材料力学-第四章 扭转_1
第四章 扭转(张新占主编 材料力学)
2M A M e M B 0 (2)
联立式(1)与式(2),得
Me MB 3
MA MB Me 3
26
4.6 等直圆轴扭转时的应变能
圆轴在外力偶作用下发生扭转变形,轴内将积蓄应变能。这种 应变能在数值上等于外力所做的功。
T1 在位移 d1上所做的功为 dW T1d1
PB M eB M eC 9549 n 796(N m) PA M eA 9549 1910(N m) n PD M eD 9549 318(N m) n
5
(2)求扭矩(扭矩按正方向假设) 1-1 截面
M M M
x
0
T1 M eB 0
T1 M eB 796N m
d1 85.3 mm
取 d1 85.3 mm。 BC段:同理,由扭转强度条件得 d2 67.4 mm ,由扭转刚度条件得
d 2 74.4 mm
取 d 2 74.4 mm。
23
(2)将轴改为空心圆轴后,根据强度条件和刚度条件确定轴的 外径D。 由强度条件得 D 96.3 mm 由刚度条件得 D 97.3 mm 取 D 97.3 mm ,则内径为
T Me
M e RdA RRd 2R 2
A 0
2
Me 2 2R
8
二、切应力互等定理
M
z
0
(dy)dx ( dx)dy
得到
切应力互等定理:在单元体在相互垂直的一对平面上,切应力 同时存在,数值相等,且都垂直于两个平面的交线,方向共同 指向或共同背离这一交线。 纯剪应力状态:单元体上四个侧面上只有切应力,而无正应力 作用
材料力学4.
'dxdz dy dydzdx 0
得: '
图4-1
2. 剪切虎克定律 在弹性范围内应有:
G G ——剪切弹性模量
图4-2
3.E、G、μ μ μ 的关系
G
E
21
低碳钢:
E 2 105 MPa
Mnmax 4.5KN m
max
M nmax Wn
Wn
D3
16
M nmax
解得: D 66mm
(三)由刚度条件设计 D 。
max
M nmax GI p
180
D4
32
Ip
M nmax
G
180
解得: D 102mm
从以上计算可知,该轴直径应由刚度条件确定,选用 D=102mm 。
六、矩形截面杆的自由扭转
1. 矩形截面杆的剪应力及扭转角计算
最大剪应力发生在长边中点处:
max
Mn
hb2
4
9
单位长度的扭转角为:
Mn
G hb3
4 10
剪应力分布图 图4-10
材料力学
第四章 扭转
一、扭转时的内力及扭矩图
扭转时横截面上的内力以 Mn 表示,称为扭矩。杆件 上各截面上的扭矩如果以图来表示,该图就是扭矩图。
下面结合实例来加以说明。
例1 传动轴受力如图示,试求各段内力并绘扭矩图。 例1图
第四章北航 材料力学 全部课件 习题答案
(
d 1/ m (3m 1)T ) d dx 2πCm( ) ( 3m 1) / m 2
(e)
将式(e)代入式(b),并注意到 T=M ,最后得扭转切应力公式为
M 1/ m 2πm d (3 m 1)/m ( ) 3m 1 2 横截面上的切应力的径向分布图示如图 4-8。
R0
此管不是薄壁圆管。
D 80 6 mm 37mm, δ 6mm R0 10 2 2
80- 6 2 68 0.85 80 80
max2
由此得 M 的许用值为
M2 16M 2 [ 2 ] Wp2 πD 3 (1 4 )
[M 2 ]
第四章 扭 转
4-5
一受扭薄壁圆管,外径 D = 42mm,内径 d = 40mm,扭力偶矩 M = 500N•m,切
变模量 G=75GPa。试计算圆管横截面与纵截面上的扭转切应力,并计算管表面纵线的倾斜角。 解:该薄壁圆管的平均半径和壁厚依次为
1 D d D d R0 ( ) 20.5mm, 1mm 2 2 2 2 2 于是,该圆管横截面上的扭转切应力为 T 500N 1.894108 Pa 189.4MPa 2 2 2 2πR0 2π 0.0205 0.001m
式中的 C 与 m 为由试验测定的已知常数。试建立扭转切应力公式,并画横截面上的切应力分
题 4-8 图 解:所研究的轴是圆截面轴,平面假设仍然成立。据此,从几何方面可以得到
d dx 根据题设,轴横截面上距圆心为 ρ 处的切应力为
(a)
τ ρ C(
由静力学可知,
d 1/ m ) dx
2
材料力学-扭转
扭转角( 扭转角(ϕ):任意两截面绕轴线相对转动的角度。又称为角 位移。通常用ϕ表示。ϕB − A表示B截面相对A截面转过的角度。 剪应变( 剪应变(γ): 剪应变又叫角应变或切应变,它是两个相互垂直方 向上的微小线段在变形后夹角的改变量(以弧度表示, 角度减小时为正) O ϕ B m
A m
γ
第二节 杆受扭时的内力计算
四、圆截面的极惯性矩 Ip 和抗扭截面系数Wp
实心圆截面: 实心圆截面:
2
I p = ∫ ρ d A = ∫ ρ (2 πρ d ρ )
2
ρ
d O
dρ
A
d 2 0
= 2 π(
ρ
4
d /2
4
)
0
πd = 32
4
d A = 2 πρ d ρ
πd 3 Wp = = d / 2 16 Ip
空心圆截面: 空心圆截面:
T T = ρ max = IP IP T = WP
ρ max
Ip—截面的极惯性矩, 截面的极惯性矩,单位: 单位:m 4 , mm 4 Ip 3 3 WP —抗扭截面模量, WP = 抗扭截面模量,单位:m , mm .
ρ max
整个圆轴上——等直杆: 等直杆: τ max
Tmax = WP
三、公式的使用条件: 公式的使用条件: 1、等直的圆轴, 等直的圆轴, 2、弹性范围内工作。 弹性范围内工作。
Tmax Wp
πD 3 实心, 16 T max W = 2)设计截面尺寸: 设计截面尺寸:WP ≥ 3 P [τ ] πD (1 − α 4 ) 空心. 16 ≤ ⇒ m 3)确定外荷载: 确定外荷载: Tmax WP ⋅ [τ ]
≤
材料力学第四章 扭转
max
T GI p
180
(/m)
×
例5 图示圆轴,已知mA =1kN.m, mB =3kN.m, mC
=2kN.m;l1 =0.7m,l2 =0.3m;[]=60MPa,[ ]=0.3°/m,
G=80GPa;试选择该轴的直径。
mA
mB mC 解: ⑴按强度条件
A
l1
B l2 C
max
9.55
200 300
6.37
(kN m)
×
n D
m2 1 m3 2 m1 3 m4
n A 1 B 2 C 3D
②求扭矩(扭矩按正方向假设)
m 0 , T1 m2 0, T1 m2 4.78kN m m 0; T2 m1 m2 0
T2 m2 m3 (4.78 4.78) 9.56kN m
T
2 r02
t
T 2 A0
t
T
A0为平均半径所作圆的面积。
×
三、切应力互等定理:
´
a
b
dy
´
c
z
dx
d t
mz 0; t dxdy t dxdy
'
这就是切应力互等定理:在单元体相互垂直的两个截面
上,切应力必然成对出现,且数值相等,两者都垂直于两平
面的交线,其方向或共同指向交线,或共同背离交线。
垂直,则杆件发生的变形为扭转变形。
A
B O
A
BO
m
m
——扭转角(两端面相对转过的角度)
——剪切角,剪切角也称切应变。
×
§4–2 扭转的内力—扭矩与扭矩图
一、扭矩 圆杆扭转横截面的内力合成
结果为一合力偶,合力偶的力偶 矩称为截面的扭矩,用T 表示之。 m
材料力学 第4章_扭转
d x d z d y d y d z d x 0
返回
4. 切应力互等定理
切应力互等定理: 也称切应力双生定理, 指在单元体相互垂直的两 个面上,切应力必成对存 在,且数值相等;两者都 垂直于两个平面的交线, 方向共同指向或背离这一 交线。
纯剪切
BC B
TCD mB mC 700N m
(b)
TDA mA 1146N m
可见:主动轮与从动轮位置不 同,轴内最大扭矩也不同,显 然(a)方案比(b)方案合理。
返回
§4.3 圆轴扭转时的应力与强度条件
返回总目录
一、薄壁圆筒扭转时的切应力 1. 变形现象 圆周线大小、形状、间距 不变,纵向线相同倾斜。 2. 横截面上应力分析 因纵向纤维无正应变, 有角应变,因此横截面上 无,有, 与圆周相切。 又因壁很薄,可近似认 为沿壁厚应力相等。
第4章 扭转
第4章 扭转
§4.1 扭转的概念 §4.2 外力偶矩、扭矩和扭矩图
§4.3 圆轴扭转时的应力与强度条件
§4.4 圆杆扭转时的变形及刚度条件
§4.5 非圆截面杆的扭转概念
§4.1 扭转的概念
返回总目录
工程中的受扭转杆件
拧紧螺母的工具杆产生扭转变形
返回
工程中的受扭转杆件
返回
工程中的受扭转杆件
r
d dx
横截面上任一点的 ⊥半 径,并与该点到轴线的距离 成正比。
返回
4. 应力公式 静力关系
T
dA
横截面上分布内力系对 圆心的矩等于扭矩T。
T d A A d d 2 G d A G d A A dx dx A
材料力学-第4章圆轴扭转时的强度与刚度计算
I
C
A
II
D
III
I
II
III
M
x
0
确定各段圆轴内的扭 矩。
第4章 圆轴扭转时的强度与刚度计算
外加扭力矩、扭矩与扭矩图
3 . 建立 Mx - x 坐 标系,画出扭矩图 建 立 Mx - x 坐 标 系,其中x轴平行于 圆轴的轴线,Mx轴垂 直于圆轴的轴线。将 所求得的各段的扭矩 值,标在 Mx - x 坐标 系中,得到相应的点 ,过这些点作x轴的 平行线,即得到所需 要的扭矩图。
P M e 9549 [N m] n
其中P为功率,单位为千瓦(kW);n为轴的转速,单位为转/ 分(r/min)。 如果功率P的单位用马力(1马力=735.5 N•m/s),则
P[马力] M e 7024 [N m] n[r / min]
第4章 圆轴扭转时的强度与刚度计算
外加扭力矩、扭矩与扭矩图
第4章 圆轴扭转时的强度与刚度计算
工程中承受扭转的圆轴 外加扭力矩、扭矩与扭矩图 剪应力互等定理 剪切胡克定律
圆轴扭转时横截面上的剪应力分析 与强度设计 圆杆扭转时的变形及刚度条件 结论与讨论
第4章 圆轴扭转时的强度与刚度计算
工程中承受扭转的圆轴
第4章 圆轴扭转时的强度与刚度计算
绘出扭矩图:
第4章 圆轴扭转时的强度与刚度计算
B C
I
外加扭力矩、扭矩与扭矩图 A III D II
I 扭矩Mn-图
II
III
159.2
(+)
(-)
63.7 159.2
M n,max 159.2( N m)
(在CA段和AD段)
材料力学第4章扭转变形
1 1
T
1 1
T
1
Me
+
B
x
T Me
Me
B
T图 x
例 一传动轴如图,转速n = 300r/min; 主动轮输 入的功率P1= 500kW,三个从动轮输出的功率分 别为: P2= 150kW, P3= 150kW, P4= 200kW。 试作轴的扭矩图。
解: 首先必须计算作用在各轮上的外力偶矩
M2 1
2 T
1
1 T
1
材料不同),可见在两
杆交界处的切应力是不
同的。
d
D
§4. 7 非圆截面杆扭转的概念
对非圆截面杆的扭转问题,主要介绍矩形截面 杆的扭转。
试验现象
横向线变 成曲线
横截面发生 翘曲不再保 持为平面
平面假设不再 成立,可能产 生附加正应力
自由扭转 翘曲不受限制。 纵向纤维无伸长 横截面上无正应力
T
max
O
max
D
d
T
Ip
max
T Wp
圆截面的极惯性矩Ip和扭转截面系数Wp —几何性质 实心圆截面:
d
O
d
O
d D d
Ip
2 d A πd 4
A
32
Wp
Ip d /2
πd 3 16
Ip
2 d A πD4
A
32
1 4
Wp
Ip D /2
πD 3 16
1 4
4-4 圆轴扭转强度条件与合理设计
B 0
按叠加原理:
B BB BM 0
BB、BM分别为MB、Me 引起的在杆端B的扭转角。
线弹性时,物理关系(胡克定理)为
材料力学实验-扭转
材料力学实验-扭转扭转实验是材料力学实验中比较常见的实验之一,它是用来研究材料在扭转载荷作用下的性能及力学性质的实验。
在此实验中,通常需要制作一个实验样品,并通过试验测量夹持在两端的样品在扭力作用下的变形量及强度等参数。
下面我们将针对扭转实验的步骤、实验原理、实验装备及注意事项等方面进行详细介绍。
一、实验步骤1、制备试样。
在扭转实验中,常用的试样选择是圆棒,通常需要通过车床等机器加工加工成指定的直径和长度,注意要做好表面的处理和清洁,以保证试样表面无瑕疵、光滑等。
2、安装实验装置。
扭转实验的装置通常由电机、夹具、扭矩传感器、转角传感器等组成,需要将这些部件安装好,并将试样夹持在夹具两端,并调整好实验设备的参数及灵敏度,以确保实验设备的正常运转及测量精度。
3、进行实验。
在实验开始前,需要先进行一些预处理,如:校准设备、检查夹具固定度、检查电路连接等。
实验进行时,需要控制外加载荷及试样的转角,并及时记录实验数据等,直到试样达到所需的扭矩、载荷或损坏为止。
4、数据处理。
在实验结束后,需要对实验数据进行处理,并根据实验结果进行分析、比较及对比等操作,从而得出实验所要得到的结论及性能指标等。
二、实验原理扭转实验主要基于材料疲劳和塑性变形的原理,通过在试样两端施加扭矩和转角,在作用下可产生应变和变形等变量,并可通过实验数据加以测量及计算,进一步分析材料力学性质的好坏。
在扭转实验中,主要涉及到的参数有:扭转角度、扭转力矩、扭转角速度、应变及变形等参数,通过对这些参数的测量及分析,可以得出试样在扭转载荷作用下的抗扭强度及剪切模量等指标,这些指标是评估材料性能及强度的重要依据。
三、实验装备扭转实验需要用到的主要装备包括:电机、夹具、扭矩传感器、转角传感器、实验数据采集器等,下面我们将针对这些装备分别进行介绍。
1、电机:扭转实验的电机通常配备较高功率的电机,以保证能够提供足够的扭矩。
2、夹具:夹具是用来夹持试样的装置,要求夹具具有高度的稳定度并能够确保试样在扭转载荷下的平衡。
材料力学-第4章 扭转 ppt课件
dA
T
O
dA
23
材料力学-第4章 扭转
圆轴扭转横截面上的应力
A dA T
代入:
G
G
d dx
得到:
G d 2dA T dx A
记: IP -2dA称为圆截面的极惯性矩
A
则:圆轴扭转角的变化率 d T
dx GIP
圆截面切应力
采用右手螺旋法则,如果用四指表示扭矩的转向, 拇指的指向与截面的外法线n的方向相同时,该扭矩为 正;反之,规定扭矩为负
正扭矩
负扭矩
——保证了无论从哪一段计算,扭矩的大小和符号 都相同
12
材料力学-第4章 扭转
扭力偶矩计算与扭矩
讨论:如图受扭圆轴,m-m截面上扭矩为多少?
Me
m
2M e
m m
T Me
17
材料力学-第4章 扭转
圆轴扭转横截面上的应力
几何变形:
1. 横截面绕圆轴的轴线转动
?
主要
2. 圆轴中段的横截面缩小 几何变形特征
有剪切应变 rz 次要
3. 圆轴的长度略有增长
有轴向应变 z 次要
– 变形后,横截面仍保持为平面,其形状和大小均不
改变,半径仍为直线
– 变形后,相邻横截面的间距保持不变,相邻横截面 绕圆轴轴线转动一定的角度
外力偶矩的计算
• 工程中的传动轴,通常给出传动轴所传递的功率和转 速,而不直接给出外力偶矩的数值
• 设外力偶矩为Me,传动轴的功率为P,角速度为w,则
有(理论力学)
Me
P
w
外力偶矩Me 单位:N·m (牛顿·米) 功率为P 单位:J (焦耳)
材料力学第四章 扭转
扭转轴的内力偶矩称为扭矩
3、扭矩利用截面法、并建立平衡方程得到
m
m
x
m
Mn
MX 0 Mnm0
Mn m
8
§3-2 外力偶矩、扭矩和扭矩图
4 扭矩的符号规定—右手螺旋法则
mI
扭
矩
符 号 规
Mn I
离M开n截 面
定 :
mI
I
m
Mn
I
I
m
Mn
Mn I
指向M 截n 面
I
右手定则:右手四指内屈,与扭矩转向相同,则拇指的
m
转速:n (转/分)
1分钟输入功: 1分钟m 作功:
W W '
W 6 N 0 10 60 0 N 0 000
W m m 2 n 1 2 nm
m955N0 Nm 单位
n
7
§3-2 外力偶矩、扭矩和扭矩图
2、扭矩的概念
扭转变形的杆往往称之为扭转轴
Mn
Mn
(r )
A
B
(r )
C
C
D d
D
b
x
d
d
d
dx
d
dx
dx
d
称为单位长度相对扭转角
dx
对于同一截面,
d 常量 dx
上式表明:圆轴扭转时,其横截面上任意点处的剪应变与该点至截 面中心之间的距离成正比。上式即为圆轴扭转时的变形协调方程。
32
§3-4 等值圆杆扭转时的应力强度条件
dAsin
d d A cA s o i s d n sA i c n o 0
《材料力学》第四章 扭转
第四章 扭转§4—1 工程实例、概念一、工程实例1、螺丝刀杆工作时受扭。
2、汽车方向盘的转动轴工作时受扭。
3、机器中的传动轴工作时受扭。
4、钻井中的钻杆工作时受扭。
二、扭转的概念受力特点:杆两端作用着大小相等方向相反的力偶,且作用面垂直杆的轴线。
变形特点:杆任意两截面绕轴线发生相对转动。
轴:主要发生扭转变形的杆。
§4—2 外力偶矩、扭矩一、外力:m (外力偶矩)1、已知:功率 P 千瓦(KW ),转速 n 转/分(r /min ; rpm)。
外力偶矩:m)(N 9549⋅=nPm 2、已知:功率 P 马力(Ps),转速 n 转/分(r /min ;rpm)。
外力偶矩:m)(N 7024⋅=nPm 二、内力:T (扭矩) 1、内力的大小:(截面法)mT m T mx==-=∑002、内力的符号规定:以变形为依据,按右手螺旋法则判断。
(右手的四指代表扭矩的旋转方向,大拇指代表其矢量方向,若其矢量方向背离所在截面则扭矩规定为正值,反之为负值。
)3、注意的问题:(1)、截开面上设正值的扭矩方向;(2)、在采用截面法之前不能将外力简化或平移。
4、内力图(扭矩图):表示构件各横截面扭矩沿轴线变化的图形。
作法:同轴力图:§4—3 薄壁圆筒的扭转 一、薄壁圆筒横截面上的应力(壁厚0101r t ≤,0r :为平均半径) 实验→变形规律→应力的分布规律→应力的计算公式。
1、实验:2、变形规律:圆周线——形状、大小、间距不变,各圆周线只是绕轴线转动了一个不同的角度。
纵向线——倾斜了同一个角度,小方格变成了平行四边形。
3、切应变(角应变、剪应变):直角角度的改变量。
4、定性分析横截面上的应力(1) 00=∴=σε ;(2)00≠∴≠τγ因为同一圆周上切应变相同,所以同一圆周上切应力大小相等。
⑶ 因为壁厚远小于直径,所以可以认为切应力沿壁厚均匀分布,而且方向垂直于其半径方向。
材料力学:第四章 扭转
回顾: 极惯性矩、抗扭截面系数的计算
抗扭截面系数 极惯性矩
薄壁圆管 扭转切应力
回顾: 圆轴扭转强度条件 & 应力计算公式
薄壁圆管扭 转切应力
圆轴扭转 强度条件
max
[ ] u
n
扭转极限应力τu =
扭转屈服应力ts (塑性材料) 扭转强度极限tb (脆性材料)
§5 圆轴扭转变形与刚度计算
单辉祖:材料力学Ⅰ
14
例题
例 2-1 MA=76 Nm, MB=191 Nm, MC=115 Nm, 画扭矩图 解:用截断法,列力偶
矩平衡方程,和x轴正向 相同者取正 (1) 1-1截面
单辉祖:材料力学Ⅰ
(2) 2-2截面 T2 MC 115 N m
(3) 画扭矩图
15
§3 圆轴扭转横截面上的应力
单辉祖:材料力学Ⅰ
64
薄壁杆扭转
开口与闭口薄壁杆
截面中心线
-截面壁厚平分线
薄壁杆
-壁厚<<截面中心线 长度的杆件
闭口薄壁杆
-截面中心线为封闭曲线的薄壁杆
开口薄壁杆
-截面中心线为非封闭曲线的薄壁杆
单辉祖:材料力学Ⅰ
65
闭口薄壁杆扭转应力与变形
假设 切应力沿壁厚均匀分布, 并平行于中心线切线 应力公式
单辉祖:材料力学Ⅰ
62
例题
例 7-1 试比较闭口与开口薄壁圆管的抗扭性能,设 R0=20d
解:1. 闭口薄壁圆管
2. 开口薄壁圆管
3. 抗扭性能比较
单辉祖:材料力闭学Ⅰ口薄壁杆的抗扭性能远比开口薄壁杆好
63
§8 薄壁杆扭转
开口与闭口薄壁杆 闭口薄壁杆扭转应力与变形 开口薄壁杆扭转简介 薄壁杆合理截面形状 例题
材料力学课件 第四章扭转
直杆。
② 式中:T—横截面上的扭矩,由截面法通过外力偶矩求得。
—该点到圆心的距离。
Ip—截面极惯性矩,纯几何量,无物理意义。
17
Ip A 2dA 单位:mm4,m4。
③ 尽管由实心圆截面杆推出,但同样适用于空心圆截面杆,
只是Ip值不同。
一、传动轴的外力偶矩 传递轴的传递功率、转数与外力偶矩的关系:
m
9.55
P n
(kN
m)
其中:P — 功率,千瓦(kW) n — 转速,转/分(rpm)
m
7.024
P n
(kN
m)
其中:P — 功率,马力(PS) n — 转速,转/分(rpm)
m
7.121
P n
(kN
m)
其中:P — 功率,马力(HP) n — 转速,转/分(rpm)
22
[例2]有一阶梯形圆轴,如图(a)所示轴的直径分别d为1 50mm,d2 80mm 。扭转力偶矩分别为 Me1 0.8kN m ,Me2 1.2kN m ,M e3 2kN m。若 材料的许用切应力 [ ] 40MPa ,试校核该轴的强度。
解: 方法一(理论计算法) 用截面法求出圆轴各段的扭矩,如图(b)所示。 由扭矩图可见,CD段和DB段的直径相同,但DB段的扭矩大 于CD段,故这两段只要校核DB段的强度即可。AC段的扭矩 虽然也小于DB段,但其直径也比DB段小,故AC段的强度也 需要校核。
2GI p
W
U ;
64PR3n Gd 4
P K
;
K
Gd 4 64R3n
为弹簧常数。
36
[例3] 圆柱形密圈螺旋弹簧的平均直径为:D=125mm,簧丝直 径为:d =18mm,受拉力 P=500N 的作用,试求最大剪应力 的近似值和精确值;若 G =82GPa,欲使弹簧变形等于 6mm, 问:弹簧至少应有几圈?
材料力学扭转
dx
c
x
它们组成的力偶,其矩为
(dxdy )dz
z
(dxdy )dz
y
此力偶矩与前一力偶矩
dy
d
a
b
( dy dz) dx 数量相等而转向相反,从而可得 z
dx
c
x
剪应力互等定理:
单元体两个相互垂直平面上
a
dy
y
b
d
的剪应力同时存在,且大小
相等,都指相(或背离)该
y
程中,认为上,下两面上的外
a
'
d
x
力将不作功。只有右侧面的外 力 (dydz) 对相应的位移 dx 作
z
b dx
dx
了功。
当材料在线弹性范围内内工作时,
y
上述力与位移成正比,因此,单
元体上外力所作的功为
1 2 1 2
z a
'
d
x
dW
( dydz)( dx)
( dxdydz)
M GI
e P
r
o
dA
M I
e p
上式为圆轴在扭转时横截面上任一点处的剪应力计算公式
M I
e p
式中:Me 为横截面上的扭矩; 为求应力的点到圆心的距离:
I p A dA
2
称为横截面对圆心的 极惯性矩
说明:
M n I
p
max
Mn
材料力学 (扭转)(四章 圆轴扭转时的强度与刚度计算)
Mx 0: T1 MA 0
C
T1 MA 7.03KN.m
22
Mx 0: -T2 MC 0
T2 MC 2.32KN.m
X
(4)讨论现在的设计是否合理。
若将A轮与B轮调换, X 则扭矩图如下:
可见轴内的最大扭矩值减小了。10
T(KN.M)
§3.2 薄壁圆筒扭转
在圆筒表面画 上许多纵向线 与圆周线,形成 许多小方格.
G
剪切胡克定律
G-剪切弹性模量
G E
2(1 )
2021/8/19
17
圆轴扭转时的应力和变形
根据观察到的现象, 经过推理,得出关于圆 轴扭转的基本假设。
m
m
圆轴扭转变形前的横截面,变形后仍保持为平面,
形状和大小不变。且相邻两截面间的距离不变。这就 是圆轴扭转的平面假设。
2021/8/19
18
二. 应力在横截面上的分布
2
而象电动机的主轴,水轮 机的主轴也承受扭转作用, 但这些零件除扭转变形外, 还伴随有其它形式的变形, 属于组合变形。
• 以扭转变形为主要变形形式的构件通常称为轴。 • 工程上应用最广的多为圆截面轴,即圆轴。
2021/8/19
3
• 扭转受力的特点是:
• 在构件的两端作用两个大小相等、方向相反且作 用面垂直于构件轴线的力偶矩。致使构件的任意 两个截面都发生绕构件轴线的相对转动,这种形 式的变形即为扭转变形。
在转矩m作用下,发现圆 周线相对地旋转了一个角 度,但大小、形状和相邻 两圆周线的距离不变。
表明,在圆筒的横截面上没有正应力和径向剪应力。
2021/8/19
11
设圆筒平均半径为r,筒壁厚度为t
因圆筒壁厚很小,可认为剪应力沿
材料力学课件 第四章 扭 转
3)结论:
①圆筒表面的各圆周线的形状、大小和间距均未改 变,只是绕轴线作了相 对转动。 ②各纵向线均倾斜了同一微小角度 。
③所有矩形网格均歪斜成同样大小的平行四边形。
第四章
扭转
取微端变形
第四章
微小矩形单元体如图所示:
①无正应力
扭转
´
a
b
dy
②横截面上各点处,只产生垂
直于半径的均匀分布的剪应力 , 沿周向大小不变,方向与该截面的
第四章
扭转
单元体的四个侧面上只有剪应力而无正应力作用,这
种应力状态称为纯剪切应力状态。
3.剪切虎克定律:
第四章
T=m
扭转
T ( 2 A 0t)
( L ) R
剪切虎克定律:当剪应力不超过材料的剪切比例极限时 (τ ≤τp),剪应力与剪应变成正比关系。
第四章
扭转
G
功率 角速度
每分钟 的转数
时间
60103 P( KW ) P M 9549 ( N m) 2n(r / min) n
第四章
3.扭矩及扭矩图
扭转
(1)扭矩:构件受扭时,横截面上的内力偶矩,记“T”。 (2) 截面法求扭矩
m
x
0
m m
T m 0 T m
(3)扭矩的符号规定:
P2 150 m2 m3 9.55 9.55 4.78 (kN m) n 300 P4 200 m4 9.55 9.55 6.37 (kN m) n 300
第四章
②求扭矩(扭矩按正方向设)
扭转
m2 1 m3 2 m1 3 m4
第四章:扭转
2 2
64.22
45.02
0.611
A1
d12
58.62
小 结 在最大切应力相同的情况下,空心轴所用的材料是实心轴的
61.1%,自重也减轻了 38.9%。其原因是:圆轴扭转时,横截面上应力
呈线性分布,越接近截面中心,应力越小,此处的材料就没有充分发挥 作用。做成空心轴,使得截面中心处的材料安置到轴的外缘,材料得到 了充分利用,而且也减轻了构件的自重。但空心轴的制造要困难些,故 应综合考虑。
解:1)用截面法求各段扭矩 AB 段:
1
2
T1 MA 900 N m
BC 段:
T
T2 M c 600 N m
600Nm
画出扭矩图如图所示
900Nm
第五节:圆轴扭转时的变形
AB 截面 极惯性矩
I P1
πd14 32
BC 截面 极惯性矩
2)C 截面相对于 A 截面的转角
IP2
πd
4 2
32
第一节:扭转的概念
扭转:是杆的又一种基本变形形式。其受力特点是:构件两 端受到两个作用面与杆的轴线垂直的、大小相等的、转向相 反的力偶矩作用,使杆件的横截面绕轴线发生相对转动。
扭转角:任意两横截面间的相对角位移。如图所示的 φ 角。
轴:工程中以扭转为主要变形的构件。如钻探机的钻杆,电 动机的主轴及机器的传动轴等。
叠加原理
CA CB BA
AB 段:
BA =
T1l1 GI P1
×
1800
=-0.8110
BC 段:
CB =
T2l2 GI P2
×
1800
=0.9810
CA CB BA 0.9810 (0.8110 ) 0.17 0
材料力学课件-第四章 扭转-薄壁杆件的扭转
例2:某等壁厚d闭口薄壁杆受扭矩T,中心线周长S,轴的最大扭转切应力与扭转变形:(1)在 S/2中心线长度上壁厚增加一倍到2d;(2)在很小的局部受损伤壁厚减薄到d/2。
解:(2)第2种情形
局部减薄对积分值影响甚微,可以忽略不计。
最大应力增加一倍。
定性研究结论:强度是局部量,刚度是整体量。
例3:比较扭转切应力与扭转变形
解:
R0
R0
比较
(1)闭口薄壁圆管
(2)开口薄壁圆管
(狭长矩形)
作业 4-22 4-27 4-35 4-36
谢谢
薄壁圆管
思考:公式的精度?
在线弹性情况下,精确解为
思考:公式(1)和(2)的适用范围?
(1)
(2)
误差
T
dx
a
b
c
d
二、闭口薄壁杆的扭转变形
dx
ds
分析方法讨论:
由静力学、几何和物理三方面求解所遇到的困难:几何形状复杂。
新方法探索:
尝试能量法。
一未知量
无未知量
问题可解
二、闭口薄壁杆的扭转变形
假设:切应力沿壁厚均匀分布,其方向平行于中心线 假设依据:
T
dx
a
b
c
d
a
b
c
d
2
1
dx
1
1
2
2
薄,切应力互等定理
利用切应力互等定理,转化为研究纵向截面切应力,利用平衡方程求解.
截面中心线所围面积 的2倍
思考:O点位置可否任选,如截面外?
ds
o
ds
材料力学扭转
材料力学扭转材料力学中的扭转是指在材料上施加一个力矩,使其绕一个轴进行转动的现象。
扭转在工程领域中广泛应用,例如在机械设计、结构设计以及材料测试等方面。
材料力学中的扭转主要涉及到弹性力学和塑性力学两个方面。
在弹性力学中,当材料受到扭矩时,它会发生弯曲变形以及剪切变形。
而在塑性力学中,材料会发生塑性流动,产生塑性变形。
在材料力学中,对于扭转的研究主要关注以下几个方面:1. 扭转角度:扭转角度是指材料在扭转过程中绕轴旋转的角度。
扭转角度通常以弧度为单位进行计量。
2. 扭转力矩:扭转力矩是作用在材料上的力矩,它使材料发生扭转。
扭转力矩的大小与施加的力及材料的形状及性质有关。
3. 扭转应变:材料在扭转过程中会发生弯曲变形和剪切变形,从而导致产生应变。
扭转应变是指材料在扭转过程中产生的应变。
4. 扭转刚度:扭转刚度是指材料抵抗扭转变形的能力。
材料的扭转刚度与其形状、尺寸以及材料的性质密切相关。
对于材料力学中的扭转现象,研究者可以通过实验和数值模拟来进行研究。
实验可以通过应用一定的扭转力矩使试样产生扭转,然后测量扭转角度和应变等参数来分析材料的扭转性能。
数值模拟可以通过建立数学模型和使用计算机进行仿真来研究材料的扭转行为。
在工程实际应用中,对于扭转现象的研究对于设计和优化机械结构以及预测和评估材料的强度和可靠性有重要意义。
通过研究材料的扭转行为,工程师可以合理设计和选择材料,从而确保结构的稳定性和安全性。
综上所述,材料力学中的扭转是指在材料上施加一个力矩,使其绕一个轴进行转动的现象。
材料的扭转行为涉及到弹性力学和塑性力学方面的研究,对于工程实践中的结构设计和材料选择具有重要意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
d4
32
(5-8)
Wt
Ip
max
Ip d /2
d3
16
(5-9)
d
o
I p
D/2
2 2
d/2
d
(D4
32
d4)
Ip
32
D4 (1 4 )
(5-10)
Wt
Ip
max
D3 (1 4 )
16
(5-11)
[例5-2]内外径分别为20mm和40mm的空心圆截面 轴,受扭矩T=1kN·m作用,计算横截面上A点的剪应 力及横截面上的最大和最小剪应力。
第五章 扭转
§5-1 扭转的概念
一、扭转的概念及实例
§5-1 扭转的概念
一、扭转的概念及实例
§5-1 扭转的概念
一、扭转的概念及实例
螺旋桨轴
受力特征: 杆受转向相反的力偶矩作用,力偶 作用面垂直于轴线。 变形特征: 横截面绕轴线相对转动。
扭转:横截面绕轴线(纵向线)作相对旋转为主要特征的变形形式。
dx
二. 扭转应力
d A
rdA T r 2 r T
dA
r
A
T
2 r 2
(5-2)
T 2 A0
根据精确的理论分析,当 ≤r/10时,上式的误差不
超过4.52%,是足够精确的。
三. 扭转角
l r
l / r ... Tl 2G r3
四、剪切胡克定律
在纯剪状态下,
单元体相对两侧面将
外力偶 Me 每分钟做的功为:
W = 2nMe
( 2)
(1)=(2) 得
P kW × 1000× 60=2 n M e N.m
Me
9549
P n
P Me 7024 n
P kW
n
r/min
Me N m
P PS
n
r/min
Me N m
(4-1)
最大功率一般用马力 (PS)或千瓦(kw)来表示。 1马力等于0.735千瓦
(5-5)
dx G I p
dA dA
o
由(b)式:
G d
dx
G T
GIp
T
Ip
(5-6)
max
T max
Ip
T Wt
(5-7)
Wt
Ip
max
(抗扭截面模量)
max
max
4.圆与圆环的极惯性矩
I
和抗扭截面模量
p
Wt
I p
d / 2 2 2 d 2 d / 24
0
4
Ip
剪应力在截面上均匀分布, 方向垂直于半径与周线相切。
nm
nm
Me
Me
?
T
T
剪应力互等定理
纯剪切:单元体上只 有剪应力而无正应力。
微元体 单元体
(dy)dx ( dx)dy
(5-3)
剪应力互等定理 : 在相互垂直 dy
的两个平面上,剪应力一定成对 出现,其数值相等,方向同时 指向或背离两平面的交线。
发生微小的相对错动,
原来互相垂直的两个
棱边的夹角改变了一
个微量。
两正交线段的直
角改变量—剪应变。
薄壁圆筒的实验, 证明剪应力与剪应变之间存在 着象拉压胡克定律类似的关系:当剪应力不超过材 料剪切比例极限τp,即当p时,剪应力与剪应变 成正比。
G (5-4)
该式称为剪切胡克定律。
材料常数: 剪切弹性模量G 拉压弹性模量E 泊松比μ
扭转角:横截面绕轴线(纵向线)相对角位移。
外力偶(moment):垂直于杆件轴线(纵向线)的横截面内(往往在 端部)的力偶。
扭矩(Torque):垂直于杆件轴线(纵向线)的横截面内的力偶。
二、外力偶矩的计算
设某轮传递的功率P(kW),轴的转速是n (r/min)
功率P(kW)--每秒钟做的功。
则每分钟做功为 W = P ×1000×60 (1) kW
468N m
T1 M B 351N m
T2 (M B M C ) 702 N m
T3 M D 468 N m
T(N m)
T1 351 N m T2 702 N m T3 468 N m
§5-3 薄壁圆筒的扭转
一、薄壁圆筒的扭转实验
受扭前在其表面上用圆周线nn,mm和纵向线画成方 格,然后加载,观察方格变形情况。
解:
A
TA
Ip
1000 0.015
0.044 (1 0.54 )
32
A 63.66MPa
静力学关系 三种关系:物理关系
变形几何关系
1.变形几何关系
观察到下列现象: (1)各圆周线的形状、大小以及两圆周线间的距离没变化 (2)纵向线仍近似为直线, 但都倾斜了同一角度γ (3)表面方格变为菱形。
平截面假设: 变形前为平面的横截面变形后仍为平面,它像刚性
平面一样绕轴线旋转了一个角度。
外表面dx rd
r d
dx 横截面上距形心为
的任一点处应变
dx d
d
dx
(a)
2. 物理关系
d
剪应力方向垂直于半径。根据剪切胡克定律, 当剪
应力不超过材料的剪切比例极限时
G
G d
dx
(b)
3.静力学关系
dA T
A
A
G
d
dx
dA
T
G d 2dA T dx A
I p 2dA 极惯性矩
A
则 d T
G E
2(1 )
gs_4_2 剪切胡克定律
G (4—2) 剪切胡克定律
式中G——剪切弹性模量; ——剪应变。
gs_4_3材料弹性常数之间关系
G E
2(1 )
(4—4)
(4—3)gs_4_4 源自切弹性应变能密度u 1 2
2 2G
§5-4 等直圆杆扭转时的应力.强度条件
一、圆杆扭转时横截面上的应力
§5-2 扭矩和扭矩图 T m 扭矩 T m
扭矩T的符号规定:
nn
T Me ㈩
T Me ㈩
[例5-1]图示传动轴,主动轮A输入功率NA=50 马力,从 动轮B、C、D输出功率分别为 NB=NC=15马力 ,ND=20马 力,轴的转速为n=300转/分。作轴的扭矩图。
解:
MA
7024 N A n
nm
r
观察现象
Me
nm
l
Me
(1) 圆周线的形状、大小及圆周线之间的距离没有改变(平 面nn,mm仍保持平行)。
(2) 纵向线倾斜了同一微小角度γ
(3)方格变为斜棱形。设想:mm相对nn转动,方格两 边发生相对错动,但两对边之间距离不变,圆筒 半径尺寸不变。
根据以上实验现象,可得结论:
圆筒横截面上只有剪应力, 而无正应力。由于壁很簿,可 认为剪应力沿簿壁均匀分布, 方向垂直于半径与周线相切。
7024 50 300
1170N m
MB
MC
7024
NB n
7024
15 300
351N m
MD
7024
NC n
7024
20 300
468 N m
NA 50PSNB NC 15PSND 20PS n = 300r/min
351N m
351N m
1170N m