西 - 洛伦兹分布) (7)10.2.........................................................................7分布(卡方分布)11.t分布 (8)12.F分布 (9)13.二项分布 (10)14.泊松分布(Poisson分布) (10)15.对数正态分布 (11)1.均匀分布均匀分布 X ~ U (a,b) 是无信息的,可作为无信息变量的先验分布。
f (x)1b aa bE(X)2(b a)2Var ( X )122.正态分布(高斯分布)当影响一个变量的因素众多,且影响微弱、都不占据主导地位时,这个变量很可能服从正态分布,记作X ~ N ( ,2 ) 。
正态分布为方差已知的正态分布N( , 2) 的参数的共轭先验分布。
1( x )2e 22f ( x)2E(X)2Var ( X )3.指数分布指数分布 X ~ Exp( ) 是指要等到一个随机事件发生,需要经历多久时间。
其中0 为尺度参数。
指数分布的无记忆性:P X s t | X s P{ X t} 。
f ( x)e x , x 0E(X )1Var( X )1 24. Beta 分布(分布)Beta 分布记为X ~ Be(a, b),其中 Beta(1,1)等于均匀分布,其概率密度函数可凸也可凹。
如果二项分布B( n, p) 中的参数p的先验分布取 Beta (a,b) ,实验数据(事件 A 发生 y 次,非事件 A 发生 n-y 次),则 p 的后验分布Beta( a y, b n y) ,即 Beta 分布为二项分布B(n, p)的参数 p 的共轭先验分布。
概率第3讲
定义1 若随机试验满足下述两个条件: (1) 它的样本空间只有有限多个样本点; (2) 每个样本点出现的可能性相同. 称这种试验为 古典概型.
二、古典概型中事件概率的计算
记 A={摸到2号球}
P(A)=? P(A)=1/10 记 B={摸到红球} P(B)=?
2
1 2 3 4 5 6 8 5 1 9 4 6 7 2 3 10
若三个事件两互斥,则和的概率为 P(A+B+C)=P(A)+P(B)+P(C)
例1.在所有的两位数10~99中任取一个数, 求这个数能被2或能被3整除的概率。
解:设A表示能被2整除,B表示能被3整除
P( A B) P( A) P( B) P( AB) 45 30 15 0.667 90 90 90
P(B)=6/10
记 B={摸到红球} P(B)=6/10
静态
动态
这里实际上是从“比例” 转化为“概率”
当我们要求“摸到红 球”的概率时,只要找出 它在静态时相应的比例.
8 5 1 9 4 6 7 2 3 10
定义2 设试验E是古典概型, 其样本空间Ω由 n个样本点组成 , 事件A由k个样本点组成 . 则 定义事件A的概率为: A包含的样本点数 P(A)=k/n= Ω中的样本点总数
由于将一颗骰子抛掷4次,共有 6 6 6 6 =1296种等可能结果, 而导致事件 A ={4次抛掷中都未出“6”点} 的结果数有5 5 5 5=625种 因此
625 P( A) = =0.482 1296
P ( A) 1 P ( A ) =0.518
于是
例3 有r 个人,设每个人的生日是365天的 任何一天是等可能的,试求事件“至少有两 人同生日”的概率. 解:令 A={至少有两人同生日} 则 A ={ r 个人的生日都不同} 为求P(A), 先求P( A )
概率的基本概念
概率的基本概念概率是概念一层次的产物,是对人们观察、实验中一系列结果出现的可能性进行度量的数值。
概率理论是一种基本的数理工具,广泛应用于统计学、自然科学、社会科学以及工程技术等领域。
在本文中,将介绍概率的基本概念及其应用。
一、概率的定义概率的定义一直是概率论的核心问题之一。
根据古典概率、频率概率和主观概率三种学派的观点,概率可以有多种定义方式。
1. 古典概率古典概率是一种基于理论计算或样本空间的概率定义方法。
它假设所有可能的结果是等可能发生的,概率可通过事件发生的次数与样本空间大小的比例来计算。
2. 频率概率频率概率是一种基于实际观测结果的概率定义方法。
它通过统计实验重复进行,事件发生的频率趋于一个稳定值,这个稳定值就是概率。
3. 主观概率主观概率是一种基于主观判断的概率定义方法。
它依赖于个体的主观信念、经验和判断,是一种主观确定的概率。
概率的定义方式有时候是灵活的,可以根据具体情况选择合适的定义方法。
概率具有多种基本性质,下面介绍几个重要的性质。
1. 非负性概率的取值范围在[0,1]之间,即概率值不会小于0,也不会大于1。
2. 规范性样本空间的概率为1,即必然事件的概率为1。
3. 可加性对于两个不相容事件A和B,它们的概率之和等于两个事件分别发生的概率的和。
4. 完备性对于样本空间Ω中的任意事件A,事件A发生的概率加上事件A不发生的概率等于1。
三、概率的计算方法概率的计算可以通过多种方法进行,根据问题的特点选择不同的计算方法。
1. 古典概率的计算古典概率的计算方法是最简单的,只需要将事件发生的可能性个数除以样本空间的可能性个数即可。
条件概率是在给定其他事件已经发生的条件下,某一事件发生的概率。
条件概率的计算可以通过贝叶斯定理进行。
3. 边际概率的计算边际概率是指多个事件中某一事件发生的概率。
边际概率的计算可以通过联合概率和条件概率进行。
四、概率的应用概率在现实生活中具有广泛的应用,下面介绍几个常见的概率应用场景。
16种常见概率分布概率密度函数、意义及其应用
目录1. 均匀分布 (1)2. 正态分布(高斯分布) (2)3. 指数分布 (2)4. Beta分布(:分布) (2)5. Gamm 分布 (3)6. 倒Gamm分布 (4)7. 威布尔分布(Weibull分布、韦伯分布、韦布尔分布) (5)8. Pareto 分布 (6)9. Cauchy分布(柯西分布、柯西-洛伦兹分布) (7)210. 分布(卡方分布) (7)8 11. t分布................................................9 12. F分布 ...............................................10 13. 二项分布............................................10 14. 泊松分布(Poisson 分布).............................11 15. 对数正态分布........................................1. 均匀分布均匀分布X ~U(a,b)是无信息的,可作为无信息变量的先验分布。
2. 正态分布(高斯分布)当影响一个变量的因素众多,且影响微弱、都不占据主导地位时,这个变量 很可能服从正态分布,记作X~N (」f 2)。
正态分布为方差已知的正态分布N (*2)的参数」的共轭先验分布。
1 空f (x ): —— e 2-J2 兀 o'E(X), Var(X) _ c 23. 指数分布指数分布X ~Exp ( )是指要等到一个随机事件发生,需要经历多久时间。
其 中,.0为尺度参数。
指数分布的无记忆性:Plx s t|X = P{X t}。
f (X )二 y oiE(X) 一4. Beta 分布(一:分布)f (X )二 E(X)Var(X)=(b-a)2 12Var(X)二1~2Beta 分布记为X 〜Be(a,b),其中Beta(1,1)等于均匀分布,其概率密度函数 可凸也可凹。
概率论符号大全及意义
概率论符号大全及意义篇一:概率论是数学的一个重要分支,用于研究随机事件发生的规律和概率的数值计算。
在概率论中,使用了许多特定的符号来表示不同的概念和运算。
下面是一些常见的概率论符号及其意义的列表。
1. Ω:样本空间,表示所有可能的结果的集合。
例如,掷一枚硬币可能的结果是正面和反面,那么样本空间为Ω = {正面,反面}。
2. A, B, C, ...:事件,表示样本空间的子集。
例如,事件A可以表示掷一枚硬币结果为正面,事件B可以表示掷一枚硬币结果为反面。
3. P(A):事件A的概率,表示事件A发生的可能性。
概率的取值范围在0和1之间,其中0表示不可能发生,1表示一定发生。
4. P(A'):事件A的补事件的概率,表示事件A不发生的可能性。
补事件是指与事件A互斥的事件,即在样本空间中不包含事件A的部分。
5. P(A ∪ B):事件A和事件B的并集的概率,表示事件A或事件B发生的可能性。
并集是指包含事件A和事件B的所有可能结果的集合。
6. P(A ∩ B):事件A和事件B的交集的概率,表示事件A和事件B同时发生的可能性。
交集是指包含同时满足事件A和事件B的结果的集合。
7. P(A|B):在事件B已经发生的条件下,事件A发生的条件概率。
条件概率是指在已知一些附加信息的情况下,事件发生的概率。
8. E(X):随机变量X的期望值,表示随机变量X的平均值。
期望值是对随机变量的所有可能取值进行加权平均得到的。
9. Var(X):随机变量X的方差,表示随机变量X的离散程度。
方差是衡量随机变量取值分布离其期望值的平均距离的指标。
10. Cov(X, Y):随机变量X和随机变量Y的协方差,表示随机变量X和随机变量Y之间的相关性。
协方差的正负值表示了两个随机变量之间的线性关系。
这些是概率论中常见的符号及其意义,它们在描述和计算随机事件的概率分布、相关性等方面起着重要的作用。
篇二:概率论是数学中的一个分支,研究随机现象的规律性与不确定性。
25.2.1 概率及其意义 华师大版数学九年级上册课件
知识点 1 概率及其意义
知1-讲
1. 概率的定义:一个事件发生的可能性就叫做该事件的 概率.
2.概率公式:一般地,如果在一次试验中,有n种可能的 结果,并且它们发生的可能性都相等,事件A包含其
要点中精的析m:种用结公果式.P那(A么)=事件m A. 求发概生率的值概的率试P(验A)特=点mn :.
解:根据题意可得:阴影部分面积为52=25,
总面积为(3+4)2=49,
∴P(飞在阴影区域的概率是
25
.
49
知1-讲
归纳
知1-讲
对于飞镖投射阴影区域这类题的解法:首先根据题 意把数量关系用“图形”面积表示出来,用数形结合思 想解答.用阴影区域表示所求事件A,然后计算阴影区 域的面积在总面积中所占的比例,这个比例即事件A发 生的概率.
m
2.
n0≤ ≤1.
3. 2. 概率的取值范围:0≤P(A)≤1.
4. 3.三种事件的概率:当A是必然事件时,P(A)=1;
5. 当A是不可能事件时,P(A)=0;
6.
当A是随机事件时,P(A)满足0<P(A)<1.
知2-讲
【例3】 班级里有20位女同学和22位男同学,班上每位同 学的名字都被分别写在一张小纸条上,放入 一 个盒中搅匀.如果老师随机地从盒中取出1张纸条, 那么抽到男同学名字的概率大还是抽到女同学名 字的 概率大?
20 22 21
21 21
所以抽到男同学名字的概率大.
知2-讲
(来自教材)
知2-讲
【例4】 甲袋中放着22个红球和8个黑球,乙袋中放着200个 红球、80个黑球和10个白球.三种球除了颜色以外没 有任何其他区别.两袋中的球都已经各自搅匀. 从袋 中任取1个球,如果你想取出1个黑球,选哪个袋成 功的机会大呢?
概率统计知识点
一.随机事件和概率1、概率的定义和性质(1)概率的公理化定义设Ω为样本空间,A 为事件,对每一个事件A 都有一个实数P(A),若满足下列三个条件:1° 0≤P(A)≤1, 2° P(Ω) =13° 对于两两互不相容的事件1A ,2A ,…有∑∞=∞==⎟⎟⎠⎞⎜⎜⎝⎛11)(i i i i A P A P Υ常称为可列(完全)可加性。
则称P(A)为事件A 的概率。
(2)古典概型(等可能概型)1° {}n ωωωΛ21,=Ω,2° nP P P n 1)()()(21===ωωωΛ。
设任一事件A ,它是由m ωωωΛ21,组成的,则有P(A)={})()()(21m ωωωΥΛΥΥ=)()()(21m P P P ωωω+++Λn m =基本事件总数所包含的基本事件数A =2、五大公式(加法、减法、乘法、全概、贝叶斯)(1)加法公式P(A+B)=P(A)+P(B)-P(AB)当 P(AB)=0时,P(A+B)=P(A)+P(B)(2)减法公式P(A-B)=P(A)-P(AB)当B ⊂ A 时,P(A-B)=P(A)-P(B)当A=Ω时,P(B )=1- P(B)(3)条件概率和乘法公式定义 设A、B 是两个事件,且P(A)>0,则称)()(A P AB P 为事件A 发生条件下,事件B 发生的条件概率,记为=)/(A B P )()(A P AB P 。
条件概率是概率的一种,所有概率的性质都适合于条件概率。
(4)全概公式设事件B 1, B 2,Λ , B n 满足1°B 1, B 2,Λ , B n两两互不相容,P (B i ) > 0(i = 1,2,Λ , n ) ,2°Υni iB A 1=⊂,则有)|()()|()()|()()(2211n n B A P B P B A P B P B A P B P A P +++=Λ。
16种常见概率分布概率密度函数意义及其应用
16种常见概率分布概率密度函数意义及其应用概率分布是统计学中一个重要的概念,用于描述随机变量在各个取值上的概率分布情况。
常见的概率分布有16种,它们分别是均匀分布、伯努利分布、二项分布、几何分布、泊松分布、正态分布、指数分布、负二项分布、超几何分布、Gumbel分布、Weibull分布、伽马分布、Beta分布、对数正态分布、卡方分布和三角分布。
以下将逐一介绍这些概率分布的概率密度函数、意义及其应用。
1. 均匀分布(Uniform Distribution):概率密度函数为f(x)=1/(b-a),意义是在一个区间内所有的取值具有相同的概率,应用有随机数生成、模拟实验等。
2. 伯努利分布(Bernoulli Distribution):概率密度函数为P(x)=p^x*(1-p)^(1-x),意义是在两种可能结果中,成功或失败的概率分布,应用有二分类问题的建模。
3. 二项分布(Binomial Distribution):概率密度函数为P(x)=C(n,x)*p^x*(1-p)^(n-x),意义是在n次独立重复试验中,成功次数为x的概率分布,应用有二分类问题中的n次重复试验。
4. 几何分布(Geometric Distribution):概率密度函数为P(x)=p*(1-p)^(x-1),意义是独立重复试验中,第x次成功所需的试验次数的概率分布,应用有描述一连串同样试验中第一次获得成功之前所需的试验次数。
5. 泊松分布(Poisson Distribution):概率密度函数为P(x)=(e^(-λ)*λ^x)/x!,意义是在给定时间或空间内事件发生的次数的概率分布,应用有描述单位时间或单位空间内的事件计数问题。
6. 正态分布(Normal Distribution):概率密度函数为P(x) = (1 / sqrt(2πσ^2)) * e^(-(x-μ)^2 / (2σ^2)),意义是描述连续变量的概率分布,应用广泛,例如测量误差、人口身高等。
概率分布的涵义和意义
概率分布的涵义和意义概率分布是概率论中的一个重要概念,它描述了随机变量的所有可能取值及其对应的概率。
在统计学和概率论中,概率分布是研究随机变量性质的基础,具有广泛的应用和深远的意义。
概率分布的涵义概率分布是对随机变量的概率性质进行建模和描述的数学工具。
它通过给每个可能的取值分配一个概率值,来描述随机变量所有可能取值的概率分布情况。
概率分布可以用来计算事件发生的概率、预测未来的结果以及进行决策等。
概率分布的意义1. 描述随机事件的可能性:概率分布可以描述随机变量的所有可能取值及其对应的概率,通过概率分布可以知道每个事件发生的可能性大小。
这对于预测和决策具有重要意义。
2. 衡量随机事件的不确定性:概率分布可以衡量随机事件的不确定性。
当随机变量的概率分布较为集中时,说明事件发生的概率较高,不确定性较小;而当概率分布较分散时,说明事件发生的概率较低,不确定性较大。
3. 进行概率统计推断:概率分布可以用来进行概率统计推断。
通过已知的概率分布,可以计算出事件发生的期望值、方差、标准差等统计指标,进而对随机事件的性质进行推断和研究。
4. 模拟和预测随机事件:概率分布可以用来模拟和预测随机事件。
通过已知的概率分布,可以生成符合该分布的随机数序列,从而模拟和预测实际情况中的随机事件。
5. 优化决策和风险管理:概率分布可以用来进行决策优化和风险管理。
通过对随机变量的概率分布进行分析,可以基于最大概率或期望值等准则制定最优决策,并对决策结果的风险进行评估和管理。
常见的概率分布包括离散型分布和连续型分布。
离散型分布主要用于描述离散型随机变量,如伯努利分布、二项分布、泊松分布等;连续型分布主要用于描述连续型随机变量,如正态分布、指数分布、均匀分布等。
这些概率分布在实际问题中有广泛的应用,例如在金融领域中使用正态分布对资产收益进行建模和风险评估,在工程领域中使用指数分布对设备的寿命进行预测等。
总结起来,概率分布是概率论中的重要概念,它描述了随机变量的所有可能取值及其对应的概率。
初二数学重要知识点整理:二次函数的最大值和最小值、概率的意义
初二数学重要知识点整理:二次函数的最大值和最小值、概率的意义二次函数的最值:如果自变量的取值范围是全体实数,则当a>0时,抛物线开口向上,有最低点,那么函数在处取得最小值y最小值=;当a<0时,抛物线开口向下,有最高点,即当时,函数取得最大值,y最大值=。
也即是:如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值,即当时,。
如果自变量的取值范围是,那么,首先要看是否在自变量取值范围内,若在此范围内,则当x=时,;若不在此范围内,则需要考虑函数在范围内的增减性,如果在此范围内,y随x的增大而增大,则当x=x2时,,当x=x1时;如果在此范围内,y随x的增大而减小,则当x=x1时,,当x=x2时概率的基本性质互斥事件:事件A和事件B不可能同时发生,这种不可能同时发生的两个事件叫做互斥事件。
如果A1,A2,…,An中任何两个都不可能同时发生,那么就说事件A1,A2,…An彼此互斥。
对立事件:两个事件中必有一个发生的互斥事件叫做对立事件。
注:两个对立事件必是互斥事件,但两个互斥事件不一定是对立事件。
事件A+B的意义及其计算公式:事件A+B:如果事件A,B中有一个发生发生。
如果事件A,B互斥时,P=P+P,如果事件A1,A2,…An 彼此互斥时,那么P=P+P+…+P。
概率的几个基本性质:概率的取值范围:[0,1].必然事件的概率为1.不可能事件的概率为0.互斥事件的概率的加法公式:如果事件A,B互斥时,P=P+P,如果事件A1,A2,…An 彼此互斥时,那么P=P+P+…+P。
如果事件A,B对立事件,则P=P+P=1。
互斥事件与对立事件的区别和联系:互斥事件是不可能同时发生的两个事件,而对立事件除要求这两个事件不同时发生外,还要求二者之一必须有一个发生。
因此,对立事件是互斥事件的特殊情况,而互斥事件未必是对立事件,即“互斥”是“对立”的必要但不充分条件,而“对立”则是“互斥”的充分但不必要条件。
概率的意义
5.给出以下结论,错误的有( D)
①如果一件事发生的机会只有十万分之一, 那么它就不可能发生. ②如果一件事发生 的机会达到99.5%,那么它就必然发生. ③如果一件事不是不可能发生的,那么它就 必然发生. ④如果一件事不是必然发生的 ,那么它就不可能发生.
A.1个 B.2个 C.3个 D.4个
6.一位保险推销员对人们说:“人有可 能得病,也有可能不得病,因此,得病与 不得病的概率各占50%”他的说法B( )
A.正确
B.不正确
C.有时正确,有时不正确
D.应由气候等条件确定
7.某位同学一次掷出三个骰子三个全 是“6”的事件是(D ) A.不可能事件B.必然事件
是必然的、不可能的还是不确定的? 是不确定的; “最终得到的数字是奇数”呢? 是不确定的;
(3)你能用自己的语言描述必然事件发生的可能性吗?
用1(或100%)来表示
必然事件发生的可能性,即概率为1;
用0来表示不可能事件发生的可能性。
即概率为0;
必然事件发生的可能性是100% 即概率为1; 不可能事件发生的可能性是 0; 即概率为0;
3
同理, 当第一次指针指向其它的
奇数 a 时,
指针顺时针方向转动同样的格数 a,
所得结果数应是 2a 或(2a–6)(a≥3),
即所得结果数总是偶数.
2 (2)如果指针指向偶数b, 如6,
指针顺时针方向转动同样的格数 b,
【2014秋开学】华师大版九年级数学上25.2.1概率及其意义(3)课件
25.2.1 概率及其意义
回顾思考
1.在数学上,我们把事件发生的可能性的大小也 称为事件发生的概率 2.计算随机事件A的概率的步骤为: (1)计算所有等可能的结果数n. (2)计算关注的结果数m.
(3)计算: P(A)=m/n 3.如何求等可能性事件中的n、m?
把等可能事件的基本事件一一列举出来,然后再求出其中 n、m的值
抢答题 1
3、任意翻一下2005年日历,翻出1月
1 365 6日的概率为________;
0 翻出4月31日的概率为___________。
12 365 翻出2号的概率为___________ 。
抢答题 2
4、掷一枚普通正六面体骰子,求出下列 事件出现的概率: ( 1 )点数是3;
1 6 1 3 2 3
( 2 )点数大于4;
( 3 )点数小于5;
( 4 )点数小于7; 1
( 5 )点数大于6; 0
1 3
( 6 )点数为5或3.
试一试
☺ 中央电视台“幸运52”栏目中的“百宝箱”
互动环节,是一种竞猜游戏。模仿此游戏, 本游戏规则如下:在20个牌子中,有5个牌 子的背面是一张笑脸,其余 牌子的背面是一张哭脸,若翻到 笑脸,可给本小组获得20分的幸 运积分;若翻到哭脸,就不得分。 翻牌前只有答对老师提出的问题, 才能获得翻牌的机会。
北京欢迎您
想一想 1
问题1、 在我们班里有女同学23人,男同学17人。把每 位同学的名字分别写在一张小纸条上,放入一个盒中搅 匀。老师闭上眼睛从中随便取出一张纸条,如果抽到的 是男同学,则带男同学去北京看2008年奥运会;如果抽 到的是女同学,则带女同学去北京看2008年奥运会。你 们同意吗? 请思考以下几个问题:
概率的定义及其确定方法(最新整理)
§1.2 概率的定义及其确定方法在本节,我们要给出概率的定义,这是概率论中最基本的概念。
本节中我们还将介绍几种确定概率的方法。
随机事件的发生有偶然性,但我们常常会觉察到随机事件发生的可能性是有大小之分的。
例如,购买彩票后可能中大奖,可能不中奖,但中大奖的可能性远比不中奖的可能性小。
既然各种事件发生的可能性有大有小,自然使人们想到用一个数字表示事件发生的可能性大小。
这个数字就称为事件的概率。
然而,对于给定的事件,该用哪个数字作为它的概率呢?这决定于所研究的A 随机现象或随机试验以及事件的特殊性,不能一概而论。
在概率论的发展历史A 上,人们针对特定的随机试验提出过不同的概率的定义和确定概率的方法:古典定义、几何定义和频率定义。
这些概率的定义和确定方法虽然有其合理性,但也只适合于特定的随机现象,有很大的局限性。
那么如何给出适合于一切随机现象的概率的最一般的定义呢? 1900年数学家希尔伯特提出要建立概率的公理化定义以解决这个问题,即以最少的几条本质特性出发去刻画概率的概念.1933年数学家柯尔莫哥洛夫首次提出了概率的公理化定义,这一公理化体系迅速得到举世公认,有了这个定义后,概率论才被正式承认为一个数学分支,并得到迅猛发展.1.概率的公理化定义定义1.2.1 设为样本空间,为的某些子集组成的事件域.ΩF Ω))((F A A P ∈是定义在事件域上的实值集函数,如果它满足:F (1)非负性公理 对于任一,有;F A ∈0)(≥A P (2)正则性公理 ;1)(=ΩP (3)可列可加性公理 若……两两互不相容,则,,21A A ,,n A 则称)(A P 为事件A 的概率,称三元总体为概率空间.),,(P F Ω 概率的公理化定义刻画了概率的本质,概率是集合(事件)的实值函数,若在事件域上给出一个函数,只要这个函数满足上述三条公理就称为概率。
这个定义只涉及样本空间和事件域及概率的最本质的性质而与具体的随机现象无关。
高中概率问题
高中概率问题3。
1.随机事件的概率3。
1.1 随机事件的概率1、必然事件:一般地,把在条件S 下,一定会发生的事件叫做相对于条件S 的必然事件。
2、不可能事件:把在条件S 下,一定不会发生的事件叫做相对于条件S 的不可能事件。
3、确定事件:必然事件和不可能事件统称相对于条件S 的确定事件。
4、随机事件:在条件S 下可能发生也可能不发生的事件,叫相对于条件S 的随机事件。
5、频数:在相同条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数。
6、频率:事件A 出现的比例()=A n n A nf 。
7、概率:随机事件A 的概率是频率的稳定值,反之,频率是概率的近似值.3。
1。
2 概率的意义1、概率的正确解释:随机事件在一次试验中发生与否是随机的,但随机性中含有规律性.认识了这种随机中的规律性,可以比较准确地预测随机事件发生的可能性.2、游戏的公平性:抽签的公平性。
3、决策中的概率思想:从多个可选答案中挑选出正确答案的决策任务,那么“使得样本出现的可能性最大”可以作为决策的准则.-—极大似然法、小概率事件4、天气预报的概率解释:明天本地降水概率为70%解释是“明天本地下雨的机会是70%”.5、试验与发现:孟德尔的豌豆试验。
6、遗传机理中的统计规律.3。
1。
3 概率的基本性质1、事件的关系与运算(1)包含。
对于事件A 与事件B ,如果事件A 发生,则事件B 一定发生,称事件B 包含事件A (或事件A 包含于事件B),记作(B A ⊇⊆或A B)。
不可能事件记作∅。
(2)相等。
若B A A B ⊇⊇且,则称事件A 与事件B 相等,记作A=B 。
(3)事件A 与事件B 的并事件(和事件):某事件发生当且仅当事件A 发生或事件B 发生.(4)事件A 与事件B 的交事件(积事件):某事件发生当且仅当事件A 发生且事件B 发生。
(5)事件A 与事件B 互斥:A B 为不可能事件,即=A B ∅,即事件A 与事件B 在任何一次试验中并不会同时发生。
2020年高中数学必修三第三章《概率》章末复习课
2020年高中数学必修三第三章《概率》学习目标 1.理解频率与概率的关系,会用随机模拟的方法用频率估计概率;2.掌握随机事件的概率及其基本性质,能把较复杂的事件转化为较简单的互斥事件求概率;3.能区分古典概型与几何概型,并能求相应概率.1.频率与概率频率是概率的近似值,是随机的,随着试验的不同而变化;概率是多数次的试验中频率的稳定值,是一个常数,不要用一次或少数次试验中的频率来估计概率. 2.求较复杂概率的常用方法(1)将所求事件转化为彼此互斥的事件的和;(2)先求其对立事件的概率,然后再应用公式P (A )=1-P (A )求解. 3.古典概型概率的计算关键要分清基本事件的总数n 与事件A 包含的基本事件的个数m ,再利用公式P (A )=mn 求解.有时需要用列举法把基本事件一一列举出来,在列举时必须按某一顺序做到不重不漏. 4.几何概型事件概率的计算关键是求得事件A 所占区域和整个区域的几何测度,然后代入公式求解.类型一 频率与概率例1 对一批U 盘进行抽检,结果如下表:(1)(2)从这批U 盘中任意抽取一个是次品的概率约是多少?(3)为保证买到次品的顾客能够及时更换,要销售2 000个U 盘,至少需进货多少个U 盘? 解 (1)表中次品频率从左到右依次为0.06,0.04,0.025,0.017,0.02,0.018.(2)当抽取件数a 越来越大时,出现次品的频率在0.02附近摆动,所以从这批U 盘中任意抽取一个是次品的概率约是0.02.(3)设需要进货x 个U 盘,为保证其中有2 000个正品U 盘,则x (1-0.02)≥2 000,因为x 是正整数,所以x ≥2 041,即至少需进货2 041个U 盘.反思与感悟概率是个常数.但除了几类概型,概率并不易知,故可用频率来估计.跟踪训练1某射击运动员为备战奥运会,在相同条件下进行射击训练,结果如下:(1)(2)假设该射击运动员射击了300次,则击中靶心的次数大约是多少?(3)假如该射击运动员射击了300次,前270次都击中靶心,那么后30次一定都击不中靶心吗?(4)假如该射击运动员射击了10次,前9次中有8次击中靶心,那么第10次一定击中靶心吗?解(1)由题意得,击中靶心的频率与0.9接近,故概率约为0.9.(2)击中靶心的次数大约为300×0.9=270.(3)由概率的意义,可知概率是个常数,不因试验次数的变化而变化.后30次中,每次击中靶心的概率仍是0.9,所以不一定不击中靶心.(4)不一定.类型二互斥事件与对立事件例2甲、乙两人参加普法知识竞赛,共有5个不同题目,选择题3个,判断题2个,甲、乙两人各抽一题.(1)甲、乙两人中有一个抽到选择题,另一个抽到判断题的概率是多少?(2)甲、乙两人中至少有一人抽到选择题的概率是多少?解把3个选择题记为x1,x2,x3,2个判断题记为p1,p2.“甲抽到选择题,乙抽到判断题”的情况有:(x1,p1),(x1,p2),(x2,p1),(x2,p2),(x3,p1),(x3,p2),共6种;“甲抽到判断题,乙抽到选择题”的情况有:(p1,x1),(p1,x2),(p1,x3),(p2,x1),(p2,x2),(p2,x3),共6种;“甲、乙都抽到选择题”的情况有:(x1,x2),(x1,x3),(x2,x1),(x2,x3),(x3,x1),(x3,x2),共6种;“甲、乙都抽到判断题”的情况有:(p1,p2),(p2,p1),共2种.因此基本事件的总数为6+6+6+2=20.(1)“甲抽到选择题,乙抽到判断题”的概率为620=310,“甲抽到判断题,乙抽到选择题”的概率为620=310,故“甲、乙两人中有一个抽到选择题,另一个抽到判断题”的概率为310+3 10=3 5.(2)“甲、乙两人都抽到判断题”的概率为220=110,故“甲、乙两人至少有一人抽到选择题”的概率为1-110=910.反思与感悟 在求有关事件的概率时,若从正面分析,包含的事件较多或较烦琐,而其反面却较容易入手,这时,可以利用对立事件求解.跟踪训练2 有4张面值相同的债券,其中有2张中奖债券.(1)有放回地从债券中任取2次,每次取出1张,计算取出的2次中至少有1张是中奖债券的概率;(2)无放回地从债券中任取2次,每次取出1张,计算取出的2次中至少有1张是中奖债券的概率.解 (1)把4张债券分别编号1,2,3,4,其中3,4是中奖债券,用(2,3)表示“第一次取出2号债券,第二次取出3号债券”,所有可能的结果组成的基本事件空间为Ω={(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)}. 用C 表示“有放回地从债券中任取2次,取出的2张都不是中奖债券”,则C 表示“有放回地从债券中任取2次,取出的2张中至少有1张是中奖债券”,则C ={(1,1),(1,2),(2,1),(2,2)},所以P (C )=1-P (C )=1-416=34.(2)无放回地从债券中任取2次,所有可能的结果组成的基本事件空间Ω={(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)}.用D 表示“无放回地从债券中任取2次,取出的2张都不是中奖债券”,则D 表示“无放回地从债券中任取2次,取出的2张至少有1张是中奖债券”, 则P (D )=1-P (D )=1-212=56.类型三 古典概型与几何概型例3 某产品的三个质量指标分别为x ,y ,z ,用综合指标S =x +y +z 评价该产品的等级.若S ≤4,则该产品为一等品.现从一批该产品中,随机抽取10件产品作为样本,其质量指标列表如下:(1)利用上表提供的样本数据估计该批产品的一等品率; (2)在该样本的一等品中,随机抽取2件产品,①用产品编号列出所有可能的结果;②设事件B 为“在取出的2件产品中,每件产品的综合指标S 都等于4”,求事件B 发生的概率.解 (1)计算10件产品的综合指标S ,如下表:其中S ≤4的有A 1,A 2,A 4,A 5,A 7,A 9,共6件,故该样本的一等品率为610=0.6,从而可估计该批产品的一等品率为0.6.(2)①在该样本的一等品中,随机抽取2件产品的所有可能结果为{A 1,A 2},{A 1,A 4},{A 1,A 5},{A 1,A 7},{A 1,A 9},{A 2,A 4},{A 2,A 5},{A 2,A 7},{A 2,A 9},{A 4,A 5},{A 4,A 7},{A 4,A 9},{A 5,A 7},{A 5,A 9},{A 7,A 9},共15种.②在该样本的一等品中,综合指标S 等于4的产品编号分别为A 1,A 2,A 5,A 7,则事件B 发生的所有可能结果为{A 1,A 2},{A 1,A 5},{A 1,A 7},{A 2,A 5},{A 2,A 7},{A 5,A 7},共6种. 所以P (B )=615=25.反思与感悟 古典概型与几何概型的共同点是各基本事件的等可能性;不同点是前者总的基本事件有限,后者无限.跟踪训练3 如图所示的大正方形面积为13,四个全等的直角三角形围成一个阴影小正方形,较短的直角边长为2,向大正方形内投掷飞镖,则飞镖落在阴影部分的概率为( )A.413B.313C.213D.113 答案 D解析 设阴影小正方形边长为x ,则在直角三角形中 有22+(x +2)2=(13)2, 解得x =1或x =-5(舍去),∴阴影部分面积为1,∴飞镖落在阴影部分的概率为113. 类型四 列举法与数形结合例4 三个人玩传球游戏,每个人都等可能地传给另两人(不自传),若从A 发球算起,经4次传球又回到A 手中的概率是多少?解 记三人为A 、B 、C ,则4次传球的所有可能可用树状图方式列出:如图.每一个分支为一种传球方案,则基本事件的总数为16,而又回到A 手中的事件个数为6,根据古典概型概率公式得P =616=38.反思与感悟 事件个数没有很明显的规律,而且涉及的基本事件又不是太多时,我们可借助树状图直观地将其表示出来,有利于条理地思考和表达.跟踪训练4 设M ={1,2,3,4,5,6,7,8,9,10},任取x ,y ∈M ,x ≠y .求x +y 是3的倍数的概率. 解 利用平面直角坐标系列举,如图所示.由此可知,基本事件总数n =1+2+3+4+5+6+7+8+9=45.而x +y 是3的倍数的情况有m =1+2+4+4+3+1=15(种).故所求事件的概率m n =13.1.下列事件中,随机事件的个数为( )①在某学校明年的田径运动会上,学生张涛获得100米短跑冠军; ②在体育课上,体育老师随机抽取一名学生去拿体育器材,抽到李凯; ③从标有1,2,3,4的4张号签中任取一张,恰为1号签; ④在标准大气压下,水在4 ℃时结冰. A .1 B .2 C .3 D .4 答案 C解析 ①在某学校明年的田径运动会上,学生张涛有可能获得100米短跑冠军,也有可能未获得冠军,是随机事件;②在体育课上,体育老师随机抽取一名学生去拿体育器材,李凯不一定被抽到,是随机事件;③从标有1,2,3,4的4张号签中任取一张,不一定恰为1号签,是随机事件;④在标准大气压下,水在4 ℃时结冰是不可能事件.故选C.2.把黑、红、白3张纸牌分给甲、乙、丙三人,则事件“甲分得红牌”与“乙分得红牌”是( ) A .对立事件 B .互斥但不对立事件 C .不可能事件 D .必然事件答案 B解析 根据题意,把黑、红、白3张纸牌分给甲、乙、丙三人,事件“甲分得红牌”与“乙分得红牌”不会同时发生,故两者是互斥事件,但除了“甲分得红牌”与“乙分得红牌”之外,还有“丙分得红牌”,故两者不是对立事件,所以事件“甲分得红牌”与“乙分得红牌”是互斥但不对立事件.3.下列试验属于古典概型的有( )①从装有大小、形状完全相同的红、黑、绿各一球的袋子中任意取出一球,观察球的颜色; ②在公交车站候车不超过10分钟的概率;③同时抛掷两枚硬币,观察出现“两正”“两反”“一正一反”的次数; ④从一桶水中取出100 mL ,观察是否含有大肠杆菌. A .1个 B .2个 C .3个 D .4个 答案 A解析 古典概型的两个基本特征是有限性和等可能性.①符合两个特征;对于②和④,基本事件的个数有无限多个;对于③,出现“两正”“两反”与“一正一反”的可能性并不相等,故选A.4.甲、乙两人随意入住两间空房,则甲、乙两人各住一间房的概率是( ) A.13 B.14 C.12 D .无法确定 答案 C解析 共有4个事件“甲、乙同住房间A ,甲、乙同住房间B ,甲住A 乙住B ,甲住B 乙住A ”,两人各住一个房间共有两种情况,所以甲、乙两人各住一间房的概率是12.5.任取一个三位正整数N ,则对数log 2N 是一个正整数的概率是( ) A.1225 B.3899 C.1300 D.1450 答案 C解析 三位正整数有100~999,共900个,而满足log 2N 为正整数的N 有27,28,29,共3个,故所求事件的概率为3900=1300.1.两个事件互斥,它们未必对立;反之,两个事件对立,它们一定互斥.若事件A 1,A 2,A 3,…,A n 彼此互斥,则P (A 1∪A 2∪…∪A n )=P (A 1)+P (A 2)+…+P (A n ). 2.关于古典概型,必须要解决好下面三个方面的问题: (1)本试验是不是等可能的? (2)本试验的基本事件有多少个?(3)事件A 是什么,它包含多少个基本事件? 只有回答好这三个方面的问题,解题才不会出错.3.几何概型的试验中,事件A 的概率P (A )只与子区域A 的几何度量(长度、面积或体积)成正比,而与A 的位置和形状无关.求试验为几何概型的概率,关键是求得事件所占区域和整个区域Ω的几何度量,然后代入公式即可求解. 4.关于随机数与随机模拟试验问题随机模拟试验是研究随机事件概率的重要方法,用计算器或计算机模拟试验,首先要把实际问题转化为可以用随机数来模拟试验结果的量,我们可以从以下两个方面考虑: (1)确定产生随机数组数,如长度型、角度型(一维)一组,面积型(二维)二组.(2)由所有基本事件总体对应区域确定产生随机数的范围,由事件A 发生的条件确定随机数应满足的关系式.40分钟课时作业一、选择题1.从装有红球、白球和黑球各2个的口袋内一次取出2个球,则与事件“两球都为白球”互斥而非对立的事件是以下事件:“①两球都不是白球;②两球恰有一白球;③两球至少有一个白球”中的( ) A .①② B .①③ C .②③ D .①②③答案 A解析 从装有红球、白球和黑球各2个的口袋内一次取出2个球,基本事件为:白白,白红,白黑,红红,红黑,黑黑.除“两球都不是白球”外,还有其他事件如白红可能发生,故①与“两球都为白球”互斥但不对立.②符合,理由同上.③两球至少有一个白球,其中包含两个都是白球,故不互斥.2.袋中装白球和黑球各3个,从中任取2个,则至多有一个黑球的概率是( ) A.15 B.45 C.13 D.12答案 B解析 把白球编号为1,3,5,黑球编号为2,4,6.从中任取2个,基本事件为12,13,14,15,16,23,24,25,26,34,35,36,45,46,56,共15个.其中至多一个黑球的事件有12个.由古典概型公式得P =1215=45.3.掷两颗均匀的骰子,则点数之和为5的概率等于( ) A.118 B.19 C.16 D.112 答案 B解析 基本事件36个,其中点数之和为5的有(1,4),(2,3),(3,2),(4,1),故概率为436=19.4.已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,则恰有一件次品的概率为( )A .0.4B .0.6C .0.8D .1 答案 B解析 用列举法列出基本事件总数为10.事件“恰有一件次品”包含的基本事件个数为6,则P =610=0.6.5.某运动会期间,从来自A 大学的2名志愿者和来自B 大学的4名志愿者中随机抽取2人到体操比赛场馆服务,至少有一名A 大学志愿者的概率是( ) A.115 B.25 C.35 D.1415答案 C解析 用列举法.基本事件总数为15,事件包括的基本事件数为9,∴P =915=35.6.从正方形的四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为( ) A.15 B.25 C.35 D.45答案 C解析 共可组成10条线段,其中小于边长的有4条,故不小于边长的有6条,所以不少于边长的概率为35.7.若将一个质点随机投入如图所示的长方形ABCD 中,其中AB =2,BC =1,则质点落在以AB 为直径的半圆内的概率是( )A.π2B.π4C.π6D.π8 答案 B解析 由几何概型公式知,所求概率为半圆的面积与矩形的面积之比,则P =12π·122=π4,故选B. 二、填空题8.从字母a ,b ,c ,d ,e 中任取两个不同字母,则取到字母a 的概率为________. 答案 25解析 基本事件有ab ,ac ,ad ,ae ,bc ,bd ,be ,cd ,ce ,de ,共10个.其中有a 的事件的个数为4个,故所求概率为P =410=25.9.在区间[-2,3]上随机选取一个数X ,则X ≤1的概率为________. 答案 3510.将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为________. 答案 23解析 两本数学书编号为1,2,语文书编号为3,则共有123,132,231,213,312,321,6个基本事件.其中2本数学书相邻的事件有4个,故所求概率P =46=23.11.甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为________. 答案 13三、解答题12.如图所示,A 是圆上固定的一点,在圆上其他位置任取一点A ′,连接AA ′,求弦AA ′的长度大于等于半径的概率.解 如图,当AA ′的长度等于半径时,∠AOA ′=60°, 使AA ′大于半径的弧度为240°, 所以P =240°360°=23.13.某水产试验厂实行某种鱼的人工孵化,10 000个鱼卵孵出8 513条鱼苗,根据概率的统计定义解答下列问题:(1)这种鱼卵的孵化概率(孵化率)是多少? (2)30 000个鱼卵大约能孵化出多少条鱼苗?(3)要孵化出5 000条鱼苗,大约需准备多少个鱼卵(精确到百位)?解 (1)这种鱼卵的孵化频率为8 51310 000=0.851 3,把它近似作为孵化的概率,即这种鱼卵的孵化概率是0.851 3.(2)设能孵化出x 条鱼苗,则x30 000=0.851 3,所以x =25 539,即30 000个鱼卵大约能孵化出25 539条鱼苗.(3)设大约需准备y 个鱼卵,则5 000y =0.851 3,所以y ≈5 900,即大约需准备5 900个鱼卵.14.一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a ,b ,c . (1)求“抽取的卡片上的数字满足a +b =c ”的概率; (2)求“抽取的卡片上的数字a ,b ,c 不完全相同”的概率.解 (1)由题意,得(a ,b ,c )所有的可能为(1,1,1),(1,1,2),(1,1,3),(1,2,1),(1,2,2),(1,2,3),(1,3,1),(1,3,2),(1,3,3),(2,1,1),(2,1,2),(2,1,3),(2,2,1),(2,2,2),(2,2,3),(2,3,1),(2,3,2),(2,3,3),(3,1,1),(3, 1,2),(3,1,3),(3,2,1),(3,2,2),(3,2,3),(3,3,1),(3,3,2),(3,3,3),共27种.设“抽取的卡片上的数字满足a +b =c ”为事件A , 则事件A 包括(1,1,2),(1,2,3),(2,1,3),共3种. 所以P (A )=327=19.因此,“抽取的卡片上的数字满足a +b =c ”的概率为19.第 11 页 共 11 页 (2)设“抽取的卡片上的数字a ,b ,c 不完全相同”为事件B ,则事件B 包括(1,1,1),(2,2,2),(3,3,3),共3种.所以P (B )=1-P (B )=1-327=89. 因此,“抽取的卡片上的数字a ,b ,c 不完全相同”的概率为89.。
人教必修3第三章概率之3.1.1随机事件的概率(市公开课,竞赛课件)(免费下载)
课本P117页T6.
一、教学目标: 1、知识与技能: (1)正确理解事件的包含、并事件、交事件、相等 事件,以及互斥事件、对立事件的概念; (2)概率的几个基本性质; (3)正确理解和事件与积事件,互斥事件与对立事件 的区别与联系. 2、过程与方法:通过事件的关系、运算与集合的关 系、运算进行类比学习,培养学生的类化与归纳的数 学思想。 3、情感态度与价值观:通过数学活动,了解教学与 实际生活的密切联系,感受数学知识应用于现实世界 的具体情境,从而激发学习 数学的情趣。 二、重点与难点: 概率的加法公式及其应用,事件的关系与运算。
尽管每次摸到黄球的概率为0.1,但摸10次 球,不一定能摸到黄球.
〖思考4〗如果某种彩票的中奖率为 么买1000张这种彩票一定能中奖吗?(假设该彩票 有足够多的张数.)请用概率的意义解释. 点评:不一定.因为每张彩票是否中奖是随 机的,1000张彩票有几张中奖也是随机的.这就 是说,每张彩票既可能中奖也可能不中奖,因此 1000张彩票中可能没有一张中奖,也可能有一 张、两张乃至多张中奖. 虽然中奖张数是随机的,但这种随机性中 具有规律性.即随着所买彩票张数的增加,其中 中奖彩票所占的比例可能越接近于1/1000.
√
(2)明天本地下雨的机会是70%.
例:生活中,我们经常听到这样的议论: “天气预报说昨天降水概率为90%,结果根本 一点雨都没下,天气预报也太不准确了。”学 了概率后,你能给出解释吗? 解:天气预报的“降水”是一个随机事 件,概率为90%指明了“降水”这个随机事 件发生的概率,我们知道:在一次试验中, 概率为90%的事件也可能不出现,因此, “昨天没有下雨”并不说明“昨天的降水概 率为90%”的天气预报是错误的。
举例, 如: • (1)当x是实数时,x2≥0; • (2)天上掉馅饼; • (3)某人随意按了一个号码,刚好是朋友的 电话号码。
25.2.1《概率及其意义教案(含答案)
1.概率及其意义【知识与技能】通过试验,理解事件发生的可能性问题,感受理论概率的意义.【过程与方法】经历试验等活动过程,学会用分析的方法在较为简单的问题情境下预测概率.【情感态度】发展学生合作交流的意识和能力.【教学重点】运用分析的方法在较为简单的问题情境下预测概率.【教学难点】对概率的理解.一、情境导入,初步认识教师活动:拿出一枚硬币抛掷,提问:结果有几种情况?学生活动:拿出一枚硬币抛掷,发现结果只有两种情况——“出现正面”和“出现反面”,而且发生的可能性均等,各占50%的机会.教师引入:一个事件发生的可能性就叫做该事件的概率.学生联想:抛掷一枚硬币出现正面的概率是12,出现反面的概率是12.教师引导:可记作P(出现正面)=12,P(出现反面)=12.二、思考探究,获取新知抛掷一枚普通的六面体骰子,“出现数字为5”的概率为多少?学生回答:16,可记作P(出现数字5)=16.上述例子可以经过分析很快地得出概率,但是实际中,许多问题是要进行重复实验、观察频率值的办法来解决的,请看下面一个例子,见课本P136表25.2.1.学生活动:对表25.2.1中的问题进行试验.思路点拨:(1)关注的是哪个或哪些结果;(2)注意所有机会均等.(1)、(2)这两种结果个数的比就是所关注的结果发生的概率.【教学说明】引导学生在实验中寻找方法.问题情境1:课本P137问题1学生活动:分四人小组展开对“问题1”的试验,并从中得到规律:如果掷的次数很多,试验的频率渐趋稳定,平均每6次就有1次掷出“6”. 【教学说明】通过试验,让学生逐步计算一个随机事件发生的试验频率,并观察其中的规律性,从而归纳出试验概率趋于理论概率这一规律.例1见课本P 139例1思路点拨:本题是简单的古典概率,理论上很容易求出其概率.P(抽到男同学名字)=12242112=; P(抽到女同学名字)=101121221204=<,得出结论为抽到男同学名字的概率大 【教学说明】让学生感受到古典概率的内涵以及计算方式.拓展延伸:课本P 140“思考”【教学说明】分小组进行讨论,然后再在全班进行发言.例2 见课本P 140例2思路点拨:这是一个理论概率问题,袋中球的总数为8+16=24只,由于红球有8只,因此,P(取出红球)=81243=,黑球16只,P(取出黑球)= 162243=.也可以这样计算黑球:P(取出黑球)=1-P(取出红球)=121-33=. 例3见课本P 140例3思路点拨:这是一道通过比较取出黑球的概率大小进行判断的题目,首先要计算从甲、乙两只口袋中取出黑球的概率,P 甲(取出黑球)843015==,P 乙(取出黑球)=80842902915=>,所以选乙袋成功机会大.三、运用新知,深化理解1.任意投掷均匀的骰子,4朝上的概率是______.2.袋中装有6个红球和7个白球,且除颜色外,这些球都相同,从袋中任意摸出红球的概率是______.3.一副扑克牌(去掉大王和小王),随机抽取一张,抽取红桃的概率是______.4.如图,有一个被等分为8个扇形的转盘,转动转盘,指针落在白色区域的概率是( )A.1B.1/3C.5/8D.3/85.袋子里有1个红球,3个白球,5个黄球,每个球除颜色外都相同,从中任意摸1个球:(1)摸到红球的概率是多少?(2)摸到白球的概率是多少?(3)摸到黄球的概率是多少?(4)哪一个概率最大?【答案】1.1/6 2.6/13 3.1/4 4.C5.(1)1/9 (2)1/3 (3)5/9 (4)摸到黄球的概率最大四、师生互动,课堂小结1.什么叫概率?2.本节中的试验结果所产生的趋势与理论概率之间有什么关系?3.试验次数的大小与所得的“估计值”有什么关系?4.谈谈你对概率的理解和体会.1.布置作业:从教材相应练习和“习题25.2”中选取.2.完成练习册中本课时练习.通过抛掷硬币,用学生喜欢的掷骰子和扑克牌试验导入新课,吸引学生迅速进入状态,让学生充分认识概率的意义;由学生自主探索,合作交流运用分析的方法预测概率,使学生掌握本节课的知识.学生在解决问题的过程中,提高了思维能力,增强思维的缜密性,并且培养了学生解决问题的能力和信心.。