现行抗震设计规范中推荐的静力弹塑性分析(push-over)的探索
对某工程的静力弹塑性分析 (push-over)的探讨

对某工程的静力弹塑性分析(push-over)的探讨摘要:本文简要介绍了静力弹塑性分析的原理和实施步骤,并通过工程实例进行相关的对比和讨论。
关键词:静力弹塑性分析;push-over;反应谱;结构抗震性能评价1 前言利用静力弹塑性分析(Pushover Analysis)进行结构分析的优点在于:既能对结构在多遇地震下的弹性设计进行校核,也能够确定结构在罕遇地震下潜在的破坏机制,找到最先破坏的薄弱环节,从而使设计者仅对局部薄弱环节进行修复和加强,不改变整体结构的性能,就能使整体结构达到预定的使用功能;而利用传统的弹性分析,对不能满足使用要求的结构,可能采取增加新的构件或增大原来构件的截面尺寸的办法,结果是增加了结构刚度,造成了一定程度的浪费,也可能存在新的薄弱环节和隐患。
对多遇地震的计算,可以与弹性分析的结果进行验证,看总侧移和层间位移角、各杆件是否满足弹性极限要求,各杆件是否处于弹性状态;对罕遇地震的计算,可以检验总侧移和层间位移角、各个杆件是否超过弹塑性极限状态,是否满足大震不倒的要求。
2 原理与实施步骤2.1 原理静力非线性分析方法是基于性能评估现有结构和设计新结构的一种方法。
它是将静力弹塑性分析和反应谱相结合进行图解的快速计算方法。
其原理是使结构分析模型受到一个沿结构高度为单调逐渐增加的侧向力或侧向位移,直至控制点达到目标位移或建筑物倾覆为止。
基于结构行为设计使用Pushover分析,包括形成结构近似需求曲线和能力曲线,并确定曲线交点。
需求曲线基于反应谱曲线,能力曲线基于静力非线性Pushover分析。
在Pushover分析中,结构受到逐渐增加的荷载作用,从而得到需求曲线和能力曲线的交点,即性能点。
由于性能点定义了结构的底部剪力和位移,因此通过结构在性能点的行为和现行规范进行比较,从而确定结构是否满足要求。
实施步骤准备工作:建立结构模型,包括几何尺寸、物理参数以及节点和构件的编号,并输入构件的实配钢筋以便求出各个构件的塑性承载力。
结构抗震静力弹塑性分析方法(Pushover)的研究与改进的开题报告

结构抗震静力弹塑性分析方法(Pushover)的研究与改进的开题报告一、研究背景随着建筑结构设计的发展,抗震设计成为其中的重点和难点。
为了保障建筑安全,结构的抗震能力得到了越来越广泛的重视。
在结构抗震设计中,抗震静力弹塑性分析方法(Pushover)已经成为全球广泛使用的一种分析方法。
该方法根据结构某一方向施加分布荷载,通过对结构力学性能的分析,评估结构抗震能力。
二、研究目的与意义随着现代建筑的不断发展,建筑的结构形式日益复杂。
在这种情况下,传统的计算方法已经不能满足抗震设计的需求。
因此,本研究旨在对抗震静力弹塑性分析方法进行研究和改进,扩充其适用范围,提高其计算精度和效率,以更准确地评估结构的抗震能力。
三、研究内容1. 国内外相关研究的调研和综述,对Pushover分析方法的基本原理和步骤进行总结和阐述。
2. 提出一种结构抗震静力弹塑性分析方法的改进方案,探讨在模型参数、荷载模拟、材料本构关系等方面的改进思路。
3. 基于实际工程,使用所提出的改进方法对不同类型的建筑结构进行抗震分析,评估其抗震能力。
4.设计和编写Pushover分析方法改进程序,验证改进方案的正确性和有效性。
四、预期成果和考核指标本研究旨在对抗震静力弹塑性分析方法进行改进研究。
主要的预期成果包括:1.提出一种结构抗震静力弹塑性分析方法的改进方案,改进方案应能够在某些方面比传统的方法更加准确和高效。
2.通过实际工程评估所提出的改进方法的优缺点,验证其适用性和实用性。
3.设计和编写Pushover分析方法改进程序,展示改进方案的正确性和有效性。
预计的考核指标包括:论文的质量、研究方法是否合理、研究成果是否能够达到预期目标、研究结果的可重复性和实用性。
五、研究步骤与进度安排1.查阅相关文献,了解国内外关于结构抗震静力弹塑性分析方法的研究现状和进展,设计改进方案。
预计用时2周。
2.对所提出的改进方案进行模拟,并对改进方案中涉及的各项参数进行详细分析研究。
浅谈静力弹塑性分析(Pushover)的理解与应用

浅谈静力弹塑性分析(Pushover )的理解与应用摘要:本文首先介绍采用静力弹塑性分析(Pushover )的主要理论基础和分析方法,以Midas/Gen 程序为例,采用计算实例进行具体说明弹塑性分析的步骤和过程,表明Pushover 是罕遇地震作用下结构分析的有效方法。
关键词:静力弹塑性 Pushover Midas/Gen 能力谱 需求谱 性能点一、基本理论静力弹塑性分析方法,也称Pushover 分析法,是基于性能评估现有结构和设计新结构的一种静力分析方法,在一定精度范围内对结构在罕遇地震作用下进行弹塑性变形分析。
简要地说,在结构计算模型上施加按某种规则分布的水平侧向力或侧向位移,单调加荷载(或位移)并逐级加大;一旦有构件开裂(或屈服)即修改其刚度(或使其退出工作),进而修改结构总刚度矩阵,进行下一步计算,依次循环直到控制点达到目标位移或建筑物倾覆为止,得到结构能力曲线,之后对照确定条件下的需求谱,并判断是否出现性能点,从而评价结构是否能满足目标性能要求。
Pushover 分析的基本要素是能力谱曲线和需求谱曲线,将两条曲线放在同一张图上,得出交会点的位移值,同位移容许值比较,检验是否满足特定地震作用下的弹塑性变形要求。
能力谱曲线由能力曲线(基底剪力-顶点位移曲线)转化而来(图1)。
与地震作用相应的结构基底剪力与结构加速度为正相关关系,顶点位移与谱位移为正相关关系,两种曲线形状一致。
其对应关系为:1/αG V S a =roofroof d X S ,11γ∆=,图1 基底剪力-顶点位移曲线转换为能力谱曲线其中1α、1γ、roof X ,1分别为第一阵型的质量系数,参与系数、顶点位移。
该曲线与主要建筑材料的本构关系曲线具有相似性,其实其物理意义亦有对应,在初始阶段作用力与变形为线性关系,随着作用力的增大,逐渐进入弹塑性阶段,变形显著增长,不论对于构件,还是结构整体,都是这个规律。
需求谱曲线由标准的加速度响应谱曲线转化而来。
Pushover分析(弹塑性分析)

Pushover曲线 能力谱加速度Sa 基底剪力Vb
能力谱曲线
V Sa G1
(Sdt,sat)
Sd
top
1 X top ,1
顶点位移Dt
能力谱位移Sd
有效质量比
1
[ (Gi X i1 ) / g ]2
i 1
n
Sd T 2 Sa G
Gi 为结构第i楼层重量
[ Gi / g ][ (Gi X i2 1) / g]
Push-over的基本问题可以概括为三个方面:
如何求得结构的能力曲线? 如何确定结构的目标位移? 如何对计算结果进行评价?
结构能力曲线的计算包括两个方面的主要内容 一 计算模型的建立 二 侧向力的分布形式
结构计算模型—纤维模型
基于平截面假定,将梁柱的内力-变形关系转化成混凝土与钢 筋的单轴应力-应变关系。
为阻尼修正系数,取0.3~1.0
ED为阻尼所消耗的能量(图中虚线部分平行四边形的面积) EE为最大应变能(图中斜线阴影部分的三角形的面积)
Sa A1 A2 T 能力谱曲线 Sa api ay T 能力谱曲线 P EE
P
dy Sd ED
dpi
Sd
用双线型代替能力谱曲线的条件:A1=A2
Teq
T 1
T 2 Sdp Sd ( ) Sa R R 2
R表示由于结构的非弹性变 形对弹性地震力的折减系数
R ( 1) T 1 T T0 T0
R T T0
T0 0.65 0.3Tg Tg
采用Push-over方法对 抗震性能进行评估
最简单的方法是直接得到目标位移点(性能点)与结构的能力曲线。 得到性能点后,经过转化可以得到能力曲线上相应的点,能力曲线上的每 一个点都对应着结构的一个变形状态。根据性能点对应的变形,可以对结 构进行以下方面的评价:顶点侧移和层间位移角是否满足抗震规范规定的 位移限值;构件的局部变形(指梁、柱等构件的塑性铰变形),检验他是 否超过建筑某一性能水平下的允许变形;结构构件的塑性铰分布是否构成 倒塌机构。
浅谈结构非线性静力分析法之Pushover分析法

浅谈结构非线性静力分析法之Pushover分析法摘要:结构抗震设计方法较多,静力非线性分析法是比较成熟的一种,我国已普遍采用,本人对Pushover分析法进行了详细的剖析。
关键字:抗震设计、静力非线性分析法、Pushover分析法Abstract: the seismic design method of structure is more, static nonlinear analysis method is a more mature, has been commonly used in our country, I for the Pushover method were analyzed in detail.Keywords: seismic design, non-linear static analysis method, Pushover analysis methodPushover 分析法在国外应用较早,上世纪80年代初期在一些重要的刊物上就有论文采用过这种方法。
进入90年代以后,国际抗震工程界提出了基于性能的抗震设计(PBSD)的新概念,这个概念的提出成为了工程抗震发展史上的一个重要的里程碑。
Pushover 分析法作为实现基于性能的抗震设计的重要方法,其研究逐渐深入,应用也逐渐得到推广。
该方法引入我国后,很快得到了大家的普遍重视与应用。
在我国《建筑抗震设计规范》的修订过程中,有些专家就提出了将Pushover 分析法引入规范的想法,只是最后在提法上明确没有采用这个词。
Pushover分析法的早期形式是“能力谱方法”(Capacity Spectrum Method CSM),基于能量原理的一些研究成果,试图将实际结构的多自由度体系的弹塑性反应用单自由度体系的反应来表达,初衷是建立一种大震下结构抗震性能的快速评估方法。
从形式上看,这是一种将静力弹塑性分析与反应谱相结合、进行图解的快捷计算方法,它的结果具有直观、信息丰富的特点。
推覆 弹塑性静力分析

PUSHOVER应用背景
结构遭受强震作用后,一般将进入弹塑性状态。 为了满足结构在大震作用下的抗震要求,有必要对结 构进行弹塑性变形验算。 近年来,静力弹塑性分析(pushover analysis)作为 对新结构进行抗震设计或对现有结构进行抗震能力评 价的新方法,以其概念清楚,实施相对简单,同样能 使设计者在某种程度上了解结构在强震作用下的弹塑 性反应的特点,在国外得到了广泛的应用。
PUSHOVER分析原理
pushover方法卞要用于对现有结构或设计方案进行抗侧能力的计算,对结 构的抗震性能进行评估,自从基于位移胜能的抗震设计理论提出之后,该方 法的应用范围逐渐扩大到对新建建筑结构的弹塑性抗震分析。这种方法实质 上是一种静力非线性计算方法,与传统的抗震静力计算方法不同之处在于它
PUSHOVER分析的两个假设
pushover分析方法一般基于以下两个假定: (1)结构(一般为多自由度体系MDOF )的反应与该结构的等效单自由 度体系(SDOF)的反应是相关的,这表明结构的反应仅由结构的第 一振型控制。 (2)在每一加载步内,结构沿高度的变形由形状向量{Φ}表示,在这一 步的反应过程中,不管变形大小形状向量{Φ}保持不变。 严格说来,这两个假定是不完全准确的,但是研究说明,这些假定能 够很好地预测多自由度体系的地震反应,并且这些地震反应确实是由第 一振型控制的(尤其是对于基本周期小于1s的结构)。
考虑了结构的弹塑性性能并将设计反应谱引入了计算过程和计算成果的解释.
在施加外力时,首先在结构上施加竖向荷载并保持不变,同时根据结构的具 体情况沿高度施加某种侧向分布形式的水平荷载,模拟地震水平惯性力,并
逐步增加水平力,使得结构构件逐渐进入塑性状态,结构的梁、柱等构件出
静力弹塑性分析方法

(1)、计算模型必须包括对结构重量、强度、刚度及稳定性有较大影响的所有结构部件。
(2)对结构进行横向力增量加载之前,必须把所有重力荷载(恒载和参加组合的活荷载)施加在相应位置。
(3)结构的整体非线性及刚度是根据增量静力分析所求得的基底剪力-顶点位移的关系曲线确定的。
静力弹塑性分析方法(pushover法)分为两个部分,首先建立结构荷载-位移曲线,然后评估结构的抗震能力,基本工作步骤为:
第一步:准备结构数据:包括建立模型、构件的物理参数和恢复力模型等;
第二步:计算结构在竖向荷载作用下的内力。
第三步:在结构每层质心处,沿高度施加按某种规则分布的水平力(如:倒三角、矩形、第一振型或所谓自适应振型分布等),确定其大小的原则是:施加水平力所产生的结构内力与第一步计算的内力叠加后,恰好使一个或一批构件开裂或屈服。在加载中随结构动力特征的改变而不断调整的自适应加载模式是比较合理的,比较简单而且实用的加载模式是结构第一振型。
静力弹塑性分析方法
静力弹塑性分析方法(pushover法)的确切含义及特点
结构弹塑性分析方法有动力非线性分析(弹塑性时程分析)和静力非线性分析两大类。动力非线性分析能比较准切而完整的得出结构在罕遇地震下的反应全过程,但计算过程中需要反复迭代,数据量大,分析工作繁琐,且计算结果受到所选用地震波及构件恢复力和屈服模型的影响较大,一般只在设计重要结构或高层建筑结构时采用。
第四步:对于开裂或屈服的杆件,对其刚度进行修改,同时修改总刚度矩阵后,在增加一级荷载,又使得一个或一批构件开裂或屈服;
不断重复第三、四步,直到结构达到某一目标位移(当多自由度结构体系可以等效为单自由度体系时)或结构发生破坏(采用性能设计方法时,根据结构性能谱与需求谱相交确定结构性能点)。
静力弹塑性Pushover分析方法的原理和算例分析

1.2 等效单自由度体系的建立
根据静力弹塑性分析方法的第(2)条假定,结构地震反应的变形形状向量为 {φ } ,一 般可以取结构的第一振型。将实际结构的多自由度体系转化为等效单自由度体系的过程如
下[3] :
在地震作用下,多自由度体系的动力微分方程为:
-1-
wwwpapereducn3trytyttryymxxmiqq???????9式中yq为多自由度体系屈服时的楼层剪力向量且有ttyyviq同时得到等效单自由度体系的初始周期eq22ryrreqrsdofyxmmtkq这样计算等效单自由度体系弹塑性反应所需的各种参数都已具备屈服后刚度与有效侧向刚度的比值可以直接采用原结构中的值并假设其延性需求与多自由度体系相同
1.1 静力弹塑性分析方法的基本假定
静力弹塑性分析的基本思路是用一个单自由度体系(SDOF)来等效实际结构,即与之对 应的多自由度体系(MDOF),通过研究等效单自由度体系的地震弹塑性反应,来预测实际结 构的地震弹塑性反应全貌。就其自身而言,没有特别严密的理论基础,而此方法基于以下两 个基本假 定 : (1)假设实际结构(一般为多自由度体系MDOF)地震反应与该结构的等效单自由度体 系(SDOF)的反应相关,这表明结构的地震反应仅由结构的第一振型控制。 (2)用形状向量 {φ } 表示结构沿高度的变形,且在整个地震作用过程中,不管结构的 变形大小,形状向量 {φ } 保持不变。 严格来讲,这两个假定在理论上是不完全准确的,如当结构屈服之后,这些假设只能近 似地预测结构的地震反应。但是研究分析表明,对于刚度和质量沿高度分布较均匀、地震反 应由第一振型控制的结构, 静力弹塑性分析方法能够较好地预测结构的地震反应, 为合理的 评估提供依据。
2 静力弹塑性分析方法的实施步骤
8 工程结构抗震设计主要分析方法 - 3(pushover分析)

水平荷载分布模式
Fi Wi i1
W
i i 1
n
Vb Fi old
i1
Фi1为结构第一振型对应于第“i”层的值;Vb为上 一步计算中得到的结构基底剪力;Fiold为上一步计算的 第“i”层的层间力。 考虑多个振型时采用SRSS方法进行振型组合,按振 型参与系数进行比例化。每层的侧向力增量按下式计算:
Fi Wi hik Wi hik
i 1 n
Vb
式中,Wi、hi分别为第i层的楼层荷载代表值和层高,k为力的 形状控制参数,是结构基本周期的函数:
1.0 k 1.0 (T 0.05) / 2 2.0 T 0.5s 0.5s T 2.5s T 2.5s
层间位移角,构件的变形、材料应力等;还可以得到结构的开 裂屈服记录,把这些性态参数与结构在一定的性态水准下所要 求的能力进行对比,从而可以估计结构在地震作用下,是否满 足一定的性态要求)。
两个关键点:水平荷载分布模式、目标位移的确定 5
水平荷载分布模式
(1) 均匀分布荷载模式(Uniform Distribution) 这种分布模式认为侧向力沿结构的高度是均匀分布, 不考虑每层结构重量的不同,进行Pushover分析时,每 一步施加在楼层的侧向力由下式确定:
Fi Vb / N
式中,△Vb为每一步施加荷载时结构的基底剪力,由结 构总的基底剪力除以总的加载步数给出;N为结构的总 层数。
6
水平荷载分布模式
(2) 倒三角形分布(Inverse Triangular Distribution or Linear Distribution) 这种分布模式认为荷载沿高度为线性分布,每一步施 加于楼层“i”的侧向力为:
浅析静力弹塑性(pushover)分析

1 概述
为 了 满 足 《建 震 设 计 规 范》
(GB50011- 2001)中“小震不坏,中震可修,大震
不倒”的抗震设防目标,设计人员需要了解结构
从小震作用下的弹性状态逐步随着地震作用的
增大而进入弹塑性状态,即结构在(设防烈度地
震)和大震作用下的工作性能,并采用适当的抗
震措施以保证结构的抗震性。对结构进行罕遇
-10-
建筑工程
建筑的可持续发展
刘 闻 张伟健 (黑龙江省建筑设计研究院,黑龙江 哈尔滨 150008)
摘 要“: 可持续发展”是建筑设计师面临的新的挑战,也是建筑现代化所不可回避的问题。现从绿色建筑和生态建筑两方面论述“可持续发展” 在设计中的体现,并提出一些设想。
关 键 词 :可持续发展;绿色建筑;生态建筑;自然环境;减少污染
Sd 为横坐标的新的地震影响系数曲线,即为静
由结构的性能点,可得相应结构的顶点位
力弹塑性分析法中的地震作用需求谱。
移,相应的结构各层变形即反映结构在罕遇地
2.2 建立能力谱
震下各层的位移。计算结构层间位移角,与规范
在等效于地震作用的某种水平力作用下, 要求对比,判断结构是否满足分析,直 结构塑性铰的分布,判断结构薄弱层所在。
进行弹塑性变形分析的一种简化方法与反应谱
法类似,本质上是一种用静力来模拟地震力的
分析方法。具体地说,就是在结构计算模型上施
加按某种规则分布的水平侧向力 (例如按振型
分解反应谱法计算得出的水平地震力),单调加
载并逐级加大;一旦有构件开裂(或屈服)则修
改其刚度(或使其退出工作),进而修改结构总
刚度矩阵,进行下一步计算,依次循环直到结构
科技论坛
浅析静力弹塑性(p u sh o ver)分析
静力弹塑性分析方法Push-over

静力弹塑性分析方法Push-overPush-over从字面可以理解为推-覆,即对结构进行侧推。
为何进行侧推呢?对结构的侧推(pushover)目的是为了估计结构的抗震能力。
在解释通过侧推来评估结构抗震能力之前,先来看一下《抗震设计规范》中采用线弹性反应谱的方法来估计结构抗震能力有何不足?《抗震设计规范》中采用线弹性反应谱的方法,在一定场地条件下对线弹性结构进行反应估计,再进行结构设计。
而整个的设计过程中,对结构的假定都是线弹性的。
而结构在振动过程中会出现塑性状态,此状态可以减小地震作用并同时具有耗能的作用,因此,对结构的抗震能力评估需要考虑结构的塑性状态。
若仿照《抗震设计规范》中采用线弹性反应谱方法,来考虑结构的弹塑性状态,会遇到两个问题:一个是非线性结构难以转化为单自由度体系;二是线弹性反应谱不再适用,需要建立非线性结构反应谱。
而针对这两个问题,在Pushover分析中是分别通过建立能力谱和需求谱来解决的。
能力谱简单的说是通过单自由度体系力与位移关系来反映多自由度结构弹塑性特性的曲线。
更确切地说是通过单自由度体系受侧向集中水平力得到的力与位移关系,来描述多自由度结构受到侧向推力得到的顶层位移与基地剪力的关系,从而诠释了推覆的含义。
然后仅通过推覆得到的能力谱,是难以评估结构的抗震能力的。
原因在于能力谱虽然能够反映了结构本身的弹塑性特点,比如侧向刚度大小,屈服强度等。
然而能力谱不能反映出地震特性,因此需要建立需求谱。
需求谱如设计规范中的弹性反应谱一样,反映不同周期结构在某类场地作用下的最大反应。
然而弹性反应谱难以描述结构弹塑性特性,主要在于弹性反应谱没有考虑弹塑性结构屈服时的屈服点,以及屈服后刚度。
需求谱考虑了结构的弹塑性特点,将弹性反应谱通过折减及变换,得到弹性需求谱。
为了考虑地震场地特性,将能力谱与需求谱画于同一图中,相交的点为性能点,如下图:性能点反映了具有特定周期、特定屈服强度与延性等特点的弹塑性结构在某种场地条件下的抗震能力。
浅谈静力弹塑性pushover分析方法

浅谈静力弹塑性pushover分析方法摘要:Pushover分析方法是逐渐得到广泛应用的一种评估结构抗震性能的简化方法,已被引入我国新的建筑结构抗震设计规范。
侧向力分布模式的选取是pushover分析中的一个关键问题,它的选取直接影响pushover分析的结果。
本文主要综述了pushover分析方法的原理、应用和实施过程,pushover分析中侧向力分布模式及其影响,对结构设计提供借鉴。
关键词:pushover;侧向力分析分布模式1、引言结构抗震非线性时程分析方法能真实地反映结构在地震作用下的破坏机制及构件的塑性破坏过程,但其计算过程复杂,在实际工程的应用中还较难推广。
Pushover分析乃是一种结构非线性地震反应的简化方法,易为广大工程设计人员所接受。
2、pushover分析方法的原理、应用和实施过程2.1pushover分析方法的原理和应用Pushover方法从本质上说是一种静力分析方法,即对结构进行静力单调加载下的弹塑性分析。
具体地说,在结构分析模型上施加按某种方式模拟地震惯性力的侧向力,并逐级单调加大,构件如有开裂或屈服,修改其刚度,直到结构到达预定的状态(成为机构、位移超限或达到目标位移)。
Pushover方法可用于建筑物的抗震鉴定和加固,及对新建结构的抗震设计和性能的评估,也可以对所设计的地震运动作用在结构体系和它的组件上的抗震需求提供充足的信息;在结构可靠性设计中,通过pushover分析来确立结构极限承载力的初始设计值;利用pushover分析法来检测结构的抗震性能并由此相应调整结构设计,使之满足抗震要求;对结构进行pushover分析,可得层间剪力—层间位移曲线,即该结构的剪切层的层间滞回曲线的骨架线,将其折线化为合理的恢复力模型,即可进行层模型的弹塑性时程分析。
2.2pushover分析方法的实施步骤(1)准备结构数据:包括建立结构模型,构件的物理常数和恢复力模型等;(2)计算结构在竖向荷载作用下的内力(将其与水平力作用下的内力叠加,作为某一级水平力作用下构件的内力,以判断构件是否开裂或屈服);(3)施加一定量的水平荷载。
PUSHOVER分析方法在结构抗震分析中的应用

PUSHOVER分析方法在结构抗震分析中的探讨摘要:在介绍静力弹塑性分析方法的基本原理和实施过程的基础上,阐述了其发展概况,并通过分析其中个别有代表性的Push-over分析方法,以及这种方法在目前建筑结构抗震过程中的应用,简要评述了push-over 分析方法的优点以及存在的不足,指出了进一步研究发展的方向。
关键词:静力弹塑性,抗震性能,反应谱,能力谱,push-over1前言建筑结构抗震反应分析一般采用底部剪力法、振型分解反应谱法、弹塑性时程分析法等几种计算方法。
前两者属于弹性分析方法,计算简便,求解效率高,但是它们不能真实地反映建筑结构在强震过程中的非线性响应。
弹塑性时程法虽被认为是目前结构弹塑性分析方法中最可靠的方法,但是由于其分析技术复杂,计算工作量大,并且许多问题在理论上还有待进一步地改进,因此弹塑性时程法通常仅限于理论分析和研究,应用尚不普及。
静力弹塑性分析方法既考虑了计算的简便性,又考虑结构在地震作用下的非线性响应特性,是目前一种比较经济可行的结构非线性分析方法。
静力塑性分析方法分为两步:其一是对结构进行推覆分析,其二是根据结构推覆分析的结果评估结构的抗震性能。
结构推覆分析的关键是能够比较真实地模拟地震作用下结构的弹塑性性能和变形特征;结构抗震性能的评估多采用能力谱方法和结构性能指标。
能力谱方法实质上是通过地震反应谱曲线和结构能力谱曲线的叠加来评估结构在给定地震作用下的结构的反应特征。
抗震性能评估是在结构推覆分析的基础之上评估结构在给定地震作用下的响应特征,是静力弹塑性分析的重要组成部分。
结构的性能评估一般有结构性能指标(应力、位移和能量等)和能力谱设计方法两种评估形式。
结构性能指标也可以应用于结构弹塑性动力时程分析结果的评估。
接下来将简要的介绍静力弹塑性分析方法的基本原理和分析过程,并指出其分析过程中的优点和不足之处。
2 静力弹塑性分析的基本假定随着人们对结构弹塑性行为的认识加深和出于经济因素的考虑,广大学者和设计人员希望利用结构的弹塑性行为来抵御强震作用,确保结构“大震不倒”,以及针对不同的地震强度结构处于不同的弹塑性阶段时,保证结构“中震可修”,这些都要求设计者对结构进行弹塑性分析。
抗震设计中的Push-over分析方法存在的问题

抗震设计中的Push-over分析方法存在的问题摘要:主要写了抗震设计中的push-over分析方法存在的问题及解决措施关键词:抗震设计,push-overabstract: mainly wrote the seismic design of the push-over analysis method to solve the existing problems and measures keywords: seismic design, push-over中图分类号: tu352.1+1 文献标识码:a 文章编号:前言:push-over analysis静力弹塑性分析,它是相对于动力弹塑性分析(弹塑性时程分析)的另外一种结构弹塑性分析方法。
在罕遇地震作用下,抗震结构会部分进入塑性状态,而弹性分析不能预测屈服后内力和变形的分布,必须进行弹塑性分析,才能知道结构的弹塑性变形能力,检验结构是否满足大震作用下的功能要求。
push-over分析方法较弹塑性动力分析,易于为工程设计人员所掌握。
这种方法既可得到有用的静力分析结果,又可很方便地利用其得到的层剪力—层间位移骨架曲线进行动力时程分析。
push-over分析方法在现阶段是可行的、而且在定量分析上是具有积极意义的,在应用过程中也会逐步完善。
新的抗震规范已经明确的提出采用push-over分析方法进行大震下的弹塑性变形验算。
关于push-over分析方法的研究和工程实例已经很多,但由于其本身计算假定的局限性,有很多问题尚未解决,有很多结构形式也并不适用于push-over方法进行分析。
如果盲目的采用push-over 方法进行设计,会产生较大隐患。
本文从push-over原理出发,对一些push-over分析中容易产生的问题做一简单介绍,希望引起设计者的重视。
1、几种push-over分析方法的适用范围push-over分析中有两个关键的环节:结构目标位移的确定、水平荷载模式的选择。
静力弹塑性Pushover分析方法在高层建筑结构中的应用共3篇

静力弹塑性Pushover分析方法在高层建筑结构中的应用共3篇静力弹塑性Pushover分析方法在高层建筑结构中的应用1静力弹塑性Pushover分析方法是一种在高层建筑结构中广泛应用的结构分析方法,它可以用于评估建筑物的破坏机制和耐震性能,并为施工和维护提供有用的指导和建议。
本文将详细介绍该方法的原理和应用。
Pushover分析方法基于弹塑性理论,可以很好地模拟结构的非线性特性,并预测其塑性极限以及峰值位移。
该方法在分析中采用了非常简便的工具,比如一维曲线(Capacity Curve)和位移时程,因此可以更好地理解分析结果。
Pushover分析方法通常在进行性能评估时使用,其主要目标是确定结构的破坏机制。
该方法通常包括以下步骤:1.建立结构的有限元模型在进行Pushover分析之前,需要建立结构的有限元模型。
有限元模型必须准确地描述结构的几何形状、材料属性和边界条件。
通常情况下,有限元模型是由保密的BUILDING INFORMATION MODELING(BIM)或其他建模软件生成。
2.确定结构的荷载模型在确定荷载模型时,需要考虑结构所受的地震、风荷载和重力荷载等因素。
在进行Pushover分析之前,需要将自重和其它固定荷载先施加在结构上,然后再考虑施加的横向载荷。
3.确定分析属性分析属性是指用于模拟结构响应的材料模型、纵横向构型变化以及分析强度等因素。
静力弹塑性Pushover分析采用材料的弹性模量及屈服强度,在结构滞回曲线上用刚度和残余形变表达了结构的非线性本质。
4.进行Pushover分析进行Pushover分析时,需要使用一种称为Capacity Curve的曲线来描述结构的响应。
该曲线可以通过在结构中逐步增加侧向荷载来构建。
在每个荷载步长上,都会根据结构的强度、刚度和残留形变来计算结构的响应。
通过计算位移和弧度等参数,可以建立结构的Capacity Curve。
5.进行破坏模式分析通过Capacity Curve,可以确定结构的塑性极限和层间的响应状况。
静力弹塑性分析方法(Pushover方法)与动力弹塑性分析方法的优缺点

静力弹塑性分析方法(Pushover方法)与动力弹塑性分析方法的优缺点Pushover分析法1、Pushover分析法优点:(1)作为一种简化的非线性分析方法,Pushover方法能够从整体上把握结构的抗侧力性能,可以对结构关键机构及单元进行评估,找到结构的薄弱环节,从而为设计改进提供参考。
(2)非线性静力分析可以获得较为稳定的分析结果,减小分析结果的偶然性,同时花费较少的时间和劳力,较之时程分析方法有较强的实际应用价值。
2、Pushover分析法缺点:(1)它假定所有的多自由度体系均可简化为等效单自由度体系,这一理论假定没有十分严密的理论基础。
(2)对建筑物进行Pushover分析时首先要确定一个合理的目标位移和水平加载方式,其分析结果的精确度很大程度上依赖于这两者的选择。
(3)只能从整体上考察结构的性能,得到的结果较为粗糙。
且在过程中未考虑结构在反复加载过程中损伤的累积及刚度的变化。
不能完全真实反应结构在地震作用下性状。
二、弹塑性时程分析法1、时程分析法优点:(1)采用地震动加速度时程曲线作为输入,进行结构地震反应分析,从而全面考虑了强震三要素,也自然地考虑了地震动丰富的长周期分量对高层建筑的不利影响。
(2)采用结构弹塑性全过程恢复力特性曲线来表征结构的力学性质,从而比较确切地、具体地和细致地给出结构的弹塑性地震反应。
(3)能给出结构中各构件和杆件出现塑性铰的时刻和顺序,从而可以判明结构的屈服机制。
(4)对于非等强结构,能找出结构的薄弱环节,并能计算出柔弱楼层的塑性变形集中效应。
2、时程分析法缺点:(1)时程分析的最大缺点在于时程分析的结果与所选取的地震动输入有关,地震动时称所含频频成分对结构的模态n向应有选择放大作用,所以不同时称输入结果差异很大。
(2)时程分析法采用逐步积分的方法对动力方程进行直接积分,从而求得结构在地震过程中每一瞬时的位移、速度和加速度反应。
所以此法的计算工作十分繁重,必须借助于计算机才能完成。
结构抗震中的静力弹塑性_pushover_分析方法

加固指南 FEMA 356都对 pushover 分析方法作了如果定义等效 SDOF 体系参考位移 x 为x * ={ <}T M { <}x 2用{ <} 前乘( 1) 式, 用( 2 ) 式替代 x t , 可以得到 tt g g g式中, M , C , Q 分别为等效 SDOF 体系的: 结构的响应和一个等效单自由度这样一个假定 { <} M {1}C = { <} C{ <} ( 6){ <} M{ <}第 15 卷第 3 期2005 年 9 月湖 南 工 程 学 院 学 报Journal of Hunan Inst it ut e of EngineeringVo1. 15. No. 3 Sept . 2005结构抗震中的静力弹塑性( pushover) 分析方法龚曙晖1 , 陈敏2, 杨格兰3X( 1. 湖南省益阳市资阳区水利局, 湖南 益阳 413001; 2. 湖南大学 土木工程学院, 湖南 长沙 410082;3. 湖南城市学院 计算机系, 湖南 益阳 413049)摘要: P ushover 分析方法是逐渐得到广泛应用的一种评估结构抗震性能的简化方法, 已被引入我国 新的建筑结构抗震规范. 本文介绍了 pushover 分析的基本原理和实施 pushover 分析的关键问题, 最后 选用三种水平荷载模式和非线性时程分析进行了比较.关键词: P ushover 分析; 水平侧向荷载模式; 等效单自由度体系; 目标位移; 非线性时程分析 中图分类号: T U3521 1+ 1文献标识码: A文章编号: 1671- 119X( 2005) 03- 0077- 05仅由结构第一振型控制; 结构沿高度的变形由形状0 前 言向量{ <}表示, 在地震反应过程中, 不管结构的变形 大小, 形状向量{ <}保持不变. 显然, 这两个假定是 弹塑性动力分析输入地震加速度时程, 能够直 接检验结构在大震作用下的安全性, 是较理想的抗 震分析方法. 但由于地震的不确定性、结构的复杂性 以及要求使用者有较高的专业知识. 近年来, 一种较 为简单的方法- 静力弹塑性方法( 简称 pushover 方 法) 已成为流行的结构抗震性能评估方法. Pushover 分析是在结构上施加竖向荷载并保持不变, 同时施 加某种分布的水平荷载, 该水平荷载单调增加, 构件 逐步屈服, 从而得到结构在横向静力作用下的弹塑 性性能. 美国应用技术委员会的 ATC- 40[1] 和抗震 [ 2]阐述, 并致力于改进和完善该方法. 我国 2001 年5建 筑抗震设计规范6 [ 3] 也明确提出需要采用该方法进 行抗震变形验算. 鉴于其重要和实用性, 本文结合国 内外新近的研究成果, 对 pushover 方法的原理和实 施的关键技术作了详细的介绍, 最后和非线性动力 时程分析进行了比较.不对的. 但已有研究表明, 这些假定可以对多自由度 体系( 以下简称 MDOF ) 的最大地震响应做出相当 好的预测, 这意味着结构响应主要由第一振型控制.等效 SDOF 体系的转换公式不是唯一的, 但所 有方法都取 决于 基本 假定: MDOF 体系 形状 向量 { <}在地震反应过程中保持不变. 定义 MDOF 体系 的相对位移向量 X = { <}x t , 其中 x t 为顶点位移, 于 是 MDOF 体系在地面运动下的动力微分方程可写 为M{ <}x && + C{ <}x & + Q = - M{1}x && (1) 式中: M 和 C 为质量和阻尼矩阵; Q 为层间恢 复力向量; x && 为地面加速度.*{ <} M{1}T等效 SDOF 体系在地面运动下的动力微分方程M * x & &* + C * x & * + Q * = - M * x &&1静力弹塑性方法的基本原理和具体步骤* * *( 3)1. 1 基本原理Pushover 分析没有严密的理论基础. 它是基于[ 4]体系( 以下 简 称 SDOF ) 相关, 这就意味着结 构响应X 收稿日期: 2005- 01- 03等效质量、等效阻尼和等效恢复力, 它们分别表示为M * = {<}T M{1} ( 4) Q * = {<}T Q ( 5)T* TTl= 1j l= il= 12 A78 湖南工程学院学报2005 年1. 2 实施步骤[ 5 ]力代表在设计地震作用下结构层惯性力的分布, 该( 1) 准备工作. 建立结构模型, 包括几何尺寸、物理参数以及结点和杆件编号; 求出各构件的塑性承载力.( 2) 求出结构在竖向荷载作用下的内力, 以便和水平荷载作用下的内力进行组合.( 3) 施加一定量的沿高度呈一定分布的水平荷载, 水平荷载模式在第 2 节有专门介绍. 水平荷载施分布直接影响pushover 分析的结果, 因此侧向力分布的选取是pushover 分析中的一个关键问题[ 6] .FEMA- 356[ 2]中推荐了 2 类固定式水平侧向力分布模式, 并指出了适应范围.第一类为振型模式:( 1) 分布力和系数C vi成比例. 结构在第i 层侧向力的增量$F i为加于各楼层的质心处, 水平荷载值的选取应使结构在该水平增量作用下结构的内力和竖向荷载作用下$F i = C v i $ V b( 8) 的结构内力以及前面所有的n 步结构的累计内力相叠加以后, 刚好使一个或一批构件进入屈服状态.( 4) 对于上一步进入屈服的构件, 改变其状态,C vi =w i h k inE w i h k i ( 9) 形成一个/ 新0的结构, 修改结构的刚度矩阵并求出/ 新0的结构自振周期, 在其上施加一定量的水平力荷载, 又使一个或一批构件恰好进入屈服状态.( 5) 不断重复第四步直到结构的侧向位移达到预定的目标位移, 或使结构变成机构. 记录每一步的结构自振周期并累计每一步施加的荷载.( 6) 成果整理. 将每一个不同的结构自振周期及其对应的水平力总量与结构自重( 重力荷载代表值)式中w i和h i分别为第i 层的重量和层高, $ V b为结构基底剪力的增量, n 为结构总层数, k 为高度影响因子. k 的取值与结构第一振型的弹性周期有关,当结构第一振型周期T < 0. 5 s 时k= 1. 0, T > 2. 5 s 时k= 2. 0, 在两者之间时线性插值. 当k= 1 时即为倒三角分布.( 2) 分布力和基本振型成比例. 结构在第i 层侧向力的增量$F i为的比值( 地震影响系数) 绘成曲线, 通常称为能力谱$F i = <$ V b( 10) 曲线, 具体见第 3 节; 同时也把相应场地的各条反应谱曲线转换为需求谱曲线, 并和能力谱曲线绘制在一起, 如图 1 所示. 然后对结构的抗震性能进行评式中<1为结构基本振型.( 3 ) 多振型组合分布. 首先通过平方和开方法则计算结构各层层间剪力估.V i =m nE E #j w l<lj A j 2 ( 11)式中i 为层号, m 为所考虑结构振型数, w l为结构第l 层的重量, <lj为第l 层的第j 阶振型值, #j为第j 阶振型的振型参与系数, A j为第j 振型的结构弹性反应谱值. 由层间剪力可反算各层侧向力.第二类模式为:( 1 ) 均匀分布. 结构各层侧向力与该层质量成正比, 结构在第i 层侧向力的增量$F i为图1 确定结构位移需求图中A为谱加速度, D 由弹性反应谱转换过$F i =w inE w i$ V b( 12) 来: 式中w i为第i 层的重量, $ V b为结构基底剪力的D=式中T n是自振周期.2-18水平侧向荷载模T 2n4 P( 7)增量, n 为结构总层数.( 2 ) 自适应分布. 通常所选的侧向力分布只考虑结构弹性阶段的反应, 当结构进入塑性, 如果此时结构的侧向力分布没有根据刚度分布变化调整, 结构的反应可能会与实际地震下的反应有很大差别, 于E ( <ij #j )w iV b - F oild $F i =E w i E ( <ij #j ) 2i n第 3 期龚曙晖等: 结构抗震中的静力弹塑性( pushover) 分析方法79侧向力分布的方法. 第i 层侧向力的增量$F i为m2 1/ 2j= 11/ 2l= 1 j= 1( 13) 式中w i为第i 层的重量, <ij为第j 阶振型在第i 层的值, #j为第j 阶振型的振型参与系数, $ V b为结构基底剪力的增量, n 为结构总层数, F old为结构第i 层在上一步加载时的侧向力.由于单一的荷载模式无法把握结构在抗震设计中局部需求的变化, 有人[ 6]建议在pushover 分析中至少选用两种侧向力分布模式. 文献[ 7] 采用 5 种组合模式:F j = E A #n m <n S a ( F n , T n)( 14) 式中A n为修正系数, 可以取正值或者负值, <n 为第n 阶振型, S a ( F n, T n) 为阻尼比取F n和自振周期取T n时的谱加速度, # n为振型参与系数, m 为质量矩阵.研究发现, 随着结构层数的增加和地震动强度的增加高阶振型的影响变大, 侧向力的选取变得十分重要, 这是pushover 分析的一个研究热点, 但由于水平加载模式均是单调增加的荷载分布, 所以不可能从根本上解决其与实际地震荷载的差别.不同侧向力分布分别对 5 层、10 层和15 层钢筋混凝土结构实施pushover 分析, 并进行了比较且对不3 力- 位移曲线的理想化同自振周期选择荷载模式提出建议. 当结构高阶振型影响不明显时, 以上水平侧向荷载模式可较好的预测结构的反应[6] . 为了弥补FEMA 方法的不足, E. Kalkan 和S. K. Kunnath [8]提出了一种新的振型( a) Pushover 曲线对结构作pushover 分析, 首先可以得到基底剪力和控制结点( 一般取顶点) 的非线性关系曲线, 即pushover 曲线, 然后将其理想化为二折线能力谱曲线, 如图 2 所示.( b) 能力谱曲线图2 P ushover 曲线转换为能力谱曲线图中V b为基底剪力, u n为顶点( 或第n 层) 位移, # 1为第一阶振型参与系数, <n 1为第n 层处的第一振型, M *1为第一振型的有效振型质量, K e为等效刚度, C为刚度折减系数. 反应谱缺乏系统的研究, 因此, 采用后一种方法确定结构的目标位移更为现实. 然而, 要得到合理的结构目标位移, 必须要解决好输入地震波的确定问题. 关于输入地震波的确定, 一般认为输入地震波应能反应场地的近、中、远地震环境, 应能反应场地的主4 目标位移的确定要特征. 作为输入地震波, 应从如下两种途径得到:结构目标位移的计算有两种方法, 一种方法是利用弹塑性位移反应谱直接得到, 另一种是选择符合场地地震环境的输入地震波, 分别计算这些输入地震波作用下结构的弹塑性位移反应, 由统计得到结构顶层位移峰值的均值及pushover 分析需要的结构目标位移. FEMA356 第 3 章给出了按反应谱¹按类比原则从国际地震记录汇编中找到符合场地地震环境的地震波, 在此基础上进行修改得到与地震反应谱拟和良好的地震波; º以地震反应谱为目标人造地震波. 在实际应用计算时, 以修改实际地震波为主, 人造地震波为补充. 在进行结果统计或组合时, 可以从这些地震波可能发生的概率入手, 综合评定结构的目标位移.程序采用 IDA RC6. 0 80湖南工程学院学报2005 年5 和非线性时程分析的比较选用 12 层钢结构房屋如图 3 所示. 第一层层高( a) A 轴线立面图4. 5 m, 其余各层层高为 4. 2 m. 顶层质量为 939 t, 其余各层质量为 1016 t , 钢屈服强度 f y = 345 MPa. 梁柱截面如表 1 所示.( b) 结构平面图图 3 12 层钢结构房屋表 1 梁柱截面尺寸时程分析. 取非线性时程分析所得的最大顶点位移 楼 层 梁截 面 柱截面 的平均值作为目标位移对结构进行 pushover 分析, 11- 12 9- 10 W27 @94 W27 @102 W14 @132 W14 @193 水平侧向荷载分布模式分别选用倒三角模式、均匀 模式和 E. Kalkan 等提出的振型组合模 式[8] . 分析 7- 8 W27 @114 W14 @257 [ 9. 我国抗震规范把层间位移 5- 6 3- 4 1- 2W30 @124 W30 @132 W30 @148W14 @311 W14 @370 W14 @426作为大震下结构变形验算的主要指标, 这里给出各 层最大位移图 4 和层间位移图 5 来比较 pushover 分 析和非线性时程分析, 图中非线性时程分析的最大 该结构的场地土为 Ò 类, Ø 度大震, 选取六条典 型的地震波如表 2 所示, 分别对该结构进行非线性层位移和层间位移为输入六种地震波下结构的反应 均值.表 2 选取的地震波峰值加速度( g )1 2 3 4 5 61971 1989 1989 1972 1972 1994San Fernando Loma Prieta Loma Prieta Landers Landers Northridge241 Gilroy 2 Holllister Yermo Joshua Century6. 67. 1 7. 1 7. 5 7. 5 6. 7N00W 90 90 360 90 900. 26 0. 32 0. 15 0. 15 0. 28 0. 26图 4 最大楼层位移比 图 5最大层间位移比GONG Shu- hui ,CHEN Min ,第 3 期龚曙晖等: 结构抗震中的静力弹塑性( pushover) 分析方法81由图可以看出, 均匀侧向力分布下 pushover 分1996.析对结构各层间位移及整体反应的计算最差. 这主 要是由于均匀分布下结构的变形主要集中在结构底 层, 对于中等高度结构, 由于结构中上部也会出现薄 弱层, 这种情况不太合适. 倒三角分布模式和考虑高 振型影响的振型组合模式和时 程分析结果较 为接 近, 这说明对于该结构, 高阶振型的影响并不显著.[ 2][ 3]Building Seismic Safet y Cou ncil. NEHR P Guidelines for t he Seismic Rehabilitation of Buildings [ S ] , FE2 MA356. Washing ton D C: Federal Emer gency Man2 agement Agency, 2000.中 华 人 民 共 和 国 国 家 标 准. 建 筑 抗 震 设 计 规 范,GB50011- 2001 [ S] . 北 京: 中 国 建 筑 工 业 出 版 社, 2002.[ 4] 杨 溥, 李英明, 王亚勇, 赖 明. 结构静力弹塑 性分析6 结束语方法的改进[ J] . 建筑结构学报, 2000, 21( 1) : 44- 51.[ 5]叶燎原, 潘文. 结构静力弹 塑性分析( Pushover) 的原静力弹塑性( pushover) 分析作为对结构抗震能 理和计算实例[ J] . 建筑结构学报, 2000, 21( 1) : 37- 51.力评估的一种新方法, 尽管不能考虑地震动力效应, 但它可以满足工程要求, 避免了同一结构在不同地 震波作用下响应差别悬殊的矛盾, 因此它目前已广 泛应用于日常工程设计. 应该指出, 尽管静力弹塑性 分析在一步一步地侵占动力弹 塑性分析的应 用领 域, 但对于高阶振型影响较大的结构、不规则结构以 [ 6][ 7][ 8]Krawinkler H, Senerviratna G D P K. Pros and cons of a push- over analysis of seismic performance evaluation[ J] . Engineering Structures, 1998, 20( 4- 6) : 452- 464. 候 爽, 欧进萍. 结构 Pushover 分析 的侧向 力分布 及 高阶 振 型 影 响 [ J] . 地 震 工 程 与 工 程 振 动, 2004, 24 ( 3) : 89- 97.Kalkan E, Kunnath S K. Lateral load distr ibution in 及需考虑的强震特征较多的情形下, 实施静力弹塑 性分析仍然是当前研究的热点和难点, 有待进一步 研究.[ 9]nonlinear static procedur es for seismic design[ A] . Struc2 tures Congress 2004, Nashville, Tennessee, USA, May 22- 26, 2004.Valles R E, R einhorn A M, Ku nnath S K, Li C, et al. 参 考 文 献IDARC2D Version 4. 0: A compu ter prog r am for the in2 [1]Applied Technology C ouncil. Seismic evaluation and retrofit of concrete building [ R ] . Report ATC - 40,elastic damage analysis of buildings [ R ] , Report No. NCEER- 96- 0010. State University of New York at Buffalo, 1996.Pushover Analysis Method in Earthquake Engineering12YANG Ge- lan3( 1. Ziyang Water R esources Bur eau, Yiyang 413001, China; 2. College of Civil Eng. , Hunan University, C hangsha 410082, China;3. Department of Computer, Hunan Cit y University, Yiyang 413049, C hina)Abstr act: Pushover analysis is a simplified met hod for structure seismic evalu at ion, which is extensively used, and is recommended by t he new national code of seis mic design of buildings. The paper presents a concise int ro2 duct ion to the principle and several important problems of pushover analysis. In t he end, comparison bet ween nonlinear t ime history analysis and pushover analysis using three lat eral load pat terns is undertaken. Key words:pushover analysis; lat eral load patt ern; equivalent single2degree2of2freedom system; t arget dis2placement ; nonlinear t ime history analysis。
静力弹塑性分析方法(Push-over)的修正及其在抗震设计中的应用

大 震不倒 ”的设 防 目标 。 本文 介 绍 了静 力弹 塑性 分析 方法 的 原理 ,并详 细讨 论其 在工程 设 计 中的应 用 。
魏琏 :深 圳市力 鹏 建筑结 构 设计事 务所
地址 :深圳 市福 田 区景 田北路 民华 大厦 3 9室 1
电话 :8 9 0 6 34 45
局部 、部分 或甚 而大 部分进 入 弹塑 性状 态 ,为 了满
足 《 筑抗震 设 计规 范 》( B 0 1 . 0 1 建 G 5 0 12 0 )中 “ 小 震不 坏 , 中震可 修 ,大震 不 倒 ” 的抗 震设 防 目标 , 设计人 员 需要 了解结 构从 小震 ( 多遇 地震 )作用 下 的弹 性 状 态 逐 步 随 着 地 震 作 用 的 增 大 而进 入 弹 塑 性 状态 ,即结构 在 中震 ( 防烈度 地震 ) 大 震 ( 设 和 罕 遇地 震 )作用 下 的工作 性能 ,并采用 适 当 的抗震 措 施 以保证 结构 的抗 震安 全性 。
段 的抗 震性 能进 行分 析研 究 ,找 出结 构 中首先 屈服 的薄弱 部位 ,并通 过相应 的 设计方 法和 构造 措施 予
S a= a 9
7 1 T2口
() 2
S d
=n
() 3
将地 震 影 响系 数 曲线 的横 坐 标 改 为S ,则 以 d
以加 强 ,从 而有 利 于实 现 “ 震 不坏 、中震 可 修 、 小
垒鱼旦 篷 查 篷
,
堡
查鱼建
;
: !
力 与变 形特 征 的是 结 构 的 基底 剪 力 与顶 点位 移 在现 行静 力弹塑 性分 析法 中 ,假设 结构位 移近
似 由第一振 型位 移表 示可得 : u =y X d 1 S
静力弹塑性分析方法浅析及应用

静力弹塑性分析方法浅析及应用发表时间:2019-04-19T10:31:12.813Z 来源:《基层建设》2019年第6期作者:李建民[导读] 摘要:本文通过介绍Pushover静力弹塑性分析的原理,阐述了性能点的含义及Pushover分析方法的步骤。
上海市建工设计研究总院有限公司上海市 200235摘要:本文通过介绍Pushover静力弹塑性分析的原理,阐述了性能点的含义及Pushover分析方法的步骤。
并利用Pushover分析方法分析了一个框架-核心筒结构,可为相似工程提供参考。
关键词:Pushover;静力弹塑性分析1 静力弹塑性分析方法基本原理1.1 静力弹塑性分析方法的引进我国从《建筑抗震设计规范》(GBJ 11-89)版就提出了三阶段抗震设防目标,即“小震不坏,中震可修,大震不倒”,说明我国规范正在逐步吸纳基于性能化设计的思想。
而在《建筑抗震设计规范》(GBJ 50011-2001)中引入的静力弹塑性推覆分析(Pushover)抗震技术,是对性能化设计分析方法的补充。
性能化设计根据结构所处的受力阶段,适宜采用的分析方法不尽相同。
结构在小震时处于线弹性阶段,可采用振型组合方法或弹性时程方法。
进入弹塑性阶段后分析变得复杂,这就需要一种能够较好的反映结构进入弹塑性阶段后的实际性能,又简单好用的分析方法。
于是,基于能力谱方法(Capacity Spectrum Method,简称CSM),美国的国家标准技术研究院NIST、应用技术委员会的ATC-40以及联邦应急委员会的FEMA273、274等文件引入了静力弹塑性分析方法。
1.2 静力弹塑性分析方法原理首先,静力弹塑性分析方法基于两个基本假定:(1)、实际结构的地震反应与某一等效单自由度体系的反应相关。
(2)、在地震过程中,不论结构变形大小,分析所假定的结构沿高度方向的形状向量都保持不变。
因为以上假定在理论上并不严密,所以静力弹塑性分析方法在使用时具有一定的局限性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关于EPDA的静力弹塑性分析程序
(push-over)的探讨
陈辉(厦门市建筑设计院有限公司361004)
[提要] 本文简要介绍了静力弹塑性分析的原理和实施步骤,并通过工程实例进行相关的对比和讨论。
[关键词]静力弹塑性分析;push-over;反应谱;结构抗震性能评价
Some Discussion about Push-Over Analysis
Abstract:In this paper,the static push-over analysis,POA is briefly introduced,then some contrast and discussion are gived with practical cases.
Keywords:nonlinear static analysis,push-over,response spectrum,structural seismic capacity
1 引言
现行的《建筑抗震设计规范》(GB50011-2001)中,3.6.2条为:“……罕遇地震作用下的弹塑性变形分析。
此时,可根据结构特点采用静力弹塑性分析或弹塑性时程分析方法。
”这里的静力弹塑性分析,即静力非线性分析,除了指一般的与反应谱结合不密切的非线性静力分析外,也包括了push-over 方法。
《抗规》条文说明5.5.3明确提出“……较为精确的结构弹塑性分析方法,可以是三维的静力弹塑性(如push-over方法)……”。
因为弹塑性时程分析对计算机软硬件和分析人员要求较高,工作量也较大,在一段时期内不容易成为一种被广泛采用的方法。
因此逐步推广push-over这种较一般静力分析有许多改进而且相对简便易行的方法,在目前是一种可行的方向。
2 原理与实施步骤
2.1 原理
Push-over方法是近年来在国外得到广泛应用的一种结构抗震能力评价的新方法,其应用范围主要集中于对现有结构或设计方案进行抗震能力的估计。
这种方法从本质上说是一种静力非线性计算方法,与以往的抗震静力计算方法不同之处主要在于它将设计反应谱引入了计算过程和计算成果的工程解释。
这种方法的优点在于:水平力的大小是根据结构在不同工作阶段的周期由设计反应谱求得,而分布则根据结构的振型变化求得。
2.2实施步骤
(1)准备工作:建立结构模型,包括几何尺寸、物理参数以及节点和构件的编号,并输入构件的实配钢筋以便求出各个构件的塑性承载力。
(2)求出结构在竖向荷载作用下的内力。
这时还要求出结构的基本自振周期。
(3)施加一定量的水平荷载。
水平力大小的确定原则是:水平力产生的内力与第(2)步竖向荷载产生的内力叠加后,恰好能使一个或一批构件进入屈服。
(4)对在上一步进入屈服的构件的端部,设定塑性铰点变更结构的刚度,这样,相当于形成了一个新的结构。
求出这个“新”结构的自振周期,在其上再施加一定量的水平荷载,又使一个或一批构件恰好进入屈服。
(5)不断地重复第(4)步,直到结构的侧向位移达到预定的破坏极限。
记录每一次有新的塑性铰出现后结构的周期,累计每一次施加的荷载。
(6)成果整理:将每一个不同的结构自振周期及其对应的地震影响系数绘成曲线,也把相应场地的各条反应谱曲线绘在一起,如图1所示。
这样如果结构反应曲线能够穿过某条反应谱,就说明结构能够抵抗那条反应谱所对应的地震烈度。
还可以在
3 工程实例
以下两个工程为作者参与设计的工程,均用SATWE进行过振型分解法分析,现用EPDA进行
周期
图1 分析成果曲线
push-over 法的分析,判断结构的抗震性能,并与SATWE 程序的计算结果进行对比。
3.1 某大厦(框支-剪力墙)
某大厦为29层框支-剪力墙结构,三层高位转换。
0.1
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.01
0.65
1.15
1.65
2.15
2.65
3.15
3.65
4.15
4.65
5.15
5.65
6.15
图2 某大厦X 向push-over 分析成果
图2中的结构反应曲线未能穿过罕遇地震(αmax=0.72)下的反应谱曲线,说明结构无法抵抗罕遇地震烈度,结构应做适当调整。
0.1
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.01
0.65
1.15
1.65
2.15
2.65
3.15
3.65
4.15
4.65
5.15
5.65
6.15
6.65
图3 某大厦Y 向push-over 分析成果
3.2 某办公楼(框架)
0.1
0.2 0.3 0.4 0.5
0.6 0.7 0.8 0.01
0.65
1.15
1.65
2.15
2.65
3.15
3.65
4.15
4.65
5.15
5.65
6.15
图4 某办公楼 push-over 分析成果
4 结论及问题讨论
4.1 楼板对梁刚度的影响
从以上2个工程实例与SATWE 的对比结果可以看出,在多遇地震下,当SATWE 的“中梁刚度增大系数”Bk=1时,结构的自振周期SATWE 与push-over 的结果基本一致,而当Bk=2时,SATWE 计算的自振周期比push-over 要短,说明了push-over 计算中并未考虑楼板对梁刚度的影响,程序中也没有提供相关的参数设置,建议程序对此作进一步改进。
4.2 周期折减系数Tc 的影响
从以上的对比中,还可以看出“周期折减系数”Tc 的影响,在多遇地震下,当Tc<1时,SATWE 计算的基底剪力和位移均大于push-over 的计算,只有当Tc=1时,两者的基底剪力和位移才较为接近。
Tc 在SATWE 中的作用是考虑填充墙的抗侧刚度对结构自振周期的影响,这个对比显示push-over 忽略了这项因素。
简单的修正方法是对求出来的周期乘上一个周期折减系数,然后在用于结果的整理。
周期折减系数的取值要注意的是当结构的侧向变形达到一定范围后,由于填充墙的逐渐破坏,周期折减系数要相应调整,以反映填充墙抗侧刚度的降低甚至消失。
4.3 混凝土本构关系模型的假定
文献[1]中计算实例(程序采用SCM-3D )的自振周期-影响系数曲线,在结构尚未出现塑性铰,即结
表1 某大厦X 向多遇地震下结果
其中,Bk 为中梁刚度增大系数,Tc 为周期折减系数
表2 某大厦Y 向多遇地震下结果
其中,Bk 为中梁刚度增大系数,Tc 为周期折减系数
表3
某办公楼多遇地震下结果
其中,Bk 为中梁刚度增大系数,Tc 为周期折减系数
构处于弹性阶段内,结构的自振周期并不随影响系数的增大而发生变化,即曲线在此段内为一段垂直于X 轴的直线段。
而本文计算实例(程序采用EPDA )的自振周期-影响系数曲线中(如图1、2、3),自振周期始终随影响系数的增大而增大。
根据结构的刚度矩阵与弹性模量E 的关系,推断这种差别的原因出在混凝土本构关系模型的假定上。
本文计算实例的push-over 法采用的混凝土应力应变关系模型为Saenz 曲线,如图5所示,在应变0~εc 范围内(即混凝土的弹性范围),应力应变的关系是非线性的,混凝土的弹性模量E (即图中曲线的切线斜率)随应变、应力的增大而减小。
结构的刚度随弹性模量E 的减小而减小。
自振周期随结构的刚度的减小而增大。
因此,自振周期随影响系数的增大而增大。
一般的弹塑性分析程序采用的混凝土应力应变关系模型如图6所示,其中应变0~εc 范围内(即混凝土的弹性范围),应力应变的关系是线性的,混凝
4.4 结论
虽然程序存在1、2所述问题,但由于结构在罕遇地震下进入弹塑性阶段后,楼板对梁刚度的影响已经大幅降低,填充墙已基本破坏并失去刚度,所以在罕遇地震下,EPDA 的push-over 分析程序的结果应该仍然具有一定的准确性。
参考文献
[1]叶燎原,潘文.结构静力弹塑性分析(push-over )的原理和计算实例。
建筑结构学报[J],2000,(1)
[2]杨溥,李英民等.结构静力弹塑性分析(Push-over )方法的改进.建筑结构学报[J],2000,(1)
[3]王理,王亚勇等,空间结构非线性静力分析的工程应用。
建筑结构学报[J],2000,(1)
[4]吕西林等,《钢筋混凝土结构非线性有限元理论与应用》,同济大学出版社,1997
[5]建筑抗震设计规范,GB50011-2001,中国建筑工业出版社 [6]多层及高层建筑结构弹塑性动力、静力分析软件EPDA 用户手册及编制原理,中国建筑科学研究院PKPMCAD 工程部,2001
图5 混凝土模型(saenz ) 图6混凝土模型(线性)
(saenz )。