(完整版)动能和动能定理测试题和答案

合集下载

高考物理动能与动能定理题20套(带答案)含解析

高考物理动能与动能定理题20套(带答案)含解析

高考物理动能与动能定理题20套(带答案)含解析一、高中物理精讲专题测试动能与动能定理1.如图所示,光滑水平平台AB 与竖直光滑半圆轨道AC 平滑连接,C 点切线水平,长为L =4m 的粗糙水平传送带BD 与平台无缝对接。

质量分别为m 1=0.3kg 和m 2=1kg 两个小物体中间有一被压缩的轻质弹簧,用细绳将它们连接。

已知传送带以v 0=1.5m/s 的速度向左匀速运动,小物体与传送带间动摩擦因数为μ=0.15.某时剪断细绳,小物体m 1向左运动,m 2向右运动速度大小为v 2=3m/s ,g 取10m/s 2.求:(1)剪断细绳前弹簧的弹性势能E p(2)从小物体m 2滑上传送带到第一次滑离传送带的过程中,为了维持传送带匀速运动,电动机需对传送带多提供的电能E(3)为了让小物体m 1从C 点水平飞出后落至AB 平面的水平位移最大,竖直光滑半圆轨道AC 的半径R 和小物体m 1平抛的最大水平位移x 的大小。

【答案】(1)19.5J(2)6.75J(3)R =1.25m 时水平位移最大为x =5m 【解析】 【详解】(1)对m 1和m 2弹开过程,取向左为正方向,由动量守恒定律有:0=m 1v 1-m 2v 2解得v 1=10m/s剪断细绳前弹簧的弹性势能为:2211221122p E m v m v =+ 解得E p =19.5J(2)设m 2向右减速运动的最大距离为x ,由动能定理得:-μm 2gx =0-12m 2v 22 解得x =3m <L =4m则m 2先向右减速至速度为零,向左加速至速度为v 0=1.5m/s ,然后向左匀速运动,直至离开传送带。

设小物体m 2滑上传送带到第一次滑离传送带的所用时间为t 。

取向左为正方向。

根据动量定理得:μm 2gt =m 2v 0-(-m 2v 2)解得:t =3s该过程皮带运动的距离为:x 带=v 0t =4.5m故为了维持传送带匀速运动,电动机需对传送带多提供的电能为:E =μm 2gx 带解得:E =6.75J(3)设竖直光滑轨道AC 的半径为R 时小物体m 1平抛的水平位移最大为x 。

动能与动能定理经典习题及答案(免费》

动能与动能定理经典习题及答案(免费》

1.关于做功和物体动能变化的关系,不正确的是().A.只有动力对物体做功时,物体的动能增加B.只有物体克服阻力做功时,它的功能减少C.外力对物体做功的代数和等于物体的末动能和初动能之差D.动力和阻力都对物体做功,物体的动能一定变化2.下列关于运动物体所受的合外力、合外力做功和动能变化的关系正确的是().A.如果物体所受的合外力为零,那么合外力对物体做的功一定为零B.如果合外力对物体所做的功为零,则合外力一定为零C.物体在合外力作用下作变速运动,动能一定变化D.物体的动能不变,所受的合外力必定为零3.两个材料相同的物体,甲的质量大于乙的质量,以相同的初动能在同一水平面上滑动,最后都静止,它们滑行的距离是().A.乙大B.甲大C.一样大D.无法比较4.一个物体沿着高低不平的自由面做匀速率运动,在下面几种说法中,正确的是().A.动力做的功为零B.动力做的功不为零C.动力做功与阻力做功的代数和为零D.合力做的功为零5.放在水平面上的物体在一对水平方向的平衡力作用下做匀速直线运动,当撤去一个力后,下列说法中错误的是().A.物体的动能可能减少B.物体的动能可能增加C.没有撤去的这个力一定不再做功D.没有撤去的这个力一定还做功平面上做匀速圆周运动,拉力为某个值F时,转动半径为B,当拉力逐渐减小到了F/4时,物体仍做匀速圆周运动,半径为2R,则外力对物体所做的功大小是().A、FR/4B、3FR/4C、5FR/2D、零7. 一物体质量为2kg,以4m/s的速度在光滑水平面上向左滑行。

从某时刻起作用一向右的水平力,经过一段时间后,滑块的速度方向变为水平向右,大小为4m/s,在这段时间内,水平力做功为()A. 0B. 8JC. 16JD. 32J8.质量为5×105kg的机车,以恒定的功率沿平直轨道行驶,在3minl内行驶了1450m,其速度从10m/s增加到最大速度15m/s.若阻力保持不变,求机车的功率和所受阻力的数值.9. 一小球从高出地面Hm 处,由静止自由下落,不计空气阻力,球落至地面后又深入沙坑h米后停止,求沙坑对球的平均阻力是其重力的多少倍。

高考物理动能与动能定理试题(有答案和解析)

高考物理动能与动能定理试题(有答案和解析)

的小物块从轨道右侧 A 点以初速度
冲上轨道,通过圆形轨道,水平轨道
后压缩弹簧,并被弹簧以原速率弹回,取
,求:
(1)弹簧获得的最大弹性势能 ; (2)小物块被弹簧第一次弹回经过圆轨道最低点时的动能 ; (3)当 R 满足什么条件时,小物块被弹簧第一次弹回圆轨道时能沿轨道运动而不会脱离 轨道。 【答案】(1)10.5J(2)3J(3)0.3m≤R≤0.42m 或 0≤R≤0.12m 【解析】 【详解】 (1)当弹簧被压缩到最短时,其弹性势能最大。从 A 到压缩弹簧至最短的过程中,由动
代入数据得:Q=126 J 故本题答案是:(1)μ=0.875.(2)ΔE=90 J(3)Q=126 J 【点睛】 对物体受力分析并结合图像的斜率求得加速度,在 v-t 图像中图像包围的面积代表物体运 动做过的位移。
5.如图所示,一质量为 M、足够长的平板静止于光滑水平面上,平板左端与水平轻弹簧 相连,弹簧的另一端固定在墙上.平板上有一质量为 m 的小物块以速度 v0 向右运动,且在 本题设问中小物块保持向右运动.已知小物块与平板间的动摩擦因数为 μ,弹簧弹性势能 Ep 与弹簧形变量 x 的平方成正比,重力加速度为 g.求:
6J
(3)滑块从 A 点运动到 C 点过程,由动能定理得
解得 BC 间距离
mg
3r
mgs
1 2
mvc2
s 0.5m
小球与弹簧作用后返回 C 处动能不变,小滑块的动能最终消耗在与 BC 水平面相互作用的
过程中,设物块在 BC 上的运动路程为 s ,由动能定理有
mgs
1 2
mvc2
解得
s 0.7m 故最终小滑动距离 B 为 0.7 0.5m 0.2m处停下.
(1)物体与传送带间的动摩擦因数; (2) 0~8 s 内物体机械能的增加量; (3)物体与传送带摩擦产生的热量 Q。 【答案】(1)μ=0.875.(2)ΔE=90 J(3)Q=126 J 【解析】 【详解】 (1)由图象可以知道,传送带沿斜向上运动,物体放到传送带上的初速度方向是沿斜面向下的,

高考物理动能与动能定理题20套(带答案)含解析

高考物理动能与动能定理题20套(带答案)含解析

高考物理动能与动能定理题20套(带答案)含解析一、高中物理精讲专题测试动能与动能定理1.如图所示,质量m =3kg 的小物块以初速度秽v 0=4m/s 水平向右抛出,恰好从A 点沿着圆弧的切线方向进入圆弧轨道。

圆弧轨道的半径为R = 3.75m ,B 点是圆弧轨道的最低点,圆弧轨道与水平轨道BD 平滑连接,A 与圆心D 的连线与竖直方向成37︒角,MN 是一段粗糙的水平轨道,小物块与MN 间的动摩擦因数μ=0.1,轨道其他部分光滑。

最右侧是一个半径为r =0.4m 的半圆弧轨道,C 点是圆弧轨道的最高点,半圆弧轨道与水平轨道BD 在D 点平滑连接。

已知重力加速度g =10m/s 2,sin37°=0.6,cos37°=0.8。

(1)求小物块经过B 点时对轨道的压力大小;(2)若MN 的长度为L 0=6m ,求小物块通过C 点时对轨道的压力大小; (3)若小物块恰好能通过C 点,求MN 的长度L 。

【答案】(1)62N (2)60N (3)10m 【解析】 【详解】(1)物块做平抛运动到A 点时,根据平抛运动的规律有:0cos37A v v ==︒ 解得:04m /5m /cos370.8A v v s s ===︒小物块经过A 点运动到B 点,根据机械能守恒定律有:()2211cos3722A B mv mg R R mv +-︒= 小物块经过B 点时,有:2BNB v F mg m R-= 解得:()232cos3762N BNBv F mg m R=-︒+=根据牛顿第三定律,小物块对轨道的压力大小是62N (2)小物块由B 点运动到C 点,根据动能定理有:22011222C B mgL mg r mv mv μ--⋅=- 在C 点,由牛顿第二定律得:2CNC v F mg m r+=代入数据解得:60N NC F =根据牛顿第三定律,小物块通过C 点时对轨道的压力大小是60N(3)小物块刚好能通过C 点时,根据22Cv mg m r=解得:2100.4m /2m /C v gr s s ==⨯=小物块从B 点运动到C 点的过程,根据动能定理有:22211222C B mgL mg r mv mv μ--⋅=- 代入数据解得:L =10m2.如图所示,水平地面上一木板质量M =1 kg ,长度L =3.5 m ,木板右侧有一竖直固定的四分之一光滑圆弧轨道,轨道半径R =1 m ,最低点P 的切线与木板上表面相平.质量m =2 kg 的小滑块位于木板的左端,与木板一起向右滑动,并以0v 39m /s =的速度与圆弧轨道相碰,木板碰到轨道后立即停止,滑块沿木板冲上圆弧轨道,后又返回到木板上,最终滑离木板.已知滑块与木板上表面间的动摩擦因数μ1=0.2,木板与地面间的动摩擦因数μ2=0.1,g 取10 m/s 2.求: (1)滑块对P 点压力的大小;(2)滑块返回木板上时,木板的加速度大小; (3)滑块从返回木板到滑离木板所用的时间.【答案】(1)70 N (2)1 m/s 2 (3)1 s 【解析】 【分析】 【详解】(1)滑块在木板上滑动过程由动能定理得:-μ1mgL =12mv 2-1220mv 解得:v =5 m/s在P 点由牛顿第二定律得:F -mg =m 2v r解得:F =70 N由牛顿第三定律,滑块对P 点的压力大小是70 N (2)滑块对木板的摩擦力F f 1=μ1mg =4 N 地面对木板的摩擦力 F f 2=μ2(M +m )g =3 N对木板由牛顿第二定律得:F f 1-F f 2=Ma a =12f f F F M-=1 m/s 2(3)滑块滑上圆弧轨道运动的过程机械能守恒,故滑块再次滑上木板的速度等于v=5 m/s对滑块有:(x+L)=vt-12μ1gt2对木板有:x=12at2解得:t=1 s或t=73s(不合题意,舍去)故本题答案是:(1)70 N (2)1 m/s2(3)1 s【点睛】分析受力找到运动状态,结合运动学公式求解即可.3.如图所示,在娱乐节目中,一质量为m=60 kg的选手以v0=7 m/s的水平速度抓住竖直绳下端的抓手开始摆动,当绳摆到与竖直方向夹角θ=37°时,选手放开抓手,松手后的上升过程中选手水平速度保持不变,运动到水平传送带左端A时速度刚好水平,并在传送带上滑行,传送带以v=2 m/s匀速向右运动.已知绳子的悬挂点到抓手的距离为L=6 m,传送带两端点A、B间的距离s=7 m,选手与传送带间的动摩擦因数为μ=0.2,若把选手看成质点,且不考虑空气阻力和绳的质量.(g=10 m/s2,sin 37°=0.6,cos 37°=0.8)求:(1)选手放开抓手时的速度大小;(2)选手在传送带上从A运动到B的时间;(3)选手在传送带上克服摩擦力做的功.【答案】(1)5 m/s (2)3 s (3)360 J【解析】试题分析:(1)设选手放开抓手时的速度为v1,则-mg(L-Lcosθ)=mv12-mv02,v1=5m/s(2)设选手放开抓手时的水平速度为v2,v2=v1cosθ①选手在传送带上减速过程中 a=-μg② v=v2+at1③④匀速运动的时间t2,s-x1=vt2⑤选手在传送带上的运动时间t=t1+t2⑥联立①②③④⑤⑥得:t=3s(3)由动能定理得W f=mv2-mv22,解得:W f=-360J故克服摩擦力做功为360J.考点:动能定理的应用4.如图所示,一质量为M 、足够长的平板静止于光滑水平面上,平板左端与水平轻弹簧相连,弹簧的另一端固定在墙上.平板上有一质量为m 的小物块以速度v 0向右运动,且在本题设问中小物块保持向右运动.已知小物块与平板间的动摩擦因数为μ,弹簧弹性势能E p 与弹簧形变量x 的平方成正比,重力加速度为g.求:(1)当弹簧第一次伸长量达最大时,弹簧的弹性势能为E pm ,小物块速度大小为03v 求该过程中小物块相对平板运动的位移大小; (2)平板速度最大时弹簧的弹力大小;(3)已知上述过程中平板向右运动的最大速度为v.若换用同种材料,质量为2m的小物块重复上述过程,则平板向右运动的最大速度为多大?【答案】(1)2049pm E v g mg μμ-;(2)mg μ;(3)2v 【解析】 【分析】(1)对系统由能量守恒求解小物块相对平板运动的位移;(2)平板速度最大时,处于平衡状态,弹力等于摩擦力;(3)平板向右运动时,位移大小等于弹簧伸长量,当木板速度最大时弹力等于摩擦力,结合能量转化关系解答. 【详解】(1)弹簧伸长最长时平板速度为零,设相对位移大小为s ,对系统由能量守恒12mv 02=12m(03v)2+E pm +μmgs 解得s =2049pm E v g mgμμ- (2)平板速度最大时,处于平衡状态,f =μmg 即F =f =μmg.(3)平板向右运动时,位移大小等于弹簧伸长量,当木板速度最大时 μmg =kx对木板由动能定理得μmgx =E p 1+12Mv 2 同理,当m′=12m ,平板达最大速度v′时,2mg μ=kx′12μmgx′=E p 2+12Mv′2 由题可知E p ∝x 2,即E p 2=14E p 1解得v′=12v.5.夏天到了,水上滑梯是人们很喜欢的一个项目,它可简化成如图所示的模型:倾角为θ=37°斜滑道AB 和水平滑道BC 平滑连接(设经过B 点前后速度大小不变),起点A 距水面的高度H =7.0m ,BC 长d =2.0m ,端点C 距水面的高度h =1.0m .一质量m =60kg 的人从滑道起点A 点无初速地自由滑下,人与AB 、BC 间的动摩擦因数均为μ=0.2.(取重力加速度g =10m/s 2,sin 37°=0.6,cos 37°=0.8,人在运动过程中可视为质点),求: (1)人从A 滑到C 的过程中克服摩擦力所做的功W 和到达C 点时速度的大小υ; (2)保持水平滑道端点在同一竖直线上,调节水平滑道高度h 和长度d 到图中B ′C′位置时,人从滑梯平抛到水面的水平位移最大,则此时滑道B′C′距水面的高度h ′.【答案】(1) 1200J ;45当h '=2.5m 时,水平位移最大 【解析】 【详解】(1)运动员从A 滑到C 的过程中,克服摩擦力做功为:11W f s mgd μ=+ f 1=μmg cos θ s 1=sin H hθ- 解得W =1200J mg (H -h )-W =12mv 2 得运动员滑到C 点时速度的大小v =45(2)在从C 点滑出至落到水面的过程中,运动员做平抛运动的时间为t ,h '=12gt 2 下滑过程中克服摩擦做功保持不变W =1200J 根据动能定理得:mg (H -h ')-W =12mv 02运动员在水平方向的位移:x =v 0t x当h '=2.5m 时,水平位移最大.6.下雪天,卡车在笔直的高速公路上匀速行驶.司机突然发现前方停着一辆故障车,他将刹车踩到底,车轮被抱死,但卡车仍向前滑行,并撞上故障车,且推着它共同滑行了一段距离l 后停下.事故发生后,经测量,卡车刹车时与故障车距离为L ,撞车后共同滑行的距离825l L =.假定两车轮胎与雪地之间的动摩擦因数相同.已知卡车质量M 为故障车质量m 的4倍.(1)设卡车与故障车相撞前的速度为v 1两车相撞后的速度变为v 2,求12v v(2)卡车司机至少在距故障车多远处采取同样的紧急刹车措施,事故就能免于发生. 【答案】(1)1254v v = (2)32L L '=【解析】(1)由碰撞过程动量守恒12)Mv M m v +=( 则1254v v =① (2)设卡车刹车前速度为v 0,轮胎与雪地之间的动摩擦因数为μ 两车相撞前卡车动能变化22011122Mv Mv MgL μ-= ② 碰撞后两车共同向前滑动,动能变化221()0()2M m v M m gl μ+-=+ ③ 由②式22012v v gL μ-=由③式222v gL μ=又因825l L =可得203v gL μ= 如果卡车滑到故障车前就停止,由2010'2Mv MgL μ-= ④ 故3'2L L =这意味着卡车司机在距故障车至少32L 处紧急刹车,事故就能够免于发生.7.如图所示,倾角为30°的光滑斜面的下端有一水平传送带,传送带正以6 m/s 的速度运动,运动方向如图所示.一个质量为2 kg 的物体(物体可以视为质点),从h=3.2 m 高处由静止沿斜面下滑,物体经过A 点时,不管是从斜面到传送带还是从传送带到斜面,都不计其动能损失.物体与传送带间的动摩擦因数为0.5,物体向左最多能滑到传送带左右两端AB的中点处,重力加速度g=10 m/s2,求:(1)物体由静止沿斜面下滑到斜面末端需要多长时间;(2)传送带左右两端AB间的距离l至少为多少;(3)上述过程中物体与传送带组成的系统产生的摩擦热为多少;(4)物体随传送带向右运动,最后沿斜面上滑的最大高度h′为多少?【答案】(1)1.6s (2)12.8m (3)160J (4)h′=1.8m【解析】(1)mgsinθ=ma, h/sinθ=,可得t="1.6" s.(2)由能的转化和守恒得:mgh=μmgl/2,l="12.8" m.(3)在此过程中,物体与传送带间的相对位移:x相=l/2+v带·t,又l/2=,而摩擦热Q=μmg·x相,以上三式可联立得Q="160" J.(4)物体随传送带向右匀加速,当速度为v带="6" m/s时向右的位移为x,则μmgx=,x="3.6" m<l/2,即物体在到达A点前速度与传送带相等,最后以v带="6" m/s的速度冲上斜面,由=mgh′,得h′="1.8" m.滑块沿斜面下滑时由重力沿斜面向下的分力提供加速度,先求出加速度大小,再由运动学公式求得运动时间,由B点到最高点,由动能定理,克服重力做功等于摩擦力做功,由此可求得AB间距离,产生的内能由相互作用力乘以相对位移求得8.如图所示,在方向竖直向上、大小为E=1×106V/m的匀强电场中,固定一个穿有A、B 两个小球(均视为质点)的光滑绝缘圆环,圆环在竖直平面内,圆心为O、半径为R=0.2m.A、B用一根绝缘轻杆相连,A带的电荷量为q=+7×10﹣7C,B不带电,质量分别为m A=0.01kg、m B=0.08kg.将两小球从圆环上的图示位置(A与圆心O等高,B在圆心O的正下方)由静止释放,两小球开始沿逆时针方向转动.重力加速度大小为g=10m/s2.(1)通过计算判断,小球A 能否到达圆环的最高点C ? (2)求小球A 的最大速度值.(3)求小球A 从图示位置逆时针转动的过程中,其电势能变化的最大值. 【答案】(1)A 不能到达圆环最高点 (2)223m/s (3)0.1344J 【解析】 【分析】 【详解】试题分析:A 、B 在转动过程中,分别对A 、B 由动能定理列方程求解速度大小,由此判断A 能不能到达圆环最高点; A 、B 做圆周运动的半径和角速度均相同,对A 、B 分别由动能定理列方程联立求解最大速度;A 、B 从图示位置逆时针转动过程中,当两球速度为0时,根据电势能的减少与电场力做功关系求解.(1)设A 、B 在转动过程中,轻杆对A 、B 做的功分别为W T 和T W ', 根据题意有:0T T W W +'=设A 、B 到达圆环最高点的动能分别为E KA 、E KB 对A 根据动能定理:qER ﹣m A gR +W T1=E KA 对B 根据动能定理:1T B W m gR E '-= 联立解得:E KA +E KB =﹣0.04J由此可知:A 在圆环最高点时,系统动能为负值,故A 不能到达圆环最高点 (2)设B 转过α角时,A 、B 的速度大小分别为v A 、v B , 因A 、B 做圆周运动的半径和角速度均相同,故:v A =v B 对A 根据动能定理:221sin sin 2A T A A qER m gR W m v αα-+= 对B 根据动能定理:()2211cos 2T B B B W m gR m v α='-- 联立解得: ()283sin 4cos 49A v αα=⨯+- 由此可得:当3tan 4α=时,A 、B 的最大速度均为max 22/v s = (3)A 、B 从图示位置逆时针转动过程中,当两球速度为零时,电场力做功最多,电势能减少最多,由上可式得:3sinα+4cosα﹣4=0解得:24sin 25α=或sinα=0(舍去) 所以A 的电势能减少:84sin 0.1344625P E qER J J α=== 点睛:本题主要考查了带电粒子在匀强电场中的运动,应用牛顿第二定律求出加速度,结合运动学公式确定带电粒子的速度和位移等;根据电场力对带电粒子做功,引起带电粒子的能量发生变化,利用动能定理进行解答,属于复杂题.9.图示为一过山车的简易模型,它由水平轨道和在竖直平面内的光滑圆形轨道组成,BC 分别是圆形轨道的最低点和最高点,其半径R=1m ,一质量m =1kg 的小物块(视为质点)从左側水平轨道上的A 点以大小v 0=12m /s 的初速度出发,通过竖直平面的圆形轨道后,停在右侧水平轨道上的D 点.已知A 、B 两点间的距离L 1=5.75m ,物块与水平轨道写的动摩擦因数μ=0.2,取g =10m /s 2,圆形轨道间不相互重叠,求:(1)物块经过B 点时的速度大小v B ; (2)物块到达C 点时的速度大小v C ;(3)BD 两点之间的距离L 2,以及整个过程中因摩擦产生的总热量Q 【答案】(1) 11/m s (2) 9/m s (3) 72J 【解析】 【分析】 【详解】(1)物块从A 到B 运动过程中,根据动能定理得:22101122B mgL mv mv μ-=- 解得:11/B v m s =(2)物块从B 到C 运动过程中,根据机械能守恒得:2211·222B C mv mv mg R =+ 解得:9/C v m s =(3)物块从B 到D 运动过程中,根据动能定理得:22102B mgL mv μ-=- 解得:230.25L m =对整个过程,由能量守恒定律有:20102Q mv =- 解得:Q=72J【点睛】选取研究过程,运用动能定理解题.动能定理的优点在于适用任何运动包括曲线运动.知道小滑块能通过圆形轨道的含义以及要使小滑块不能脱离轨道的含义.10.如图所示,光滑轨道槽ABCD 与粗糙轨道槽GH 通过光滑圆轨道EF 平滑连接(D 、G 处在同一高度),组成一套完整的轨道,整个装置位于竖直平面内。

完整版动能和动能定理测试题和答案

完整版动能和动能定理测试题和答案

动能和动能定理测试题和答案动能和动能定理测试题一、选择题1.车做匀加快运动,速度从零增添到 V的过程中发动机做功 W1,从V增添到 2V的过程中发动机做功 W 2,设牵引力和阻力恒定,则有()A. W2=2W1B. W2=3W1C. W2=4W1D.仅能判断 W2> W12.用 100N的力将千克的足球以8m/s的初速度沿水平方向踢出 20米,则人对球做功为()A. 200J B.16J C. 2000J D.没法确立3.子弹以水平速度 V射入静止在圆滑水平面上的木块M,并留在此中,则()A.子弹战胜阻力做功与木块获取的动能相等B.阻力对子弹做功小于子弹动能的减少C.子弹战胜阻力做功与子弹对木块做功相等D.子弹克阻力做功大于子弹对木块做功4.如下图, DO是水平面, AB是斜面,初速度为 v0 ,物体从 D点出发 DBA滑到极点时速度恰巧为零,假如斜面改为 AC,让该物体从 D点出发 DCA滑到 A点且速度恰巧为零,则物体拥有的初速度(已知物体与路面间的动摩擦系数到处相等且不为零)()A.大于 v0B.等于 v0C.小于 v0D.取决于斜面的倾角5.质量不等,但拥有相同初动能的两个物体,在摩擦系数相同的水平川面上滑行,直到停止,则()A.质量大的物体滑行的距离大B.质量小的物体滑行的距离大C.它们滑行的距离相同大D.它们战胜摩擦力所做的功相同多6.有两个物体其质量 M1>M 2它们初动能相同,若两物体遇到不变的阻力 F1和 F2作用经过相同的时间停下,它们的位移分别为 S1和S2,则()A. F1> F2,且 S1< S2B. F1> F2,且 S1> S2C. F1<F2,且 S1< S2D. F1>F2,且 S1> S27.速度为v的子弹,恰可穿透一块固定着的木板,假如子弹的速度为2v,子弹穿透木板时阻力视为不变,则可穿透相同的木板:()A.1块;B.2块;C.3块;D.4块。

8 . 质量为 m的物体从高为 h的斜坡上 a点由静止滑下,滑到水平面上b点静止,如下图,此刻要把它从 b点再拉回到 a点,则外力对物体做功起码是()A.mghB. 2mghC. 3mghD. 4mgh9. 一物体在竖直弹簧的上方h米处着落,而后又被弹簧弹回,如下图,则物体动能最大时是:()A.物体刚接触弹簧时;动能和动能定理测试题和答案B.物体将弹簧压缩至最短时;C.物体重力与弹力相等时;D.弹簧等于原长时。

高考物理动能与动能定理题20套(带答案)

高考物理动能与动能定理题20套(带答案)

高考物理动能与动能定理题20套(带答案)一、高中物理精讲专题测试动能与动能定理1.滑板运动是极限运动的鼻祖,许多极限运动项目均由滑板项目延伸而来.如图所示是滑板运动的轨道,BC 和DE 是两段光滑圆弧形轨道,BC 段的圆心为O 点、圆心角 θ=60°,半径OC 与水平轨道CD 垂直,滑板与水平轨道CD 间的动摩擦因数μ=0.2.某运动员从轨道上的A 点以v 0=3m/s 的速度水平滑出,在B 点刚好沿轨道的切线方向滑入圆弧轨道BC ,经CD 轨道后冲上DE 轨道,到达E 点时速度减为零,然后返回.已知运动员和滑板的总质量为m =60kg ,B 、E 两点与水平轨道CD 的竖直高度分别为h =2m 和H =2.5m.求:(1)运动员从A 点运动到B 点过程中,到达B 点时的速度大小v B ; (2)水平轨道CD 段的长度L ;(3)通过计算说明,第一次返回时,运动员能否回到B 点?如能,请求出回到B 点时速度的大小;如不能,请求出最后停止的位置距C 点的距离. 【答案】(1)v B =6m/s (2) L =6.5m (3)停在C 点右侧6m 处 【解析】 【分析】 【详解】(1)在B 点时有v B =cos60︒v ,得v B =6m/s (2)从B 点到E 点有2102B mgh mgL mgH mv μ--=-,得L =6.5m (3)设运动员能到达左侧的最大高度为h ′,从B 到第一次返回左侧最高处有21'202B mgh mgh mg L mv μ--⋅=-,得h ′=1.2m<h =2 m ,故第一次返回时,运动员不能回到B 点,从B 点运动到停止,在CD 段的总路程为s ,由动能定理可得2102B mgh mgs mv μ-=-,得s =19m ,s =2L +6 m ,故运动员最后停在C 点右侧6m 处.2.如图所示,不可伸长的细线跨过同一高度处的两个光滑定滑轮连接着两个物体A 和B ,A 、B 质量均为m 。

【物理】物理动能与动能定理题20套(带答案)

【物理】物理动能与动能定理题20套(带答案)

【物理】物理动能与动能定理题20套(带答案)一、高中物理精讲专题测试动能与动能定理1.如图所示,在水平轨道右侧固定半径为R的竖直圆槽形光滑轨道,水平轨道的PQ段长度为,上面铺设特殊材料,小物块与其动摩擦因数为,轨道其它部分摩擦不计。

水平轨道左侧有一轻质弹簧左端固定,弹簧处于原长状态。

可视为质点的质量的小物块从轨道右侧A点以初速度冲上轨道,通过圆形轨道,水平轨道后压缩弹簧,并被弹簧以原速率弹回,取,求:(1)弹簧获得的最大弹性势能;(2)小物块被弹簧第一次弹回经过圆轨道最低点时的动能;(3)当R满足什么条件时,小物块被弹簧第一次弹回圆轨道时能沿轨道运动而不会脱离轨道。

【答案】(1)10.5J(2)3J(3)0.3m≤R≤0.42m或0≤R≤0.12m【解析】【详解】(1)当弹簧被压缩到最短时,其弹性势能最大。

从A到压缩弹簧至最短的过程中,由动能定理得:−μmgl+W弹=0−m v02由功能关系:W弹=-△E p=-E p解得 E p=10.5J;(2)小物块从开始运动到第一次被弹回圆形轨道最低点的过程中,由动能定理得−2μmgl=E k−m v02解得 E k=3J;(3)小物块第一次返回后进入圆形轨道的运动,有以下两种情况:①小球能够绕圆轨道做完整的圆周运动,此时设小球最高点速度为v2,由动能定理得−2mgR=m v22−E k小物块能够经过最高点的条件m≥mg,解得R≤0.12m②小物块不能够绕圆轨道做圆周运动,为了不让其脱离轨道,小物块至多只能到达与圆心等高的位置,即m v12≤mgR,解得R≥0.3m;设第一次自A点经过圆形轨道最高点时,速度为v1,由动能定理得:−2mgR =m v 12-m v 02且需要满足 m ≥mg ,解得R≤0.72m ,综合以上考虑,R 需要满足的条件为:0.3m≤R≤0.42m 或0≤R≤0.12m 。

【点睛】解决本题的关键是分析清楚小物块的运动情况,把握隐含的临界条件,运用动能定理时要注意灵活选择研究的过程。

完整版)高中物理动能定理典型练习题(含答案)

完整版)高中物理动能定理典型练习题(含答案)

完整版)高中物理动能定理典型练习题(含答案)1.正确答案是D。

对于一个物体来说,只有在速度大小(速率)发生变化时,它的动能才会改变。

速度的变化是一个矢量,它可以完全由于速度方向的变化而引起,例如匀速圆周运动。

速度变化的快慢是指加速度,加速度大小与速度大小之间没有必然的联系。

2.一个物体从高度为H的地方自由落体,落到高度为h的沙坑中停止。

假设物体的质量为m,重力加速度为g,根据动能定理,当物体速度为v时,mgH = 1/2mv^2,因此v =sqrt(2gH)。

在沙坑中,重力做正功,阻力做负功,根据动能定理,1/2mv^2 - Fh = mgh,其中F为物体在沙坑中受到的平均阻力。

解方程得到F = (H + h)mg / (gh)。

3.一个物体沿一曲面从A点无初速度滑下,滑至曲面的最低点B时,下滑高度为5m,物体质量为1kg,速度为6m/s。

假设物体在滑行过程中克服了摩擦力,设摩擦力为F,根据动能定理,mgh - W = 1/2mv^2,其中W为物体克服阻力所做的功。

解方程得到W = 32J。

课后创新演练:1.滑块的质量为1kg,初速度为4m/s,水平力方向向左,大小未知。

在一段时间内,水平力方向变为向右,大小不变为未知。

根据动能定理,水平力所做的功等于滑块动能的变化量,即1/2mv^2 - 1/2mu^2,其中v和u分别为滑块在水平力作用下的末速度和初速度。

根据题意,v = u = 4m/s,解方程得到水平力所做的功为16J。

2.两个物体的质量之比为1:3,高度之比也为1:3.根据动能定理,物体的动能等于1/2mv^2,其中v为物体的速度。

假设两个物体在落地时的速度分别为v1和v2,则v1 : v2 =sqrt(h1) : sqrt(h2),其中h1和h2分别为两个物体的高度。

因此,v1^2 : v2^2 = h1 : h2 = 1 : 9,即它们落地时的动能之比为1:9.3.物体沿长为L的光滑斜面下滑,速度达到末速度的一半时,物体沿斜面下滑的距离为L。

人教版动能和动能定理每课一练习题(含答案)

人教版动能和动能定理每课一练习题(含答案)

人教版动能和动能定理每课一练习题(含答案)篇一:动能和动能定理同步提高练习题及动能和动能定理双基训练 1.有两个物体甲、乙,它们在同一直线上运动,两物体的质量均为m,甲速度为v,动能为Ek;乙速度为-v,动能为Ek′,那么( ) (A)Ek′=-Ek (B)Ek′=Ek (C)Ek′ Ek(D)Ek′ Ek 2.一个质量是2kg的物体以3m/s的速度匀速运动,动能等于______J.3.火车的质量是飞机质量的110倍,而飞机的速度是火车速度的12倍,动能较大的是______.4.两个物体的质量之比为100:1,速度之比为1:100,这两个物体的动能之比为______.5.一个物体的速度从0增加到v,再从v增加到2v,前后两种情况下,物体动能的增加量之比为______.6.甲、乙两物体的质量之比为m甲:m乙?1:2,它们分别在相同力的作用下沿光滑水平面从静止开始作匀加速直线运动,当两个物体通过的路程相等时,则甲、乙两物体动能之比为______.7.自由下落的物体,下落1m和2m时,物体的动能之比是______;下落1s和2s 后物体的动能之比是______. 纵向应用8.甲、乙两物体的质量比m1:m2=2:1,速度比v1:v2=1:2,在相同的阻力作用下滑行至停止时通过的位移大小之比为_____.9.一颗质量为10g的子弹,射入土墙后停留在0.5m深处,若子弹在土墙中受到的平均阻力是6400N.子弹射入土墙前的动能是______J,它的速度是______m/s. 10.甲、乙两个物体的质量分别为m甲和m乙,并且m甲=2m乙,它们与水平桌面的动摩擦因数相同,当它们以相同的初动能在桌面上滑动时,它们滑行的最大距离之比为( (A)1:1 (B)2:1 (C)1:2 (D)1:2 ). 11.两个物体a 和b,其质量分别为ma和mb,且ma mb,它们的初动能相同.若它们分别受到不同的阻力Fa和Fb的作用,经过相等的时间停下来,它们的位移分别为sa和sb,则( ). (A)Fa Fb,sa sb (B)Fa Fb,sa sb (C)Fa Fb,sa sb (D)Fa Fb,sa sb 12.一个小球从高处自由落下,则球在下落过程中的动能( ). (A)与它下落的距离成正比 (B)与它下落距离的平方成正比 (C)与它运动的时间成正比 (D)与它运动的时间平方成正比 13.质量为2kg的物体以50J的初动能在粗糙的水平面上滑行,其动能的变化与位移的关系如图所示,则物体在水平面上滑行的时间为( ).A、5sB、4sC、22sD、2s 14.以速度v飞行的子弹先后穿透两块由同种材料制成的平行放置的固定金属板,若子弹穿透两块金属板后的速度分别变为0.8v和0.6v,则两块金属板的厚度之比为( (A)1:1 (B)9:7 (C)8:6 (D)16:9 ).15.质点所受的力F随时间变化的规律如图所示,力的方向始终在一直线上.已知t=0时质点的速度为零.在右图所示的t1、t2、t3和t4各时刻中,质点动能最大的时刻是( ). (A)t1 (B)t2 (C)t3 (D)t4 16.在平直公路上,汽车由静止开始作匀加速运动,当速度达到某一值时,立即关闭发动机后滑行至停止,其v-t图像如图5—22所示.汽车牵引力为F,运动过程中所受的摩擦阻力恒为f,全过程中牵引力所做的功为W1,克服摩擦阻力所做的功为W2,则下列关系中正确的是( ).(A)F:f=1:3(B)F:f=4:1 (C)W1:W2=1:1 (D)W1:W2=1:3 17.质量为m的物体,作加速度为a的匀加速直线运动,在运动中连续通过A、B、C三点,如果物体通过AB段所用时间和通过BC段所用的时间相等,均为 T,那么物体在BC段的动能增量和在AB段的动能增量之差为______. 18.质量m=10kg的物体静止在光滑水平面上,先在水平推力F1=40N的作用下移动距离s1=5m,然后再给物体加上与F1反向、大小为F2=10N的水平阻力,物体继续向前移动s2=4m,此时物体的速度大小为______m/s. 19.乌鲁木齐市达坂城地区风力发电网每台风力发电机4张叶片总共的有效迎风面积为s,空气密度为ρ、平均风速为v.设风力发电机的效率(风的动能转化为电能的百分比)为η,则每台风力发电机的平均功率P=______. 20.如图所示,一个物体从斜面上高h处由静止滑下并紧接着在水平面上滑行一段距离后停止,测得停止处与开始运动处的水平距离为s,不考虑物体滑至斜面底端的碰撞作用,并认为斜面与水平面对物体的动摩擦因数相同,求动摩擦因数μ. 21.一颗质量m=10g的子弹,以速度v=600m/s从枪口飞出,子弹飞出枪口时的动能为多大?若测得枪膛长s=0.6m,则火药引爆后产生的高温高压气体在枪膛内对子弹的平均推力多大? 22.质量为m的小球被系在轻绳的一端,在竖直平面内作半径为R的圆周运动.运动过程中,小球受到空气阻力的作用,在某一时刻小球通过轨道最低点时绳子的拉力为7mg,此后小球继续作圆周运动,转过半个圆周恰好通过最高点,则此过程中小球克服阻力所做的功为( ).(A)mgR(B) mgRmgRmgR (C)(D) 234 23.一小球用轻绳悬挂在某固定点,现将轻绳水平拉直,然后由静止开始释放小球,考虑小球由静止开始运动到最低位置的过程( ). (A)小球在水平方向的速度逐渐增大 (B)小球在竖直方向的速度逐渐增大 (C)到达最低位置时小球线速度最大 (D)到达最低位置时绳中的拉力等于小球重力 24.如图所示,板长为L,板的B端静止放有质量为m的小物体,物体与板的动摩擦因数为μ.开始时板水平,在缓慢转过一个小角度α的过程中,小物体保持与板相对静止,则在这个过程中( ). (A)摩擦力对小物体做功为μmgLcosα(1-cosα) (B)摩擦力对小物体做功为mgLsinα(1-cosα) (C)弹力对小物体做功为mgLcosαsinα (D)板对小物体做功为mgLsinα 25.一人坐在雪橇上,从静止开始沿着高度为15m的斜坡滑下,到达底部时速度为10m/s.人和雪橇的总质量为60kg,下滑过程中克服阻力做的功等于______J(g取10m/s2) 26.一辆汽车质量为m,从静止开始起动,沿水平面前进了距离s后,就达到了最大行驶速度vmax.设汽车的牵引力功率保持不变,所受阻力为车重的k倍,求:(1)汽车的牵引功率.(2)汽车从静止到开始匀速运动所需的时间. 横向拓展27.一个物块从斜面底端冲上足够长的斜面后,返回到斜面底端.已知小物块的初动能为E,它返回斜面底端的速度大小为v,克服摩擦阻力做功为(A)返回斜面底端时的动能为E (C)返回斜面底端时的速度大小为2v E .若小物块冲上斜面的初动能变为2E,则有( 2 3E (B)返回斜面底端时的动能为 2E (D)克服摩擦阻力做的功仍为 2 ). 28.如图所示,物体自倾角为θ、长为L的斜面顶端由静止开始滑下,到斜面底端时与固定挡板发生碰撞,设碰撞时无机械能损失.碰后物体又沿斜面上升,若到最后停止时,物体总共滑过的路程为s,则物体与斜面间的动摩擦因数为( ) (A) Lsin?Ltan?LL (B)(C)(D) ssstan?ssin? 29.如图所示,斜面倾角为θ,滑块质量为m,滑块与斜面的动摩擦因数为μ,从距挡板为s0的位置以v0的速度沿斜面向上滑行.设重力沿斜面的分力大于滑动摩擦力,且每次与P碰撞前后的速度大小保持不变,斜面足够长.求滑块从开始运动到最后停止滑行的总路程s 30.在光滑水平面上有一静止的物体,现以水平恒力F1推这一物体,作用一段时间后,换成相反方向的水平恒力F2推这一物体.当F2作用时间与F1的作用时间相同时,物体恰好回到出发点,此时物体的动能为32J.求运动过程中F1和F2所做的功. 31.如图所示为推行节水工程的转动喷水“龙头”,“龙头”距地面为h,其喷灌半径可达10h,每分钟喷出水的质量为m,所用的水从地下H深的井里抽取.设水以相同的速率喷出,水泵的效率为η不计空气阻力.试求:(1)喷水龙头喷出水的初速度.(2)水泵每分钟对水所做的功.(3)带动水泵的电动机的最小输出功率. 32.如图所示,质量m=0.5kg的小球从距地面高H=5m处自由下落,到达地面恰能沿凹陷于地面的半圆形槽壁运动,半圆槽半径R=0.4m.小球到达槽最低点时的速率为10m/s,并继续滑槽壁运动直至槽左端边缘飞出,竖直上升,落下后恰好又沿槽壁运动直至从槽右端边缘飞出,竖直上升、落下,如此反复几次.设摩擦力大小恒定不变:(1)求小球第一次离槽上升的高度h.(2)小球最多能飞出槽外几次(g取10m/s2)? 33.人的心脏在一次搏动中泵出的血液约为70mL,推动血液流动的平均压强约为1.6×104Pa,设心脏主动脉的内径约为2.5cm,每分钟搏动75次,问;(1)心脏推动血液流动的平均功率是多大?(2)血液从心脏流出的平均速度是多大? 34.一辆车通过一根跨过定滑轮的绳PQ提升井中质量为m的物体,如图所示.绳的P端拴在车后的挂钩上,Q 端拴在物体上.设绳的总长不变,绳的质量、定滑轮的质量和尺寸、滑轮上的摩擦都忽略不计.开始时,车在A点,左右两侧绳都已绷紧并且是竖直的,左侧绳绳长为H.提升物体时,车加速向左运动,沿水平方向从A经过B驶向C.设A到B的距离也为H,车过B点时的速度为vB,求在车由A移到B的过程中,绳Q端的拉力对物体所做的功. 35.如图(a)所示,把质量均为m的两个小钢球用长为2L的线连接,放在光滑的水平面上.在线的中央作用一个恒定的拉力,其大小为F,其方向沿水平方向且与开始时连线的方向垂直,连线非常柔软且不会伸缩,质量可忽略不计.试问:(1)当两连线的张角为2θ时,如图(b)所示,在与力F 垂直的方向上钢球所受的作用力是多大?(2)钢球第一次碰撞时,在与力F垂直的方向上钢球的对地速度为多大?(3)经过若下次碰撞,最后两个钢球一直处于接触状态下运动,则由于碰撞而失去的总能量为多少?篇二:动能与动能定理同步练习 2套及答案动能和动能定理同步练习(一) 1 下列各种物体的运动,动能保持不变的是() A 物体做匀速直线运动 B 物体做匀变速直线运动 C 物体做匀速圆周运动 D 物体做平抛运动 2 两个材料相同的物体,甲的质量大于乙的质量,以相同的初动能在同一水平面上滑动,最后都静止,它们滑行的距离是()A 乙大B 甲大C 一样大 D 无法比较 3 质量为m的滑块沿着高为h,长为L的粗糙斜面恰能匀速下滑,在滑块从斜面顶端下滑到底端的过程中() A 重力对滑块所做的功为mgh B 滑块克服阻力所做的功等于mgh C 合力对滑块所做的功为mgh D 合力对滑块所做的功不能确定 4 一个质量为1kg的物体被人用手由静止向上提升1m,这时物体的速度是2 m/s,则下 2列说法中错误的是()。

高考物理动能与动能定理题20套(带答案)

高考物理动能与动能定理题20套(带答案)

【点睛】
经典力学问题一般先对物体进行受力分析,求得合外力及运动过程做功情况,然后根据牛
顿定律、动能定理及几何关系求解。
2.如图所示,竖直平面内有一固定的光滑轨道 ABCD,其中 AB 是足够长的水平轨道,B 端 与半径为 R 的光滑半圆轨道 BCD 平滑相切连接,半圆的直径 BD 竖直,C 点与圆心 O 等 高.现有一质量为 m 的小球 Q 静止在 B 点,另一质量为 2m 的小球 P 沿轨道 AB 向右匀速 运动并与 Q 发生对心碰撞,碰撞后瞬间小球 Q 对半圆轨道 B 点的压力大小为自身重力的 7 倍,碰撞后小球 P 恰好到达 C 点.重力加速度为 g.
5.如图所示,一长度 LAB=4.98m,倾角 θ=30°的光滑斜面 AB 和一固定粗糙水平台 BC 平 滑连接,水平台长度 LBC=0.4m,离地面高度 H=1.4m,在 C 处有一挡板,小物块与挡板 碰撞后原速率反弹,下方有一半球体与水平台相切,整个轨道处于竖直平面内。在斜面顶 端 A 处静止释放质量为 m="2kg" 的小物块(可视为质点),忽略空气阻力,小物块与 BC 间的动摩擦因素 μ=0.1,g 取 10m/s2。问:
m( g h R R cos37 Lsin)对滑块从 P 到第二次经过 B 点的运动过程应用动能定理可得
1 2
mvB 2
mg
h
R
2mgL
cos 37
0.54mg
mgR
所以,由滑块在光滑圆弧上运动机械能守恒可知:滑块从斜面上返回后能滑出 A 点。
mv2- mv02=2
Lbcn
n=25 次 考点:动能定理、平抛运动 【名师点睛】解决本题的关键一是要会根据平抛运动的规律求出落到 D 时平抛运动的初速 度;再一个容易出现错误的是在 BC 段运动的路程与经过 B 点次数的关系,需要认真确 定。根据功能关系求出在 BC 段运动的路程。

物理动能和动能定理经典试题(含答案)

物理动能和动能定理经典试题(含答案)

动能和动能定理经典试题例1 一架喷气式飞机,质量m =5×103kg ,起飞过程中从静止开始滑跑的路程为s =5.3×102m 时,达到起飞的速度v =60m/s ,在此过程中飞机受到的平均阻力是飞机重量的0.02倍(k =0.02),求飞机受到的牵引力。

例2 将质量m=2kg 的一块石头从离地面H=2m 高处由静止开始释放,落入泥潭并陷入泥中h=5cm 深处,不计空气阻力,求泥对石头的平均阻力。

(g 取10m/s 2)例3 一质量为0.3㎏的弹性小球,在光滑的水平面上以6m/s 的速度垂直撞到墙上,碰撞后小球沿相反方向运动,反弹后的速度大小与碰撞前速度的大小相同,则碰撞前后小球速度变化量的大小Δv 和碰撞过程中墙对小球做功的大小W 为( )A .Δv=0 B. Δv=12m/s C. W=0 D. W=10.8J例4 在h 高处,以初速度v 0向水平方向抛出一个小球,不计空气阻力,小球着地时速度大小为( )A. gh v 20+B. gh v 20-C. gh v 220+ D. gh v 220-例5 一质量为 m 的小球,用长为l 的轻绳悬挂于O 点。

小球在水平拉力F 作用下,从平衡位置P 点很缓慢地移动到Q 点,如图2-7-3所示,则拉力F 所做的功为( )A. mgl cos θB. mgl (1-cos θ)C. Fl cos θD. Flsin θ例6 如图所示,光滑水平面上,一小球在穿过O 孔的绳子的拉力作用下沿一圆周匀速运动,当绳的拉力为F 时,圆周半径为R ,当绳的拉力增大到8F 时,小球恰可沿半径为R /2的圆周匀速运动在上述增大拉力的过程中,绳的拉力对球做的功为________.例7 如图2-7-4所示,绷紧的传送带在电动机带动下,始终保持v 0=2m/s 的速度匀速运行,传送带与水平地面的夹角θ=30°,现把一质量m =l0kg 的工件轻轻地放在传送带底端,由传送带传送至h =2m 的高处。

物理动能与动能定理题20套(带答案)及解析

物理动能与动能定理题20套(带答案)及解析

物理动能与动能定理题20套(带答案)及解析一、高中物理精讲专题测试动能与动能定理1.如图所示,两物块A 、B 并排静置于高h=0.80m 的光滑水平桌面上,物块的质量均为M=0.60kg .一颗质量m=0.10kg 的子弹C 以v 0=100m/s 的水平速度从左面射入A ,子弹射穿A 后接着射入B 并留在B 中,此时A 、B 都没有离开桌面.已知物块A 的长度为0.27m ,A 离开桌面后,落地点到桌边的水平距离s=2.0m .设子弹在物块A 、B 中穿行时受到的阻力大小相等,g 取10m/s 2.(平抛过程中物块看成质点)求:(1)物块A 和物块B 离开桌面时速度的大小分别是多少; (2)子弹在物块B 中打入的深度;(3)若使子弹在物块B 中穿行时物块B 未离开桌面,则物块B 到桌边的最小初始距离.【答案】(1)5m/s ;10m/s ;(2)23.510B m L -=⨯(3)22.510m -⨯【解析】 【分析】 【详解】试题分析:(1)子弹射穿物块A 后,A 以速度v A 沿桌面水平向右匀速运动,离开桌面后做平抛运 动: 212h gt =解得:t=0.40s A 离开桌边的速度A sv t=,解得:v A =5.0m/s 设子弹射入物块B 后,子弹与B 的共同速度为v B ,子弹与两物块作用过程系统动量守恒:0()A B mv Mv M m v =++B 离开桌边的速度v B =10m/s(2)设子弹离开A 时的速度为1v ,子弹与物块A 作用过程系统动量守恒:012A mv mv Mv =+v 1=40m/s子弹在物块B 中穿行的过程中,由能量守恒2221111()222B A B fL Mv mv M m v =+-+① 子弹在物块A 中穿行的过程中,由能量守恒22201111()222A A fL mv mv M M v =--+②由①②解得23.510B L -=⨯m(3)子弹在物块A 中穿行过程中,物块A 在水平桌面上的位移为s 1,由动能定理:211()02A fs M M v =+-③子弹在物块B 中穿行过程中,物块B 在水平桌面上的位移为s 2,由动能定理2221122B A fs Mv Mv =-④ 由②③④解得物块B 到桌边的最小距离为:min 12s s s =+,解得:2min 2.510s m -=⨯考点:平抛运动;动量守恒定律;能量守恒定律.2.某小型设备工厂采用如图所示的传送带传送工件。

物理动能与动能定理题20套(带答案)

物理动能与动能定理题20套(带答案)

向上:
,解得
(2)小滑块在最低点时速度为 vC 由机械能牛顿第三定律得:
,方向竖直向
下 (3)从 D 到最低点过程中,设 DB 过程中克服摩擦力做功 W1,由动能定理
h=3R
【点睛】 对滑块进行运动过程分析,要求滑块运动到圆环最低点时对圆环轨道压力的大小,我们要 知道滑块运动到圆环最低点时的速度大小,小滑块从圆环最高点 C 水平飞出,恰好击中导 轨上与圆心 O 等高的 P 点,运用平抛运动规律结合几何关系求出最低点时速度.在对最低 点运用牛顿第二定律求解.
(1).滑块运动至 C 点时的速度 vC 大小; (2).滑块由 A 到 B 运动过程中克服摩擦力做的功 Wf; (3).滑块在传送带上运动时与传送带摩擦产生的热量 Q. 【答案】(1)2.5 m/s (2)1 J (3)32 J 【解析】本题考查运动的合成与分解、动能定理及传送带上物体的运动规律等知识。
【解析】
【详解】
(1)由 y 5 x2 得:A 点坐标(1.20m,0.80m) 9
由平抛运动规律得:xA=v0t,yA 1 gt 2 2
代入数据,求得 t=0.4s,v0=3m/s; (2)由速度关系,可得 θ=53° 求得 AB、BC 圆弧的半径 R=0.5m OE 过程由动能定理得:
mgyA﹣mgR(1﹣cos53°)
vy 2gR 2100.45 m/s=3m/s
vy tan53° 4
vD
3
所以:vD=2.25m/s
(2)物块在内轨道做圆周运动,在最高点有临界速度,则
mg=m v2 , R
解得:v gR 3 2 m/s 2
物块到达 P 的速度:
vP vD2 vy2 32 2.252 m/s=3.75m/s

高中物理动能动能定理练习(含答案)

高中物理动能动能定理练习(含答案)

高中物理动能动能定理练习(含答案)动能、动能定理练习1、下列关于动能的说法中,正确的是( )A 、动能的大小由物体的质量和速率决定,与物体的运动方向无关B 、物体以相同的速率分别做匀速直线运动和匀速圆周运动时,其动能不同.因为它在这两种情况下所受的合力不同、运动性质也不同C 、物体做平抛运动时,其动能在水平方向的分量不变,在竖直方向的分量增大D 、物体所受的合外力越大,其动能就越大2、一质量为2kg 的滑块,以4m/s 的速度在光滑水平面上向左滑行,从某一时刻起,在滑块上作用一向右的水平力.经过一段时间,滑块的速度方向变为向右,大小为4m/s.在这段时间里水平力做的功为( )A 、0B 、8JC 、16JD 、32J3、质量不等但有相同动能的两物体,在动摩擦因数相同的水平地面上滑行直到停止,则( )A 、质量大的物体滑行距离小B 、它们滑行的距离一样大C 、质量大的物体滑行时间短D 、它们克服摩擦力所做的功一样多4、一辆汽车从静止开始做加速直线运动,运动过程中汽车牵引力的功率保持恒定,所受的阻力不变,行驶2min 速度达到10m/s.列车在这段时间内行的距离( )A 、一定大于600mB 、一定小于600mC 、一定等于600mD 、可能等于1200m5、质量为1.0kg 的物体,以某初速度在水平面上滑行,由于摩擦阻力的作用,其动能随位移变化的情况如下图所示,则下列判断正确的是(g=10m/s 2)( )A 、物体与水平面间的动摩擦因数为0.30B 、物体与水平面间的动摩擦因数为0.25C 、物体滑行的总时间是2.0sD 、物体滑行的总时间是4.0s6、一个小物块从斜面底端冲上足够长的斜面后,返回到斜面底端,已知小物块的初动能为E ,它返回斜面底端的速度大小为υ,克服摩擦阻力做功为E/2.若小物块冲上斜面的初动能变为2E ,则有( )A 、返回斜面底端的动能为EB 、返回斜面底端时的动能为3E/2C 、返回斜面底端的速度大小为2υD 、返回斜面底端的速度大小为2υ7、以初速度v 0急速竖直上抛一个质量为m 的小球,小球运动过程中所受阻力f 大小不变,上升最大高度为h ,则抛出过程中,人手对小球做的功()A. 1202mvB. mghC. 1202mv mgh +D. mgh fh +8、如图所示,AB 为1/4圆弧轨道,BC 为水平直轨道,圆弧的半径为R ,BC 的长度也是R ,一质量为m 的物体,与两个轨道间的动摩擦因数都为μ,当它由轨道顶端A 从静止开始下落,恰好运动到C 处停止,物体在AB 段克服摩擦力所做功为A. 12μmgR B. 12mgR C. mgR D. ()1-μmgR 9、质量为m 的物体静止在粗糙的水平地面上,若物体受水平力F 的作用从静止起通过位移s 时的动能为E 1,当物体受水平力2F 作用,从静止开始通过相同位移s ,它的动能为E 2,则:A 、E 2=E 1B 、E 2=2E 1C 、E 2>2E 1D 、E 1<E 2<2E 110、用拉力F 使一个质量为m 的木箱由静止开始在水平冰道上移动了s ,拉力F 跟木箱前进的方向的夹角为a ,木箱与冰道间的动摩擦因素为u ,求木箱获得的速度。

(完整版)高中物理动能定理经典计算题和答案

(完整版)高中物理动能定理经典计算题和答案

动能和动能定理经典试题例1 一架喷气式飞机,质量m =5×103kg ,起飞过程中从静止开始滑跑的路程为s =5.3×102m 时,达到起飞的速度v =60m/s ,在此过程中飞机受到的平均阻力是飞机重量的0.02倍(k =0.02),求飞机受到的牵引力。

例2 将质量m=2kg 的一块石头从离地面H=2m 高处由静止开始释放,落入泥潭并陷入泥中h=5cm 深处,不计空气阻力,求泥对石头的平均阻力。

(g 取10m/s 2)例3 一质量为0.3㎏的弹性小球,在光滑的水平面上以6m/s 的速度垂直撞到墙上,碰撞后小球沿相反方向运动,反弹后的速度大小与碰撞前速度的大小相同,则碰撞前后小球速度变化量的大小Δv 和碰撞过程中墙对小球做功的大小W 为( )A .Δv=0 B. Δv =12m/s C. W=0 D. W=10.8J例4 在h 高处,以初速度v 0向水平方向抛出一个小球,不计空气阻力,小球着地时速度大小为( ) A. gh v 20+ B. gh v 20- C. gh v 220+ D. gh v 220-例5 一质量为 m 的小球,用长为l 的轻绳悬挂于O 点。

小球在水平拉力F 作用下,从平衡位置P 点很缓慢地移动到Q 点,如图2-7-3所示,则拉力F 所做的功为( )A. mgl cos θB. mgl (1-cos θ)C. Fl cos θD. Flsin θ例6 如图所示,光滑水平面上,一小球在穿过O 孔的绳子的拉力作用下沿一圆周匀速运动,当绳的拉力为F 时,圆周半径为R ,当绳的拉力增大到8F 时,小球恰可沿半径为R /2的圆周匀速运动在上述增大拉力的过程中,绳的拉力对球做的功为________.例7 如图2-7-4所示,绷紧的传送带在电动机带动下,始终保持v 0=2m/s 的速度匀速运行,传送带与水平地面的夹角θ=30°,现把一质量m =l0kg 的工件2-7-3 θ F O PQ l h H 2-7-2轻轻地放在传送带底端,由传送带传送至h =2m 的高处。

高中物理动能与动能定理题20套(带答案)

高中物理动能与动能定理题20套(带答案)

高中物理动能与动能定理题20套(带答案)一、高中物理精讲专题测试动能与动能定理1.如图所示,水平地面上一木板质量M =1 kg ,长度L =3.5 m ,木板右侧有一竖直固定的四分之一光滑圆弧轨道,轨道半径R =1 m ,最低点P 的切线与木板上表面相平.质量m =2 kg 的小滑块位于木板的左端,与木板一起向右滑动,并以0v 39m /s 的速度与圆弧轨道相碰,木板碰到轨道后立即停止,滑块沿木板冲上圆弧轨道,后又返回到木板上,最终滑离木板.已知滑块与木板上表面间的动摩擦因数μ1=0.2,木板与地面间的动摩擦因数μ2=0.1,g 取10 m/s 2.求: (1)滑块对P 点压力的大小;(2)滑块返回木板上时,木板的加速度大小; (3)滑块从返回木板到滑离木板所用的时间.【答案】(1)70 N (2)1 m/s 2 (3)1 s 【解析】 【分析】 【详解】(1)滑块在木板上滑动过程由动能定理得:-μ1mgL =12mv 2-1220mv 解得:v =5 m/s在P 点由牛顿第二定律得:F -mg =m 2v r解得:F =70 N由牛顿第三定律,滑块对P 点的压力大小是70 N (2)滑块对木板的摩擦力F f 1=μ1mg =4 N 地面对木板的摩擦力 F f 2=μ2(M +m )g =3 N对木板由牛顿第二定律得:F f 1-F f 2=Ma a =12f f F F M-=1 m/s 2(3)滑块滑上圆弧轨道运动的过程机械能守恒,故滑块再次滑上木板的速度等于v =5 m/s 对滑块有:(x +L )=vt -12μ1gt 2 对木板有:x =12at 2解得:t =1 s 或t =73s(不合题意,舍去) 故本题答案是: (1)70 N (2)1 m/s 2 (3)1 s 【点睛】分析受力找到运动状态,结合运动学公式求解即可.2.如图所示,粗糙水平地面与半径为R =0.4m 的粗糙半圆轨道BCD 相连接,且在同一竖直平面内,O 是BCD 的圆心,BOD 在同一竖直线上.质量为m =1kg 的小物块在水平恒力F =15N 的作用下,从A 点由静止开始做匀加速直线运动,当小物块运动到B 点时撤去F ,小物块沿半圆轨道运动恰好能通过D 点,已知A 、B 间的距离为3m ,小物块与地面间的动摩擦因数为0.5,重力加速度g 取10m/s 2.求: (1)小物块运动到B 点时对圆轨道B 点的压力大小. (2)小物块离开D 点后落到地面上的点与D 点之间的距离【答案】(1)160N (2)2 【解析】 【详解】(1)小物块在水平面上从A 运动到B 过程中,根据动能定理,有: (F -μmg )x AB =12mv B 2-0 在B 点,以物块为研究对象,根据牛顿第二定律得:2Bv N mg m R-=联立解得小物块运动到B 点时轨道对物块的支持力为:N =160N由牛顿第三定律可得,小物块运动到B 点时对圆轨道B 点的压力大小为:N ′=N =160N (2)因为小物块恰能通过D 点,所以在D 点小物块所受的重力等于向心力,即:2Dv mg m R=可得:v D =2m/s设小物块落地点距B 点之间的距离为x ,下落时间为t ,根据平抛运动的规律有: x =v D t ,2R =12gt 2解得:x =0.8m则小物块离开D 点后落到地面上的点与D 点之间的距离20.82m l x ==3.如图所示,斜面高为h ,水平面上D 、C 两点距离为L 。

高中动能定理试题及答案

高中动能定理试题及答案

高中动能定理试题及答案一、选择题1. 一个物体从静止开始,沿着光滑的斜面下滑,下滑过程中受到的力只有重力,下列说法正确的是()。

A. 物体的动能增加,重力势能减少B. 物体的动能增加,重力势能增加C. 物体的动能减少,重力势能减少D. 物体的动能减少,重力势能增加答案:A解析:物体从静止开始下滑,重力做正功,物体的动能增加;同时物体的高度降低,重力势能减少。

2. 一个物体从一定高度自由落下,不计空气阻力,下列说法正确的是()。

A. 物体的动能增加,重力势能减少B. 物体的动能减少,重力势能增加C. 物体的动能和重力势能都增加D. 物体的动能和重力势能都减少答案:A解析:物体自由落下,重力做正功,物体的动能增加;同时物体的高度降低,重力势能减少。

二、填空题3. 一个质量为m的物体从高度为h的平台上自由落下,不计空气阻力,物体落地时的动能为____。

答案:mgh解析:根据动能定理,物体落地时的动能等于重力势能的减少量,即Ek = mgh。

角为θ,下滑过程中物体的动能增加量为____。

答案:mgv0sinθ解析:物体下滑过程中,重力沿斜面方向的分力做功,根据动能定理,动能增加量等于重力分力做功,即ΔEk = mgv0sinθ。

三、计算题5. 一个质量为2kg的物体从高度为10m的平台上自由落下,不计空气阻力,求物体落地时的速度。

答案:v = 14.1m/s解析:根据动能定理,物体落地时的动能等于重力势能的减少量,即Ek = mgh。

代入数据,解得v = √(2gh) = √(2×9.8×10) = 14.1m/s。

面倾角为30°,求物体滑到斜面底端时的速度。

答案:v = 20m/s解析:物体下滑过程中,重力沿斜面方向的分力做功,根据动能定理,动能增加量等于重力分力做功,即ΔEk = mgv0sinθ。

代入数据,解得v = √(v0^2 + 2gh) = √(10^2 + 2×9.8×5×sin30°) =20m/s。

物理动能与动能定理题20套(带答案)

物理动能与动能定理题20套(带答案)

(2)若滑块在 A 点以 v0=lm/s 的初速度沿斜面下滑,最终停止于 B 点,求 μ 的取值范围。
【答案】(1) t
3 3
s;(2)
1 32
3 4

3
13 16

【解析】
【分析】
【详解】
(1)设滑块从点 A 运动到点 B 的过程中,加速度大小为 a ,运动时间为 t ,则由牛顿第二
定律和运动学公式得
(1)当细线与水平杆的夹角为 β( 90 )时,A 的速度为多大?
(2)从开始运动到 A 获得最大速度的过程中,绳拉力对 A 做了多少功?
【答案】(1) vA
2gh 1 cos2
1
sin
1 sin
;(2)WT
mg
h sin
h
【解析】
【详解】
(2)A、B 的系统机械能守恒
EP减 EK加
(1)圆弧轨道的半径 (2)小球滑到 B 点时对轨道的压力. 【答案】(1)圆弧轨道的半径是 5m. (2)小球滑到 B 点时对轨道的压力为 6N,方向竖直向下. 【解析】
(1)小球由 B 到 D 做平抛运动,有:h= 1 gt2 2
x=vBt
解得: vB x
g 4 2h
10 10m / s 2 0.8
mg sin ma
s 1 at2 2
解得 t 3 s 3
(2)滑块最终停在 B 点,有两种可能:
①滑块恰好能从 A 下滑到 B ,设动摩擦因数为 1 ,由动能定律得:
mg sin
s 1mg cos
s
0
1 2
mv02
解得
1
13 16
②滑块在斜面 AB 和水平地面间多次反复运动,最终停止于 B 点,当滑块恰好能返回 A

高考物理《动能和动能定理》真题练习含答案

高考物理《动能和动能定理》真题练习含答案

高考物理《动能和动能定理》真题练习含答案1.[2024·江苏省淮安市学情调研]质量为m 的物体以初速度v 0沿水平面向左开始运动,起始点A 与一水平放置的轻弹簧O 端相距s ,轻弹簧的另一端固定在竖直墙上,如图所示,已知物体与水平面间的动摩擦因数为μ,物体与弹簧相碰后,弹簧的最大压缩量为x ,重力加速度为g ,则从开始碰撞到弹簧被压缩至最短的过程中,克服弹簧弹力所的功为( )A .12 m v 20 -μmg (s +x )B .12m v 20 -μmgx C .μmg (s +x )-12m v 20 D .-μmg (s +x ) 答案:A解析:从开始碰撞到弹簧被压缩至最短的过程中,由动能定理-μmg (s +x )-W =0-12m v 20 ,解得W =12 m v 20 -μmg (s +x ),A 正确.2.[2024·河南省部分学校摸底测试]如图所示,水平圆盘桌面上放有质量为0.1 kg 的小铁碗A (可视为质点),一小孩使圆盘桌面在水平面内由静止开始绕过圆盘中心O 的轴转动,并逐渐增大圆盘转动的角速度,直至小铁碗从圆盘的边缘飞出,飞出后经过0.2 s 落地,落地点与飞出点在地面投影点的距离为80 cm.若不计空气阻力,该过程中,摩擦力对小铁碗所做的功为( )A.0.2 J B .0.4 JC .0.8 JD .1.6 J答案:C解析:小铁碗飞出后做平抛运动,由平抛运动规律可得v =x t,解得v =4 m/s ,小铁碗由静止到飞出的过程中,由动能定理有W =12m v 2,故摩擦力对小铁碗所做的功W =0.8 J ,C 正确.3.(多选)如图所示,在倾角为θ的斜面上,质量为m 的物块受到沿斜面向上的恒力F 的作用,沿斜面以速度v 匀速上升了高度h .已知物块与斜面间的动摩擦因数为μ、重力加速度为g .关于上述过程,下列说法正确的是( )A .合力对物块做功为0B .合力对物块做功为12m v 2 C .摩擦力对物块做功为-μmg cos θh sin θD .恒力F 与摩擦力对物块做功之和为mgh答案:ACD解析:物体做匀速直线运动,处于平衡状态,合外力为零,则合外力做功为零,故A正确,B 错误;物体所受的摩擦力大小为f =μmg cos θ,物体的位移x =h sin θ,摩擦力对物块做功为W f =-fx =-μmg cos θh sin θ,C 正确;物体所受各力的合力做功为零,则W G +W F +W f =0,所以W F +W f =-W G =-(-mgh )=mgh ,D 正确.4.(多选)质量为2 kg 的物体,放在动摩擦因数μ=0.1的水平面上,在水平拉力的作用下由静止开始运动,水平拉力做的功W 和物体发生的位移x 之间的关系如图所示,重力加速度g 取10 m/s 2,则此物体( )A .在位移x =9 m 时的速度是33 m/sB .在位移x =9 m 时的速度是3 m/sC .在OA 段运动的加速度是2.5 m/s 2D .在OA 段运动的加速度是1.5 m/s 2答案:BD解析:运动x =9 m 的过程由动能定理W -μmgx =12m v 2,得v =3 m/s ,A 错误,B 正确;前3 m 过程中,水平拉力F 1=W 1x 1 =153N =5 N ,根据牛顿第二定律,F 1-μmg =ma 得a =1.5 m/s 2,C 错误,D 正确.5.[2024·张家口市期末考试]如图所示,倾角为θ=37°的足够长光滑斜面AB 与长L BC =2 m 的粗糙水平面BC 用一小段光滑圆弧(长度不计)平滑连接,半径R =1.5 m 的光滑圆弧轨道CD 与水平面相切于C 点,OD 与水平方向的夹角也为θ=37°.质量为m 的小滑块从斜面上距B 点L 0=2 m 的位置由静止开始下滑,恰好运动到C 点.已知重力加速度g =10 m/s 2,sin 37°=0.6,cos 37°=0.8.(1)求小滑块与粗糙水平面BC 间的动摩擦因数μ;(2)改变小滑块从斜面上开始释放的位置,小滑块能够通过D 点,求小滑块的释放位置与B 点的最小距离.答案:(1)0.6 (2)6.75 m解析:(1)滑块恰好运动到C 点,由动能定理得mgL 0sin 37°-μmgL BC =0-0解得μ=0.6(2)滑块能够通过D 点,在D 点的最小速度,由mg sin θ=m v 2D R解得v D =3 m/s设滑块在斜面上运动的距离为L ,由动能定理得mgL sin θ-μmgL BC -mgR (1+sin θ)=12m v 2D -0 解得L =6.75 m。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动能和动能定理测试题
一、选择题
1. 车做匀加速运动,速度从零增加到V的过程中发动机做功W1,从V增加到2V的过程中发动机做功W2,设牵引力和阻力恒定,则有()
A.W2=2W1B.W2=3W1C.W2=4W1D.仅能判断W2>W1
2. 用100N的力将0.5千克的足球以8m/s的初速度沿水平方向踢出20米,则人对球做功为()
A.200J B.16J C.2000J D.无法确定
3. 子弹以水平速度V射入静止在光滑水平面上的木块M,并留在其中,则()
A.子弹克服阻力做功与木块获得的动能相等
B.阻力对子弹做功小于子弹动能的减少
C.子弹克服阻力做功与子弹对木块做功相等
D.子弹克阻力做功大于子弹对木块做功
4. 如图所示,DO是水平面,AB是斜面,初速度为v0,物体从D点出发DBA滑到顶点时速度恰好为零,如果斜面改为AC,让该物体从D点出发DCA滑到A点且速度刚好为零,则物体具有的初速度(已知物体与路面间的动摩擦系数处处相等且不为零)()
A. 大于v0
B. 等于v0
C. 小于v0
D. 取决于斜面的倾角
5. 质量不等,但具有相同初动能的两个物体,在摩擦系数相同的水平地面上滑行,直到停止,则()
A.质量大的物体滑行的距离大
B.质量小的物体滑行的距离大
C.它们滑行的距离一样大
D.它们克服摩擦力所做的功一样多
6. 有两个物体其质量M1>M2它们初动能一样,若两物体受到不变的阻力F1和F2作用经过相同的时间停下,它们的位移分别为S1和S2,则()
A.F1>F2,且S1<S2B.F1>F2,且S1>S2
C.F1<F2,且S1<S2 D.F1>F2,且S1>S2
7. 速度为v的子弹,恰可穿透一块固定着的木板,如果子弹的速度为2v,子弹穿透木板时阻力视为不变,则可穿透同样的木板:()
A.1块;B.2块;C.3块;D.4块。

8 . 质量为m的物体从高为h的斜坡上a点由静止滑下,滑到水平面上b点静止,如图所示,现在要把它从b点再拉回到a点,则外力对物体做功至少是()
A. mgh
B.2mgh
C.3mgh
D.4mgh
9. 一物体在竖直弹簧的上方h米处下落,然后又被弹簧弹回,如图所示,则物体动能最大时是:()
A.物体刚接触弹簧时;
B.物体将弹簧压缩至最短时;
C.物体重力与弹力相等时;
D.弹簧等于原长时。

10.质量为m的小球被系在轻绳的一端,在竖直平面内做半径为R的圆周运动,运动过程中小球小球受到空气的阻力作用,设在某一时刻小球通过轨道的最低点。

此时绳子的拉力为7mg,此后小球继续做圆周运动,恰好到达最高点,在这过程中小球克服空气阻力作的功为()
A. mgR/4
B. mgR/3
C. mgR /2
D. mgR
二、填空题
11.一人从高处坠下,当人下落H高度时安全带刚好绷紧,人又下落h后人的速度减为零,设人的质量为M,则绷紧过程中安全带对人的平均作用力为。

12. M=2千克的均匀木板长为L=40cm,放在水平面上,右端与桌面齐,
板与桌面间的摩擦系数为μ=0.2,现用水平力将其推落,水平力至少做功
为。

三、计算题
13.如图所示,物体沿一曲面从A点无初速度滑下,滑至曲面最低点B时,下滑的
高度为5m.若物体的质量为1㎏,到B点的速度为6m/s,则在下滑过程中客服阻力所
做的功是多少?
14. 如图所示,光滑的水平面AB与光滑的半圆形轨道相接触,直径
BC竖直,圆轨道半径为R一个质量为m的物体放在A处,AB=2R,物体在
水平恒力F的作用下由静止开始运动,当物体运动到B点时撤去水平外力
之后,物体恰好从圆轨道的定点C水平抛出,求水平力
参考答案:
1.B 、速度从零增加到V 的过程中位移S 1=a V 22,从V 增加到2V 的过程中位移为S 2=a V 232
,牵引力不变,所以两次做功之比为1:3。

2.B 、人做的功等于球飞出时的初动能。

3.D 、设木块的位移为s ,子弹射入的深度为d ,阻力为f 。

则子弹对木块做的功W 1=f ·s,木块对子弹做的
功w 2= -f(s+d)
4.B 、在整个过程中,摩擦力做功大小始终为od mgs μ,与斜面的倾角无关。

5.B 、D 、滑行的距离S=g V μ22
,质量大的速度小,滑行的距离小,质量小的速度大,滑行的距离大。

而滑行过
程中物体克服摩擦力做的功等于物体的动能。

6.A 、力作用的时间t=F v 22
,可知21F F φ,而力做的功是一样的,即11s F =22S F ,所以21s s π。

7.B 、在运动过程中,物体克服阻力做的功W f =W G =mgh.而上滑时,W F =W f +W G =2mgh 。

8.D 、每穿过一块木块子弹损耗的动能为22
1mv ,当速度为v 2时,则可以穿过4块木块。

9.C 、当物体受到的外力为零时,速度最大。

10.C 、由题意得在最低点时r mv mg mg 217=
-,gl v 61=,在最高点时gl v =2。

根据动能定理k f G E W W ∆=+ ,得,
mgR E k 21=∆。

11.h
h H Mg )(+,由动能定理0=+F G W W ,即-Mg(h+H)+Fh=0。

12.0.8J ,只要将木板的重心推出桌面就可以了。

13.32J ,k f G E W W ∆=+,k G f E W W ∆-==10×5-0.5×36=32J 。

14.5mg/4,在整个过程中利用动能定理k F E W W G
∆=+,即mgR R mg R F 2
122=⨯-⨯。

相关文档
最新文档