高中数学必修1_第一章集合测试题B

合集下载

高中数学 第一章 集合测试题 必修1 试题

高中数学 第一章 集合测试题 必修1 试题
卜人入州八九几市潮王学校 第一章测试题
班级学号
1、集合 ,那么 〔〕
A、 B、 C、 D、
2、集合 ,那么 〔〕
A、 B、 C、 D、
3、假设集合 ,那么 〔〕
A、 B、 C、 D、
4、 满足条件 的集合 的个数是〔〕
A、4B、3 C、2D、1
5、设全集 ,集合 ,那么 是〔〕
A、 B、 C、 D、
6、设集合 ,那么 中元素的个数是〔〕
A、11B、10 C、16D、15
7、全集 ,那么集合 等于〔〕
A、 B、 C、 D、
8、假设集合 ,那么〔〕
A、 B、 C、 D、
9、设全集 ,集合 ,那么 〔〕
A、{b}B、{d}C、{a,c}D、{b,d}
10、设全集 ,集合 ,那么 〔〕
A、 B、 C、 D、
A、 B、 C、 D、
17、设全集是实数集R, , ,那么 等于〔〕,那么实数 等于〔〕
A、 B、 C、 或者 D、 或者 或者0
19、集合 且 那么实数 的取值范围是
20、设集合 ,集合 。假设 ,那么
21、设集合 ,假设 ,那么 的取值范围是
22、增城数、理、化竞赛时,高一某班有24名学生参加数学竞赛,28名学生参加物理竞赛,19名学生参加化学竞赛,其中参加数、理、化三科竞赛的有7名,只参加数、物两科的有5名,只参加物、化两科的有3名,只参加数、化两科的有4名。假设该班学生一共有48名,问没有参加任何一科竞赛的学生有多少名?
11、设全集 ,集合 ,集合 ,那么()
A、 B、 C、 D、
12、集合 ,那么 的真子集的个数是〔〕
A、15B、16 C、3D、4
13、集合 ,那么集合 为〔〕

人教B版(2019)高中数学必修第一册第一章《集合与常用逻辑用语》检测卷(含答案)

人教B版(2019)高中数学必修第一册第一章《集合与常用逻辑用语》检测卷(含答案)

人教B 版(2019)高中数学必修第一册第一章《集合与常用逻辑用语》检测卷一、单选题(本题有12小题,每小题5分,共60分)1.设全集为实数集R ,集合{}3,2,1,0,1,2,3A =---,{}2B x x =≥,则()RA B =( )A .{}2,3B .{}2,1,0,1--C .{}3,2,1,0---D .{}3,2,1,0,1---2.设x 、y R ∈,则“x y ≥”是“x y ≥”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件3.“1x >"是“11x<”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件4.下列结论中,错误的是( ) A .“1x =”是“20x x -=”的充分不必要条件B .已知命题2:,10p x R x ∀∈+>,则2:,10p x R x ⌝∃∈+≤C .“220x x +->”是“1x >”的充分不必要条件;D .命题:“x R ∀∈,sin 1x ≤”的否定是“0x R ∃∈,0sin 1x >”;5.已知:p :1x ,2x 是方程2560x x +-=的两根,q :126x x ⋅=-,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件6.已知命题:1p x ∀>,4220212022x x +>,则p ⌝为( )A .1x ∃≤,4220212022x x +≤B .1x ∀>,4220212022x x +≤C .1x ∃>,4220212022x x +≤D .1x ∀≤,4220212022x x +>7.命题“()0,x ∀∈+∞,x 3+3x ≥1”的否定是( ). A .()0,x ∃∈+∞,x 3+3x <1 B .()0,x ∃∈+∞,x 3+3x ≥1 C .()0,x ∀∈+∞,x 3+3x <1D .x 3+3x ≤18.已知集合{|25}M x x =-<<,{}33N x x =-≤≤,则M N ⋃=( ) A .{}3,2,1,0,1,2,3,4--- B .{}1,0,1,2,3- C .[)3,5-D .(]2,3-9.设集合{0,1,2,3,4,5}U =,{0,2,3,5}M =,则UM =( )A .{1,4}B .{1,5}C .{0,4,5}D .{1,4,5}10.已知集合{}1,2A =,{},,B x x a b a A b A ==-∈∈,则集合B 中元素个数为( ) A .1B .2C .3D .411.设a ∈R ,则“3a >”是“23a a >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件12.已知全集{}2,1,0,1U =--,集合{}220A x x x =+-=,{}0,1B =,则()U A B ⋃=( )A .{}2,1,0--B .{}2,1,1--C .2,0,1D .{}2,1,0,1--二、填空题(本题有4小题,每小题5分,共20分)13.命题“2000,230x x x ∃∈-+<R ”,此命题的否定是________命题.(填“真”或“假”)14.设命题:p n N ∀∈,22n n >,则p ⌝为________.15.,A B 是集合{}1,2,3,4的非空子集,则满足A B =∅的有序集合对(),A B 共有_______个. 16.设集合{}1,2,3,4A =,[)1,3B =,则A B =________.三、解答题(本题有6小题,共70分)17.(10分)已知集合{|2A x x =-或3}x ,{}B |05x x =<<,{}|12C x m x m =-≤≤ (1)求A B ,()R A B ;(2)若B C C ⋂=,求实数m 的取值范围.18.(12分)设全集为R ,集合P ={x |3<x ≤13},非空集合Q ={x |a +1≤x <2a -5}, (1)若a =10,求P ∩Q ; ()R P Q ; (2)若()Q P Q ⊆,求实数a 的取值范围19.(12分)设集合{}250A x x ax =-+>,{}25B x x =<<.(1)若集合R A =,求实数a 的取值范围;(2)若“x A ∈”是“x B ∈”的必要条件,求实数a 的取值范围.20.(12分)已知0m >,()():150p x x +-≤,:11q m x m -≤≤+. (1)若5m =,p q ∨为真命题,p q ∧为假命题,求实数x 的取值范围; (2)若p 是q 的充分不必要条件,求实数m 的取值范围.21.(12分)已知集合{|25},{|121}A x x B x m x m =-<<=+≤≤- (1)当3m =时,求()R A B ;(2)若A B A ⋃=,求实数m 的取值范围.22.(12分)设集合{}2=40A x R x x ∈+=,{}22=2(1)10,B x R x a x a a R ∈+++-=∈,若B A ⊆,求实数a 的值.参考答案1.D 【分析】先求得B R ,再根据交集运算即可得出结果. 【详解】 {}2B x x =≥,{}2B x x ∴=<R ,{}3,2,1,0,1,2,3A =---()RAB ∴={}3,2,1,0,1---.故选:D. 2.A 【分析】根据充要条件的定义,结合不等式的性质,举实例,可得答案. 【详解】解:①若x y ,||x x ,||x y ∴成立,∴充分性成立,②当3x =-,2y =时,||x y 成立,但x y 不成立,∴必要性不成立,x y ∴是||x y 的充分不必要条件,故选:A . 3.A 【分析】 由11x<得10x x -<,即1x >或0x <可进行判断.【详解】 由11x<得10xx -<,即1x >或0x <,所以1x >能够得到11x <,但是11x<不一定得到1x >, “1x >”是“11x<”成立的充分不必要条件. 故选:A.【点睛】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断: (1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集; (3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等; (4)p 是q 的既不充分又不必要条件,q 对的集合与p 对应集合互不包含 4.C 【分析】根据充分必要条件和全称量词的否定形式判断即可. 【详解】当1x =时,20x x -=.当20x x -=时,1x =或0x =.“1x =”是“20x x -=”的充分不必要条,A 对.对于含有一个量词的全称命题p :“任意的”x M ∈,()p x 的否定,p ⌝是:“存在”x M ∈,()p x ⌝.B 对.同理,D 对.当220x x +->时,1x >或2x <-.当1x >时,220x x +->.“220x x +->”是“1x >”的必要不充分条件,C 错. 故选:C. 5.A 【分析】利用充分条件和必要条件的定义判断即可 【详解】解:由2560x x +-=,得(1)(6)0x x -+=,解得1x =或6x =-, 因为1x ,2x 是方程2560x x +-=的两根,所以126x x ⋅=-, 当126x x ⋅=-时,1x ,2x 也可以不是方程260x x --=的两个根, 所以p 是q 的充分不必要条件, 故选:A 6.C 【分析】根据全称命题的否定为特称命题可得. 【详解】根据全称命题的否定为特称命题,可知命题p 的否定为1x ∃>,4220212022x x +≤. 故选:C. 7.A 【分析】将“任意”改为“存在”,只否定结论. 【详解】“()0,x ∀∈+∞,x 3+3x ≥1”的否定是“()0,x ∃∈+∞,x 3+3x <1”. 故选:A. 8.C 【分析】由已知集合,应用集合的并运算,求M N ⋃即可. 【详解】由题意,M N ⋃={}{|25}33{|35}x x x x x x -<<⋃-≤≤=-≤<, ∴M N ⋃=[)3,5-. 故选:C 9.A 【分析】根据补集的定义计算可得; 【详解】解:因为{0,1,2,3,4,5}U =,{0,2,3,5}M =,所以{}1,4UM =故选:A 10.C 【分析】由集合B 的描述知{1,2}a ∈、{1,2}b ∈,可求出x a b =-,即得集合B 的元素个数. 【详解】解:由题意知:{1,2}a ∈,{1,2}b ∈,{}{}|,,0,1,1B x x a b a A b A ==-∈∈=-,∴集合B 中元素个数为3. 故选:C. 11.A 【分析】由23a a >,解得0a <或3a >.利用充分、必要条件的定义即可判断出. 【详解】解:由23a a >,解得0a <或3a >. ∴ “3a >”是“23a a >”的充分不必要条件.故选:A . 12.B 【分析】解一元二次方程用列举法表示集合A ,然后求出U B ,最后按集合的并集概念进行运算即可. 【详解】{}{}2201,2A x x x =+-==-,U{2,1}B =--,∴()U {2,1,1}A B ⋃=--.故选:B 13.真 【分析】写出命题的否定形式,再判断真假即可. 【详解】命题“2000,230x x x ∃∈-+<R ”,此命题的否定为“2,230x x x ∀∈-+≥R ”,由()2223120x x x -+=-+≥,显然成立,所以命题的否定是真命题. 故答案为:真 14.2,2n n N n ∃∈≤【分析】根据命题的否定的定义求解. 【详解】命题:p n N ∀∈,22n n >的否定是:2,2n n N n ∃∈≤. 故答案为:2,2n n N n ∃∈≤. 15.50 【分析】根据题意可知{}1,2,3,4U =,当集合A 确定后,集合B 是UA 的非空子集,分别计算A 中有1、2、3个元素时有序集合对(),A B 的个数之和即可. 【详解】设{}1,2,3,4U =,因为A B =∅,所以B 是UA 的非空子集,当A 中只有一个元素时,(),A B 的个数为()342128⨯-=个,当A 中只有2个元素时,(),A B 的个数为()262118⨯-=个,当A 中只有3个元素时,(),A B 的个数为()14214⨯-=个,所以共有2818450++=个, 故答案为:50. 16.[]{}1,34⋃ 【分析】直接根据并集的定义计算可得; 【详解】解:因为{}1,2,3,4A =,[)1,3B = 所以[]{}1,34A B =⋃ 故答案为:[]{}1,34⋃17.(1){}|35A B x x =≤<,(){25}R A B x x ⋃=-<<∣;(2)()5,11,2⎛⎫-∞- ⎪⎝⎭.【分析】(1)进行根据交集、并集和补集的定义运算即可; (2)根据BC C =可得出C B ⊆,然后讨论C 是否为空集:C =∅时,12m m ->;C ≠∅时得到不等式组,然后解出m 的范围即可. 【详解】解:(1)因为{|2A x x =-或3}x ,{}B |05x x =<< 所以{}|35A B x x =≤<,{}|23RA x x =-<<(){}{}{}|23|05|25RA B x x x x x x =-<<<<=-<<(2)由B C C =,则C B ⊆ 当C =∅时,12m m ->,所以1m <- 当C ≠∅时,101225m m m m ->⎧⎪-≤⎨⎪<⎩,所以512m <<综上:实数m 的取值范围为()5,11,2⎛⎫-∞- ⎪⎝⎭18.(1){|1113}x x ,{|1315}x x <<;(2) (]6,9. 【分析】(1)把a 的值代入求出集合Q ,再由交集、补集的运算求出P Q ,(R P Q ⋂; (2)由()Q P Q ⊆得Q P ⊆,再由子集的定义列出不等式组,求出a 的范围. 【详解】(1)当10a =时,{|1115}Q x x =<, 又集合{|313}P x x =<,所以{|313}{|1115}{|1113}P Q x x x x x x ⋂=<⋂<=,{|3RP x x =或13}x >,则(){|1315}R P Q x x ⋂=<<; (2)由()Q P Q ⊆得,Q P ⊆,因为Q φ≠,则125132513a a a a +<-⎧⎪+>⎨⎪-⎩,解得69a <,综上所述:实数a 的取值范围是(]6,9.19.(1)a -<;(2)a < 【分析】(1)由判别式小于0可得;(2)题意说明B A ⊆,即250x ax -+>在(2,3)上恒成立,分离参数后,由基本不等式求得函数的最小值可得结论. 【详解】解:(1)∵{}250A x x ax R =-+>=,∴2200a ∆=-<,∴a -<(2)∵x A ∈是x B ∈的必要条件,∴B A ⊆,∵250x ax -+>,∴min 5a x x ⎛⎫<+ ⎪⎝⎭,()2,5x ∈,∵5x x +≥5x x+,即x =∴min 5x x ⎛⎫+= ⎪⎝⎭∴a <20.(1){41x x -≤<-或}56x <≤;(2)[)4,+∞ 【分析】(1)由p q ∨为真命题,p q ∧为假命题,可得p 与q 一真一假,然后分p 真q 假、p 假q 真两种情况,分别列出关系式,求解即可;(2)由p 是q 的充分条件,可得[][]1,51,1m m -⊆-+,则有01115m m m >⎧⎪-≤-⎨⎪+≥⎩,从而可求出实数m的取值范围. 【详解】(1)当5m =时,:46q x -≤≤,由()()150x x +-≤,可得15x -≤≤,即P :15x -≤≤. 因为p q ∨为真命题,p q ∧为假命题,故p 与q 一真一假,若p 真q 假,则1564x x x -≤≤⎧⎨><-⎩或,该不等式组无解;若p 假q 真,则1546x x x <->⎧⎨-≤≤⎩或,得41x -≤<-或56x <≤.综上所述,实数x 的取值范围为{41x x -≤<-或}56x <≤.(2)由题意,P :15x -≤≤,:11q m x m -≤≤+,因为p 是q 的充分不必要条件,故[][]1,51,1m m -⊆-+,故111115m m m m -<+⎧⎪-≤-⎨⎪+≥⎩,得4m ≥,故实数m 的取值范围为[)4,+∞.21.(1)(){}5R A B =;(2)3m <.【分析】(1)根据集合的运算法则计算;(2)由A B A ⋃=得B A ⊆,然后分类B =∅和B ≠∅求解.【详解】(1)当3m =时,B 中不等式为45x ≤≤,即{}|45B x x =≤≤,∴{|2R A x x =≤-或5}x ,则(){}5R A B =(2)∵A B A ⋃=,∴B A ⊆,①当B =∅时,121m m +>-,即2m <,此时B A ⊆;②当B ≠∅时,12112215m m m m +≤+⎧⎪+>-⎨⎪-<⎩,即23m ≤<,此时B A ⊆.综上m 的取值范围为3m <.22.a ≤-1或a =1.【分析】先求出集合A ,当A =B 时,满足B A ⊆,再由根与系数的关系可求出实数a 的值;当B A ≠时,分B ≠∅和B =∅两种情况求解即可【详解】∵A ={0,-4},B ⊆A ,于是可分为以下几种情况.(1)当A =B 时,B ={0,-4},∴由根与系数的关系,得22(1)410a a -+=-⎧⎨-=⎩解得a =1. (2)当B A ≠时,又可分为两种情况. ①当B ≠∅时,即B ={0}或B ={-4},当x =0时,有a =±1; 当x =-4时,有a =7或a =1.又由Δ=4(a +1)2-4(a 2-1)=0,解得a =-1,此时B ={0}满足条件; ②当B =∅时,Δ=4(a +1)2-4(a 2-1)<0, 解得a <-1.综合(1)(2)知,所求实数a 的取值为a ≤-1或a =1.。

高中数学必修一第一章集合与常用逻辑用语专项训练题(带答案)

高中数学必修一第一章集合与常用逻辑用语专项训练题(带答案)

高中数学必修一第一章集合与常用逻辑用语专项训练题单选题1、设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =( )A .–4B .–2C .2D .4答案:B分析:由题意首先求得集合A ,B ,然后结合交集的结果得到关于a 的方程,求解方程即可确定实数a 的值. 求解二次不等式x 2−4≤0可得:A ={x|−2≤x ≤2},求解一次不等式2x +a ≤0可得:B ={x|x ≤−a 2}. 由于A ∩B ={x|−2≤x ≤1},故:−a 2=1,解得:a =−2. 故选:B.小提示:本题主要考查交集的运算,不等式的解法等知识,意在考查学生的转化能力和计算求解能力.2、已知集合M ={x |1−a <x <2a },N =(1,4),且M ⊆N ,则实数a 的取值范围是( )A .(−∞,2]B .(−∞,0]C .(−∞,13]D .[13,2] 答案:C分析:按集合M 是是空集和不是空集求出a 的范围,再求其并集而得解.因M ⊆N ,而ϕ⊆N ,所以M =ϕ时,即2a ≤1−a ,则a ≤13,此时 M ≠ϕ时,M ⊆N ,则{1−a <2a 1−a ≥12a ≤4 ⇒{a >13a ≤0a ≤2,无解,综上得a ≤13,即实数a 的取值范围是(−∞,13].故选:C3、设全集U ={−3,−2,−1,0,1,2,3},集合A ={−1,0,1,2}, B ={−3,0,2,3},则A ∩(∁U B )=( )A .{−3,3}B .{0,2}C .{−1,1}D .{−3,−2,−1,1,3}答案:C分析:首先进行补集运算,然后进行交集运算即可求得集合的运算结果.由题意结合补集的定义可知:∁U B={−2,−1,1},则A∩(∁U B)={−1,1}.故选:C.小提示:本题主要考查补集运算,交集运算,属于基础题.4、下面四个命题:①∀x∈R,x2-3x+2>0恒成立;②∃x∈Q,x2=2;③∃x∈R,x2+1=0;④∀x∈R,4x2>2x-1+3x2.其中真命题的个数为()A.3B.2C.1D.0答案:D分析:对于①,计算判别式或配方进行判断;对于②,当x2=2时,只能得到x为±√2,由此可判断;对于③,方程x2+1=0无实数解;对于④,作差可判断.解:x2-3x+2>0,Δ=(-3)2-4×2>0,∴当x>2或x<1时,x2-3x+2>0才成立,∴①为假命题.当且仅当x=±√2时,x2=2,∴不存在x∈Q,使得x2=2,∴②为假命题.对∀x∈R,x2+1≠0,∴③为假命题.4x2-(2x-1+3x2)=x2-2x+1=(x-1)2≥0,即当x=1时,4x2=2x-1+3x2成立,∴④为假命题.∴①②③④均为假命题.故选:D小提示:此题考查特称命题和全称命题真假的判断,特称命题要为真,只要有1个成立即可,全称命题要为假,只要有1个不成立即可,属于基础题.5、已知集合S={s|s=2n+1,n∈Z},T={t|t=4n+1,n∈Z},则S∩T=()A.∅B.S C.T D.Z答案:C分析:分析可得T⊆S,由此可得出结论.任取t∈T,则t=4n+1=2⋅(2n)+1,其中n∈Z,所以,t∈S,故T⊆S,因此,S∩T=T.故选:C.6、若集合U={0,1,2,3,4,5},A={0,2,4},B={3,4},则(∁U A)∩B=().A.{3}B.{5}C.{3,4,5}D.{1,3,4,5}答案:A分析:根据补集的定义和运算求出∁U A,结合交集的概念和运算即可得出结果.由题意知,∁U A={1,3,5},又B={3,4},所以(∁U A)∩B={3}.故选:A7、集合A={x|x<−1或x≥3},B={x|ax+1≤0}若B⊆A,则实数a的取值范围是()A.[−13,1)B.[−13,1]C.(−∞,−1)∪[0,+∞)D.[−13,0)∪(0,1)答案:A分析:根据B⊆A,分B=∅和B≠∅两种情况讨论,建立不等关系即可求实数a的取值范围.解:∵B⊆A,∴①当B=∅时,即ax+1⩽0无解,此时a=0,满足题意.②当B≠∅时,即ax+1⩽0有解,当a>0时,可得x⩽−1a,要使B⊆A,则需要{a>0−1a<−1,解得0<a<1.当a<0时,可得x⩾−1a,要使B⊆A,则需要{a<0−1a⩾3,解得−13⩽a<0,综上,实数a的取值范围是[−13,1).故选:A.小提示:易错点点睛:研究集合间的关系,不要忽略讨论集合是否为∅.8、已知集合满足{1,2}⊆A⊆{1,2,3},则集合A可以是()A.{3}B.{1,3}C.{2,3}D.{1,2}答案:D分析:由题可得集合A可以是{1,2},{1,2,3}.∵{1,2}⊆A⊆{1,2,3},∴集合A可以是{1,2},{1,2,3}.故选:D.多选题9、下列存在量词命题中真命题是()A.∃x∈R,x≤0B.至少有一个整数,它既不是合数,也不是素数C.∃x∈{x|x是无理数},x2是无理数D.∃x0∈Z,1<5x0<3答案:ABC分析:结合例子,逐项判断即可得解.对于A,∃x=0∈R,使得x≤0,故A为真命题.对于B,整数1既不是合数,也不是素数,故B为真命题;对于C,若x=π,则x∈{x|x是无理数},x2是无理数,故C为真命题.对于D,∵1<5x0<3,∴15<x0<35,∴∃x0∈Z,1<5x0<3为假命题.故选:ABC.10、对任意实数a、b、c,给出下列命题,其中真命题是()A.“a=b”是“ac=bc”的充要条件B.“a>b”是“a2>b2”的充分条件C.“a<5”是“a<3”的必要条件D.“a+5是无理数”是“a是无理数”的充要条件答案:CD分析:利用特殊值法以及充分条件、必要条件的定义可判断A、B选项的正误;利用必要条件的定义可判断C 选项的正误;利用充要条件的定义可判断D选项的正误.对于A,因为“a=b”时ac=bc成立,ac=bc且c=0时,a=b不一定成立,所以“a=b”是“ac=bc”的充分不必要条件,故A错;对于B,a=−1,b=−2,a>b时,a2<b2;a=−2,b=1,a2>b2时,a<b.所以“a>b”是“a2>b2”的既不充分也不必要条件,故B错;对于C,因为“a<3”时一定有“a<5”成立,所以“a<3”是“a<5”的必要条件,C正确;对于D“a+5是无理数”是“a是无理数”的充要条件,D正确.故选:CD.小提示:本题考查充分条件、必要条件的判断,考查了充分条件和必要条件定义的应用,考查推理能力,属于基础题.11、非空集合A具有下列性质:①若x,y∈A,则xy∈A;②若x,y∈A,则x+y∈A.下列选项正确的是()A.−1∉A B.20202021∉AC.若x,y∈A,则xy∈A D.若x,y∈A,则x−y∉A答案:AC分析:若−1∈A,利用条件可得当x=−1∈A,y=0∈A时,不满足xy∈A,可判断A,利用条件可得若x≠0且x∈A,进而得2020∈A,2021∈A,可判断B,利用题设可得若x,y∈A,则xy∈A,x−y=1∈A可判断CD.对于A,若−1∈A,则−1−1=1∈A,此时−1+1=0∈A,而当x=−1∈A,y=0∈A时,−1显然无意义,不满足xy∈A,所以−1∉A,故A正确;对于B,若x≠0且x∈A,则1=xx∈A,所以2=1+1∈A,3=2+1∈A,以此类推,得对任意的n∈N∗,有n∈A,所以2020∈A,2021∈A,所以20202021∈A,故B错误;对于C,若x,y∈A,则x≠0且y≠0,又1∈A,所以1y ∈A,所以xy=x1y=∈A,故C正确;对于D,取x=2,y=1,则x−y=1∈A,故D错误.故选:AC.填空题12、设集合A={1,2,a},B={2,3}.若B⊆A,则a=_______.答案:3分析:由题意可知集合B是集合A的子集,进而求出答案.由B⊆A知集合B是集合A的子集,所以3∈A⇒a=3,所以答案是:3.13、在整数集Z中,被5除所得余数为k的所有整数组成一个“类”,记为[k],即[k]={5n+k|n∈Z},k= 0,1,2,3,4;给出下列四个结论:①2015∈[0];②−3∈[3];③Z=[0]∪[1]∪[2]∪[3]∪[4];④“整数a,b属于同一‘类’”的充要条件是“a−b∈[0]”.其中,正确结论的个数..是_______.答案:3分析:根据2015被5除的余数为0,可判断①;将−3=−5+2,可判断②;根据整数集就是由被5除所得余数为0,1,2,3,4,可判断③;令a=5n1+m1,b=5n2+m2,根据“类”的定理可证明④的真假.①由2015÷5=403,所以2015∈[0],故①正确;②由−3=5×(−1)+2,所以−3∉[3],故②错误;③整数集就是由被5除所得余数为0,1,2,3,4的整数构成,故③正确;④假设a=5n1+m1,b=5n2+m2,a−b=5(n1−n2)+m1−m2,a,b要是同类.则m1=m2,即m1−m2=0,所以a−b∈[0],反之若a−b∈[0],即m1−m2=0,所以m1=m2,则a,b是同类,④正确;所以答案是:3小提示:本题考查的知识点是命题的真假判断与应用,正确理解新定义“类”是解答的关键,以及进行简单的合情推理,属中档题.14、设P为非空实数集满足:对任意给定的x、y∈P(x、y可以相同),都有x+y∈P,x−y∈P,xy∈P,则称P为幸运集.①集合P={−2,−1,0,1,2}为幸运集;②集合P={x|x=2n,n∈Z}为幸运集;③若集合P1、P2为幸运集,则P1∪P2为幸运集;④若集合P为幸运集,则一定有0∈P;其中正确结论的序号是________答案:②④解析:①取x=y=2判断;②设x=2k1∈P,y=2k2∈P判断;③举例P1={x|x=2k,k∈Z},P2={x|x=3k,k∈Z}判断;④由x、y可以相同判断;①当x=y=2,x+y=4∉P,所以集合P不是幸运集,故错误;②设x=2k1∈P,y=2k2∈P,则x+y=2(k1+k2)∈A,x−y=2(k1−k2)∈A,xy=2k1⋅k2∈A,所以集合P是幸运集,故正确;③如集合P1={x|x=2k,k∈Z},P2={x|x=3k,k∈Z}为幸运集,但P1∪P2不为幸运集,如x=2,y=3时,x+y=5∉P1∪P2,故错误;④因为集合P为幸运集,则x−y∈P,当x=y时,x−y=0,一定有0∈P,故正确;所以答案是:②④小提示:关键点点睛:读懂新定义的含义,结合“给定的x、y∈P(x、y可以相同),都有x+y∈P,x−y∈P,xy∈P”,灵活运用举例法.解答题15、已知集合A={x|x=m+√6n,其中m,n∈Q}.(1)试分别判断x1=−√6,x2=√2−√3+√2+√3与集合A的关系;(2)若x1,x2∈A,则x1x2是否一定为集合A的元素?请说明你的理由.答案:(1)x1∈A,x2∈A(2)x1x2∈A,理由见解析分析:(1)将x1,x2化简,并判断是否可以化为m+√6n,m,n∈Q的形式即可判断关系.(2)由题设,令x1=m1+√6n1,x2=m2+√6n2,进而判断是否有x1x2=m+√6n,m,n∈Q的形式即可判断.(1)x1=−√6=0+√6×(−1)∈A,即m=0,n=−1符合;x2=√(√3−1)22+√(√3+1)22=√6=0+√6×1∈A,即m=0,n=1符合.(2)x1x2∈A.理由如下:由x1,x2∈A知:存在m1,m2,n1,n2∈Q,使得x1=m1+√6n1,x2=m2+√6n2,∴x1x2=(m1+√6n1)(m2+√6n2)=(m1m2+6n1n2)+√6(m1n2+m2n1),其中m1m2+6n1n2,m1n2+ m2n1∈Q,∴x1x2∈A.。

(高中数学必修1)第一章--集合部分试题及答案

(高中数学必修1)第一章--集合部分试题及答案

A BC(高中数学必修1)第一章集合部分试题[基础训练A组]一、选择题1.下列各项中,不可以组成集合的是()A.所有的正数B.等于2的数C.接近于0的数D.不等于0的偶数2.下列四个集合中,是空集的是()A.}33|{=+xx B.},,|),{(22Ryxxyyx∈-=C.}0|{2≤xx D.},01|{2Rxxxx∈=+-3.下列表示图形中的阴影部分的是()A.()()A CB CB.()()A B A CC.()()A B B CD.()A B C4.下面有四个命题:(1)集合N中最小的数是1;(2)若a-不属于N,则a属于N;(3)若,,NbNa∈∈则ba+的最小值为2;(4)xx212=+的解可表示为{}1,1;其中正确命题的个数为()A.0个B.1个C.2个D.3个5.若集合{},,M a b c=中的元素是△ABC的三边长,则△ABC一定不是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形6.若全集{}{}0,1,2,32UU C A==且,则集合A的真子集共有()A.3个B.5个C.7个D.8个二、填空题1.用符号“∈”或“∉”填空(1)0______N, 5______N, 16______N(2)1______,_______,______2RQ Q e C Qπ-(e是个无理数)(3{}|,,x x a a Q b Q=∈∈2. 若集合{}|6,A x x x N=≤∈,{|}B x x=是非质数,C A B= ,则C的非空子集的个数为。

3.若集合{}|37A x x=≤<,{}|210B x x=<<,则A B=_____________.4.设集合{32}A x x=-≤≤,{2121}B x k x k=-≤≤+,且A B⊇,则实数k的取值范围是。

5.已知{}{}221,21A y y x xB y y x==-+-==+,则A B=_________。

高中数学 第一章 集合综合测试(B)新人教B版必修1-新人教B版高一必修1数学试题

高中数学 第一章 集合综合测试(B)新人教B版必修1-新人教B版高一必修1数学试题

第一章综合测试(B)(时间:120分钟 满分:150分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2014~2015学年度某某育才中学高一上学期月考)方程组⎩⎪⎨⎪⎧x +y =1x 2-y 2=9的解集是( )A .(5,4)B .(5,-4)C .{(-5,4)}D .{(5,-4)}[答案] D[解析] 由⎩⎪⎨⎪⎧x +y =1x 2-y 2=9,解得⎩⎪⎨⎪⎧x =5y =-4,故选D .2.(2015·新课标Ⅱ理,1)已知集合A ={-2,-1,0,2},B ={x |(x -1)(x +2)<0},则A ∩B =( )A .{-1,0}B .{0,1}C .{-1,0,1}D .{0,1,2}[答案] A[解析] 由已知得B ={x |-2<x <1}, 故A ∩B ={-1,0},故选A .3.(2014~2015学年度潍坊四县市高一上学期期中测试)已知全集U ={0,1,2},且∁U A ={2},则集合A 等于( )A .{0}B .{0,1}C .{1}D .∅ [答案] B[解析] ∵U ={0,1,2},且∁U A ={2},∴A ={0,1}.4.(2014~2015学年度德阳五中高一上学期月考)设全集U ={1,2,3,4,5,6,7},P ={1,2,3,4,5},Q ={3,4,5,6,7},则P ∪(∁U Q )=( )A .{1,2}B .{3,4,5}C .{1,2,6,7}D .{1,2,3,4,5} [答案] D[解析] ∁U Q ={1,2},P ∪(∁U Q )={1,2,3,4,5}.5.(2015·某某理,1)已知集合A ={1,2,3},B ={2,3},则( ) A .A =B B .A ∩B =∅ C .A BD .B A[答案] D[解析] 根据子集的定义,B A,故选D.6.(2014~2015学年度某某某某市高一上学期期中测试)已知集合M={x|y=2-x},N ={y|y=x2},则M∩N=( )A.∅B.{(1,1)}C.{x|x≥0} D.{y|y>0}[答案] C[解析] M={x|y=2-x}=R,N={y|y=x2}={y|y≥0},∴M∩N={x|x≥0}.7.(2014·某某文,1)设集合S={x|x≥2},T={x|x≤5},则S∩T=( )A.(-∞,5] B.[2,+∞)C.(2,5) D.[2,5][答案] D[解析] S∩T={x|x≥2}∩{x|x≤5}={x|2≤x≤5},故选D.8.已知A∩{-1,0,1}={0,1},且A∪{-2,0,2}={-2,0,1,2},则满足上述条件的集合A共有( )A.2个B.4个C.6个D.8个[答案] B[解析] ∵A∩{-1,0,1}={0,1},∴0∈A,1∈A.又∵A∪{-2,0,2}={-2,0,1,2},∴-2,2可能是集合A的元素,也可能不是集合A的元素.∴A={0,1}或A={0,1,-2},或A={0,1,2},或A={0,1,-2,2}.9.设集合U={1,2,3,4,5},A={1,2,3},B={2,4},则图中阴影部分所表示的集合是( )A.{1,3,4}B.{2,4}C.{4,5}D.{4}[答案] D[解析] A∩B={1,2,3}∩{2,4}={2},图中阴影部分所表示的集合是∁B(A∩B)={4}.10.设集合A={(x,y)|y=ax+1},B={(x,y)|y=x+b},且A∩B={(2,5)},则( )A .a =3,b =2B .a =2,b =3C .a =-3,b =-2D .a =-2,b =-3[答案] B[解析] ∵A ∩B ={(2,5)},∴(2,5)∈A ,(2,5)∈B , ∴5=2a +1,5=2+b ,∴a =2,b =3.11.已知集合A ={x |x 2+mx +1=0},若A ∩R =∅,则实数m 的取值X 围是( ) A .m <4 B .m >4 C .0<m <4 D .0≤m <4[答案] A[解析] ∵A ∩R =∅,∴A =∅,即方程x 2+mx +1=0无解,∴Δ=(m )2-4<0, ∴m <4.12.在集合{a ,b ,c ,d }上定义两种运算⊕和⊗如下:那么d ⊗(a ⊕c )=( ) A .a B .b C .c D .d[答案] A[解析] 由题中表格可知,a ⊕c =c ,d ⊗(a ⊕c )=d ⊗c =a ,故选A .二、填空题(本大题共4个小题,每小题4分,共16分,将正确答案填在题中横线上) 13.若{a,0,1}={c ,1b,-1},则a =______,b ________,c =________.[答案] -1 1 0[解析] ∵1b≠0,∴c =0,a =-1,b =1.14.(2014~2015学年度某某启东中学高一上学期月考)若集合A ={x |1<x <3},B ={x |2<x <4},则A ∩B =________.[答案] {x |2<x <3}[解析] A ∩B ={x |1<x <3}∩{x |2<x <4} ={x |2<x <3}.15.已知U ={2,3,a 2+6a +13},A ={|a -1|,2},∁U A ={5},则实数a =________. [答案] -2[解析] ∵∁U A ={5},∴5∉A,5∈U ,∴⎩⎪⎨⎪⎧|a -1|=3a 2+6a +13=5,即⎩⎪⎨⎪⎧a -1=3a 2+6a +8=0,或⎩⎪⎨⎪⎧a -1=-3a 2+6a +8=0,解得a =-2.16.有15人进家电超市,其中有8人买了电视,有7人买了电脑,两种均买了的有2人,则这两种都没买的有________人.[答案] 2[解析] 设两种都没买的有x 人,由题意知,只买电视的有6人,只买电脑的有5人,两种均买了的有2人,∴6+5+2+x =15,∴x =2.三、解答题(本大题共6个小题,共74分,解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分12分)设全集U ={x ∈Z |0≤x ≤10},A ={1,2,4,5,9},B ={4,6,7,8,10},C ={3,5,7}.求:A ∪B ,(A ∩B )∩C ,(∁U A )∩(∁U B ).[解析] U ={x ∈Z |0≤x ≤10}={0,1,2,3,4,5,6,7,8,9,10},A ∪B ={1,2,4,5,6,7,8,9,10}, A ∩B ={4},(A ∩B )∩C ={4}∩{3,5,7}=∅. ∁U A ={0,3,6,7,8,10}, ∁U B ={0,1,2,3,5,9}, ∴(∁U A )∩(∁U B )={0,3}.18.(本小题满分12分)(2014~2015学年度某某师X 大学附属第二中学高一上学期月考)已知全集U ={x |x -2≥0或x -1≤0},A ={x |x <1或x >3},B ={x |x ≤1或x >2}.求:A ∩B ,A ∪B ,(∁U A )∩(∁U B ),(∁U A )∪(∁U B ).[解析] U ={x |x ≥2或x ≤1},∴∁U A ={x |x =1或2≤x <3},∁U B ={x |x =2}. ∴A ∩B ={x |x <1或x >3},A ∪B ={x |x ≤1或x >2},(∁U A )∩(∁U B )={x |x =2},(∁U A )∪(∁U B )={x |x =1或2≤x <3}.19.(本小题满分12分)已知集合A ={x |kx 2-8x +16=0}中只有一个元素,试求出实数k 的值,并用列举法表示集合A .[解析] ∵集合A 中只有一个元素,∴方程kx 2-8x +16=0只有一个实根或有两个相等的实数根.①当k =0时,方程-8x +16=0只有一个实数根2,此时A ={2}. ②当k ≠0时,由Δ=(-8)2-64k =0, 得k =1,此时A ={x |x 2-8x +16=0}={4}. 综上可知,k =0,A ={2}或k =1,A ={4}.20.(本小题满分12分)(2014~2015学年度某某正定中学高一上学期月考)已知全集U =R ,集合M ={x |-1≤x ≤4m -2},P ={x |x >2或x ≤1}.(1)若m =2,求M ∩P ;(2)若M ∩P =R ,某某数m 的取值X 围. [解析] (1)m =2时,M ={x |-1≤x ≤6}, ∴M ∩P ={x |-1≤x ≤1或2<x ≤6}. (2)若M ∪P =R ,则有4m -2≥2,∴m ≥1.21.(本小题满分12分)已知集合A ={x |x <-1或x ≥1},B ={x |x ≤2a 或x ≥a +1},若(∁R B )⊆A ,某某数a 的取值X 围.[解析] ∵B ={x |x ≤2a 或x ≥a +1}, ∴∁R B ={x |2a <x <a +1}.当2a ≥a +1,即a ≥1时,∁R B =∅⊆A , 当2a <a +1,即a <1时,∁R B ≠∅, 要使∁R B ⊆A ,应满足a +1≤-1或2a ≥1, 即a ≤-2或12≤a <1.综上可知,实数a 的取值X 围为a ≤-2或a ≥12.22.(本小题满分14分)已知集合A ={x |x 2-4ax +2a +6=0},B ={x |x <0},若A ∩B ≠∅,求a 的取值X 围.[解析] ∵A ∩B ≠∅,∴A ≠∅,即方程x 2-4ax +2a +6=0有实数根,∴Δ=(-4a )2-4(2a +6)≥0,即(a +1)(2a -3)≥0,∴⎩⎪⎨⎪⎧a +1≥02a -3≥0,或⎩⎪⎨⎪⎧a +1≤02a -3≤0,解得a ≥32或a ≤-1.①又B ={x |x <0},∴方程x 2-4ax +2a +6=0至少有一个负实数根.若方程x 2-4ax +2a+6=0没有负实数根,则需有⎩⎪⎨⎪⎧Δ≥0x 1+x 2=4a ≥0x 1·x 2=2a +6≥0,解得a ≥32.所以方程至少有一负实数根时有a <32.②由①②取得公共部分得a ≤-1.即当A ∩B ≠∅时,a 的取值X 围为a ≤-1.。

高中数学 第一单元 集合与函数概B卷单元测试 新人教A版必修1

高中数学 第一单元 集合与函数概B卷单元测试 新人教A版必修1

集合与函数本试卷满分:100分;考试时间:90分钟一、选择题(本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合要求的)1.下列函数中与函数y =x -1相同的是( ) A .y =(1-x )2B .y =2)1(-xC .y =1123++-x x xD .y =112+-x x2.下列函数表示偶函数的是( ) A .y =2xB .y =x 3C .y =x +1D .y =x 2(-1<x ≤1) 3.函数y =242x x ---的定义域是( )A .{2}B .{1,2}C .{x |x ≤-2}D .∅4.已知符号函数:sgn (x )=⎪⎩⎪⎨⎧<-=>).0(1),0(0),0(1x x x 不等式sgn (x -2)<1的解集是( )A .x ≤2B .x <2C .x ≥2D .x <3 5.已知f (x )是奇函数,且当x >0时,f (x )=x (1-x ),则x <0时,f (x )为( ) A .-x (1-x ) B .x (1-x ) C .x (1+x )D .-x (1+x )6.已知集合A ={(x ,y )|2x -y =0},集合B ={(x ,y )|x -y =3},则集合A ∩B 是( ) A .{-6,-3}B .{(-3,-6)}C .{3,6}D .(-3,-6)7.函数f (x )=xx x -+-||1212的定义域是( )A .{x |x ≤0}B .{x |x ≤-1)C .{x |x ≥1)D .{x |x ≤-1或x ≥1)8.已知狄利克雷函数的定义为:则D (x )的图象是( )A .两条平行直线B .两条平行直线上稠密的点C .两条相交直线D .两条相交直线上稠密的点 9.函数y =2x +x1(x ≥1)的值域是( )A .{y |y ≥3}B .{y |y ≥22}C .{y |y ≥4}D .{y |22≤y ≤3} 10.函数y =x 1-x 的大致图象是( )二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上) 11.在给定A →B 的映射f :(x ,y )→(x +y ,x -y )下,集合A 中的元素(2,1)对应着B 中的元素__________.12.函数y =|x -3|的递减区间是__________.13.函数f (x )对于任意的x 1,x 2∈R +恒有f (x 1+x 2)=f (x 1)+f (x 2)成立,且f (1)=41,则f (2 008)=__________.14.要修一个面积为800 m 2的长方形的网球场,并且四周修前后l m ,左右2 m 的小路(如图),则占地面积的最小值是__________m 2.三、解答题(本大题共5小题,每小题8分,共40分,解答应写出文字说明、证明过程或 演算步骤)15.甲、乙两地相距s km ,汽车从甲地匀速行驶到乙地:速率不超过c km /h .已知汽车每小时的运输成本(单位:元)由可变部分和固定部分组成.可变部分与速率钞km /h 的平方成正比,比例系数为b ,固定部分为a 元.(1)把全部运输成本y 元表示成速率v km /h 的函数,指出函数的定义域; (2)为了使全程运输成本最小,汽车应以多大的速率行驶?16.函数y =f (x )的图象如图所示.(1)函数y =f (x )的定义域可能是什么? (2)函数y =f (x )的值域可能是什么? (3)y 的哪些值只与x 的一个值对应?17.先用定义判断函数f (x )=1+12 x 在区间[2,6]上的单调性,再求函数f (x )在区间[2,6]上的最大值和最小值.18.(1)求下列函数的定义域: ①1231)(2-++-=x x x x f ;②03)1(1312)(-+++-=x x x x f .(2)已知函数f (x )= 213+++x x .①求f (-3)、f (32)的值;②当m >0时,求f (m -1)的值.19.设某公民的月所得(工资、薪金所得)x 元,每月纳所得税f (x )元是x 的函数.当前国家制定的《个人所得税率表》如下:(2)某人在某月缴纳个人所得税是240元,他那个月的工资、薪金收入是多少元?(结果保留整数)。

新教材人教版高一数学上册单元测试题含答案全套

新教材人教版高一数学上册单元测试题含答案全套

新教材人教版高一数学上册单元测试题含答案全套人教版高中数学必修第一册第一章测试题第Ⅰ卷一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合,,则等于( )A .B .C .D .【答案】B【解析】集合,,.2.是的( )条件 A .充分不必要 B .必要不充分 C .充要 D .既不充分也不必要 【答案】B【解析】由不能推得,反之由可推得, 所以是的必要不充分条件. 3.已知集合,,若,则实数的值为( )A .B .C .D .【答案】B【解析】∵集合,,且,∴,因此.4.下列命题中正确的是( )A .任何一个集合必有两个以上的子集B .空集是任何集合的子集C .空集没有子集D .空集是任何集合的真子集 【答案】B【解析】空集只有一个子集,故A 错;B 正确; 空集是本身的子集,故C 错;空集不能是空集的真子集,故D 错. 5.已知集合,则中元素的个数为( )A .B .C .D .【答案】A【解析】因为集合,{}1,2,3,4,5A ={}21,B y y x x A ==-∈A B {2,4}{1,3,5}{2,4,7,9}{1,2,3,4,5,7,9}{}1,2,3,4,5A ={}{}21,1,3,5,7,9B y y x x A ==-∈={}1,3,5A B =1x >4x >1x >4x >4x >1x >1x >4x >{1,3}A =-2{2,}B a ={1,2,3,9}A B =-a 1±3±1-3{1,3}A =-2{2,}B a ={1,2,3,9}AB =-29a =3a =±(){}22,3,,A x y xy x y =+≤∈∈Z Z A 9854(){}22,3,,A x y xy x y =+≤∈∈Z Z所以满足且,的点有,,,,,,,,共个.6.已知,则( )A .B .C .D .【答案】B 【解析】,故A 错,B 对,显然,所以C 不对,而,所以D 也不对,故本题选B .7.命题“存在实数,使”的否定是( ) A .对任意实数,都有 B .对任意实数,都有 C .不存在实数,使 D .存在实数, 【答案】B【解析】命题“存在实数,使”的否定是“对任意实数,都有”. 8.集合中的不能取的值的个数是( ) A .B .C .D .【答案】B【解析】由题意可知,且且, 故集合中的不能取的值的个数是个. 9.下列集合中,是空集的是( ) A . B .C .D .【答案】B【解析】对于A 选项,,不是空集, 对于B 选项,没有实数根,故为空集, 对于C 选项,显然不是空集,对于D 选项,集合为,故不是空集. 10.下列各组集合中表示同一集合的是( ) A ., B ., C ., D .,【答案】B223x y +≤x ∈Z y ∈Z (1,1)--(1,0)-(1,1)-(0,1)-(0,0)(0,1)(1,1)-(1,0)(1,1)9a ={A x x =≥a A ∉a A ∈{}a A ={}a a ∉>a A ∈{}a A ≠{}a a ∈x 1x >x 1x >x 1x ≤x 1x ≤x 1x ≤x 1x >x 1x ≤{}22,4,0x x --x 2345222040224x x x x x -≠-≠⇒≠-≠⎧⎪⎨⎪⎩-2x ≠-1x ≠-{}22,4,0x x --x 3{}0|2x x +={}210,x x x +=∈R {}1|x x <(){}22,,,x y yx x y =-∈R 2x =-210x +={(0,0)}{(3,2)}M ={3,2}N ={2,3}M ={3,2}N ={2,3}M ={2,3}N x y ==={(2,3)}M ={(5,4)}N =【解析】对于A ,,表示点集,,表示数集,故不是同一集合; 对于B ,,,根据集合的无序性,集合表示同一集合; 对于C ,集合的元素是数,集合的元素是等式;对于D ,,集合的元素是点,, 集合的元素是点,集合不表示同一集合.11.学校先举办了一次田径运动会,某班共有名同学参赛,又举办了一次球类运动会,这个班有名同学参赛,两次运动会都参赛的有人.两次运动会中,这个班总共的参赛人数为( ) A . B . C . D . 【答案】B【解析】因为参加田径运动会的有名同学,参加球类运动会的有名同学,两次运动会都参加的有人,所以两次运动会中,这个班总共的参赛人数为.12.已知集合,.若, 则实数的取值范围为( ) A . B .C .D .【答案】D【解析】, 当为空集时,;当不为空集时,,综上所述得.第Ⅱ卷二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.集合,则集合的子集的个数为 个. 【答案】【解析】由已知,集合的子集个数为.14.命题“”是命题“”的 (“充分不必要,必要不充分,充要,既不充分也不必要”)条件. 【答案】必要不充分【解析】的解为或,所以当“”成立时,则“”未必成立; 若“”,则“”成立,{(3,2)}M =M {3,2}N =N {2,3}M ={3,2}N =,M N M N {(2,3)}M =M (2,3){(5,4)}N =N (5,4),M N 8123201714238123812317+-={}|25A x x =-≤≤{}|121B x m x m =+≤≤-B A ⊆m 3m ≥23m ≤≤2m ≥3m ≤{}|121B x m x m =+≤≤-B 2112m m m -<+⇒<B 22152312m m m m ≥⎧⎪-≤⇒≤≤⎨⎪+≥-⎩3m ≤2{}1,A =A 4A 224=220x x --=1x =-220x x --=1x =-2x =220x x --=1x =-1x =-220x x --=故命题“”是命题“”的必要不充分条件.15.命题“,”的否定是 .【答案】,【解析】由全称量词命题的否定是存在量词命题可知,命题“,”的否定是“,”.16.设全集是实数集,,, 则图中阴影部分所表示的集合是 .【答案】【解析】由图可知,阴影部分为,∵,∴,∴.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分)已知集合,且,求的取值集合. 【答案】.【解析】∵,∴或,即或.当时,;当时,; 当时,不满足互异性, ∴的取值集合为{}1,3.18.(12分)已知集合,,若,求实数,的值.【答案】或.220x x --=1x =-x ∀∈R 23210x x -+>0x ∃∈R 2003210x x -+≤x ∀∈R 23210x x -+>0x ∃∈R 2003210x x -+≤U R {}22M x x x =<->或{}13N x x =<<{}12x x <≤Venn ()UN M {}22M x x x =<->或{}22UM x x -=≤≤(){}12UNM x x =<≤{}21,2,4M m m =++5M ∈m {}1,3{}251,2,4m m ∈++25m +=245m +=3m =1m =±3m ={}1,5,13M =1m ={}1,3,5M =1m =-{}1,1,5M =m {,,2}A a b =2{2,,2}B b a =A B =a b 01a b =⎧⎨=⎩1412a b ⎧=⎪⎪⎨⎪=⎪⎩【解析】由已知,得①,解得或, 当时,集合不满足互异性, 当时,集合,集合,符合题意;②,解得(舍)或,当时,集合,集合符合题意,综上所述,可得或.19.(12分)设集合,. (1)若,试判定集合与的关系; (2)若,求实数的取值集合.【答案】(1)是的真子集;(2). 【解析】(1),,∴是的真子集. (2)当时,满足,此时;当时,,集合,又,得或,解得或. 综上,实数的取值集合为.20.(12分)已知全集,集合,.求:A B =22a a b b =⎧⎨=⎩00a b =⎧⎨=⎩01a b =⎧⎨=⎩00a b =⎧⎨=⎩{0,0,2}A =01a b =⎧⎨=⎩{0,1,2}A ={2,1,0}B =22a b b a ⎧=⎨=⎩00a b =⎧⎨=⎩1412a b ⎧=⎪⎪⎨⎪=⎪⎩1412a b ⎧=⎪⎪⎨⎪=⎪⎩11{,,2}42A =11{2,,}42B =01a b =⎧⎨=⎩1412a b ⎧=⎪⎪⎨⎪=⎪⎩{}28150A x x x =-+=}10B =-=15a =A B B A ⊆a B A 110,,35⎧⎫⎨⎬⎩⎭{3,5}A ={5}B =B A B =∅B A ⊆0a =B ≠∅0a ≠1B a ⎧⎫=⎨⎬⎩⎭B A ⊆13a =15a=13a =15a 110,,35⎧⎫⎨⎬⎩⎭{}6U x x =∈<N {}1,2,3A ={}2,4B =(1),,;(2),;(3)设集合且,求的取值范围.【答案】(1)见解析;(2)见解析;(3). 【解析】(1),∵,,.(2),∴.(3)由(2)可知,∵,∴,解得.21.(12分)已知集合为全体实数集,,. (1)若,求;(2)若,求实数的取值范围. 【答案】(1);(2).【解析】(1)当时,,所以,所以.(2)①,即时,,此时满足.②当,即时,,由得,或, 所以.综上,实数的取值范围为.22.(12分)已知二次函数,非空集合.(1)当时,二次函数的最小值为,求实数的取值范围;(2)是否存在整数的值,使得“”是“二次函数的大值为”的充分条件, 如果存在,求出一个整数的值,如果不存在,请说明理由. 【答案】(1);(2)见解析.【解析】(1),当且仅当时,二次函数有最小值为,由已知时,二次函数的最小值为,则,所以. (2)二次函数,开口向上,对称轴为,作出二次函数图象如图所示,由“”是“二次函数的大值为”的充分条件, 即时,二次函数的最大值为,A B UA UB AB ()UA B {|21}C x a x a =-<≤-()UA CB ⊆a 3a ≥2A B ={0,1,2,3,4,5}U ={0,4,5}UA ={0,1,3,5}UB ={1,2,3,4}AB =(){0,5}UA B =(){0,5}UA B =()U A C B ⊆021521a a a a -<⎧⎪-≥⎨⎪->-⎩3a ≥U {}25M x x x =≤-≥或{}121N x a x a =+≤≤-3a =UMN N M ⊆a {}45Ux x x MN =<≥或{}24a a ≥或3a ={}45|N x x =≤≤{}45UN x x x =<>或{}45Ux x x MN =<≥或211a a -<+2a <N =∅N M ⊆211a a -≥+2a ≥N ≠∅N M ⊆15a +≥212a -≤-4a ≥a {}24a a a <≥或243y x x =-+{}|0A x x a =≤≤x A ∈1-a a x A ∈3a 2a ≥2243(2)1y x x x =-+=--2x =1-x A ∈1-2A ∈2a ≥2(2)1y x =--2x =x A ∈3x A ∈3,即为,令,解得或,由图像可知,当或时,二次函数的最大值不等于,不符合充分条件, 则,即可取的整数值为,,,,任意一个.第一册第二章测试题一元二次函数、方程和不等式注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

高中数学必修一 第一章测试题(含答案)

高中数学必修一 第一章测试题(含答案)

必修一 第一章 集合与简易逻辑单元测试学校:___________姓名:___________班级:___________考号:___________一、单选题 1.已知全集U ={1,2,3,4,5,6,7},A ={2,3,5,7},B ={1,3,6,7},则∁U (A ∩B )=( ) A .{4}B .∅C .{1,2,4,5,6}D .{1,2,3,5,6}2.A ={2,3},B ={x ∈N|x 2−3x <0},则A ∪B =( ) A .{1,2,3}B .{0,1,2,}C .{0,2,3}D .{0,1,2,3}3.下列各组集合表示同一集合的是( ) A .M ={(3,2)},N ={(2,3)} B .M ={(x,y)|x +y =1},N ={y |x +y =1} C .M ={4,5},N ={5,4}D .M ={1,2},N ={(1,2)}4.已知全集U =Z ,集合M ={x|−1<x <2,x ∈Z},N ={−1,0,1,2},则()C U M N ⋂=( ) A .{−1,2}B .{−1,0}C .{0,1}D .{1,2}5.设集合U ={1,2,3,4},M ={1,2,3},N ={2,3},则∁U (M ∩N )=( ) A .{4}B .{1,2}C .{}2,3D .{1,4}6.下列各式中:①{0}∈{0,1,2};②{0,1,2}⊆{2,1,0};③∅⊆{0,1,2};④∅={0};⑤{0,1}={(0,1)};⑥0={0}.正确的个数是( ) A .1B .2C .3D .47.命题“∃x ∈R ,x 2−2x +2≤0”的否定是( ) A .∃x ∈R ,x 2−2x +2≥0 B .∃x ∈R ,2220x x -+> C .∀x ∈R ,2220x x -+>D .∀x ∈R ,x 2−2x +2≤08.王昌龄《从军行》中两句诗为“黄沙百战穿金甲,不破楼兰终不还”,其中后一句中“攻破楼兰”是“返回家乡”的( ) A .充分条件 B .必要条件C .充要条件D .既不充分也不必要条件9.若命题:“∃x ∈R ,使x 2−x −m =0”是真命题,则实数m 的取值范围是( ) A .[−14,0]B .10,4⎡⎤⎢⎥⎣⎦C .1,4⎡⎫-+∞⎪⎢⎣⎭D .1,4⎛⎤-∞ ⎥⎝⎦10.命题“∀x ∈[1,2],x 2-a ≤0”为真命题的一个充分不必要条件是( ) A .a ≥4B .a ≤4C .a ≥5D .a ≤511.已知集合A ={x|ax =x 2},B ={0,1,2},若A ⊆B ,则实数a 的值为( ) A .1或2B .0或1C .0或2D .0或1或212.已知集合A ={x|−2≤x ≤5},B ={x|m +1≤x ≤2m −1}.若B ⊆A ,则实数m 的取值范围为( ) A .m ≥3B .2≤m ≤3C .3m ≤D .m ≥2二、填空题 13.已知集合A ={−1,0,1},B ={0,a,a 2},若A =B ,则a =______.14.已知集合M ={(x,y)|x +y =2}、N ={(x,y)|x −y =4},那么集合M ∩N= 15.“方程220x x a --=没有实数根”的充要条件是________.16.已知A ,B 是两个集合,定义A −B ={x|x ∈A,x ∉B},若A ={x|−1<x <4},B ={x|x >2},则A −B =_______________.三、解答题 17.已知A ={a −1,2a 2+5a +1,a 2+1}, −2∈A ,求实数a 的值.18.已知集合A ={x |−4<x <2},B ={x |x <−5或x >1}.求A ∪B ,A ∩(∁R B ); 19.已知集合U ={1,2,3,4,5,6,7,8,9},A ={x|3≤x ≤7且x ∈U},B ={x|x =3n,n ∈Z 且x ∈U}.(1)写出集合B 的所有子集; (2)求A ∩B ,A ∪∁U B .20.已知全集U =R ,集合A ={x|−1≤x ≤3}. (1)求C U A ;(2)若集合B ={x |2x −a >0},且B ⊆(C U A ),求实数a 的取值范围.21.已知集合{}|123A x a x a =-≤≤+,{}|14B x x =-≤≤,全集U =R .(1)当a=1时,求(C U A)∩B;(2)若“x∈B”是“x∈A”的必要条件,求实数a的取值范围.22.命题p:“∀x∈[1,2],x2+x−a≥0”,命题q:“∃x∈R,x2+3x+2−a=0”.(1)写出命题p的否定命题¬p,并求当命题¬p为真时,实数a的取值范围;(2)若p和q中有且只有一个是真命题,求实数a的取值范围.参考答案:1.C【分析】先求交集,再求补集,即得答案.【详解】因为A={2,3,5,7},B={1,3,6,7},所以A∩B={3,7},A B={1,2,4,5,6}.又全集U={1,2,3,4,5,6,7},所以()U故选:C2.A【分析】根据一元二次不等式的运算求出集合B,再根据并集运算即可求出结果.【详解】因为B={x∈N|x2−3x<0},所以B={1,2},所以A∪B={1,2,3}.故选:A.【点睛】本题主要考查了集合的并集运算,属于基础题.3.C【分析】根据集合的表示法一一判断即可;【详解】解:对于A:集合M={(3,2)}表示含有点(3,2)的集合,N={(2,3)}表示含有点(2,3)的集合,显然不是同一集合,故A错误;对于B:集合M表示的是直线x+y=1上的点组成的集合,集合N=R为数集,故B错误;对于C:集合M、N均表示含有4,5两个元素组成的集合,故是同一集合,故C正确;对于D:集合M表示的是数集,集合N为点集,故D错误;故选:C4.A【解析】根据集合M,求出C U M,然后再根据交集运算即可求出结果.【详解】M={x|−1<x<2,x∈Z}={0,1}∴()C {1,2}U M N ⋂=-. 故选:A.【点睛】本题主要考查集合的交集和补集运算,属于基础题. 5.D【分析】根据交集、补集的定义计算可得;【详解】解:∵集合U ={1,2,3,4},M ={1,2,3},N ={2,3} ∴M ∩N ={2,3}, 则∁U (M ∩N)={1,4}. 故选:D . 6.B【分析】根据相等集合的概念,元素与集合、集合与集合之间的关系,空集的性质判断各项的正误.【详解】∈集合之间只有包含、被包含关系,故错误;②两集合中元素完全相同,它们为同一集合,则{0,1,2}⊆{2,1,0},正确; ③空集是任意集合的子集,故∅⊆{0,1,2},正确; ④空集没有任何元素,故∅≠{0},错误;⑤两个集合所研究的对象不同,故{0,1},{(0,1)}为不同集合,错误; ⑥元素与集合之间只有属于、不属于关系,故错误; ∈∈∈正确. 故选:B. 7.C【分析】根据存在量词命题的否定为全称量词命题判断即可;【详解】解:命题“∃x ∈R ,2220x x -+”为存在量词命题,其否定为:∀x ∈R ,2220x x -+>;故选:C 8.B【分析】“返回家乡”的前提条件是“攻破楼兰”,即可判断出结论. 【详解】“返回家乡”的前提条件是“攻破楼兰”, 故“攻破楼兰”是“返回家乡”的必要不充分条件 故选:B9.C【分析】利用判别式即可得到结果.【详解】∵“∃x∈R,使x2−x−m=0”是真命题,∴Δ=(−1)2+4m≥0,解得m≥−14.故选:C10.C【分析】先要找出命题为真命题的充要条件{a|a≥4},从集合的角度充分不必要条件应为{a|a≥4}的真子集,由选择项不难得出答案【详解】命题“∀x∈[1,2],x2-a≤0”为真命题,可化为∀x∈[1,2],a≥x2恒成立即只需a ≥(x2)max,即命题“∀x∈[1,2],x2-a≤0”为真命题的的充要条件为a≥4,而要找的一个充分不必要条件即为集合{a|a≥4}的真子集,由选择项可知C 符合题意.故选:C11.D【解析】先求出集合A,再根据A⊆B,即可求解.【详解】解:当a=0时,A={0},满足A⊆B,当a≠0时,A{0,a},若A⊆B,∴a=1或a=2,综上所述:a=0,1或a=2.故选:D.12.C【分析】讨论B=∅,B≠∅两种情况,分别计算得到答案.【详解】当B=∅时:m+1>2m−1∴m<2成立;当B≠∅时:{m+1≤2m−1m+1≥−22m−1≤5解得:2≤m≤3.综上所述:3m 故选C【点睛】本题考查了集合的关系,忽略掉空集的情况是容易发生的错误. 13.1-【分析】根据集合相等,元素相同,即可求得a 的值. 【详解】∵集合A ={−1,0,1},B ={0,a,a 2},A =B ,1a ∴=-,a 2=1.故答案是:1-. 14.{(3,1)}-【分析】确定集合中的元素,得出求交集就是由求得方程组的解所得. 【详解】因为M ={(x,y)|x +y =2}、N ={(x,y)|x −y =4}, 所以M ∩N ={(x,y)|{x +y =2x −y =4}={(3,−1)}.故答案为:{(3,1)}-. 15.a <−1【解析】利用判别式求出条件,再由充要条件的定义说明.【详解】解析因为方程220x x a --=没有实数根,所以有440a ∆=+<,解得a <−1,因此“方程220x x a --=没有实数根”的必要条件是a <−1.反之,若a <−1,则Δ<0,方程220x x a --=无实根,从而充分性成立.故“方程220x x a --=没有实数根”的充要条件是“a <−1”. 故答案为:a <−1【点睛】本题考查充要条件,掌握充要条件的定义是解题关键. 16.{x|−1<x ≤2}【分析】根据集合的新定义,结合集合A 、B 求A −B 即可.【详解】由题设,A −B ={x|x ∈A,x ∉B},又A ={x|−1<x <4},B ={x|x >2}, ∴A −B ={x|−1<x ≤2}. 故答案为:{x|−1<x ≤2} 17.−32【分析】由−2∈A ,有a −1=−2,或2a 2+5a +1=−2,显然a 2+1≠−2,解方程求出实数a 的值,但要注意集合元素的互异性.【详解】因为−2∈A ,所以有a −1=−2,或2a 2+5a +1=−2,显然a 2+1≠−2, 当a −1=−2时,a =−1,此时a −1=2a 2+5a +1=−2不符合集合元素的互异性,故舍去;当2a2+5a+1=−2时,解得a=−32,a=−1由上可知不符合集合元素的互异性,舍去,故a=−32.【点睛】本题考查了元素与集合之间的关系,考查了集合元素的互异性,考查了解方程、分类讨论思想.18.A∪B={x|x<−5或x>−4};A∩(∁R B)={x|−4<x≤1}【分析】由并集、补集和交集定义直接求解即可.【详解】由并集定义知:A∪B={x|x<−5或x>−4};∵∁R B={x|−5≤x≤1},∴A∩(∁R B)={x|−4<x≤1}.19.(1)∅,{3},{6},{9},{3,6},{3,9},{}6,9,{3,6,9};(2)A∩B={3,6},A∪∁U B={1,2,3,4,5,6,7,8}.【分析】(1)根据题意写出集合B,然后根据子集的定义写出集合B的子集;(2)求出集合A,利用交集的定义求出集合A∩B,利用补集和并集的定义求出集合A∪∁U B.【详解】(1)∵B={x|x=3n,n∈Z且x∈U},∴B={3,6,9},因此,B的子集有:∅,{3},{6},{9},{3,6},{3,9},{}6,9,{3,6,9};(2)由(1)知B={3,6,9},则∁U B={1,2,4,5,7,8},∵A={x|3≤x≤7且x∈U}={3,4,5,6,7},因此,A∩B={3,6},A∪∁U B={1,2,3,4,5,6,7,8}.【点睛】本题考查有限集合的子集,以及补集、交集和并集的运算,考查计算能力,属于基础题.20.(1) {x|x>3或x<−1};(2) a≥6.【分析】(1)利用数轴,根据补集的定义直接求出C U A;(2)解不等式化简集合B的表示,利用数轴根据B⊆(C U A),可得到不等式,解这个不等式即可求出实数a的取值范围.【详解】(1)因为集合A={x|−1≤x≤3}.所以C U A={x|x>3或x<−1};(2) B={x|2x−a>0}={x|x>a2}.因为B⊆(C U A),所以有362aa≤⇒≥.【点睛】本题考查了补集的定义,考查了已知集合的关系求参数问题,运用数轴是解题的关键. 21.(1)(C U A)∩B={x|−1≤x<0}(2)a <−4或0≤a ≤12【分析】(1)根据补集与交集的运算性质运算即可得出答案.(2)若“x ∈B ”是“x ∈A ”的必要条件等价于A ⊆B .讨论A 是否为空集,即可求出实数a 的取值范围.(1)当a =1时,集合{}|05A x x =≤≤,C U A ={x|x <0或x >5}, (C U A)∩B ={x|−1≤x <0}.(2)若“x ∈B ”是“x ∈A ”的必要条件,则A ⊆B , ①当A =∅时,a −1>2a +3,∴a <−4;②A ≠∅,则a ≥−4且a −1≥−1,2a +3≤4,∴0≤a ≤12. 综上所述,a <−4或0≤a ≤12. 22.(1)a >2 (2)a >2或a <−14【分析】(1)根据全称命题的否定形式写出¬p ,当命题¬p 为真时,可转化为(x 2+x −a)min ,当x ∈[1,2],利用二次函数的性质求解即可;(2)由(1)可得p 为真命题时a 的取值范围,再求解q 为真命题时a 的取值范围,分p 真和q 假,p 假和q 真两种情况讨论,求解即可 (1)由题意,命题p :“∀x ∈[1,2],x 2+x −a ≥0”,根据全称命题的否定形式,¬p :“∃x ∈[1,2],x 2+x −a <0” 当命题¬p 为真时,(x 2+x −a)min ,当x ∈[1,2]二次函数y =x 2+x −a 为开口向上的二次函数,对称轴为x =−12 故当x =1时,函数取得最小值,即(x 2+x −a)min 故实数a 的取值范围是a >2 (2)由(1)若p 为真命题a ≤2,若p 为假命题a >2 若命题q :“∃x ∈R ,x 2+3x +2−a =0” 为真命题 则Δ=9−4(2−a)≥0,解得14a ≥-故若q 为假命题a <−14由题意,p 和q 中有且只有一个是真命题, 当p 真和q 假时,a ≤2且a <−14,故a <−14; 当p 假和q 真时,a >2且14a ≥-,故a >2;综上:实数a 的取值范围是a >2或a <−14。

2022版高中数学第一章集合本章达标检测含解析北师大版必修1

2022版高中数学第一章集合本章达标检测含解析北师大版必修1

高中数学北师大版必修1:第一章集合本章达标检测(满分:150分;时间:120分钟)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列几组对象可以构成集合的是()A.充分接近π的实数的全体B.善良的人C.世界著名的科学家D.某单位所有身高在1.70m以上的人2.下列各组中,集合A和集合B表示同一集合的是()A.A={π},B={3.14159}B.A={2,3},B={(2,3)}C.A={1,√3,π},B={π,1,|-√3|}D.A={x|-1<x≤1,x∈N},B={1}3.已知集合A={x|x2-1=0},则下列式子表示不正确的是()A.1∈AB.{-1}∈AC.⌀⊆AD.{1,-1}⊆A4.设集合M={x||x|≤2,x∈R},N={x|x2≤4,x∈N},则()A.M=NB.N⫋MC.M⫋ND.M∩N=⌀5.已知集合A={0,1,2},B={2,3},则集合A∪B= ()A.{1,2,3}B.{0,1,2,3}C.{2}D.{0,1,3}6.已知M={x|y=x2+1},N={y|y=x2+1},则M∩N= ()A.{x|x≥1}B.⌀C.{x|x<1}D.R7.若全集A={x∈Z|0≤x≤2},则集合A的真子集共有()A.3个B.5个C.7个D.8个8.集合M ={x |x =3k ,k ∈N},P ={x |x =3k +1,k ∈N},Q ={x |x =3k -1,k ∈N},若 a ∈M ,b ∈P ,c ∈Q ,则a +b -c ∈ ( ) A .M ∪P B .P C .QD .M9.已知集合A ={1,3,√m },B ={1,m },A ∪B =A ,则m = ( )A .0或√3B .1或√3C .0或3D .1或310.已知集合A ={x |x 2-x -6=0},B ={x |ax +6=0},若A ∩B =B ,则实数a 不可能取的值为 ( )A.3B.2C.0D.-211.定义集合运算:A ⊗B ={z |z =(x +y )×(x -y ),x ∈A ,y ∈B },设A ={√2,√3},B ={1,√2},则集合A ⊗B 的真子集个数为 ( ) A .8B .7C .16D .1512.如图所示,M 、P 、S 是V 的三个子集,则阴影部分所表示的集合是( )A.(M ∩P )∩SB.(M ∩P )∪SC.(M ∩S )∩(∁S P )D.(M ∩P )∪(∁V P )二、填空题(本大题共4小题,每小题5分,共20分,将答 案填在题中的横线上)13.已知全集U ={1,2,3,4,5,6},集合A ={2,3,5},集合B ={1,3,4,6},则A ∩(∁U B )= . 14.方程组{m +m =0,m 2-4=0的解组成的集合为 .15.已知集合P ={0,2,5},Q ={1,2,6},定义集合P +Q ={a +b |a ∈P ,b ∈Q },则P +Q 中元素的个数是 . 16.“高铁、扫码支付、共享单车和网购”称为中国的“新四大发明”.某中学为了解本校学生对“新四大发明”的使用情况,随机调查了100名学生,其中使用过共享单车或扫码支付的学生共有80名,使用过扫码支付的学生共有65名,使用过共享单车且使用过扫码支付的学生共有30名,则使用过共享单车的学生人数为 .三、解答题(本大题共6小题,共70分,解答应写出文字 说明、证明过程或演算步骤)17.(本小题满分10分)已知集合A ={-4,2m -1,m 2},B ={m -5,1-m ,9},若A ∩B ={9},求实数m 的值.18.(本小题满分12分)已知集合A={x|4≤x<8},B={x|5<x<10},C={x|x>a}.(1)求A∪B;(∁R A)∩B;(2)若A∩C≠⌀,求a的取值范围.19.(本小题满分12分)已知集合A={x|2-a≤x≤2+a},B={x|x≤1或x≥4}.(1)当a=3时,求A∩B;(2)若a>0,且A∩B=⌀,求实数a的取值范围.20.(本小题满分12分)已知集合A={x∈R|ax2-3x+2=0,a∈R}.(1)若集合A是空集,求a的取值范围;(2)若集合A中只有一个元素,求a的值,并把这个集合A写出来.21.(本小题满分12分)设集合A={x|-1≤x≤2},集合B={x|2m<x<1}.(1)若A∩B=B,求实数m的取值范围;(2)若B∩(∁R A)中只有一个整数,求实数m的取值范围.22.(本小题满分12分)若集合A具有以下性质:①0∈A,1∈A;∈A.②若x,y∈A,则x-y∈A,且x≠0时,1m则称集合A是“好集”.(1)判断有理数集Q是不是“好集”,并说明理由;(2)设集合A是“好集”,求证:若x,y∈A,则x+y∈A;(3)对任意的一个“好集”A,分别判断下面命题的真假,并说明理由.命题p:若x,y∈A,则必有xy∈A;∈A.命题q:若x,y∈A,且x≠0,则必有mm答案全解全析第一章集合本章达标检测1.D2.C3.B4.B5.B6.A7.C8.C9.C 10.B11.B 12.C一、选择题1.D选项A,B,C所描述的对象没有一个明确的标准,故不能构成一个集合,选项D的标准唯一,故能构成集合.故选D.2.C A中,集合A中的元素为无理数,而集合B中的元素为有理数,故A≠B;B中,集合A中的元素为实数,而集合B中的元素为有序实数对,故A≠B;C中,因为|-√3|=√3,则集合A={1,√3,π},B={π,1,√3},故A=B;D中,集合A中的元素为0,1,而集合B中的元素为1,故A≠B.故选C.3.B由A={x|x2-1=0}={1,-1}知,A,C,D选项中的式子正确,B选项中的式子错误,应该是{-1}⫋A,故选B.4.B M={x||x|≤2,x∈R}={x|-2≤x≤2},N={x|x2≤4,x∈N}={-2,-1,0,1,2},∴N⫋M.故选B.5.B依题意得A∪B={0,1,2,3},故选B.6.A因为M={x|y=x2+1}=R,N={y|y=x2+1}={y|y≥1},所以M∩N={x|x≥1},故选A.7.C集合A={x∈Z|0≤x≤2}={0,1,2},含3个元素,其子集有8个,除去其本身得真子集共有7个,故选C.8.C由题意设a=3k1,b=3k2+1,c=3k3-1(k1,k2,k3∈N),则a+b-c=3k1+3k2+1-(3k3-1)=3(k1+k2-k3)+2=3(k1+k2-k3+1)-1,而k1+k2-k3+1∈N,∴a+b-c∈Q.故选C.9.C由A∪B=A得B⊆A,因为A={1,3,√m},B={1,m},所以m=3或m=√m,解得m=3或m=0或m=1(舍去),故选C.10.B由x2-x-6=0,得x=-2或x=3,∴A={-2,3}.又A∩B=B,∴B⊆A.当a=0时,ax+6=0无解,B=⌀,符合题意.当a≠0时,由ax+6=0得x=-6m,依题意得-6m =-2或-6m=3.解得a=3或a=-2,对比四个选项知a的值不能为2,故选B.11.B已知A={√2,√3},B={1,√2},则A⊗B中的元素有(√2+1)×(√2-1)=1,(√2+√2)×(√2-√2)=0,(√3+1)×(√3-1)=2,(√3+√2)×(√3-√2)=1四种结果,由集合中元素的互异性得集合A⊗B有3个元素,故集合A⊗B的真子集个数为23-1=7,故选B.12.C题图中的阴影部分是M∩S的子集,但不含集合P中的元素,含于集合P的补集,用关系式表示出来即可.二、填空题13.答案{2,5}解析∵U={1,2,3,4,5,6},B={1,3,4,6},∴∁U B={2,5},又A={2,3,5},∴A∩(∁U B)={2,5}.14.答案 {(2,-2),(-2,2)}解析 由x 2-4=0,解得x =2或x =-2,代入x +y =0,得{m =2,m =-2或{m =-2,m =2.所以方程组{m +m =0,m 2-4=0的解组成的集合为{(2,-2),(-2,2)}.15.答案 8解析 根据题意,得P +Q ={1,2,3,4,6,7,8,11},因此集合P +Q 中有8个元素. 16.答案 45信息提取 ①共调查100名学生;②使用过共享单车或扫码支付的学生共有80名,使用过扫码支付的学生共有65名,使用过共享单车且使用过扫码支付的学生共有30名;③求使用过共享单车的学生人数.数学建模 本题以社会热点问题——“新四大发明”为背景,将实际问题集合化,通过构建集合模型求解.先用集合A 表示使用过共享单车的人,用集合B 表示使用过扫码支付的人,再根据集合运算确定结果. 解析 设参加调查的所有人组成全集U ,使用过共享单车的人组成集合A ,使用过扫码支付的人组成集合B ,card(A )表示集合A 中的元素,由题意card(A ∪B )=80,card(B )=65,card(A ∩B )=30,∴card(A ∩(∁U B ))=80-65=15, ∴card(A )=15+30=45.三、解答题17.解析 因为A ∩B ={9},所以9∈A 且9∈B ,所以2m -1=9,或m 2=9, 解得m =5,或m =±3.(3分)当m =5时,A ={-4,9,25},B ={0,-4,9},A ∩B ={-4,9},不符合题意; 当m =3时,B ={-2,-2,9},与集合中元素的互异性矛盾,不符合题意; 当m =-3时,A ={-4,-7,9},B ={-8,4,9},A ∩B ={9},符合题意. (9分)综上所述,m =-3.(10分)18.解析 (1)A ∪B ={x |4≤x <10}. ∵∁R A ={x |x <4,或x ≥8},B ={x |5<x <10}, ∴(∁R A )∩B ={x |8≤x <10}.(6分)(2)要使得A ∩C ≠⌀,画出数轴如图所示,由图可知a <8. (12分)19.解析 (1)∵当a =3时,A ={x |-1≤x ≤5},又B ={x |x ≤1或x ≥4},∴A ∩B ={x |-1≤x ≤1或4≤x ≤5}. (6分)(2)∵A ∩B =⌀,A ={x |2-a ≤x ≤2+a (a >0)},B ={x |x ≤1或x ≥4}, ∴{2-m >1,2+m <4,∴0<a <1. (12分)20.解析 (1)要使集合A 为空集,方程ax 2-3x +2=0应无实数根, ∴应满足{m ≠0,m <0,解得a >98.故a 的取值范围是(98,+∞). (4分)(2)当a =0时,方程为一元一次方程,有一个解为x =23; (7分)当a ≠0时,方程为一元二次方程,此时集合A 中只有一个元素的条件是Δ=0,解得a =98,此时x 1=x 2=43,∴a =0或a =98. (10分)当a =0时,A ={23}; 当a =98时,A ={43}. (12分)21.解析 (1)因为A ∩B =B ,所以B ⊆A. (1分) ①当B ≠⌀时,-1≤2m <1⇒-12≤m <12; (3分)②当B =⌀时,2m ≥1,即m ≥12. (5分)综上所述,实数m 的取值范围是[-12,+∞).(6分)(2)∵A ={x |-1≤x ≤2}, ∴∁R A ={x |x <-1 或x >2}. (7分)①当B ≠⌀时,2m <1,即m <12.若B ∩(∁R A )中只有一个整数,则-3≤2m <-2,得-32≤m <-1; (9分)②当B =⌀时,2m ≥1,即m ≥12,因此B ∩(∁R A )=⌀,不符合题意.(11分)综上所述,实数m 的取值范围是[-32,-1).(12分)22.解析 (1)有理数集Q 是“好集”. (1分) 理由如下:因为0∈Q,1∈Q ,对任意的x ,y ∈Q,有x -y ∈Q,且x ≠0时,1m ∈Q,所以有理数集Q 是“好集”. (4分)(2)证明:因为集合A 是“好集”,所以0∈A.若x ,y ∈A ,则0-y ∈A , 即-y ∈A ,所以x -(-y )∈A ,即x +y ∈A.(6分)(3)命题p ,q 均为真命题. 理由如下: 对任意的一个“好集”A ,任取x ,y ∈A , 若x ,y 中有0或1时,显然xy ∈A.(7分)假设x ,y 均不为0,1,由定义可知:x -1,1m -1,1m ∈A , 所以1m -1-1m∈A ,即1m (m -1)∈A ,所以 x (x -1)∈A. (8分)由(2)可得x (x -1)+x ∈A ,即x 2∈A , 同理可得y 2∈A ,若x +y =0或x +y =1,则(x +y )2∈A ; 若x +y ≠0且x +y ≠1,则(x +y )2∈A. 所以2xy =(x +y )2-x 2-y 2∈A , 所以12mm∈A. (10分)由(2)可得:1mm =12mm +12mm∈A ,所以xy ∈A.综上可知,xy ∈A ,即命题p 为真命题.若x ,y ∈A ,且x ≠0,则1m∈A ,所以 m m=y ·1m∈A ,即命题q 为真命题.(12分)。

人教版高中数学必修一1_1集合试题

人教版高中数学必修一1_1集合试题

必修1 第一章 集合测试一、选择题(共12小题,每题5分,四个选项中只有一个符合要求)1.以下选项中元素的全体能够组成集合的是 ( ) A.学校篮球水平较高的学生B.校园中长的高大的树木C.2007年所有的欧盟国家D.中国经济发达的城市2.方程组20{=+=-y x y x 的解构成的集合是( )A .)}1,1{(B .}1,1{C .(1,1)D .}1{3.已知集合A ={a ,b ,c },以下能够作为集合A 的子集的是 ( ) A. a B. {a ,c } C. {a ,e } D.{a ,b ,c ,d } 4.以下图形中,表示N M ⊆的是 ( )5.以下表述准确的是 ( ) A.}0{=∅ B. }0{⊆∅ C. }0{⊇∅ D. }0{∈∅ 6、设集合A ={x|x 参加自由泳的运动员},B ={x|x 参加蛙泳的运动员},对于“既参加自由泳又参加蛙泳的运动员”用集合运算表示为 ( ) A.A∩B B.A ⊇B C.A ∪B D.A ⊆B 7.集合A={x Z k k x ∈=,2} ,B={Z k k x x ∈+=,12} ,C={Z k k x x ∈+=,14} 又,,B b A a ∈∈则有 ( ) A.(a+b )∈A B. (a+b) ∈B C.(a+b) ∈C D. (a+b) ∈A 、B 、C 任一个8.集合A ={1,2,x },集合B ={2,4,5},若B A ={1,2,3,4,5},则x =( ) A. 1 B. 3 C. 4 D. 59.满足条件{1,2,3}⊂≠M ⊂≠{1,2,3,4,5,6}的集合M 的个数是( )A. 8 B . 7 C. 6 D. 510.全集U = {1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 }, A= {3 ,4 ,5 }, B= {1 ,3 , 6 },那么集合 { 2 ,7 ,8}是 ( )MNAMNBNMCMNDA.A BB. B AC. B C A C U UD. B C A C U U11.设集合{|32}M m m =∈-<<Z ,{|13}N n n MN =∈-=Z 则,≤≤ ( )A .{}01,B .{}101-,,C .{}012,, D .{}1012-,,,12. 假如集合A={x |ax 2+2x +1=0}中只有一个元素,则a 的值是 ( )A .0B .0 或1C .1D .不能确定二、填空题(共4小题,每题4分,把答案填在题中横线上)13.用描绘法表示被3除余1的集合 . 14.用适当的符号填空:(1)∅ }01{2=-x x ; (2){1,2,3} N ; (3){1} }{2x x x =; (4)0 }2{2x x x =. 15.含有三个实数的集合既可表示成}1,,{aba ,又可表示成}0,,{2b a a +,则=+20042003b a .16.已知集合}33|{≤≤-=x x U ,}11|{<<-=x x M ,}20|{<<=x x N C U 那么集合=N ,=⋂)(N C M U ,=⋃N M . 三、解答题(共4小题,共44分,解答应写出文字说明,证明过程或演算步骤)17. 已知集合}04{2=-=x x A ,集合}02{=-=ax x B ,若A B ⊆,求实数a 的取值集合.18. 已知集合}71{<<=x x A ,集合}521{+<<+=a x a x B ,若满足 }73{<<=x x B A ,求实数a 的值.19. 已知方程02=++b ax x .(1)若方程的解集只有一个元素,求实数a ,b 满足的关系式; (2)若方程的解集有两个元素分别为1,3,求实数a ,b 的值20. 已知集合}31{≤≤-=x x A ,},{2A x y x y B ∈==,},2{A x a x y y C ∈+==,若满足B C ⊆,求实数a 的取值范围.必修1 第一章 集合测试集合测试参考答案:一、1~5 CABCB 6~10 CBBCC 11~12 BB 二、13 },13{Z n n x x ∈+=,14 (1)φ⊆}01{2=-x x ;(2){1,2,3}⊆N ; (3){1}⊆}{2x x x =;(4)0∈}2{2x x x =; 15 -1 16 03|{≤≤-=x x N 或}32≤≤x ;}10|{)(<<=⋂x x N C M U ;13|{<≤-=⋃x x N M 或}32≤≤x .三、17 .{0.-1,1}; 18. 2=a ; 19. (1) a 2-4b=0 (2) a=-4, b=3 20. 32≤≤a .。

第1章 集合与常用逻辑用语 高中数学必修第一册(Word含答案)

第1章 集合与常用逻辑用语 高中数学必修第一册(Word含答案)

第一章:集合与常用逻辑用语测试题一、选择题:(每小题5分,共65分)1、已知集合A={2,4,5},B={3,5,7},则A ∪B=( )。

A 、{5}B 、{2,4,5}C 、{3,5,7}D 、{2,3,4,5,7} 2、设集合{|21}A x x =-<<,{|04}B x x =<≤,则=B A ( )。

A .{|24}x x -<≤B .{|01}x x <<C .{|14}x x <≤D .{|20}x x -<< 3、已知全集U =R ,集合{}|23A x x =-≤≤,那么集合A =R( )。

A .{}|23x x -<<B .{}|23x x x -或≤≥ C .{}|23x x -≤≤D .{}|23x x x <->或4、已知集合M={x|x 2=1},集合N={x|ax=1},若N ⊂≠M ,那么a 的值为( )。

A 、1B 、-1C 、1或-1D 、0,1或-1 5、设a,b ∈R ,集合{1,a+b,a}=⎭⎬⎫⎩⎨⎧a b b ,,0,则b-a 等于( )。

A 、1 B 、-1 C 、2 D 、-26、已知:P={y|y=x 2+1,x ∈R},Q={y|y=x+1,x ∈R}则P ∩Q=( )。

A.RB.),1[+∞C.{0,1}D.{(0,1),(1,2)} 7、设集合M={}1,2,3|---x ,N={}02|2≤-+x x x ,则MN =( )。

A 、{-2,0,1} B 、{-3,-2,-1}C 、{-2,-1,0,1}D 、{-3,-2,-1,0,1}8、“三角形的三条边相等”是“三角形为等边三角形”的( )。

A 、充分不必要条件 B 、必要不充分条件C 、充要条件D 、既不充分也不必要条件9、下列命题中,真命题是( )。

A .质数都是奇数B .{||1|3}x N x ∈-<是无限集C .π是有理数D .250x x -=的根是自然数10、22530x x --<的一个必要不充分条件是( )。

(好题)高中数学必修一第一单元《集合》测试卷(有答案解析)

(好题)高中数学必修一第一单元《集合》测试卷(有答案解析)

一、选择题1.设集合2{|}A x x x =<,2}6{|0B x x x =+-<,则A B =( )A .(0,1)B .()()3,01,2-⋃C .(-3,1)D .()()2,01,3-⋃2.由实数x ,﹣x ,|x | ) A .2个 B .3个C .4个D .5个3.设集合A={2,1-a ,a 2-a +2},若4∈A ,则a =( )A .-3或-1或2B .-3或-1C .-3或2D .-1或24.已知集合A 、B 均为非空集合,定义{*|()A B x x A B =∈⋃且}()x A B ∉⋂,若{}1,0,1,2,3A =-,{}2|1,B x x t t A ==+∈,则集合*A B 的子集共( )A .64个B .63个C .32个D .31个5.已知区间1[,]3A m m =-和3[,]4B n n =+均为[]0,1的子区间,定义b a -为区间[],a b 的长度,则当A B 的长度达到最小时mn 的值为( )A .0B .112C .0或112D .0或16.已知集合()1lg 12A x x ⎧⎫=-<⎨⎬⎩⎭,{}22940B x x x =-+≥,则()RA B 为( )A .()1,4B .1,42⎛⎫⎪⎝⎭C .(4,1D .(1,1+7.已知{}22(,)1,,A x y x y x Z y Z =+≤∈∈,{}(,)3,3,,B x y x y x Z y Z =≤≤∈∈.定义集合{}12121122(,)(,),(,),A B x x y y x y A x y B ⊕=++∈∈,则A B ⊕的元素个数n 满足( ) A .77n =B .49n ≤C .64n =D .81n ≥8.集合{}*|421A x x N =--∈,则A 的真子集个数是( ) A .63B .127C .255D .5119.设集合{}2110P x x ax =++>,{}2220P x x ax =++>,{}210Q x x x b =++>,{}2220Q x x x b =++>,其中a ,b ∈R 下列说法正确的是( ) A .对任意a ,1P 是2P 的子集;对任意的b ,1Q 不是2Q 的子集 B .对任意a ,1P 是2P 的子集;存在b ,使得1Q 是2Q 的子集C .存在a ,使得1P 不是2P 的子集;对任意的b ,1Q 不是2Q 的子集D .存在a ,使得1P 不是2P 的子集;存在b ,使得1Q 是2Q 的子集10.已知集合22{|,N ,N}A t t m n m n = =+ ∈ ∈,且x A ∈,y A ,则下列结论中正确的是( ) A .x y A +∈ B .x y A -∈ C .xy A ∈D .xA y∈ 11.集合{}{}A x||x-a|<1,x R ,|15,.A B B x x x R =∈=<<∈⋂=∅若,则实数a 的取值 范围是( ) A .{}a |0a 6≤≤ B .{}|24a a a ≤≥或C .{}|06a a a ≤≥或D .{}|24a a ≤≤12.已知集合{}{}21239A B x x ==<,,,,则A B =( )A .{}210123--,,,,,B .{}21012--,,,, C .{}123,, D .{}12, 二、填空题13.已知集合2|05x A x x -⎧⎫=<⎨⎬+⎩⎭,{}2230,B x x x x R =--≥∈,则A B =_________. 14.集合1{}2|Ax x ≤=<,{|}B x x a =<,若A B B ⋃=,则a 的取值范围是_______.15.若规定集合{}()*12,,,n M a a a n N=⋅⋅⋅∈的子集{}()12*,,,mi i i a aa m N ⋅⋅⋅∈为M 的第k个子集,其中12111222m i i i k ---=++⋅⋅⋅+,则M 的第25个子集是______.16.已知点H 是正三角形ABC 内部一点,HAB ∆,HBC ∆,HCA ∆的面积值构成一个集合M ,若M 的子集有且只有4个,则点H 需满足的条件为________.17.若规定{}1210E a a a =⋯,,,的子集{}12,,n k k k a a a 为E 的第k 个子集,其中12111222n k k k k ---=++⋯+,则E 的第211个子集是____________. 18.若关于x 的方程2210ax x ++=的解集有唯一子集 ,则实数a 的取值范围是_____. 19.已知{}2|340,{|10}A x x x B x ax a =+-==-+=,且B A ⊆,则所有a 的值所构成的集合M =_________.20.若集合2{320}A x ax x =++=中至多有一个元素,则a 的取值范围是__________.三、解答题21.已知集合A ={x |3<x <7},B ={x |4<x ≤10},C ={x ||x -a |>2}. (1)求A ∪B 与RR ()()A B ⋂(2)若A ∩B ⊆C ,求a 的取值范围.22.已知集合{|A x y ==,{}22|60B x x ax a =--<,其中0a ≥.(1)当1a =时,求集合A B ⋃,()R C A B ⋂; (2)若()R C A B B ⋂=,求实数a 的取值范围. 23.在①A ∩B =A ,②A ∩(R B )=A ,③A ∩B =∅ 这三个条件中任选一个,补充到下面的问题中,求解下列问题:已知集合{|123}A x a x a =-<<+,{}2|280B x x x =--≤. (1)当2a =时,求A ∪B ; (2)若______,求实数a 的取值范围.注:如果选择多个条件分别解答按第一个解答计分.24.已知集{}28A x x =≤≤,{}26B x x m =≤≤-,{}112C x m x m =-≤≤+,U =R .(1)若()UA B =∅,求m 的取值范围; (2)若BC ≠∅,求m 的取值范围.25.设全集U =R ,函数2lg(4+3)y x x =-的定义域为A ,函数3[0]1y x m x =∈+,,的值域为B .(1)当4m =时,求UB A ;(2)若“Ux A ∈”是“x B ∈”的必要不充分条件,求实数m 的取值范围.26.已知不等式()210x a x a -++≤的解集为A . (1)若2a =,求集合A ;(2)若集合A 是集合{}4|2x x -≤≤的真子集,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】化简集合A ,B ,根据交集运算即可求值. 【详解】因为2{|}A x x x =<(,0)(1,)=-∞⋃+∞,26{|}(32)0,B x x x =+-<=-所以()()3,01,2A B ⋂=-⋃. 故选:B 【点睛】本题主要考查了一元二次不等式的解法,集合的运算,属于中档题.2.A解析:A 【分析】根据绝对值的定义和开平方、立方的方法,应对x 分0,0,0x x x >=<三种情况分类讨论,根据讨论结果可得答案. 【详解】当0x >时,0x x x ===-<,此时集合共有2个元素,当0x =时,0x x x ====-=,此时集合共有1个元素,当0x <时,0x x -===>,此时集合共有2个元素,综上所述,此集合最多有2个元素. 故选:A . 【点睛】本题考查了元素与集合关系的判断及根式的化简求值,其中解答本题的关键是利用分类讨论思想,对x 分三种情况进行讨论,是基础题.3.C解析:C 【解析】若1−a =4,则a =−3,∴a 2−a +2=14,∴A ={2,4,14}; 若a 2−a +2=4,则a =2或a =−1,检验集合元素的互异性: a =2时,1−a =−1,∴A ={2,−1,4}; a =−1时,1−a =2(舍), 本题选择C 选项.4.C解析:C 【分析】先求集合B ,再求并集、交集、补集,最后根据元素确定子集个数. 【详解】因为{}2|1,{1,2,5,10}B x x t t A ==+∈=, 所以{}{}1,0,1,2,3510,1,2,AB A B =-=,,*{1,0,3,5,10}A B ∴=-因此集合*A B 的子集有5232=个, 故选:C 【点睛】本题考查并集、交集、补集定义以及子集个数,考查综合本分析求解能力,属基础题.5.C解析:C 【分析】由于这两个集合都是区间[]0,1的子集,根据区间长度的定义可得当103314m n ⎧-=⎪⎪⎨⎪+=⎪⎩或10m n =⎧⎨=⎩时AB 的长度最小,解出方程组即可得结果.【详解】由于这两个集合都是区间[]0,1的子集,根据区间长度的定义可得当103314m n ⎧-=⎪⎪⎨⎪+=⎪⎩或10m n =⎧⎨=⎩时A B 的长度最小,解得1314m n ⎧=⎪⎪⎨⎪=⎪⎩或10m n =⎧⎨=⎩,即112mn =或0,故选C. 【点睛】本题主要考查集合的表示方法,两个集合的交集的定义,充分理解区间长度的定义是解题的关键,属于中档题.6.A解析:A 【分析】解对数不等式求得集合A ,解一元二次不等式求得RB ,由此求得()RAB【详解】 由于()1lg 12x -<=所以{(011,1A x x =<-<=+, 依题意{}2R2940B x x x =-+<,()()22944210x x x x -+=--<,解得142x <<,即R 1,42B ⎛⎫= ⎪⎝⎭,所以()()R1,4A B ⋂=.故选:A 【点睛】本小题主要考查集合交集和补集的运算,考查对数不等式和指数不等式的解法,属于中档题.7.A解析:A 【分析】先理解题意,然后分①当11x =±,10y =时,②当10x =,11y =±时, ③当10x =,10y =时,三种情况讨论即可. 【详解】解:由{}22(,)1,,A x y x y x Z y Z =+≤∈∈,{}(,)3,3,,B x y x y x Z y Z =≤≤∈∈, ①当11x =±,10y =时, 124,3,2,1,0,1,2,3,4x x +=----,123,2,1,0,1,2,3y y +=---,此时A B ⊕的元素个数为9763⨯=个,②当10x =,11y =±时, 123,2,1,0,1,2,3x x +=---,124,3,2,1,0,1,2,3,4y y +=----,这种情况和第①种情况除124,4y y +=-外均相同,故新增7214⨯=个, ③当10x =,10y =时, 123,2,1,0,1,2,3x x +=---,123,2,1,0,1,2,3y y +=---,这种情况与前面重复,新增0个,综合①②③可得:A B ⊕的元素个数为6314077++=个, 故选:A. 【点睛】本题考查了元素与集合关系的判断,重点考查了计数原理的应用,属中档题.8.B解析:B 【分析】先求得{}*|421A x x N =--∈的元素个数,再求真子集个数即可.【详解】由{}*|421A x x N=--∈,则421x --为正整数.则21x -可能的取值为0,1,2,3,故210,1,2,3x -=±±±,故x 共7个解.即{}*|421A x x N =--∈的元素个数为7故A 的真子集个数为721127-= 故选:B 【点睛】本题主要考查集合中元素个数的求解与知识点:元素个数为n 的集合的真子集有21n -个.属于基础题型.9.B解析:B 【分析】先证得1P 是2P 的子集,然后求得b 使1Q 是2Q 的子集,由此确定正确选项.【详解】对于1P 和2P ,由于210x ax ++>时222110x ax x ax ++=+++>,所以1P 的元素,一定是2P 的元素,故对任意a ,1P 是2P 的子集;对于1Q 和2Q ,根据判别式有140440b b -<⎧⎨-<⎩,即1b >时,12Q Q R ==,满足1Q 是2Q 的子集,也即存在b ,使得1Q 是2Q 的子集. 故选: B. 【点睛】方法点睛:该题主要考查子集的判断,解题方法如下:(1)利用子集的概念,可以判断出1P 的元素,一定是2P 的元素,得到对任意a ,1P 是2P 的子集;(2)利用R 是R 的子集,结合判别式的符号,存在实数1b >时,有12Q Q R ==,得到结果.10.C解析:C 【分析】 设22x m n =+,22N,N N,,,N n b b ya ma ,再利用22()()xy ma nb mb na =++-,可得解.【详解】 由x A ∈,yA ,设22x m n =+,22N,N N,,,N n b b y a m a ,所以22222222222222()()()()xy m n a b m a m b n a n b ma nb mb na =++=+++=++-, 且N,N ma nb mb na +-∈∈, 所以xy A ∈, 故选:C. 【点睛】关键点点睛,本题的解题关键是2222222222()()m a m b n a n b ma nb mb na +++=++-,另外本题可以通过列举法得到集合的一些元素,进而排除选项可得解.11.C解析:C|x-a|<1,∴a-1<x<a+1,∵A∩B=∅. ∴a-1≥5或a+1≤1,即a≤0或a≥6.故选C.12.D解析:D 【解析】 【分析】先求出集合B ,然后与集合A 取交集即可. 【详解】由题意,{}{}2933B x x x x =<=-<<,则{}1,2A B =.故答案为D. 【点睛】本题考查了集合的交集,考查了不等式的解法,考查了学生的计算能力,属于基础题.二、填空题13.【分析】分别根据分式不等式和一元二次不等式的解法求出集合和再根据交集的定义求出【详解】∵集合∴故答案为【点睛】本题考查集合的交集的运算解题时要认真审题注意分式不等式和一元二次不等式的合理运用是基础题解析:(]5,1--. 【分析】分别根据分式不等式和一元二次不等式的解法求出集合A 和B ,再根据交集的定义求出A B ⋂.【详解】 ∵集合2{|0}{|52}5x A x x x x -=<=-<<+, 2{|230}{|13}B x x x x R x x x =--≥∈=≤-≥,或,∴{|51}A B x x ⋂=-<≤-,故答案为(]5,1--. 【点睛】本题考查集合的交集的运算,解题时要认真审题,注意分式不等式和一元二次不等式的合理运用,是基础题.14.【分析】根据可知A 为B 的子集利用数轴求解即可【详解】根据题意作图如下:由图可知实数的取值范围为【点睛】本题考查利用集合的并运算求参数的取值范围;数轴的合理运用是求解本题的关键;属于中档题常考题型 解析:2a >【分析】根据A B B ⋃=,可知A 为B 的子集,利用数轴求解即可.根据题意,作图如下:由图可知,实数a 的取值范围为2a >. 【点睛】本题考查利用集合的并运算求参数的取值范围;数轴的合理运用是求解本题的关键;属于中档题、常考题型.15.【分析】根据子集的定义将表示为求出即可求解【详解】的第25个子集是故答案为:【点睛】本题考查新定义的理解认真审题领会题意是关键属于中档题 解析:{}145,,a a a【分析】根据子集的定义将25表示为1211125222m i i i ---=++⋅⋅⋅+,求出12,m i i i ,即可求解【详解】03411415125222222---=++=++,1231,4,5i i i ===,M 的第25个子集是{}145,,a a a ,故答案为:{}145,,a a a . 【点睛】本题考查新定义的理解,认真审题,领会题意是关键,属于中档题.16.在的三条高上且不为重心【分析】由题意知若集合的子集只有个则集合有个元素可得出三个三角形的面积有两个相等分析点的位置即可得出结论【详解】若集合的子集只有个则集合有个元素是等边内部一点三个三角形的面积值解析:H 在ABC ∆的三条高上且H 不为ABC ∆重心 【分析】由题意知,若集合M 的子集只有4个,则集合M 有2个元素,可得出HAB ∆,HBC ∆,HCA ∆三个三角形的面积有两个相等,分析点H 的位置,即可得出结论. 【详解】若集合M 的子集只有4个,则集合M 有2个元素,M 是等边ABC ∆内部一点, HAB ∆,HBC ∆,HCA ∆三个三角形的面积值构成集合M , 故HAB ∆,HBC ∆,HCA ∆三个三角形的面积有且只有两个相等.若HAB ∆,HBC ∆的面积相等,则点H 在边AC 的高上且不为ABC ∆的重心; 若HBC ∆,HCA ∆的面积相等,则点H 在边AB 的高上且不为ABC ∆的重心;若HAB ∆,HCA ∆的面积相等,则点H 在边BC 的高上且不为ABC ∆的重心. 综上所述,点H 在等边ABC ∆的三条高上且不为ABC ∆的重心. 故答案为:H 在ABC ∆的三条高上且H 不为ABC ∆重心 【点睛】本题考查子集的个数与元素个数之间的关系,根据已知条件得出集合元素的个数是解题的关键,考查推理能力,属于中等题.17.【分析】根据题意分别讨论的取值通过讨论计算的可能取值即可得出答案【详解】而的第个子集包含此时的第个子集包含此时的第个子集包含此时的第个子集包含此时的第个子集包含的第个子集是故答案为:【点睛】本题主要 解析:{}12578,,,,a a a a a【分析】根据题意,分别讨论2n 的取值,通过讨论计算n 的可能取值,即可得出答案. 【详解】72128211=<,而82256211=>,E ∴的第211个子集包含8a ,此时21112883-=,626483=<,7212883=>,E ∴的第211个子集包含7a ,此时836419-=,421619=<,523219=>,E ∴的第211个子集包含5a ,此时19163-=,1223=<,2243=>,E ∴的第211个子集包含2a ,此时321-=,021=E ∴的第211个子集包含1a ,E ∴的第211个子集是{}12578,,,,a a a a a .故答案为:{}12578,,,,a a a a a 【点睛】本题主要考查了与集合有关的信息题,理解条件的定义是解决本题的关键.18.【分析】由题意知关于的方程无实数解可得出由此可解出实数的取值范围【详解】由题意知关于的方程无实数解当时原方程为解得不合乎题意;当时则有解得综上所述实数的取值范围是故答案为:【点睛】本题考查利用集合的 解析:()1,+∞【分析】由题意知,关于x 的方程2210ax x ++=无实数解,可得出00a ≠⎧⎨∆<⎩,由此可解出实数a 的取值范围.【详解】由题意知,关于x 的方程2210ax x ++=无实数解.当0a =时,原方程为210x +=,解得12x =-,不合乎题意; 当0a ≠时,则有440a ∆=-<,解得1a >.综上所述,实数a 的取值范围是()1,+∞.故答案为:()1,+∞.【点睛】本题考查利用集合的子集个数求参数,将问题转化为方程无实解是解题的关键,考查分类讨论思想的应用,属于中等题.19.【分析】计算根据得到四种情况分别计算得到答案【详解】当时:此时;当时:解得;当时:解得;当时:无解;综上所述:故答案为:【点睛】本题考查了根据集合关系求参数忽略掉空集是容易发生的错误 解析:110,,23⎧⎫-⎨⎬⎩⎭【分析】计算{}1,4A =-,根据B A ⊆得到B =∅,{}1B =,{}4B =-,{}1,4B =-四种情况,分别计算得到答案.【详解】{}{}2|3401,4A x x x =+-==-,B A ⊆当B =∅时:{|10}B x ax a =-+==∅,此时0a =;当{}1B =时:{}{|10}1B x ax a =-+==,解得12a =; 当{}4B =-时:{}{|10}4B x ax a =-+==-,解得13a =-;当{}1,4B =-时:{}{|10}1,4B x ax a =-+==-,无解; 综上所述:110,,23a ⎧⎫∈-⎨⎬⎩⎭故答案为:110,,23⎧⎫-⎨⎬⎩⎭【点睛】本题考查了根据集合关系求参数,忽略掉空集是容易发生的错误.20.或【分析】分情况讨论:当时和当时两种情况;当时由即可求出答案分类讨论最后把的范围合并即可【详解】若则集合符合题意;若则解得故答案为:或【点睛】本题考查集合中元素个数问题;分类讨论和两种情况是求解本题 解析:98a ≥或0a = 【分析】分情况讨论:当0a =时和当0a ≠时两种情况;当0a ≠时由0∆≤即可求出答案.分类讨论最后把a 的范围合并即可.【详解】若0a =,则集合2{|320}3A x x ⎧⎫=+==-⎨⎬⎩⎭,符合题意;若0a ≠,则980a ∆=-≤,解得98a ≥. 故答案为:98a ≥或0a =. 【点睛】本题考查集合中元素个数问题;分类讨论0a =和0a ≠两种情况是求解本题关键; 0a =时易忽略;属于中档题,易错题. 三、解答题21.(1){|310}A B x x ⋃=<,()(){|3R R A B x x ⋂=或10}x >;(2){|9a a 或2}a【分析】(1)直接进行并集、交集和补集的运算即可;(2)先得出{|2C x x a =<-或2}x a >+,{|47}A B x x ⋂=<<,根据AB C ⊆即可得出27a -或24a +,解出a 的范围即可.【详解】(1)因为集合A ={x |3<x <7},B ={x |4<x ≤10},所以{|310}A B x x ⋃=<,{|3RA x x =或7}x , {|4RB x x =或10}x >;()(){|3R R A B x x ⋂=或10}x >;(2){|2C x x a =<-或2}x a >+,{|47}A B x x ⋂=<<;A B C ⋂⊆;27a ∴-,或24a +;9a ∴,或2a ;a ∴的取值范围为{|9a a 或2}a .【点睛】考查描述法表示集合的定义,绝对值不等式的解法,交集、并集和补集的运算,以及子集的概念.属于中档题.22.()[)()13,3,()1,3R A B C A B ⋃=-⋂= ()20a =【分析】(1)先求集合B,再根据交集、并集以及补集得定义求结果,(2)先根据条件化为集合关系,再结合数轴求实数a 的取值范围.【详解】(1){()(){}[]||3103,1A x y x x x ===+-≥=-当1a =时,{}{}()222|60|602,3B x x ax a x x x =--<=--<=-, 所以[)3,3,A B ⋃=-因为()()(),31,R C A =-∞-⋃+∞,所以()()1,3R C A B ⋂= (2)因为()R C A B B ⋂=,所以R B C A ⊆,当B =∅时,0a =,满足条件,{}()220|602,3a B x x ax a a a >=--<=-当时,不满足条件,因此0a =.【点睛】防范空集.在解决有关,A B A B ⋂=∅⊆等集合问题时,往往忽略空集的情况,一定先考虑∅是否成立,以防漏解.23.(1)A ∪B ={}|27x x -≤<;(2)答案见解析.【分析】(1)先化简集合,A B ,再求A ∪B ;(2)对集合A 分空集和非空集两种情况讨论,列不等式组即得解.【详解】(1)2a =时,集合{|17}A x x =<<,{|24}B x x =-≤≤,A ∪B ={}|27x x -≤<(2)若选择①A ∩B =A ,则A B ⊆,当123a a -≥+,即4a ≤-时,A =∅,满足题意; 当4a >-时,应满足12234a a -≥-⎧⎨+≤⎩,解得:112a -≤≤; 综上知,实数a 的取值范围是(-∞,-4]∪112⎡⎤-⎢⎥⎣⎦,.若选择②A ∩(R B )=A ,则A 是R B 的子集,R B =(-∞,-2)∪(4,+∞),当123a a -≥+,即4a ≤-时,A =∅,满足题意;当4a >-时,4232a a >-⎧⎨+≤-⎩或414a a >-⎧⎨-≥⎩解得:-4<a ≤52-或a ≥5, 综合得:a 的取值范围是:(-∞,5 2-]∪[5,+ ∞) 若选择③A ∩B =∅,则当123a a -≥+,即4a ≤-时,A =∅,满足题意;当4a >-时,应满足4232a a >-⎧⎨+≤-⎩或414a a >-⎧⎨-≥⎩解得:-4<a ≤52-或a ≥5 综上知,实数a 的取值范围是:(-∞,5 2-]∪[5,+∞). 【点睛】易错点点睛:本题容易忽略集合A 是空集的情况,导致出错.空集是任何集合的子集,是任何非空集合的真子集.解答集合的关系和运算问题时,不要忽略了空集这种情况. 24.(1)2m ≥-;(2)1722m m ⎧⎫≤≤⎨⎬⎩⎭. 【分析】(1)当()U A B =∅,在B A ⊆,然后针对B =∅与B ≠∅分类讨论求解; (2)若B C ≠∅,则B ≠∅,C ≠∅,若B C ≠∅,则只需1612m m m -≤-≤+或2126m m ≤+≤-,然后解出m 的取值范围.【详解】解:(1)∵{}28A x x =≤≤,∴{U |2A x x =<或}8x >, ∵()U A B =∅,则B A ⊆,当B =∅时,62m -<,即4m >,当B ≠∅时,62m -≥,68m -≤,解得24m -≤≤.综上所述:2m ≥-.(2)由题可知,B ≠∅,C ≠∅,62,121,m m m -≥⎧⎨+≥-⎩解得24m -≤≤. 若BC ≠∅时,则只需:1612m m m -≤-≤+或2126m m ≤+≤-, 解得:1722m ≤≤. ∴ 当BC ≠∅,m 的取值范围为1722m m ⎧⎫≤≤⎨⎬⎩⎭. 【点睛】 本题考查集合的运算结果求参数的取值范围问题,难度一般,解答时,因为空集是任何集合的子集,所以解答时注意空集的特殊性.25.(1)U B A =[35,3].(2)02m << 【分析】(1)先解不等式得集合A ,再根据单调性求分式函数值域得集合B ,最后根据补集以及并集概念求结果;(2)根据充要关系确定两集合之间包含关系,结合数轴列不等式解得结果.【详解】(1)由2430+x x ->,解得1x <或3x >,所以1[]3U A =,, 又函数31y x =+在区间[0]m ,上单调递减,所以3[3]1y m ∈+,,即3[3]1B m =+,, 当4m =时,3[3]5B =,,所以[3]35U B A =,. (2)首先要求0m >,而“U x A ∈”是“x B ∈”的必要不充分条件,所以,即3[3]1m +,[1]3,, 从而311m >+, 解得02m <<【点睛】本题考查函数定义域、值域,集合补集与并集以及根据充要关系求参数,考查基本分析求解能力,属基础题.26.(1){}|12x x ≤≤;(2)[]4,2.【分析】(1)当2a =时,不等式化为2320x x -+≤,结合一元二次不等式的解法,即可求解; (2)把不等式化为()()10x x a --≤,分类讨论,结合集合的包含关系,即可求解.【详解】(1)由题意,当2a =时,不等式()210x a x a -++≤,即2320x x -+≤, 即()()120x x --≤,解得12x ≤≤,所以集合{}|12A x x =≤≤.(2)由()210x a x a -++≤,可得()()10x x a --≤, 当1a <时,不等式()()10x x a --≤的解集为{}|1x a x ≤≤.由集合A 是集合{}4|2x x -≤≤的真子集可得4a ≥-,所以41a -≤<,当1a =时,不等式()()10x x a --≤的解集为{}|1x x =满足题意;当1a >时,不等式()()10x x a --≤的解集为{}|1x x a ≤≤,由集合A 是集合{}4|2x x -≤≤的真子集,可得2a ≤,所以11a <≤,综上可得:42x -≤≤,即实数a 的取值范围为[]4,2-.【点睛】本题主要考查了一元二次不等式的求解及其应用,其中解答中熟记一元二次不等式的解法,结合集合的关系求解是解答的关键,着重考查了推理与运算能力,属于中档试题.。

(完整版)高中数学必修1第一章集合测试题

(完整版)高中数学必修1第一章集合测试题

新课标人教 A 版会集单元测试题一、选择题:〔每题〔时间4 分,共计80 分钟,总分值40 分〕100 分〕1、若是会集U1,2,3,4,5,6,7,8, A2,5,8, B1,3,5,7,那么 (U A)B等于〔〕(A)5(B)1,3,4,5,6,7,8(C)2,8(D)1,3,72、若是 U是全集, M,P,S 是U 的三个子集,那么阴影局部所表示的会集为〔〕〔A〕〔 M∩P〕∩ S;〔B〕〔 M∩P〕∪ S;〔C〕〔M∩P〕∩〔 C U S〕〔D〕〔M∩P〕∪〔 C U S〕3、会集M {( x, y) | x y2},N{( x, y) | x y 4} ,那么会集M I N 为〔〕A、x3, y1B、(3,1)C、 {3,1}D、 {(3,1)}4.A{4, 2a1, a2} ,B= { a5,1a,9},且 A B {9} ,那么 a 的值是()A. a 3B.a3C.a3D. a 5或 a35.假设会集A{ x kx24x 40, x R} 中只有一个元素 , 那么实数 k 的值为 ()B. 1C. 0或 1D.k16.会集 A{ y y x24, x N , y N} 的真子集的个数为()A. 9B. 8C. 7D. 67.符号 { a}P { a,b,c} 的会集P的个数是()A. 2B. 3C. 4D. 58. M{ y y x21, x R}, P{ x x a 1, a R} , 那么会集 M与 P 的关系是()A. M=PB.P R C .M P D.M P9.设 U为全集 , 会集 A、B、C满足条件 A B A C ,那么以下各式中必然成立的是(〕A.A B A CB.B CC.A(C U B)A(C U C)D.(C U A) B (C U A) C10.A{ x x 2x60}, B{ x mx10} ,且A B A ,那么的取值范围是( )mA.{ 1,1} B.{0, 1 ,1} C.{0,1,1} D.{1,1}323232 3 2二、选择题:〔每题 4 分,总分值 20 分〕11.设会集 M { 小于5的质数 } ,那么M的真子集的个数为.12. 设U{1,2,3,4,5,6,7,8} , A {3,4,5}, B {4,7,8}. 那么: (C U A) (C U B) ,(C U A)(C U B) .13 . 某班有学生 55 人, 其中音乐爱好者34 人 , 体育爱好者 43 人, 还有 4 人既不爱好体育也不爱好音乐 , 那么班级中即爱好体育又爱好音乐的有人.14.A{ x x1或x 5}, B{ x a x a4} ,假设A B, 那么实数a 的取值范围是.15.会集P{ x x m23m1}, T{ x x n23n1} , 有以下判断:① P T { y y 5}②P4T { y y5}③P4T④ P T其中正确的选项是 .三、解答题16. 〔此题总分值 10 分〕含有三个元素的会集 { a, b,1}{ a2 , a b,0}, 求a2007b 2021 a的值 .17.〔此题总分值 10 分〕假设会集S {小于10的正整数},A S,B S ,且 (C S A) B {1,9}, A B { 2}, (C S A) (C S B) {4,6,8} ,求A和B。

(必考题)高中数学必修一第一单元《集合》检测题(答案解析)

(必考题)高中数学必修一第一单元《集合》检测题(答案解析)

一、选择题1.已知集合{}11M x Z x =∈-≤≤,{}Z (2)0N x x x =∈-≤,则如图所示的韦恩图中的阴影部分所表示的集合为( )A .{}0,1B .{}1,2-C .{}1,0,1-D .1,0,1,22.设集合{}20,201x M x N x x x x ⎧⎫=≤=-<⎨⎬-⎩⎭,则M N ⋂为( )A .{}01x x ≤< B .{}01x x <<C .{}02x x ≤<D .{}02x x <<3.若集合3| 01x A x x -=≥+⎧⎫⎨⎬⎩⎭,{|10}B x ax =+≤,若B A ⊆,则实数a 的取值范围是( ) A .1,13⎡⎫-⎪⎢⎣⎭B .1,13⎛-⎤⎥⎝⎦C .(,1)[0,)-∞-+∞ D .1[,0)(0,1)3-⋃4.对任意x M ∈,总有2x M ∉x M ,若{}0,1,2,3,4,5M ⊆,则满足条件的非空集合M 的个数是( ) A .11B .12C .15D .165.设集合{}21|10P x x ax =++>,{}22|20P x x ax =++>,{}21|0Q x x x b =++>,{}22|20Q x xx b =++>,其中,a b ∈R ,下列说法正确的是( )A .对任意a ,1P 是2P 的子集;对任意的b ,1Q 不是2Q 的子集B .对任意a ,1P 是2P 的子集;存在b ,使得1Q 是2Q 的子集C .存在a ,使得1P 不是2P 的子集;对任意的b ,1Q 不是2Q 的子集D .存在a ,使得1P 不是2P 的子集;存在b ,使得1Q 是2Q 的子集6.已知集合{}1,2,3,4,5,6U =,集合A 、B 是U 的子集,且A B U ⋃=,A B ⋂≠∅.若{}3,4=UAB ,则满足条件的集合A 的个数为( )A .7个B .8个C .15个D .16个7.已知集合{|25}A x x =-≤≤,{|121}B x m x m =+≤≤-.若B A ⊆,则实数m 的取值范围为( ) A .3m ≥B .23m ≤≤C .3m ≤D .2m ≥8.已知集合{}|10A x x =-<,{}2|20B x x x =-<,则AB =( )A .{}|0x x <B .{}|1x x <C .{}1|0x x <<D .{}|12x x <<9.若集合2{||31|2},{|0},1x A x x B x x -=-≥=≤-则()R C A B =( )A .1[,2]3-B .∅C .1(,)(1,2]3-∞-⋃ D .1,1(1,2]3⎛⎫-⋃ ⎪⎝⎭10.设{}|13A x x =≤≤,(){}|lg 321B x x =-<,则A B =( )A .3,2⎛⎫-∞ ⎪⎝⎭B .31,2⎡⎫⎪⎢⎣⎭C .31,2⎛⎫ ⎪⎝⎭D .3,32⎛⎤⎥⎝⎦11.已知3(,)|32y M x y x -⎧⎫==⎨⎬-⎩⎭,{(,)|20}N x y ax y a =++=,且M N ⋂=∅,则实数a =( ) A .6-或2-B .6-C .2或6-D .212.已知集合{}{}21239A B x x ==<,,,,则A B =( )A .{}210123--,,,,,B .{}21012--,,,,C .{}123,,D .{}12, 二、填空题13.我们将b a -称为集合{|}M x a x b =≤≤的“长度”,若集合2{|}3M x m x m =≤≤+,{|0.5}N x n x n =-≤≤,且集合M 和集合N 都是集合{|01}x x ≤≤的子集,则集合M N ⋂的“长度”的最小值是________14.设不等式20x ax b ++≤的解集为[]A m n =,,不等式()()2101x x x ++>-的解集为B ,若()(]213A B A B =-+∞=,,,∪∩,则m n +=__________. 15.若规定集合{}()*12,,,n M a a a n N =⋅⋅⋅∈的子集{}()12*,,,mi i i a a a m N ⋅⋅⋅∈为M 的第k个子集,其中12111222m i i i k ---=++⋅⋅⋅+,则M 的第25个子集是______.16.若集合1A ,2A 满足12A A A ⋃=,则称()12,A A 为集合A 的一种分拆,并规定:当且仅当12A A =时,()12,A A 与()21,A A 为集合A 的同一种分拆,则集合{}123,,A a a a =的不同分拆种数是______ .17.若关于x 的方程2210ax x ++=的解集有唯一子集 ,则实数a 的取值范围是_____.18.已知集合()(){}250M x x x =+->,集合()(){}10N x x a x a =---<,若M N N =,则实数a 的取值范围是_____________19.不等式31x x a-≥+的解集为M ,若2M -∉,则实数a 的取值范围为________. 20.设集合1{|0}x A x x a-=≥-,集合{}21B x x =-,且B A ⊆,则实数a 的取值范围为______.三、解答题21.设关于x 的不等式2(21)(2)(1)0x a x a a -+++->和2()()0x a x a --<的解集分别为A 和B .(1)求集合A ;(2)是否存在实数a ,使得A B =R ?如果存在,求出a 的值,如果不存在,请说明理由;(3)若A B ⋂≠∅,求实数a 的取值范围. 22.设{}{},1,05U R A x x B x x ==≥=<<,求()UA B 和()U A B ∩23.已知集合{()(1)0}M xx t x =-+≤∣,{|21}N x x =|-|<. (1)当2t =时,求M N ⋃; (2)若N M ⊆,求实数t 的取值范围. 24.集合[]34,2,4x A y y x x ⎧⎫-==∈⎨⎬⎩⎭,{}|1B x x m =+≥. (1)若A B ⊆,求m 的取值范围;(2)设命题p :a A ∈,命题q :函数()241f x x ax =-+在[]3,5上为减函数.若p q∧为真,求a 的取值范围.25.已知集合{}2|280A x x x =+-≤,[)1,B =-+∞,设全集为U =R .(1)求()UA B ∩;(2)设集合(1,1)C a a =-+,若C A B ⊆⋃,求实数a 的取值范围.26.已知集合{1,2,3}A =,2{|(1)0,}B x x a x a x R =-++=∈,若A B A ⋃=,求实数a ;【参考答案】***试卷处理标记,请不要删除一、选择题 1.B解析:B 【分析】阴影部分可以用集合M N 、表示为()()M N C M N ⋃⋂,故求出M N 、、M N ⋃,M N ⋂即可解决问题.【详解】解:由题意得,{}1,0,1M =-,{}0,1,2N ={}1,0,1,2M N ⋃=-,{}0,1M N ⋂=阴影部分为()(){}1,2M N C M N ⋃⋂=-故选B 【点睛】本题考查用韦恩图表示的集合的运算,解题时要能用集合的运算表示出阴影部分.2.B解析:B 【分析】根据分式不等式和一元二次不等式的解法,求得集合{01},{|02}M x x N x x =≤<=<<,再结合集合交集的运算,即可求解.【详解】由题意,集合{}20{01},20{|02}1x M xx x N x x x x x x ⎧⎫=≤=≤<=-<=<<⎨⎬-⎩⎭,所以{}01M N x x ⋂=<<. 故选:B . 【点睛】本题主要考查了集合的交集的概念及运算,其中解答中结合分式不等式和一元二次不等式的解法,准确求解集合,A B 是解答的关键,着重考查了计算能力.3.A解析:A 【分析】先根据分式不等式求解出集合A ,然后对集合B 中参数a 与0的关系作分类讨论,根据子集关系确定出a 的范围. 【详解】因为301x x -≥+,所以()()10310x x x +≠⎧⎨-+≥⎩,所以1x <-或3x ≥, 所以{|1A x x =<-或}3x ≥,当0a =时,10≤不成立,所以B =∅,所以B A ⊆满足, 当0a >时,因为10ax +≤,所以1x a≤-,又因为B A ⊆,所以11-<-a,所以01a <<, 当0a <时,因为10ax +≤,所以1x a≥-, 又因为B A ⊆,所以13a -≥,所以103a -≤<, 综上可知:1,13a ⎡⎫∈-⎪⎢⎣⎭. 故选:A. 【点睛】本题考查分式不等式的求解以及根据集合间的包含关系求解参数范围,难度一般.解分式不等式的方法:将分式不等式先转化为整式不等式,然后根据一元二次不等式的解法或者高次不等式的解法(数轴穿根法)求出解集.4.A解析:A 【分析】根据题意,0M ∉且1M ∉,且2、4不同时在集合M 中,对集合M 分两种情况讨论:①2M ∉且4M ∉;②2和4有且只有一个在集合M 中,分别列举出符合条件的集合M ,即可得出答案.【详解】2111==,200=,由题意可知0M ∉且1M ∉,由于242=,所以,2和4不同时在集合M 中.①当2M ∉且4M ∉时,则符合条件的集合M 有:{}3、{}5、{}3,5,共3种; ②若2和4有且只有一个在集合M 中,则符合条件的集合M 有:{}2、{}2,3、{}2,5、{}2,3,5、{}4、{}3,4、{}4,5、{}3,4,5,共8种.综上所述,满足条件的非空集合M 的个数是3811+=. 故选:A. 【点睛】本题考查满足条件的集合个数的求解,列举出满足条件的集合即可,考查分类讨论思想的应用,属于中等题.5.B解析:B 【分析】先证得1P 是2P 的子集,然后求得b 使1Q 是2Q 的子集,由此确定正确选项.【详解】对于1P 和2P ,由于210x ax ++>时222110x ax x ax ++=+++>,所以1P的元素,一定是2P 的元素,故对任意a ,1P 是2P 的子集.对于1Q 和2Q ,根据判别式有140440b b -<⎧⎨-<⎩,即1b >时,12Q Q R ==,满足1Q 是2Q 的子集,也即存在b ,使得1Q 是2Q 的子集. 故选B. 【点睛】本小题主要考查子集的判断,考查恒成立问题和存在性问题的求解策略,属于基础题.6.C解析:C 【分析】由题意知3、4B ∉,则集合A 的个数等于{}1,2,5,6非空子集的个数,然后利用公式计算出集合{}1,2,5,6非空子集的个数,即可得出结果. 【详解】由题意知3、4B ∉,且集合A 、B 是U 的子集,且A B U ⋃=,A B ⋂≠∅, 则AB 为集合{}1,2,5,6的非空子集,因此,满足条件的集合A 的个数为42115-=.故选C. 【点睛】本题考查集合个数的计算,一般利用列举法将符合条件的集合列举出来,也可以转化为集合子集个数来进行计算,考查化归与转化思想的应用,属于中等题.7.C解析:C 【分析】讨论,B B =∅≠∅两种情况,分别计算得到答案. 【详解】当B =∅时:1212m m m +>-∴< 成立;当B ≠∅时:12112215m m m m +≤-⎧⎪+≥-⎨⎪-≤⎩解得:23m ≤≤.综上所述:3m ≤ 故选C 【点睛】本题考查了集合的关系,忽略掉空集的情况是容易发生的错误.8.C解析:C 【分析】求出A 、B 中不等式的解集确定出A 、B ,找出A 与B 的交集即可.【详解】集合{}{}|10|1A x x x x =-<=<,集合{}{}2|20|02B x x x x x =-<=<<, 所以A B ={}1|0x x <<.故选:C 【点睛】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.9.D解析:D 【分析】解绝对值不等式求得集合A ,解分式不等式求得集合B ,求得集合A 的补集,然后求此补集和集合B 的并集,由此得出正确选项. 【详解】由|31|2x -≥得312x -≤-或312x -≥,解得13x ≤-或1x ≥,故1,13R C A ⎛⎫=- ⎪⎝⎭.由201x x -≤-得()()12010x x x ⎧--≤⎨-≠⎩,解得12x <≤,所以()R C A B =1,1(1,2]3⎛⎫-⋃ ⎪⎝⎭.故选:D. 【点睛】本小题主要考查绝对值不等式的解法,考查分式不等式的解法,考查集合补集、并集的计算,属于基础题.10.B解析:B 【分析】求出集合,A B 后可得A B .【详解】13{|}A x x =≤≤,73{|03210}{|}22B x x x x =<-<=-<<; ∴31,2A B ⎡⎫⎪⎢⎣=⎭⋂,故选:B. 【点睛】本题考查一元二次不等式的解、对数不等式的解及集合的交集运算,解对数不等式时注意真数恒为正,属于中档题.11.A解析:A 【解析】 【分析】先确定集合M,N,再根据M N ⋂=∅确定实数a 的值. 【详解】由题得集合M 表示(32)3y x -=-上除去(2)3,的点集,N 表示恒过(10)-,的直线方程. 根据两集合的交集为空集:M N ⋂=∅.①两直线不平行,则有直线20ax y a ++=过(2)3,,将2x =,代入可得2a =-, ②两直线平行,则有32a-=即6a =-, 综上6a =-或2-, 故选:A . 【点睛】本题主要考查集合的化简和集合的关系,意在考查学生对这些知识的理解掌握水平,属于基础题.12.D解析:D 【解析】 【分析】先求出集合B ,然后与集合A 取交集即可. 【详解】由题意,{}{}2933B x x x x =<=-<<,则{}1,2AB =.故答案为D. 【点睛】本题考查了集合的交集,考查了不等式的解法,考查了学生的计算能力,属于基础题.二、填空题13.【分析】当集合的长度的最小值时与应分别在区间的左右两端由此能求出的长度的最小值【详解】由题的长度为的长度为当集合的长度的最小值时与应分别在区间的左右两端故的长度的最小值是故答案为:【点睛】本题考查交解析:16【分析】当集合M N ⋂的“长度”的最小值时,M 与N 应分别在区间[]0,1的左右两端,由此能求出M N ⋂的“长度”的最小值【详解】 由题,M 的“长度”为23,N 的“长度”为12, 当集合M N ⋂的“长度”的最小值时,M 与N 应分别在区间[]0,1的左右两端,故M N ⋂的“长度”的最小值是2111326+-=, 故答案为:16【点睛】本题考查交集的“长度”的最小值的求法,考查新定义的合理运用14.【分析】计算得到根据得到得到答案【详解】则或即故故故答案为:【点睛】本题考查了不等式的解集根据集合的运算结果求参数意在考查学生的综合应用能力 解析:2【分析】计算得到()()2,11,B =--+∞,根据()(]213A B A B =-+∞=,,,∪∩得到[]1,3A =-,得到答案.【详解】()()2101x x x ++>-,则1x >或21x -<<-,即()()2,11,B =--+∞.()(]213A B A B =-+∞=,,,∪∩,故[]1,3A =-,故2m n +=. 故答案为:2. 【点睛】本题考查了不等式的解集,根据集合的运算结果求参数,意在考查学生的综合应用能力.15.【分析】根据子集的定义将表示为求出即可求解【详解】的第25个子集是故答案为:【点睛】本题考查新定义的理解认真审题领会题意是关键属于中档题 解析:{}145,,a a a【分析】根据子集的定义将25表示为1211125222m i i i ---=++⋅⋅⋅+,求出12,m i i i ,即可求解【详解】03411415125222222---=++=++,1231,4,5i i i ===,M 的第25个子集是{}145,,a a a ,故答案为:{}145,,a a a . 【点睛】本题考查新定义的理解,认真审题,领会题意是关键,属于中档题.16.【分析】考虑集合为空集有-个元素2个元素和集合A 相等四种情况由题中规定的新定义分别求出各自的分析种数然后把各自的分析种数相加即可得到结果【详解】当时必须分析种数为1;当有一个元素时分析种数为;当有2解析:【分析】考虑集合1A 为空集,有-个元素,2个元素,和集合A 相等四种情况,由题中规定的新定义分别求出各自的分析种数,然后把各自的分析种数相加,即可得到结果. 【详解】 当1A =时必须2A A =,分析种数为1;当1A 有一个元素时,分析种数为132C ⋅; 当1A 有2个元素时,分析总数为2232C ⋅;当1A A =时,分析种数为3332C ⋅.所以总的不同分析种数为11223333331222(12)27C C C +⋅+⋅+⋅=+=. 故答案为:27. 【点睛】(1)解决集合中新定义问题的关键是准确理解新定义的实质,紧扣新定义进行推理论证,把其转化为我们熟知的基本运算.(2)以集合为载体的新定义问题,是创新型试题的一个热点,常见的命题形式有新概念、新法则、新运算等,这类试题中集合只是基本的依托,考查的是考生创造性解决问题的能力.17.【分析】由题意知关于的方程无实数解可得出由此可解出实数的取值范围【详解】由题意知关于的方程无实数解当时原方程为解得不合乎题意;当时则有解得综上所述实数的取值范围是故答案为:【点睛】本题考查利用集合的 解析:()1,+∞【分析】由题意知,关于x 的方程2210ax x ++=无实数解,可得出00a ≠⎧⎨∆<⎩,由此可解出实数a 的取值范围. 【详解】由题意知,关于x 的方程2210ax x ++=无实数解.当0a =时,原方程为210x +=,解得12x =-,不合乎题意;当0a ≠时,则有440a ∆=-<,解得1a >. 综上所述,实数a 的取值范围是()1,+∞. 故答案为:()1,+∞.【点睛】本题考查利用集合的子集个数求参数,将问题转化为方程无实解是解题的关键,考查分类讨论思想的应用,属于中等题.18.【分析】解一元二次不等式求得集合根据列不等式组解不等式求得的取值范围【详解】由解得或由解得由于所以或即或故答案为:【点睛】本小题主要考查一元二次不等式的解法考查根据集合交集的结果求参数的取值范围属于解析:(][)35-∞-⋃+∞,, 【分析】解一元二次不等式求得集合,M N ,根据MN N =列不等式组,解不等式求得a 的取值范围.【详解】由()()250x x +->解得2x <-或5x >.由()()10x a x a ---<解得1a x a <<+.由于M N N =,所以12a +≤-或5a ≥,即3a ≤-或5a ≥.故答案为:(][)35-∞-⋃+∞,, 【点睛】本小题主要考查一元二次不等式的解法,考查根据集合交集的结果求参数的取值范围,属于基础题. 19.【分析】由题意可知实数满足或解出即可得出实数的取值范围【详解】由题意可知实数满足或解不等式即即解得或因此实数的取值范围是故答案为【点睛】本题考查利用元素与集合的关系求参数解题的关键在于将问题转化为不 解析:()[),32,-∞-⋃+∞【分析】由题意可知,实数a 满足2312a --<-+或20a -+=,解出即可得出实数a 的取值范围. 【详解】由题意可知,实数a 满足2312a --<-+或20a -+=. 解不等式2312a --<-+,即5102a +>-,即302a a +>-,解得3a <-或2a >. 因此,实数a 的取值范围是()[),32,-∞-⋃+∞.故答案为()[),32,-∞-⋃+∞.【点睛】本题考查利用元素与集合的关系求参数,解题的关键在于将问题转化为不等式进行求解,考查化归与转化思想的应用,属于中等题.20.【分析】解可得集合B 对于A 先将转化为且分三种情况讨论求出集合A 判断是否成立综合可得a 的范围即可得答案【详解】或则或对于A 且时成立符合题意时或不会成立不符合题意时或要使成立必有则a 的范围是综合可得a 的 解析:[]1,3【分析】 解21x ->可得集合B ,对于A ,先将1|0x x a -≥-转化为()()10x x a --≥且x a ≠,分1a =,1a >,1a <三种情况讨论,求出集合A ,判断B A ⊆是否成立,综合可得a 的范围,即可得答案【详解】211x x ->⇔<或3x >,则{|1B x x =<或3}x >,对于A ,()()1010x x x a x a-≥⇔--≥-且x a ≠, 1a =①时,{|1}A x x =≠,B A ⊆成立,符合题意,1a <②时,{|A x x a =<或1}x ≥,B A ⊆不会成立,不符合题意,1a >③时,{A x x a =或1}x ≤,要使B A ⊆成立,必有3a ≤,则a 的范围是13a ,综合①②③可得,a 的取值范围为13a ≤≤,即[]1,3;故答案是:[]1,3.【点睛】本题考查集合之间关系的判断,涉及分式、绝对值不等式的解法,解分式不等式一般要转化为整式不等式,有参数时,一般要分类讨论.三、解答题21.(1){|2A x x a =>+或1}x a <-;(2)不存在;理由见解析;(3)01a <<.【分析】(1)解一元二次不等式能求出集合A .(2)由A B R =,根据2{|}B a a x a =<<和2{|}B a a x a =<<分类讨论,得到不存在实数a ,使得AB R =. (3)由A B ≠∅,根据2{|}B a a x a =<<和2{|}B a a x a =<<分类讨论,能求出实数a 的取值范围.【详解】解:(1)不等式2(21)(2)(1)0x a x a a -+++->可化为[(2)][(1)]0x a x a -+-->, 解得1x a <-或2x a >+,所以不等式的解集为{|1A x x a =<-或2}x a >+; (2)当0a =时,不等式2()()0x a x a --<化为20x <,此时不等式无解, 当0a <时,2a a >,不等式2()()0x a x a --<的解集为2{|}x a x a <<,当01a <<时,2a a <,不等式2()()0x a x a --<的解集为2{|}x a x a <<,当1a =时,2a a =,不等式2()()0x a x a --<化为2(10)x -<,此时不等式无解, 当1a >时,2a a >,不等式2()()0x a x a --<的解集为2{|}x a x a <<,综上所述:当0a =或1a =时,B =∅,当0a <或1a >时,2{|}B x a x a =<<,当01a <<时,2{|}B x a x a =<<,要使A B R =,当2{|}B a a x a =<<时,2a a >,2a x a <<,1a a - 或22a a +,无解,当2{|}B a a x a =<<时,2a a <,2a x a <<,2a a +,21a a =-,无解, 故不存在实数a ,使得AB R =. (3)A B ≠∅,∴当2{|}B a a x a =<<时,1a a -<,或22a a +>,即220a a --<,解得10a -<< 或12a <<,此时实数a 的取值范围是(1-,0)(1⋃,2),当2{|}B a a x a =<<时,21a a -<或2a a +>,即210a a -+>,解得01a <<,此时,实数a 的取值范围是(0,1).【点睛】本题考查含参一元二次不等式的解法,解含参一元二次不等式需分类讨论,首先判断二次项系数是否为零,再对所对应的一元二次方程的根进行分类讨论;22.(){}|5U A B x x ⋃=<,(){}|5U A B x x ⋂=≥.【分析】 首先根据题中所给的集合,根据补集的定义,求得{}|1UA x x =<,{0UB x =≤或5}x ,之后利用交集并集的定义求得结果.【详解】因为U =R ,{}{}1,05A x x B x x =≥=<<,所以{}|1U A x x =<,{0U B x =≤或5}x , 所以(){}|5UA B x x ⋃=<,(){}|5U A B x x ⋂=≥. 【点睛】该题考查的是有关集合的问题,涉及到的知识点有集合的运算,属于简单题目. 23.(1)[1,3)-(2)[3,)+∞【分析】(1)可得出N ={x |1 <x <3 },t =2时求出集合M ,然后进行并集的运算即可;(2)根据N M ⊆即可得出集合M ={x |-1≤x ≤t },进而可得出t 的取值范围.(1){|21}N x x =|-|<={13}xx <<∣, 当2t =时,{(2)(1)0}(1,2)M xx x =-+≤=-∣, [)1,3M N ∴⋃=-(2)N M ⊆,∴M ={x |-1≤x ≤t },3t ∴≥,∴实数t 的取值范围[3,)+∞【点睛】本题主要考查了一元二次不等式和绝对值不等式的解法,并集的定义及运算,子集的定义,考查了计算能力,属于基础题.24.(1)0m ≥;(2)∅.【分析】(1)由于A B ⊆,根据子集的定义,即可求出m 的取值范围;(2)根据p q ∧为真,得出p 真且q 真,分别求出命题p 和命题q 对应的a 的范围,取交集后,即可得出a 的取值范围.【详解】解:由题意得,集合[]1,2A =,{}|1B x x m =≥-,(1)∵A B ⊆,∴11m -≤,则0m ≥;(2)由题可知,∵p q ∧为真,∴p 真且q 真,命题p :[]1,2a ∈,命题q :函数()241f x x ax =-+在[]3,5上为减函数, 则抛物线对称轴大于等于5,即:5252a a ≥⇒≥, 则1252a a ≤≤⎧⎪⎨≥⎪⎩,解得:a ∈∅. 所以a 的取值范围为∅.【点睛】本题考查根据集合间的关系求参数范围,以及根据复合命题的真假性判断命题真假,进而求参数范围.25.(1)()[)4,1U AB =--(2)[)3,-+∞ 【分析】(1)先化简集合A ,再求()U A B ∩;(2)先求出[)4,A B =-+∞,得14a -≥-,解不等式即得解.(1)由题得[]4,2A =-,[)1,B =-+∞,(,1)U B =-∞-, 所以()[)4,1U A B =--;(2)由题得[)4,AB =-+∞,若C A B ⊆⋃,则14a -≥-,所以3a ≥-. 所以a 的取值范围是[)3,-+∞.【点睛】本题主要考查集合的运算和关系,意在考查学生对这些知识的理解掌握水平. 26.1a =或2或3【分析】由A B A ⋃=可得B A ⊆,分别讨论B =∅与B ≠∅的情况,进而求解即可【详解】由A B A ⋃=可得B A ⊆,若B =∅,则()2140a a ∆=+-<,解得a ∈∅;若B ≠∅,则()()10x a x --=,解得1x a =,21x =,①当1a =,则{}1B =,符合题意;②当2a =,则{}1,2B =,符合题意;③当3a =,则{}1,3B =,符合题意;综上,1a =或2或3【点睛】本题考查已知集合的包含关系求参数,考查分类讨论思想。

高中数学单元测试题必修1第一章《集合》

高中数学单元测试题必修1第一章《集合》

高中数学单元测试题必修1第一章《集合》一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共60分).1.下列集合的表示法正确的是( A )A .}1|{}1|{=+==+y x y y x xB .第二、四象限内的点集可表示为{}(,)0,,x y xy x R y R ≤∈∈;C .集合{}1,2,2,5,7;D .不等式14x -<的解集为{}5x <2.已知集合}1,1{-=A ,}1|{==mx x B ,且A B A = ,则m 的值为A .1B .1-C .1或1-D .1或1-或0 3.设全集}7,6,5,4,3,2,1{=U ,集合}5,3,1{=A ,集合}5,3{=B ,则A .U AB = B .()U U A B = ðC .()U U A B = ðD .()()U U U A B = 痧4.设U ={1,2,3,4} ,若A B ={2},(){4}U A B = ð,()(){1,5}U U A B = 痧, 则下列结论正确的是A .A ∉3且B ∉3 B .A ∈3且B ∉3C .A ∉3且B ∈3D .A ∈3且B ∈35.设全集是实数集R ,{|22}M x x =-≤≤,N x x =<{|}1,则R M N ð等于A .{|}x x <-2B .{|}x x -<<21C .{|}x x <1D .{|}x x -≤<216.设U 为全集,Q P ,为非空集合,且P ÜQ ÜU ,下面结论中不正确...的是 A .()U P Q U = ð B .()U P Q = ðφ C .P Q Q =D .()U Q P = ðφ7.下列四个集合中,是空集的是 A .}33|{=+x x B .},,|),{(22R y x x y y x ∈-=C .}0|{2≤x x D .}01|{2=+-x x x8.设集合},412|{Z k k x x M ∈+==,},214|{Z k k x x N ∈+==,则 A .M N = B .M ÜNC .N ÜMD .M N ϕ=9.表示图形中的阴影部分A .()()A CBC B .()()A B A CC .()()A B B CD .()A B C 10.已知全集{1,2,3,4,5,6,7},{3,4,5},{1,3,6}U M N ===,则集合{2,7}等于A .M NB .U U M N 痧C .U U M N 痧D .M N 11.满足{1,2,3} ÜM Ü{1,2,3,4,5,6}的集合M 的个数是A .8B .7C .6D .512.下列命题之中,U 为全集时,不正确的是A .若AB = φ,则()()U U A B U = 痧 B .若A B = φ,则A = φ或B = φC .若A B = U ,则()()U U A B = 痧φD .若A B = φ,则==B A φ 二、填空题:请把答案填在题中横线上(每小题5分,共20分).13.若集合{(,)|20240}{(,)|3}x y x y x y x y y x b +-=-+=⊆=+且,则b = .14.设集合}0|),{(111=++=c x b x a y x A ,}0|),{(222=++=c x b x a y x B ,则方程)(111c x b x a ++0)(222=++c x b x a 的解集为 .15.已知集合}023|{2=+-=x ax x A 至多有一个元素,则a 的取值范围 .16.设集合{|12},{|}M x x N x x a =-≤<=≤,若M N ≠∅ ,则a 范围是 .三、解答题:解答应写出文字说明、证明过程或演算步骤(共70分).17.(10分)已知集合A ={x |x =m 2-n 2,m ∈Z ,n ∈Z},求证:(1)3∈A ; (2)偶数4k -2 (k ∈Z)不属于A.CB A18.(12分)(1)P ={x |x 2-2x -3=0},S ={x |ax +2=0},S ⊆P ,求a 取值.(2)A ={-2≤x ≤5} ,B ={x |m +1≤x ≤2m -1},B ⊆A,求m 的取值范围.19.(12分)在1到100的自然数中有多少个能被2或3整除的数?20.(12分)已知集合22{|320},{|20}A x x x B x x x m =-+==-+=且=B A ,A 求m的取值范围.21.设}019|{22=-+-=a ax x x A ,}065|{2=+-=x x x B ,}082|{2=-+=x x x C .①当A B =A B 时,求a 的值;②当φÜA B ,且A C =φ时,求a 的值; ③当A B =A C ≠φ时,求a 的值;(12分)22.(12分)设1a ,2a ,3a ,4a ,5a 为自然数,A={1a ,2a ,3a ,4a ,5a }, B={21a ,22a ,23a ,24a ,25a },且1a <2a <3a <4a <5a ,并满足A ∩B={1a ,4a }, 1a +4a =10,A ∪B 中各元素之和为256,求集合A ?高中数学单元测试题必修1第一章《集合》一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共60分).1.下列集合的表示法正确的是( A )A .}1|{}1|{=+==+y x y y x xB .第二、四象限内的点集可表示为{}(,)0,,x y xy x R y R ≤∈∈;C .集合{}1,2,2,5,7;D .不等式14x -<的解集为{}5x <已知集合{(,)|2},{(,)|4}M x y x y N x y x y =+==-=,那么集合M N 为(D )A .3,1x y ==-B .(3,1)-C .{3,1}-D .{(3,1)}-2.已知集合}1,1{-=A ,}1|{==mx x B ,且A B A = ,则m 的值为(D ) A .1 B .1- C .1或1- D .1或1-或03.设全集}7,6,5,4,3,2,1{=U ,集合}5,3,1{=A ,集合}5,3{=B ,则(C ) A .U A B = B .()U U A B = ð C .()U U A B = ð D .()()U U U A B = 痧4.设U ={1,2,3,4} ,若A B ={2},(){4}U A B = ð,()(){1,5}U U A B = 痧,则下列结论正确的是 ( B )A .A ∉3且B ∉3 B .A ∈3且B ∉3C .A ∉3且B ∈3D .A ∈3且B ∈35.设全集是实数集R ,{|22}M x x =-≤≤,N x x =<{|}1,则R M N ð等于(A )A .{|}x x <-2B .{|}x x -<<21C .{|}x x <1D .{|}x x -≤<21 设集合{1,2,3,4,5,6},{|26}P Q x R x ==∈≤≤,那么下列结论正确的是(D )A .P Q P =B .P Q Q ÝC .P Q Q =D .P Q P Ü 集合{|22},{|13}A x x B x x =-<<=-≤<,那么A B = (A )A .{|23}x x -<<B .{|12}x x ≤<C .{|21}x x -<≤D .{|23}x x <<以下四个关系:φ}0{∈,∈0φ,{φ}}0{⊆,φÜ}0{,其中正确的个数是( A )A .1B .2C .3D .4 下列五个写法:①{}{}00,1,2;∈②{}0;∅⊆③{}{}0,1,21,2,0;⊆④0;∈∅⑤0 ∅.=∅ 其中错误..写法的个数为 (C ) A .1 B .2 C .3 D .4 如果集合{}1->=x x P ,那么 (D )A .P ⊆0B .{}P ∈0C .P ∈∅D .{}P ⊆06.设U 为全集,Q P ,为非空集合,且P ÜQ ÜU ,下面结论中不正确...的是 ( B ) A .()U P Q U = ð B .()U P Q = ðφ C .P Q Q =D .()U Q P = ðφ 7.下列四个集合中,是空集的是 ( D )A .}33|{=+x xB .},,|),{(22R y x x y y x ∈-=C .}0|{2≤x xD .}01|{2=+-x x x8.设集合},412|{Z k k x x M ∈+==,},214|{Z k k x x N ∈+==,则 ( B ) A .M N = B .M ÜNC .N ÜMD .M N ϕ= 已知集合 },61|{Z m m x x M ∈+==,},312|{Z n n x x N ∈-==, =P x x |{+=2p },61Z p ∈,则P N M ,,的关系 (B ) A .N M =ÜP B .M ÜP N = C .M ÜN ÜP D . N ÜP ÜM设集合},3|{Z k k x x M ∈==,},13|{Z k k x x P ∈+==,},13|{Z k k x x Q ∈-==,若Q c P b M a ∈∈∈,,,则∈-+c b a( C ) A .M B . P C .Q D .P M ⋃9.表示图形中的阴影部分( A )A .()()A CBC B .()()A B A CC .()()A B B CD .()A B CB A10.已知全集{1,2,3,4,5,6,7},{3,4,5},{1,3,6}U M N ===,则集合{2,7}等于( B )A .M NB .U U M N 痧C .U U M N 痧D .M N 11.满足{1,2,3} ÜM Ü{1,2,3,4,5,6}的集合M 的个数是(C ) A .8 B .7 C .6 D .5满足{,}M N a b = 的集合N M ,共有(C )A .7组B .8组C .9组D .10组 满足条件{1}{1,2,3}M = 的集合M 的个数是 ( C )A .4B .3C .2D .112.下列命题之中,U 为全集时,不正确的是 (B )A .若AB = φ,则()()U U A B U = 痧 B .若A B = φ,则A = φ或B = φC .若A B = U ,则()()U U A B = 痧φD .若A B = φ,则==B A φ 二、填空题:请把答案填在题中横线上(每小题5分,共20分).13.若集合{(,)|20240}{(,)|3}x y x y x y x y y x b +-=-+=⊆=+且,则b =2.14.设集合}0|),{(111=++=c x b x a y x A ,}0|),{(222=++=c x b x a y x B ,则方程)(111c x b x a ++0)(222=++c x b x a 的解集为A ∪B.15.已知集合}023|{2=+-=x ax x A 至多有一个元素,则a 的取值范围a =0或89≥a . 16.设集合{|12},{|}M x x N x x a =-≤<=≤,若M N ≠∅ ,则a 范围是{|1}a a -?设集合(]{}2,,|1,M m P y y x x R =-∞==-∈,若M P =∅ ,则实数m 范围是(D ) A .1m ≥- B .1m >- C .1m ≤- D .1m <-三、解答题:解答应写出文字说明、证明过程或演算步骤(共70分).17.(10分)已知集合A ={x |x =m 2-n 2,m ∈Z ,n ∈Z},求证:(1)3∈A ; (2)偶数4k -2 (k ∈Z)不属于A.证明:(1)3=22-12 ∴3∈A ;(2)设4k -2∈A,得存在m,n ∈Z,使4k -2=m 2-n 2成立.(m -n )(m +n )=4k -2,当m,n 同奇或同偶时,m -n,m +n 均为偶数.∴(m -n )(m +n )为4的倍数,与4k -2不是4 倍数矛盾.当m,n 同分别为奇,偶数时,m -n,m +n 均为奇数.(m -n)(m +n )为奇数,与4k -2是偶数矛盾.∴4k -2∉A18.(12分)(1)P ={x |x 2-2x -3=0},S ={x |ax +2=0},S ⊆P ,求a 取值.(2)A ={-2≤x ≤5} ,B ={x |m +1≤x ≤2m -1},B ⊆A,求m 的取值范围.解:(1)a =0,S =φ,φ⊆P 成立 a ≠0,S ≠φ,由S ⊆P ,P ={3,-1}得3a +2=0,a =23-或-a +2=0,a =2; ∴a 值为0或23-或2. (2)B =φ,即m +1>2m -1,m <2 φ⊆A 成立.B≠φ,由题得121,21,215m m m m +≤-⎧⎪-≤+⎨⎪-≤⎩得2≤m ≤3,∴m <2或2≤m ≤3 , 即m ≤3为取值范围.注:(1)特殊集合φ作用,常易漏掉;(2合思想常使集合问题简捷比. 用描述法表示图中的阴影部分(包括边界)解:}0,121,231|),{(≥≤≤-≤≤-xy y x y x19.(12分)在1到100的自然数中有多少个能被2或3整除的数?解:设集合A 为能被2整除的数组成的集合,集合B 为能被3整除的数组成的集合,则A B 为能被2或3整除的数组成的集合,A B 为能被2和3(也即6)整除的数组成的集合.显然集合A 中元素的个数为50,集合B 中元素的个数为33,集合A B 中元素的个数为16,可得集合A B 中元素的个数为50+33-16=67.某市数、理、化竞赛时,高一某班有24名学生参加数学竞赛,28名学生参加物理竞赛,19名学生参加化学竞赛,其中参加数、理、化三科竞赛的有7名,只参加数、物两科的有5名,只参加物、化两科的有3名,只参加数、化两科的有4名。

高中数学新教材必修第一册第一章《集合》综合测试题(附答案)

高中数学新教材必修第一册第一章《集合》综合测试题(附答案)

新教材必修第一册第一章《集合》综合测试题(时间:120分钟 满分:150分)班级 姓名 分数一、选择题(每小题5分,共计60分)1.设全集I={0,1,2,3,4},集合A={0,1,2,3},集合B={2,3,4},则A C I ∪B C I =A .{0}B .{0,1}C .{0,1,4}D .{0,1,2,3,4}2.方程组3231x y x y -=⎧⎨-=⎩的解的集合是 A .{x =8,y=5} B .{8, 5} C .{(8, 5)}D .Φ3.有下列四个命题: ①{}0是空集; ②若Z a ∈,则a N -∉; ③集合{}2210A x R x x =∈-+=有两个元素;④集合6B x QN x ⎧⎫=∈∈⎨⎬⎩⎭是有限集。

其中正确命题的个数是A .0B .1C .2D .34. 已知{}{}22|1,|1==-==-M x y x N y y x , N M ⋂等于( )A. NB.MC.RD.∅ 5.如果集合A={x |ax 2+2x +1=0}中只有一个元素,则a 的值是 A .0 B .0 或1 C .1 D .不能确定6.已知}{R x x y y M∈-==,42,}{42≤≤=x x P 则M P 与的关系是 A .M P = B .M P ∈ C .M ∩P =Φ D . M ⊇P7.已知全集I =N ,集合A ={x |x =2n ,n ∈N},B ={x |x =4n ,n ∈N},则A .I =A∪BB .I =AC I ∪B C .I =A∪B C ID .I =A C I ∪B C I8.设集合M=},214|{},,412|{Z k k x x N Z k k x x ∈+==∈+=,则A .M =NB . M ≠⊂NC . N ≠⊂MD .M ∩=N Φ9. 已知函数2()1=++f x mx mx 的定义域是一切实数,则m 的取值范围是 ( )A.0<m ≤4B.0≤m ≤1C.m ≥4 D .0≤m ≤4 10.设集合A={x |1<x <2},B={x |x <a }满足A ≠⊂B ,则实数a 的取值范围是 A .[)+∞,2 B .(]1,∞- C .[)+∞,1D .(]2,∞-11.满足{1,2,3} ≠⊂M ≠⊂{1,2,3,4,5,6}的集合M 的个数是A .8B .7C .6D .512.如右图所示,I 为全集,M 、P 、S 为I 的子集。

最新人教版高中数学必修第一册第一单元《集合与常用逻辑用语》测试题(包含答案解析)

最新人教版高中数学必修第一册第一单元《集合与常用逻辑用语》测试题(包含答案解析)

一、选择题1.以下四个命题中,真命题的是( )A .()0π,sin tan x x x ∃∈=,B .ABC 中,sin sin cos cos A B A B +=+是2C π=的充要条件C .在一次跳伞训练中,甲,乙两位同学各跳一次,设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示p q ∧ D .∀∈θR ,函数()()sin 2f x x θ=+都不是偶函数2.已知实数0x >,0y >,则“1xy ≤”是“224x y +≤”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 3.m n 是两条不同的直线,α是平面,n α⊥,则//m α是m n ⊥的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.已知集合{}1A x x =>-,{}2B x x =<,则A B =( )A .()1,-+∞B .(),2-∞C .1,2D .R5.已知集合{}{}2|13,|4,P x R x Q x R x =∈≤≤=∈≥ 则()R P Q ⋃=A .[2,3]B .( -2,3 ]C .[1,2)D .(,2][1,)-∞-⋃+∞6.下列命题错误的是( )A .命题“若2430x x -+=,则3x =”的逆否命题为“若3x ≠,则2430x x -+≠”B .命题“x R ∀∈,220x x -+>”的否定是“0x R ∃∈,20020x x -+<”C .若“p 且q ”为真命题,则p ,q 均为真命题D .“1x >-”是“2430x x ++>”的充分不必要条件 7.以下有关命题的说法错误的是( )A .命题“若2320x x -+=,则1x =”的逆否命题为“若1x ≠,则2320x x -+≠”B .“1x =”是“2320x x -+=”的充分不必要条件C .命题“在ABC 中,若A B >,则sin sin A B >”的逆命题为假命题D .对于命题p :存在x ∈R ,使得210x x +-<,则p ⌝:任意x ∈R ,则210x x +-≥8.设等比数列{}n a 中,10a >,公比为q ,则“1q >”是“{}n a 是递增数列”的( ). A .充分非必要条件 B .必要非充分条件 C .充分必要条件D .既非充分又非必要条件9.“3,a =b =”是双曲线22221(0,0)x y a b a b -=->>的离心率为2( )A .充要条件B .必要不充分条件C .即不充分也不必要条件D .充分不必要条件10.已知命题2:21,:560p x m q x x -<++<,且p 是q 的必要不充分条件,则实数m 的取值范围为( ) A .12m >B .12m ≥C .1mD .m 1≥第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案11.函数()31f x x ax =--在()1,1-上不单调的一个充分不必要条件是( )A .[]0,3a ∈B .()0,5a ∈C .()0,3a ∈D .()1,2a ∈12.设{}n a 是等差数列,且公差不为零,其前n 项和为n S .则“*n N ∀∈,1n n S S +>”是“{}n a 为递增数列”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件二、填空题13.①一个命题的逆命题为真,它的否命题一定也为真:②在ABC 中,“60B ∠=︒”是“,,A B C ∠∠∠三个角成等差数列”的充要条件; ③1{2x y >>是3{2x y xy +>>的充要条件;④“22am bm <”是“a b <”的充分必要条件; 以上说法中,判断错误的有_______________. 14.已知集合(){},320,A a b a b a N =+-=∈,()(){}2,10,B a b k a a b a N =-+-=∈,若存在非零整数k ,满足A B ⋂≠∅,则k =______.15.已知集合1,2,3,{}4,5,6X Y Z ⋃⋃=,若1,21,2,3,4,5}{},3{,X Y X Y X ⋂=⋃=∉,则集合X Y Z 、、所有可能的情况有_________种. 16.已知下列命题:①命题“213x R x x ∃∈+>,”的否定是“213x R x x ∀∈+<,”;②已知,p q 为两个命题,若p q ∨“”为假命题,则()()“”p q ⌝⌝∧为真命题;③“2a >”是“5a >”的充分不必要条件;④“若0,xy =则0x =且0y =”的逆否命题为真命题.其中 真命题的序号是__________.(写出所有满足题意的序号) 17.已知集合{}ln(21)A x y x ==-,{}2230B x x x =--≤,则A B __________.18.在正项等比数列{}n a 中,已知120151a a <=,若集合1212111|0,t t A t a a a t N a a a *⎧⎫⎛⎫⎛⎫⎛⎫⎪⎪=-+-++-≤∈⎨⎬ ⎪ ⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭⎩⎭,则A 中元素个数为______.19.已知()2:9p x a -<,()3:log 21q x +<.若p ⌝是q ⌝的充分不必要条件,则a 的取值范围是________.20.对任意的x ∈R ,函数()327f x x ax ax =++不存在极值点的充要条件是__________.三、解答题21.设集合{|33},{|13}A x x B x a x a =-≤≤=-≤≤+. (1)若1a =,求,A B A B ;(2)若AB B =,求实数a 的取值范围.22.设集合{}22240A x x x =+-≥,集合1,11B y y x x x ⎧⎫==+>-⎨⎬+⎩⎭,集合1C x ax a ⎧⎛⎫=-⎨ ⎪⎝⎭⎩()}60x +≤.(1)求AB ;(2)若C A ⊆,求实数a 的取值范围.23.已知命题:P 实数x 满足2280x x --≤,命题:q 实数x 满足2(0)x m m -≤> (1)当m=3时,若“p 且q”为真,求实数x 的取值范围;(2)若“非p”是“非q”的必要不充分条件,求实数m 的取值范围.24.关于x 的不等式1x a -<的解集为A ,关于x 的不等式2320x x -+≤的解集为B ,若x A ∈是x B ∈的必要不充分条件,求实数a 的取值范围. 25.已知集合{}2|5140A x x x =--≤,{}|14B x x =-≤.(1)若{}|121C x m x m =+≤≤-,()C A B ⊆⋂,求实数m 的取值范围; (2)若{}|61D x x m =>+,且()A B D =∅,求实数m 的取值范围.26.已知p :实数x 满足不等式()()()300x a x a a --<>,q :实数x 满足不等式2201log 3x x x -⎧>⎪+⎨⎪<⎩. (1)当1a =时,p q ∧为真命题,求实数x 的取值范围;(2)若p 是q ⌝的充分不必要条件,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】分析()0π,sin tan x x x ∀∈≠,即得A 错误;利用充要条件的定义判断B 正确;利用复合命题的定义判断C 错误;通过特殊值验证D 错误即可. 【详解】 选项A 中,,2x ππ⎛⎫∈⎪⎝⎭时,sin 0,tan 0x x ><,即sin tan x x ≠;2x π=时,sin 1x =,tan x 无意义;0,2x π⎛⎫∈ ⎪⎝⎭时,设()sin tan sin sin cos x h x x x x x =-=-,则()32211cos cos 0cos cos xh x x x x-'=-=>,故()tan sin h x x x =-在0,2π⎛⎫ ⎪⎝⎭上单调递增, 故()()tan sin 00h x x x h =->=,即sin tan x x <;综上可知,()0π,sin tan x x x ∀∈≠,,故A 错误;选项B 中,ABC 中,若sin sin cos cos A B A B +=+,则sin cos cos sin A A B B -=-,44A B ππ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,即sin sin 44A B ππ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,又33,,,444444A B ππππππ⎛⎫⎛⎫-∈--∈-⎪ ⎪⎝⎭⎝⎭,故44A B ππ-=-或44A B πππ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,所以2A B π+=或A B π-=,ABC 中A B π-≠,故2A B π+=,即2C π=;反过来,若2C π=,则2A B π+=,结合诱导公式可知,sin sin cos 2A B B π⎛⎫=-=⎪⎝⎭, sin sin cos 2B A A π⎛⎫=-= ⎪⎝⎭,所以sin sin cos cos A B A B +=+;综上,sin sin cos cos A B A B +=+是2C π=的充要条件,故B 正确;选项C 中,依题意,命题p ⌝是“甲没有降落在指定范围”, q ⌝是“乙没有降落在指定范围”,故复合命题()()p q ⌝∨⌝ 是“至少有一位学员没有降落在指定范围”,故C 错误; 选项D 中,存在2πθ=时,函数()sin 2cos 22f x x x π⎛⎫=+= ⎪⎝⎭,满足()()f x f x -=,即()f x 是偶函数,故D 错误. 故选:B. 【点睛】 方法点睛:(1)证明或判断全称命题为真命题时,要证明对于,()x I p x ∀∈成立;证明或判断它是假命题时,只需要找到一个反例,说明其不成立即可.(2)证明或判断特称命题为真命题时,只需要找到一个情况,说明其成立即可;证明或判断它是假命题时,要证明对于,()x I p x ∀∈⌝成立.2.B解析:B 【分析】通过举反例得到“1xy ≤”推不出“224x y +≤”;再由“224x y +≤”⇒“1xy ≤”.能求出结果. 【详解】 解:实数0x >,0y >,∴当3x =,14y =时,13422224x y +=+>, ∴“1xy ≤”推不出“224x y +≤”;反之,实数0x >,0y >,由基本不等式可得22x y +≥由不等式的基本性质得224x y ≤+≤,整理得24x y +≤,2x y ∴+≤,由基本不等式得212x y xy +⎛⎫≤≤ ⎪⎝⎭,即“224x y+≤”⇒“1xy ≤”.∴实数0x >,0y >,则“1xy ≤”是“224x y +≤”的必要不充分条件.故选:B . 【点睛】本题考查充分条件、必要条件、充要条件的判断,考查不等式的性质等基础知识,考查运算求解能力,是中等题.3.A解析:A 【分析】根据线面平行的性质定理、线面垂直的定义结合充分条件、必要条件的定义判断即可. 【详解】当//m α时,过直线m 作平面β,使得l αβ=,则//m l ,n α⊥,l α⊂,n l ∴⊥,m n ∴⊥,即//m m n α⇒⊥; 当m n ⊥时,由于n α⊥,则m α⊂或//m α,所以,//m n m α⊥⇒/.综上所述,//m α是m n ⊥的充分不必要条件. 故选:A. 【点睛】本题考查充分不必要条件的判断,同时也考查了空间点、线、面位置关系的判断,考查推理能力,属于中等题.4.C解析:C 【分析】由集合的交集运算即可得出结果. 【详解】{|12}=(1,2)=-<<-A B x x故选:C 【点睛】本题考查了集合的交集运算,考查了计算能力,属于一般题目.5.B解析:B 【解析】有由题意可得:{}|22R C Q x x =-<< , 则()RP Q ⋃= ( -2,3 ] .本题选择B 选项.6.B解析:B 【分析】根据逆否命题的概念,准确改写,可判定A 正确的;根据全称命题与存在性命题的关系,可判定B 不正确;根据复合命题的真假判定方法,可判定C 是正确的;根据充要条件的判定方法,可判定D 正确. 【详解】对于A 中,根据逆否命题的概念,可得命题“若2430x x -+=,则3x =”的逆否命题为“若3x ≠,则2430x x -+≠”,所以A 正确的;对于B 中,根据全称命题与存在性命题的关系,可得命题“x R ∀∈,220x x -+>”的否定是“0x R ∃∈,20020x x -+≤”,所以B 不正确;对于C 中,根据复合命题的真假判定方法,若“p 且q ”为真命题,则p ,q 均为真命题,所以C 是正确的;对于D 中,不等式2430x x ++>,解得3x <-或1x >-,所以“1x >-”是“2430x x ++>”的充分不必要条件,所以D 正确.综上可得,命题错误为选项B. 故选:B. 【点睛】本题主要考查了命题的真假判定及应用,其中解答中涉及到四种命题的改写,全称命题与存在性命题的关系,以及复合命题的真假判定和充分条件、必要条件的判定等知识的综合应用,属于基础题.7.C解析:C 【分析】根据逆否命题的概念,可判定A 是正确的;由方程2320x x -+=,解得1x =或2x =,可判定B 是正确的;根据正弦定理,可判定C 不正确;根据存在性命题与全称命题的关系,可判定D 是正确的. 【详解】A 中,根据逆否命题的概念,可得命题“若2320x x -+=,则1x =”的逆否命题为“若1x ≠,则2320x x -+≠”,所以A 是正确的;B 中,由方程2320x x -+=,解得1x =或2x =,所以“1x =”是“2320x x -+=”的充分不必要条件,所以B 是正确的;C 中,在ABC 中,由sin sin A B >,根据正弦定理可得a b >,所以A B >,所以命题“在ABC 中,若A B >,则sin sin A B >”的逆命题为真命题,所以C 不正确;D 中,根据存在性命题与全称命题的关系,可得命题p :存在x ∈R ,使得210x x +-<,则p ⌝:任意x ∈R ,则210x x +-≥,所以D 是正确的.故选:C. 【点睛】本题主要考查了命题的真假判定,四种命题的关系,充分条件与必要条件的判定,以及全称命题与存在性命题的关系等知识点的应用,属于基础题.8.C解析:C 【分析】根据等比数列的通项公式和单调性的判定方法,结合充分条件、必要条件的判定,即可求解. 【详解】在等比数列{}n a 中,可得11n n a a q -=,若10,1a q >>,可得11111()(1)0n n n n n a a a q q a q q --+-=-=->,即1n n a a +>,所以数列{}n a 为递增数列,故充分性是成立的; 反之:若等比数列{}n a 为递增数列,即111(1)0n n n a a a qq -+-=->,若10a >,则1(1)0n q q -->,可得1q >,故必要性是成立的,所以“1q >”是“{}n a 是递增数列”的充分必要条件. 故选:C. 【点睛】本题主要考查了充分条件、必要条件的判定,以及数列的单调性的判定方法及应用,其中解答中熟记数列的单调性的判定方法是解答的关键,着重考查推理与论证能力.9.D解析:D 【分析】将双曲线22221(0,0)x y a b a b -=->>标准化为22221(0,0)y x a b b a -=>>,由于离心率为2可得2234a b =,在根据充分、必要条件的判定方法,即可得到结论.【详解】将双曲线22221(0,0)x y a b a b -=->>标准化22221(0,0)y x a b b a -=>>则根据离心率的定义可知本题中应有222a b c e b c +===,则可解得2234a b =,因为3,a =b =可以推出2234a b =;反之2234a b =成立不能得出3,a =b =. 故选:D . 【点睛】本题考查双曲的离心率公式,考查充分不必要条件的判断,双曲线方程的标准化后离心率公式的正确使用是解答本题的关键,难度一般.10.D解析:D 【分析】求出命题q 不等式的解为23x <<,p 是q 的必要不充分条件,得q 是p 的子集,建立不等式求解. 【详解】 解:命题2:21,:560p x m q x x -<++<,即: 23x <<,p 是q 的必要不充分条件,(2,3)(,21,)m ∴⊆-∞+,213m ∴+≥,解得m 1≥.实数m 的取值范围为m 1≥.故选:D . 【点睛】本题考查根据充分、必要条件求参数范围,其思路方法:(1)解决此类问题一般是把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间关系列出关于参数的不等式(组)求解.(2)求解参数的取值范围时, 一定要注意区间端点值的检验.11.D解析:D 【分析】先求出()f x 在()1,1-上单调的范围,其补集即为不单调的范围,结合选项即可得到答案. 【详解】由已知,当()1,1x ∈-时,()[)23,3f x x a a a '=-∈--,当0a ≤时,()0f x '≥,当3a ≥时,()0f x '≤, 所以()f x 在()1,1-上单调,则0a ≤或3a ≥, 故()f x 在()1,1-上不单调时,a 的范围为()0,3,A 、B 是必要不充分条件,C 是充要条件,D 是充分不必要条件. 故选:D. 【点睛】本题主要考查利用导数研究函数的单调性,涉及到充分条件、必要条件的判断,考查学生的逻辑推理能力,数学运算能力,是一道中档题.12.A解析:A 【分析】根据等差数列的前n 项和公式以及充分条件和必要条件的定义进行判断即可. 【详解】{}n a 是等差数列,且公差d 不为零,其前n 项和为n S ,充分性:1n n S S +>,则10n a +>对任意的n *∈N 恒成立,则20a >,0d ≠,若0d <,则数列{}n a 为单调递减数列,则必存在k *∈N ,使得当n k >时,10n a +<,则1n n S S +<,不合乎题意;若0d >,由20a >且数列{}n a 为单调递增数列,则对任意的n *∈N ,10n a +>,合乎题意.所以,“*n N ∀∈,1n n S S +>”⇒“{}n a 为递增数列”;必要性:设10n a n =-,当8n ≤时,190n a n +=-<,此时,1n n S S +<,但数列{}n a 是递增数列.所以,“*n N ∀∈,1n n S S +>”⇐/“{}n a 为递增数列”.因此,“*n N ∀∈,1n n S S +>”是“{}n a 为递增数列”的充分而不必要条件. 故选:A. 【点睛】本题主要考查充分条件和必要条件的判断,结合等差数列的前n 项和公式是解决本题的关键,属于中等题.二、填空题13.③④【解析】对于①一个命题的逆命题与其否命题互为逆否命题则若其逆命题为真其否命题也一定为真①正确;对于②若则有则三个角成等差数列反之若三个角成等差数列有又由则故在中是三个角成等差数列的充要条件②正确解析:③④ 【解析】对于①,一个命题的逆命题与其否命题互为逆否命题,则若其逆命题为真,其否命题也一定为真,①正确;对于②,若60B ∠=,则120A C ∠+∠=,有2A C B ∠+∠=∠,则,,A B C ∠∠∠三个角成等差数列,反之若,,A B C ∠∠∠三个角成等差数列, 有2A C B ∠+∠=∠,又由3=180A B C B ∠+∠+∠=∠,则60B ∠=,故在ABC ∆中,“60B ∠=”是“,,A B C ∠∠∠三个角成等差数列”的充要条件,②正确;对于③, 当19,22x y ==,则满足32x y xy +>⎧⎨>⎩,而不满足12x y >⎧⎨>⎩,则12x y >⎧⎨>⎩是32x y xy +>⎧⎨>⎩的不必要条件,③错误;对于④,若a b <,当0m =时,有22am bm =,则“22am bm <”是“a b <”的不必要条件,④错误,故答案为③④.14.【分析】首先根据条件得到有实数解从而得到又根据为非零整数所以再分别验证的值即可得到答案【详解】因为存在非零整数满足所以有实数解且整理得:有实数解且所以解得因为为非零整数所以当时解得或符合题意当时解得 解析:1-【分析】首先根据条件得到()2231b a b k a a =-⎧⎪⎨=-+⎪⎩有实数解,从而得到1133k -+≤≤,又根据k 为非零整数,所以1,1,2k =-,再分别验证k 的值即可得到答案. 【详解】因为存在非零整数,满足A B ⋂≠∅,所以()2231b ab k a a =-⎧⎪⎨=-+⎪⎩有实数解,且a N ∈. 整理得:()2320ka k a k +-+-=有实数解,且0k ≠,a N ∈.所以()()23420k k k ∆=---≥k ≤≤, 因为k 为非零整数,所以1,1,2k =-当1k =-时,2430a a -+=,解得1a =或3,符合题意.当1k =时,2210a a +-=,解得a N ∉,舍去.当2k =时,220a a +=,解得a N ∉,舍去.综上1k =-.故答案为:1-【点睛】本题主要考查集合的交集运算,同时一元二次不等式的解法,属于中档题.15.【分析】通过确定XYZ 的子集利用乘法公式即可得到答案【详解】根据题意可知由于可知Z 共有种可能而有4种可能故共有种可能所以答案为128【点睛】本题主要考查子集相关概念乘法分步原理意在考查学生的分析能力 解析:128【分析】通过确定X,Y ,Z 的子集,利用乘法公式即可得到答案.【详解】根据题意,可知1,2,1,236{}{},{}Z X Y ⊆⊆⊆,,由于{6}Z ⊆,可知Z 共有 52=32种可能,而(){4},5X Y ⊆⋃有4种可能,故共有432=128⨯种可能,所以答案为128.【点睛】本题主要考查子集相关概念,乘法分步原理,意在考查学生的分析能力,计算能力,难度较大.16.②【分析】①写出命题的否定即可判定正误;②由为假命题得到命题都是假命题由此可判断结论正确;③由时不成立反之成立由此可判断得到结论;④举例说明原命题是假命题得出它的逆否命题也为假命题【详解】对于①中命解析:②【分析】①写出命题“213x R x x ∃∈+>,”的否定,即可判定正误;②由p q ∨“”为假命题,得到命题,p q 都是假命题,由此可判断结论正确;③由2a >时,5a >不成立,反之成立,由此可判断得到结论;④举例说明原命题是假命题,得出它的逆否命题也为假命题.【详解】对于①中,命题“213x R x x ∃∈+>,”的否定为“213x R x x ∀∈+≤,”,所以不正确;对于②中,命题,p q 满足p q ∨“”为假命题,得到命题,p q 都是假命题,所以,p q ⌝⌝都是真命题,所以()()“”p q ⌝⌝∧为真命题,所以是正确的; 对于③中,当2a >时,则5a >不一定成立,当5a >时,则2a >成立,所以2a >是5a >成立的必要不充分条件,所以不正确;对于④中,“若0,xy =则0x =且0y =”是假命题,如3,0x y ==时,所以它的逆否命题也是假命题,所以是错误的;故真命题的序号是②.【点睛】本题主要考查了命题的否定,复合命题的真假判定,充分与必要条件的判断问题,同时考查了四种命题之间的关系的应用,试题有一定的综合性,属于中档试题,着重考查了推理与论证能力.17.(或用区间表示为【解析】分析:先根据真数大于零得集合A 再解一元二次不等式得集合B 最后根据交集定义求结果详解:因为所以因为所以因此点睛:求集合的交并补时一般先化简集合再由交并补的定义求解在进行集合的运 解析:13|22x x ⎧⎫<≤⎨⎬⎩⎭(或用区间表示为13(,]22. 【解析】分析:先根据真数大于零得集合A,再解一元二次不等式得集合B ,最后根据交集定义求结果.详解:因为210x ->,所以12x >因为2230x x --≤,所以312x -≤≤因此13(,]22A B ⋂=. 点睛:求集合的交、并、补时,一般先化简集合,再由交、并、补的定义求解.在进行集合的运算时要尽可能地借助Venn 图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn 图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍. 18.4029【解析】试题分析:设等比数列公比为的公比为因为所以即所以解得考点:等比数列求和公式解析:4029【解析】试题分析:设等比数列公比为{}n a 的公比为,因为,所以,,即,所以,解得.考点:等比数列求和公式. 19.【分析】解不等式和由题意可得是的必要不充分条件转化为两集合的包含关系由此可求得实数的取值范围【详解】因为是的充分不必要条件所以是的必要不充分条件解不等式得解不等式解得所以即因此实数的取值范围是故答解析:[]2,1-【分析】解不等式()29x a -<和()3log 21x +<,由题意可得p 是q 的必要不充分条件,转化为两集合的包含关系,由此可求得实数a 的取值范围.【详解】因为p ⌝是q ⌝的充分不必要条件,所以p 是q 的必要不充分条件,解不等式()29x a -<,得33a x a -<<+,解不等式()3log 21x +<,解得21x -<<. :33p a x a -<<+,:21q x -<<,{}33x a x a ∴-<<+ {}21x x -<<,所以3231a a -≤-⎧⎨+≥⎩,即21a -≤≤. 因此,实数a 的取值范围是[]2,1-.故答案为:[]2,1-.【点睛】本题考查利用充分不必要条件求参数,解答的关键就是转化为集合的包含关系来处理,考查分析问题和解决问题的能力,属于中等题. 20.【分析】求出导数可得出从而可求解出实数的取值范围【详解】由于函数在上不存在极值点则即解得因此函数不存在极值点的充要条件是故答案为:【点睛】本题考查利用函数极值点求参数解题时理解函数的极值点与导数零点 解析:021a ≤≤【分析】求出导数()2327f x x ax a '=++,可得出0∆≤,从而可求解出实数a 的取值范围.【详解】()327f x x ax ax =++,()2327f x x ax a '∴=++,由于函数()y f x =在R 上不存在极值点,则24840a a ∆=-≤,即2210a a -≤, 解得021a ≤≤.因此,函数()327f x x ax ax =++不存在极值点的充要条件是021a ≤≤. 故答案为:021a ≤≤.【点睛】本题考查利用函数极值点求参数,解题时理解函数的极值点与导数零点之间的关系,考查运算求解能力,属于中等题.三、解答题21.(1){}34A B x x ⋃=-≤≤,{}03A B x x ⋂=≤≤;(2)20a -≤≤.【分析】(1)代入a 的值,根据交集和并集的概念以及运算求解出,AB A B ; (2)根据AB B =分析出B A ⊆,由此列出关于a 的不等式,求解出a 的取值范围. 【详解】(1)当1a =时,{}04B x x =≤≤且{}33A x x =-≤≤, 所以{}34A B x x ⋃=-≤≤,{}03A B x x ⋂=≤≤;(2)因为AB B =,所以B A ⊆,且31a a +>-,所以B ≠∅, 所以1333a a -≥-⎧⎨+≤⎩,所以20a -≤≤. 【点睛】结论点睛:常见集合的交集、并集运算性质:(1)若A B B =,则B A ⊆;(2)若A B B ⋃=,则A B ⊆. 22.(1)[)4,+∞;(2)1,02⎡⎫-⎪⎢⎣⎭.【分析】(1)解二次不等式求出集合A ,利用基本不等式求出集合B ,进而可得A B ; (2)由()2160a x x a ⎛⎫-+≤ ⎪⎝⎭,知0a ≠,分0a >和0a <两类讨论,利用C A ⊆,即可求得a 的取值范围.【详解】解:(1)集合{}22240A x x x =+-≥,即满足()()640x x +-≥, 解一元二次不等式可得{6A x x =≤-或}4x ≥, 而集合1,11B y y x x x ⎧⎫==+>-⎨⎬+⎩⎭,则111111y x x x x =+=++-++11≥=, 当且仅当111x x +=+时,即0x =时取等号 所以{}1B y y =≥;由集合交集运算可得{6A B x x ⋂=≤-或}4x ≥{}1y y ⋂≥{}4x x =≥即[)4,A B =+∞;(2)集合()160C x ax x a ⎧⎫⎛⎫=-+≤⎨⎬ ⎪⎝⎭⎩⎭. 则0a ≠.化简可得()2160a x x a ⎛⎫-+≤ ⎪⎝⎭ 当0a >时,可得216C x x a ⎧⎫=-≤≤⎨⎬⎩⎭,{6A x x =≤-或}4x ≥ 则C A ⊆不成立. 当0a <时,可得{6C x x =≤-或21x a ⎫≥⎬⎭ 若C A ⊆,则214a≤,解得102a -≤<或102a <≤. 又由于0a <,所以102a -≤<. 综上可知,当C A ⊆时实数a 的取值范围为1,02a ⎡⎫∈-⎪⎢⎣⎭. 【点睛】本题主要考查交集及其运算,考查集合的包含关系,考查学生计算能力和分类讨论的思想,是中档题.23.(1)[1,4]-(2)4m ≥【详解】试题分析:(1)先转化,q ,由且q 为真,得真q 真,解出x (2)由p ⌝是q ⌝的必要不充分条件 得是q 的充分不必要条件,根据数轴列出不等式解出m 试题解:(1)若真:24x -≤≤;当3m =时,若q 真:15x -≤≤ ∵且q 为真 ∴24{15x x -≤≤-≤≤ ∴实数x 的取值范围为:[1,4]-(2)∵p ⌝是q ⌝的必要不充分条件 ∴是q 的充分不必要条件 ∵若q 真:22m x m -≤≤+∴22{42m m-≤-≤+且等号不同时取得 (不写“且等号不同时取得”,写检验也可) ∴4m ≥.考点:复合命题,充要条件,解不等式24.12a <<【分析】根据题意得出集合B 是集合A 的真子集,解绝对值不等式以及一元二次不等式得出集合,A B ,根据包含关系得出实数a 的取值范围.【详解】解:因为x A ∈是x B ∈的必要不充分条件,所以集合B 是集合A 的真子集 解不等式1x a -<,得11a x a -+<<+,所以{}11A x a x a =-+<<+解不等式2320x x -+≤,得12x ≤≤ 所以{}12B x x =≤≤因为集合B 是集合A 的真子集,所以1112a a -+<⎧⎨+>⎩ 即12a <<【点睛】本题主要考查了根据必要不充分条件求参数的值,属于中档题.25.(1)3m ≤;(2)m 1≥.【分析】(1)先求出A B ,再根据包含关系可得关于m 的不等式组,从而求实数m 的取值范围,注意对C 是否为空集分类讨论; (2)先求出A B ,再根据()A B D =∅得到关于m 的不等式,从而求实数m 的取值范围.【详解】(1){}|27A x x =-≤≤,{}|35B x x =-≤≤,{}|25AB x x =-≤≤,①若C =∅,则121m m +>-,∴2m <; ②若C ≠∅,则12112215m m m m +≤-⎧⎪+≥-⎨⎪-≤⎩,∴23m ≤≤,综上3m ≤.(2){}|37A B x x ⋃=-≤≤,∴617m +≥,∴m 1≥.【点睛】本题考查集合的包含关系以及一元二次不等式的解的求法,注意根据集合关系得到不同集合中的范围的端点满足的不等式(或不等式组),要验证等号是否可取,还要注意含参数的集合是否为空集或全集.26.(1)()2,3x ∈;(2)[)20,8,3a ⎛⎤∈⋃+∞ ⎥⎝⎦. 【分析】(1)分别解二次不等式和分式不等式得x 的范围,求它们的交集可得结论;(2)求出命题p 对应的集合A ,再求出q ⌝对应的集合B ,由A B ⊆可得a 的范围.【详解】(1)当1a =时,p :实数x 满足13x <<q :x 满足0812x x x <<⎧⎨-⎩或,即x 满足28x <<; ∵p q ∧为真命题,∴p 、q 都为真命题,于是有1328x x <<⎧⎨<<⎩,即23x <<,故()2,3x ∈. (2)记{}|3A x a x a =<<,{2B x x =≤,或}8x ≥由p 是q ⌝的充分不必要条件知A B ,从而有32a ≤或8a ≥ ,又0a > 故[)20,8,3a ⎛⎤∈⋃+∞ ⎥⎝⎦【点睛】本题考查复合命题的真假,考查充分必要条件.掌握复合命题真值表、充分必要条件与集合包含关系是解题关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章集合与函数测试题
一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是最符合题目
要求的,请将正确答案的序号填在题后的括号内.) 1.下列各项中,不能组成集合的是
( )
A .所有的正数
B .所有的老人
C .不等于0的数
D .我国古代四大发明
2.设集合A={2,3},B={2,3,4},C={3,4,5}则
=⋃⋂C B A )( ( )
A .{2,3,4}
B .{2,3,5}
C .{3,4,5}
D .{2,3,4,5}
3.函数2
1
)(--=
x x x f 的定义域为( ) A .[1,2)∪(2,+∞) B .(1,+∞) C .[1,2) D .[1,+∞) 4.下列说法错误的是( )
A.42y x x =+是偶函数
B. 偶函数的图象关于y 轴轴对称
C. 3
2
y x x =+是奇函数 D. 奇函数的图象关于原点中心对称
5.函数f (x )= 2(1)x
x x ⎧⎨+⎩
,0,0x x ≥< ,则(2)f -=( )
A. 1 B .2 C. 3 D.4
6.下列各组函数中,表示同一函数的是 ( )
A .0
,x
y x y x
==
B .1,112-=+⨯-=
x y x x y
C .2,y x y x ==
D .2)(|,|x y x y == 7.设M ={x |-2≤x ≤2},N ={y |0≤y ≤2},函数f (x )的定义域为M ,值域为N ,
则f (x )的图象可以是( )
8.图中阴影部分表示的集合是( )
A. )(B C A U
B. B A C U )(
C. )(B A C U
D. ()U C A
B
9.函数2
6y x x =-的减区间是( )
A . (-∞,2] B. [2, +∞) C. (-∞,3] D. [3, +∞) 10.若函数()y f x R =在上单调递减且()()21,f m f m m >+则实数的取值范围是( )
A .(),1-∞-
B .(),1-∞
C .()1,-+∞
D .()1,+∞ 11.若奇函数()x f 在[]3,1上为增函数,且有最小值0,则它在[]1,3--上( ) A .是减函数,有最小值0 B .是增函数,有最小值0 C .是减函数,有最大值0 D .是增函数,有最大值0
A
B
U
12.已知函数2
()1
f x x =
-,[]3,6x ∈,则()f x 的最小值是( ) A . 1 B. 25 C. 23 D. 1
2
二、填空题(本大题共4小题,每题5分,共20分.要求只填最后结果.) 13.已知集合4
{|
}3
A x N Z x =∈∈-,则用列举法表示集合A= 。

14.12)(2++=x x x f ,]2,2[-∈x 的最大值是 。

15.已知x x x f 2)12(2-=+,则)5(f = .
16.设函数f (x )=22, 22, 2x x x x ⎧⎨⎩≤+,
>,
则f (0x )=18,则0x =___ _.
三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(本小题满分14分)
设{}{}
(),1,05,U U R A x x B x x C A B ==≥=<<求和()U A
C B .
18.(本小题满分14分)
设集合}32,3,2{2
-+=a a U ,}2|,12{|-=a A ,}5{=A C U ,求实数a 的值.
19.(本小题满分14分)
已知函数)(x f 是一次函数,且14)]([-=x x f f ,求函数)(x f 的解析式.
20.(本小题满分14分)
已知集合{}{}
|3,|15A x a x a B x x x =≤≤+=≤->或, (1)若A B =∅,求实数a 的取值范围; (2)若A
B ≠∅,求实数a 的取值范围。

21.(本小题满分14分)
已知函数2
2
(),1x f x x R x =∈+. (1)求1
()()f x f x
+的值;
(2)计算111(1)(2)(3)(4)()()()234
f f f f f f f ++++++.
一、选择题:5x12=60’ 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案
B
D
A
C
B
A
B
A
C
B
D
B
二、填空题:5x4=20’
13、{1,2,4,5,7}A = 14、 9 15、 0 16、 —4或9
三、解答题: 每题14’
17.解:因为 {|1}U C A x x =< (3)
{|05}U C B x x x =≤≥或……………………6 所以 (){|5}U C A B x
x =<……………………10 (){|5}U A
C B x x =≥ (14)
18.解: 因为 }5{=A C U ,所以5,5A U ∉∈ (2)
故有 2
23a a +-=5 解得 a=2或—4 (5)
当a=2时 {2,3,5}U =,{3,2}A = 满足 }5{=A C U (9)
当a= —4时 {2,3,5}U =,
{9,2}A =不满足满足 }5{=A C U ,舍去............13 综上, a=2 (14)
19. 解:设(),0f x ax b a =+≠…………………………………………………………1 因为 2
[()]()()f f x f ax b a ax b b a x ab b =+=++=++ (4)
又14)]([-=x x f f ,所以 2
41a x ab b x ++=- (6)
比较系数得24
1a ab b ⎧=⎨+=-⎩ (8)
解得2
13a b =⎧⎪
⎨=-⎪⎩
或21a b =-⎧⎨
=⎩……………………………………………12 故 1
()2,3
f x x
=-或()21f x x =-+……………………………………14 20. 解:(1)由A
B =∅ 得 1
35
a a >-⎧⎨+≤⎩ 即 12a -<≤ (7)
(2)由A B ≠∅ 得 135a a ≤-+>或 即 12a a ≤->或 (14)
21. 解:(1)1
()()1f x f x
+=………………………………………………………………7 (2)1117
(1)(2)(3)(4)()()()2342
f f f f f f f ++++++= (14)。

相关文档
最新文档