代谢控制育种
微生物育种资料名词解释1.富集培养目的微生物含量较少时,根据
微生物育种资料名词解释1.富集培养:目的微生物含量较少时,根据微生物生理特点,设计一种选择性培养基,创造有利生长条件,是目的微生物在最适环境下迅速生长繁殖,数量增加,由劣种变为优势种,以利用分离所需要的菌种。
2.营养缺陷型:野生型菌株经过人工诱变或自然突变失去合成某种营养(氨基酸、维生素、核酸等)的能力,只有在基本培养基中补充所缺失的营养因子才能生长。
3.常规杂交育种:通过接合、转化、转导、溶源转化和转染等方式来获得重组体的杂交育种方法。
4.原生质体融合育种:通过酶解破除细胞壁后,制备微生物原生质体,然后诱导原生质体融合杂交,双亲本不受亲和力限制,甚至可以打破种属间遗传障碍。
获得远缘杂交重组体的特殊方式。
5.原生质体再生育种:微生物制备原生质体后直接再生,从再生菌落中分离筛选变异菌株,最终得到优良性状提高的正变菌株。
6.原生质体诱变育种:以微生物原生质体为育种材料,采用物理或化学诱变剂处理,然后分离到再生培养基中再生,并从再生菌落中筛选高产突变菌株。
解答1.工业生产的微生物菌种的特性①在遗传上必须是稳定的②易于产生许多营养细胞、包子或其他繁殖体②必须是纯种,不应带有其他杂菌及噬菌体④种子的生长必须旺盛、迅速⑤产生所需要的产物时间短⑥比较容易分离提纯⑦有自身保护机制,抵抗杂菌污染能力强⑧能保持较长的良好经济性能⑨菌株诱变处理较敏感,从而可以选育出高产菌株⑩在规定时间内,菌株必须产生与其数量的目的产物,并保持相对地稳定2.工业微生物的发展史(1)诱变育种。
以人工诱变手段诱发微生物基因突变,改变遗传结构和功能,通过筛选,从多种多样的变异体中筛选出产量高、性状优良的变异株,并找出发挥这个变株最佳培养基和培养条件,使其在最是环境条件下合成有效产物。
(2)杂交育种。
使双亲或多亲的遗传物质重新组合,以获得综合双亲优良性状的新品种的育种方法。
(3)代谢控制育种。
进行内因改变,通过定向选育某种特定的突变型,以达到大量积累由于产物的目的,定向选育包括改变代谢代谢通路;降低支路代谢终产物产生或切断支路代谢途径及提高细胞膜通透性。
《代谢控制和育种》课件
代谢控制与育种目标的实现
1
代谢控制技术在育种过程中具有重要的应用价值 ,可以帮助育种家实现更高效的育种目标。
2
通过代谢控制技术,可以缩短育种周期、提高育 种效率、降低育种成本,为现代农业的发展提供 有力支持。
3
代谢控制技术还可以与其他育种技术相结合,如 基因编辑、基因转移等,进一步提高育种水平, 为人类创造更多的价值。
基因组学在育种中的应用
基因组学研究植物或动物的整个 基因组,帮助科学家了解基因的 结构和功能,以及基因之间的相
互作用。
通过基因组学研究,科学家可以 发现与特定性状相关的基因,并 利用这些信息来预测和选择具有
所需性状的个体。
基因组学还可以用于研究植物或 动物的进化过程,以及不同品种 之间的亲缘关系,为育种提供更
多选择和可能性。
代谢组学在育种中的应用
代谢组学研究生物体内代谢产物的组成和变化 ,帮助科学家了解生物体的代谢过程和生理状 态。
通过代谢组学研究,科学家可以发现与特定性 状相关的代谢物,并利用这些信息来预测和选 择具有所需性状的个体。
代谢组学还可以用于研究植物或动物在不同环 境条件下的适应性,以及不同品种之间的代谢 差异,为育种提供更多选择和可能性。
04 代谢控制育种的未来展望
代谢控制育种的发展趋势
基因编辑技术的广泛应用
随着基因编辑技术的发展,代谢控制育种将 更加精准和高效,能够更快地培育出具有优 良性状的新品种。
智能化育种
利用大数据和人工智能技术,实现代谢控制育种的 智能化,提高育种效率和准确性。
生物信息学在育种中的应 用
通过生物信息学手段,解析基因组、转录组 和蛋白质组等多层次信息,为代谢控制育种 提供更全面的数据支持。
微生物育种复习题(答案)
微生物育种学复习题题型包括填空、选择、名词解释、简答题、问答题名词解释转换:嘌呤与嘌呤之间,嘧啶与嘧啶之间发生互换称为转换置换:在DNA链上的碱基序列中一个碱基被另一个碱基代替的现象称为置换颠换:一个嘌呤替换另一个嘧啶或一个嘧啶替换另一个嘌呤的现象称为颠换移码突变:碱基序列中有一个或几个碱基增加或减少而产生的变异。
转导:由噬菌体将一个细胞的基因传递给另一细胞的过程。
它是细菌之间传递遗传物质的方式之一。
其具体含义是指一个细胞的DNA或RNA通过病毒载体的感染转移到另一个细胞中。
转染:指真核细胞由于外源DNA掺入而获得新的遗传标志的过程。
常规转染技术可分为瞬时转染和稳定转染(永久转染)两大类。
端粒:是染色体末端的一个区域,该区域含有DNA重复序列,当体细胞衰老时,重复序列的数量将逐渐减少。
异核体:两株基因型不同的菌株菌丝体在培养过程中紧密接触,接触部分细胞壁溶解、联结、融合、细胞质交流,在共同的细胞质里存在着两个细胞核。
准性生殖:两个体细胞的核融合,及同源染色体的交换,直至基因重组,完成了和有性繁殖相似的繁殖过程。
原生质体:指在人为条件下,用溶菌酶除尽原有细胞壁或用青霉素抑制新生细胞壁合成后,所得到的仅有一层细胞膜包裹的圆球状渗透敏感细胞。
富集:某些物质通过水、大气和生物作用而在土壤或生物体内显著积累的作用。
基本培养基:仅能满足微生物野生型菌株生长需要的培养基,含有一般微生物生长繁殖所需的基本营养物质的培养基。
选择培养基(及各种类培养基概念):根据微生物的特殊营养需求或其对某些物理、化学因素的抗性而设计的培养基,用来将某种或某类微生物群体中分离出来,具有使混合菌样中劣势菌变为优势菌的功能,广泛用于菌种筛选等领域。
完全培养基:凡可满足一切营养缺陷型菌株营养需要的天然或半组合培养基。
补充培养基:凡只能满足相应的营养缺陷型生长需要的组合培养基。
富集培养:是在目的微生物含量较少时,根据微生物的生理特性设计一种选择性培养基,创造有利的生长条件,使目的微生物在最适环境下迅速生长繁殖,数量增加,由自然条件下的劣势种变成人工环境下的优势种以利分离到所需要的菌株。
【代谢调控学】第七章 抗生素的代谢
ß-内酰胺类抗生素
是一类结构中含有ß-内酰胺环的抗生素。包括 • 青霉素类抗生素 • 头孢菌素类抗生素 • 非典型的ß-内酰胺类抗生素
青霉素:由带酰基的侧链和6-氨基青霉烷酸 所构成;
头孢菌素:由α-氨基己二酸(侧链)和7-氨 基头孢霉烷酸所构成。
一、青霉素和头孢菌素的生物合成途径及代 谢调节机制
α-酮戊二酸 + 乙酰辅酶A
高柠檬酸合成酶 高柠檬酸
反
顺-高乌头酸
馈
抑
高异柠檬酸
制
α-酮己二酸
α-氨基己二酸( α -AAA)
赖氨酸
异青霉素N 青霉素G
(3)蛋氨酸对头孢菌素C形成的促进作用
1)作为硫源或氮源? 过去认为是Met作为合成头孢菌素C的前体, 但比较含硫aa,结果并非半胱氨酸〉光硫醚〉 蛋氨酸,而是蛋氨酸>光硫醚〉半胱氨酸. 2)菌丝形态 含硫酸盐培养基: 丝状 含蛋氨酸培养基: 膨大、不规则,呈高度分节的节孢 子。 抗生素的合成量与节孢子的数量成正比。
4、增加前体物的合成
✓缬氨酸
丙酮酸
乙酰羟酸合成酶
反馈抑制
乙酰乳酸
缬氨酸
✓α-氨基己二酸
克隆高柠檬酸合成酶基因,增加胞内该酶的酶 量,即增加了α-氨基己二酸的量,再体外诱变, 使表达出的酶不再受赖氨酸的反馈抑制。
第一节 天冬氨酸族氨基酸的代谢控制育种
天冬氨酸族包括:天冬氨酸、赖氨酸、高丝氨酸、苏氨酸、 蛋氨酸和异亮氨酸;
2、切断支路代谢,选育赖氨酸缺陷突变株,解除赖氨酸对高柠檬酸合成酶的抑制。
3、解除菌体自身的反馈调节
➢ 选育结构类似物抗性突变株 如:三氟亮氨酸、L-正缬氨酸等 ➢ 筛选自身耐受性突变株 ➢ 筛选前体或前体类似物抗性突变株 毒性前体或其类似物对微生物生长有抑制作用,同时抑制代谢终产物的生物合成。 如:苯乙酸、苯氧乙酸、苯乙酰胺等 ➢ 选育营养缺陷型的回复突变株
5第五章 代谢调控育种
⑷利用营养缺陷型回复突变株或条件突变株的方法, 解除终产物对关键酶的调节;
⑸应用遗传工程技术,创造理想微生物(即构建目 的工程菌株)。
此外,发酵条件如pH值、NH3的供应、溶氧水平、 营养浓度控制及表面活性剂的使用等也非常重要。
一. 切断支路代谢
1. 营养缺陷突变株的应用
营养缺陷型即菌株发生基因突变,合成途径中某一 步骤发生缺陷,丧失了合成某些物质的能力,必须在 培养基中添加该营养物质才能生长。
第五章 微生物 代谢控制育种
第一节 代谢控制育种的基础
代谢控制发酵理论的建立
代谢控制发酵理论最开始是应用于氨基酸高产菌株 的选育中;随后,核苷类物质发酵生产菌也以代谢控 制理论去选育,并奋起直追成为后起之秀。
随着研究的深入,代谢控制发酵理论的作用,已由 野生型菌株的发酵向高度人为控制的发酵转移,由依 赖于微生物分解代谢的发酵向依赖于生物合成代谢的 发酵,即向代谢产物大量积累的发酵转移。
一个菌株经过突变和回复突变后,某一结构基因 编码的酶会经历失活→恢复活性的过程,但酶的调节 部位的结构常常并没有恢复。所以经过此过程后,该 酶的反馈抑制被解除或削弱。因此可以利用营养缺陷 型的回复突变来获得解除反馈抑制从而提高产量的菌 株。
例如,先将金霉素生产菌绿链霉菌诱变成蛋氨酸 缺陷型,然后再回复突变成原养型,结果其中有85% 的回复突变株的金霉素产量提高了1.2~3.2倍。
通过选育某些营养缺陷型或结构类似物抗性突变株 以及克隆某些关键酶的基因,也可以使目的产物前体 的合成增加,从而有利于目的产物的大量积累。
1. 在分支合成途径中,切断控制共用酶的非目的终 产物的分支合成途径,增多目的产物的前体,使目的 产物的产量提高。
在谷氨酸棒状杆菌、北京棒状杆菌、黄色短杆菌、 大肠杆菌等微生物中,Lys、Thr、Met的合成关键酶是 天冬氨酸激酶,该酶受Lys、Thr的协同反馈抑制,即 天冬氨酸激酶在Lys或Thr单独存在时不受抑制,仅当 两者同时过量时才引起抑制作用。因此,在Thr限量培 养时,即使Lys过剩,也能进行由天冬氨酸生成天冬酰 磷酸的反应(即第一步反应)。
微生物育种学的主要原理和技术
微生物育种学的主要原理和技术摘要微生物育种是运用遗传学原理和技术对某种具有特定生产目的的菌株进行改造,去除不良性质,增加有益新性状,以提高产品的产量和质量的一种育种方法。
微生物的育种技术已从常规的突变和筛选技术发展到基因诱变、基因重组和基因工程等,育种技术的不断成熟,大大提高了微生物的育种效果。
本文将讲述微生物育种学的主要原理和技术。
关键词:微生物育种原理方法技术1.微生物育种学的主要原理微生物育种是运用遗传学原理和技术对某种具有特定生产目的的菌株进行改造,去除不良性质,增加有益新性状,以提高产品的产量和质量的一种育种方法。
其原理如下:生物进化过程中微生物形成完善的代谢调节机制→不会有代谢产物的积累→解除或突破微生物的代谢调节控制→目的产物积累→微生物育种的目的2.微生物育种学的主要技术2.1 自然选育就是不经人工处理,利用微生物的自然突变进行菌种选育的过程称为自然选育。
一般认为自然突变有两种原因引起,即多因素低剂量效应和互变异构效应。
所谓多因素低剂量效应,是指在自然环境中存在着低剂量的宇宙射线、各种短波辐射、低剂量的诱变物质和微生物自身代谢产生的诱变物质等作用引起的突变。
互变异构效应是指四种碱基第六位上的酮基或氨基的瞬间变构,会引起碱基的错配。
自然突变可能会产生两种截然不同的结果,一种是菌种退化而导致目标产量或质量下降;另一种是对生产有益的突变。
为了保证生产水平的稳定和提高,应经常地进行生产菌种自然选育,以淘汰退化的,选出优良的菌种。
自然选育是一种简单易行的选育方法,可以达到纯化菌种,防止菌种退化,稳定生产,提高产量的目的。
但是自然选育的效率低,因此经常要与诱变育种交替使用,以提高育种效率。
由于DNA的半保留复制以及校正酶系的校正作用和光修复、切除修复、重组修复、诱导修复等作用,使得自发突变几率极低,一般为10-6~10–10。
所以常规育种时间较长,工作量较大。
通过常规育种提高菌种生产能力、筛选高产菌株的效率较低,效果不明显。
菌株选育
③、在分离产生脂肪酶的菌株时,如以土温为底物,尼罗兰作为指示剂,根据变色圈的大小来判断脂肪酶的活性高低。也可用甘油三丁酸酯为底物,罗丹明B为指示剂,以荧光圈来测定。
(3)生长圈法
①、适用范围:生长圈法通常用于分离筛选氨基酸、核苷酸和维生素的产生菌。
②、原理:工具菌是一些相对应的营养缺陷型菌株。将待检测菌涂布于含高浓度的工具菌并缺少所需营养物的平板上进行培养,若某菌株能合成平板所需的营养物,在该菌株的菌落周围便会形成一个混浊的生长圈。
18、原生质体融合育种:是指双亲本原生质体在促融剂作用下相互接触,融合成一个细胞,然后核融合,最终强制性地将双亲基因组融合,DNA交换、重组并产生新性状。
论述
1、工业微生物育种技术的发展经历了几个阶段
(1)自然选育:对工业微生物育种有很大的影响。例如
①、在酒精发酵中,推广了自然选育的纯系良种,扭转了酒精生产中的不稳定现象。
⑤琼脂块大通量筛选变株
是将生长突变株的平板用打孔器打下琼脂块,转移到生物鉴定平板上进行测定,此方法效率高、筛选量大。
⑥应用复印技术快速筛选变株
应用复印技术从平板上可直接筛选产脂野生株和具有髙脂含量的突变株,是产脂微生物的简便检测方法。
简答
1、物理诱变剂的生物学效应
(1)、物理诱变剂对微生物的诱变作用主要是由高能辐射导致生物系统损伤,继而发生遗传变异的一些列复杂的连锁反应过程。
3、紫外线的光谱范围在40~390nm,DNA可以吸收的紫外线光谱为260nm。15W紫外灯管放射出来的紫外线大约有80%的波长集中在这个范围内,诱变效应比30W的好。
4、紫外线的辐射剂量:紫外线的诱变剂量可分绝对剂量和相对剂量。
5、诱变剂包括物理诱变剂、化学诱变剂和生物诱变剂三大类。
植物代谢调控网络与卫生作物育种
生长素信号转导通路的分子机制和应用研究进展植物生长素是一种极为重要的植物激素,它能够控制植物的许多生长和发育过程。
而这种激素作用的机制,则主要通过生长素信号转导通路来实现。
这一过程涉及到成千上万个分子和细胞的相互作用,因此,对于它的研究至关重要。
本文将简要介绍生长素信号转导通路的分子机制和最新应用研究进展。
一、生长素信号转导通路的分子机制生长素信号转导通路可以分为三个主要步骤:识别、传导和响应。
这三个步骤是相互衔接的,因此任何一个环节出现问题,都可能导致整个通路的中断。
下面我们将对它们一一进行介绍。
1. 识别生长素信号的识别是通路的第一步。
这一步骤难点在于识别膜上生长素受体(Auxin Receptor,简称AR),因为AR具有高度的选择性和亲和力。
2018年,Ortiz-Ramírez等通过高分辨率的电子显微镜技术,成功解析了水稻的生长素受体SAUR-ABB1的三维结构,并对其结构进行了系统的分析。
研究发现,在生长素的作用下,SAUR-ABB1会形成二聚体,并将生长素成功识别和结合,从而实现对信号的传导。
2. 传导在生长素信号识别后,通路的第二步是传导,即将信号从AR传递到下游分子。
目前有两种传导机制被广泛采用:RUB活化蛋白介导的和TIR1介导的。
在RUB介导的机制中,RUB蛋白介导AR与另一种蛋白类固醇受体(Steroid receptor)结合,从而触发信号传导。
而在TIR1介导的机制中,则是通过TIR1和Auxin/Indole-3-Acetic Acid(Aux/IAA)蛋白的结合来实现信号传递。
该机制因其可控性和高效性而被广泛采用。
3. 响应生长素信号的响应是通路的最后一个环节。
在该环节中,信号将激活多种下游响应分子如AUX/IAA、ARF、Ubiquitin ligase等。
这些分子的作用将进一步调节植物的生长和发育过程。
二、应用研究进展生长素信号转导通路的研究得以推进,主要得益于新型基因编辑技术CRISPR/Cas9的应用。
第8章 代谢控制育种
第8章代谢控制育种概念:在了解代谢产物生物合成途径、遗传控制和代谢调节机制的基础上,设计对特定突变型的筛选(定向选育),选育出解除正常代谢调节、或绕过微生物正常代谢途径的突变株,从而人为地使有用代谢产物选择性地大量合成和积累1 初级代谢的调节控制1.1 酶合成的调节诱导(induction):促进酶合成的调节阻遏(repression):阻碍酶合成的调节组成酶(constitutive enzyme):细胞完成基本生物功能常备的酶类诱导酶(induced enzyme):细胞为适应外来底物或其结构类似物而临时合成的酶类1.1.1 酶合成调节的类型1.1.1.1 诱导诱导物:能促进诱导酶产生的物质,是酶的底物或其结构类似物同时诱导:当诱导物存在时,微生物同时合成几种诱导酶顺序诱导:当诱导物存在时,微生物先合成能分解此物的酶,再依次合成分解各种中间产物的酶1.1.1.2 阻遏1.当代谢途径中某物质过量时,通过阻碍代谢途径中包括关键酶在内的一系列酶的合成,从而彻底地控制代谢和减少该物质的合成。
2.末端产物阻遏(end-product repression):由于某代谢途径末端产物过量积累而引起的阻遏3.分解代谢物阻遏(catabolite repression):当有两种C/N源分解底物同时存在时,细胞优先利用分解快的底物,并阻遏合成利用慢的底物的相关酶的合成4.分解代谢物阻遏实质是分解代谢反应链中的某些中间代谢物或末端产物过量积累而阻遏代谢途径中一些酶合成的现象5.葡萄糖效应:当葡萄糖和乳糖同时存在时,微生物优先利用葡萄糖,并于葡萄糖耗尽后,才开始利用乳糖,出现“二次生长”。
葡萄糖的存在阻遏了分解乳糖酶系的合成1.1.2 酶合成调节的机制1.操纵子:一组功能上相关且紧密连锁的基因。
由启动基因、操纵基因和结构基因组成2.启动基因(promoter):依赖于DNA的RNA聚合酶结合位点3.操纵基因(operator):能与调节蛋白结合,阻遏转录4.结构基因(structural gene): 编码多肽基因5.调节基因(regulator gene):位于相应操纵子附近,编码组成型调节蛋白(regulatory protein),此蛋白为变构蛋白,存在与操纵基因结合的位点,以及与效应物结合的位点6.效应物(effector):一类低分子量的信号物质,如诱导物(inducer)和辅阻遏物(corepressor)7.调节蛋白有两类,一类称为阻遏物(repressor),他能与操纵基因结合,阻遏转录,但当与诱导物结合时,则不能与操纵基因结合,转录发生;另一类称为阻遏物蛋白(aporeperssor),只有与辅阻遏物结合后,才能与操纵基因结合,阻遏转录8.诱导型操纵子:当诱导物存在时,其转录频率才最高,并随后转译出大量诱导酶,出现诱导现象,如乳糖、半乳糖和阿拉伯糖分解代谢操纵子9.阻遏型操纵子:只有当缺乏辅阻遏物时,其转录频率才最高。
第六章 氨基酸的代谢控制与发酵
⑩采用低糖流加法激活PC(糖浓度为4%~5%)。
3、解除代谢互锁
在乳糖发酵短杆菌中,赖氨酸的生物合成与亮氨 酸之间存在着代谢互锁。
综上所述,在天冬氨酸族氨基酸代谢途径中,末 端产物种类多,调节机制复杂,为了高效率生产 赖氨酸,可以采取顺序解除各种调节机制的诱变 育种方法,获得多重标记突变株。
但是,采用人工诱变获得多重标记组合型突变株, 是一件费时、费力、非常麻烦的工作。采用细胞 工程和基因工程新技术,将诱变所获得的优良特 性组合起来,获得高产菌株就容易得多。
①选育Ala-突变株。 ②选育抗Asp结构类似物突变株。 ③选育适宜CO2固定酶/TCA循环酶活性比突变株。
四、蛋氨酸发酵
1、蛋氨酸高产菌应具备的生化特征
⑴CO2固定反应能力强。
⑵Asp合成能力强。 ⑶AK活力强。
⑷HD活力强。
⑸PS活力微弱或丧失。 ⑹高丝氨酸激酶活力微弱或丧失。 ⑺GHD活力弱。 ⑻O-琥珀酰高丝氨酸转琥珀酰酶活力强。
⑴切断支路代谢
①选育Lys-、Lysl、Lys+突变株。
②选育Thr-、Thrl、Thr+突变株。
⑵解除反馈调节
①选育AECr和AHVr突变株。
②选育抗SAM结构类似物突变株。
③选育抗蛋氨酸结构类似物(如乙硫氨酸、硒代 蛋氨酸、1,2,4-三唑、三氟蛋氨酸)突变株。
⑶切断蛋氨酸向下反应的通路
选育SAM-突变株。
丙氨酸是比较活跃的氨基酸,在生物体内通过转 氨作用可生成其它氨基酸,生成丙氨酸的途径必 然消耗许多PEP。
代谢工程在工业微生物育种中的应用
代谢工程在工业微生物育种中的应用摘要:传统的诱变育种仍是目前发酵工业菌种选育中最常用的育种技术,以基因工程技术为主的多元化育种方式的发展,为代谢途径操作引入了全新的理念和方法,使代谢工程得以发展。
代谢工程是对细胞代谢网络的代谢流量及代谢控制进行定量地、系统地分析,并通过DNA重组技术和相关的遗传学手段对微生物细胞进行代谢改造,提高其目的产物代谢量。
本文论述了微生物代谢工程的理论基础及其在发酵工业微生物育种中的应用现状。
关键词:代谢工程;代谢途径;菌种选育发酵工业自20世纪40年代发展至今,在青霉素等抗生素的发酵生产、赖氨酸等一系列氨基酸的发酵生产以及核苷酸、有机酸等物质的发酵产业发展中起了极其重要的作用。
在工业微生物育种的过程中,对个别基因进行改造的经典基因工程技术不能保证对微生物代谢网络结构和功能的准确分析和高效利用,影响了相关行业的生产效率的稳定和经济效益的提高。
目前,几乎所有重要工业微生物模式菌种的基因组全序列已经或即将公布,转录组、蛋白质组、代谢组、通量组等数据资源正在迅速扩展。
充分利用组学数据中包含的有用信息,可以更有效地改造和控制细胞性能、提高底物利用以及产品的产率、改善微生物工业适应性,促进工业生物技术发展[1]。
菌种筛选和持续不断的改良贯彻于发酵生产过程的始终,以基因工程为核心的现代生物技术正越来越显示出其在菌种改良上的魅力,将最终成为微生物育种的主导技术[2]。
建立在重组DNA技术基础之上的代谢工程技术,可以更容易地选择菌种的改良靶点,构建具有新的代谢途径的微生物细胞,提高其发酵性能,生产特定目的产物,从而可以推动发酵工业的发展。
一、代谢工程概述代谢工程(Metabolic engineering),又称途径工程(Pathway engineering),是指利用生物学原理,系统地分析细胞代谢网络,并通过DNA重组技术合理设计细胞代谢途径,通过遗传修饰,完成细胞特性改造的应用性学科。
工业微生物代谢控制育种
α-氨基己二糖 丙二酰CoA 乙酰CoA
赖氨酸 脂肪酸
青霉素、头孢菌素 利福霉素族、四环素族 大环内酯族、多烯族抗生素、灰黄霉素、橘霉素、环己酰亚胺、棒曲霉素
莽草酸
对氨基苯丙氨酸 苯丙氨酸 酪氨酸、对氨基苯甲酸、色氨酸
氯霉素 绿脓菌素 新生霉素
次级代谢产物的合成,至少有一部分取决于与初级代谢产物无关的遗传物质,并和由这类遗传物质形成的酶所催化的代谢途径有关,它们多数是特异菌株。从代谢途径来看,次级代谢产物是以初级代谢产物为前体衍生出来的,见下图。
定义:每一分支途径末端产物按一定百分比单独抑制共同途径中前面的酶,所以当几种末端产物共同存在时它们的抑制作用是积累的,各末端产物之间既无协同效应,亦无拮抗作用。
积累反馈抑制——cumulative feedback inhibition
(5)顺序反馈抑制——sequential feedback inhibition 一种终产物的积累,导致前一中间产物的积累,通过后者反馈抑制合成途径关键酶的活性,使合成终止。 举例:枯草芽孢杆菌芳香族氨基酸合成的调节
尽管反馈抑制的类型很多,但其主要的作用方式在于末端产物对反应途径中调节酶的抑制。
01
受反馈抑制的调节酶一般都是变构酶,酶活力调控的实质就是变构酶的变构调节。
02
变构酶的酶蛋白分子一般都是由两个以上亚基组成的多聚体,具有四级结构,这是能够产生变构作用的物质基础。
03
04
(三)反馈抑制的机制
+
激活剂
二、酶活性的调节
通过改变现成的酶分子活性来调节新陈代谢的速率的方式。是酶分子水平上的调节,属于精细的调节。 (一)调节方式:包括两个方面: 1、酶活性的激活:在代谢途径中后面的反应可被较前面的反应产物所促进的现象;常见于分解代谢途径。 如:粗糙脉孢霉的异柠檬酸脱氢酶的活性受柠檬酸促进 2、酶活性的抑制:包括:竞争性抑制和反馈抑制。 概念:反馈:指反应链中某些中间代谢产物或终产物对该途径关键酶活性的影响。 凡使反应速度加快的称正反馈; 凡使反应速度减慢的称负反馈(反馈抑制); 反馈抑制——主要表现在某代谢途径的末端产物过量时可反过来直接抑制该途径中第一个酶的活性。主要表现在氨基酸、核苷酸合成途径中。 特点:作用直接、效果快速、末端产物浓度降低时又可解除
工业微生物育种复习题解析
工业微生物育种复习题解析第一章绪论1.什么是工业微生物?作为工业微生物应具备哪些特征?答:工业微生物:对自然环境中的微生物经过改造,用于发酵工业生产的微生物。
具备特征:(1)菌种要纯(2)遗传稳定且对诱变剂敏感(3)成长快,易繁殖(4)抗杂菌和噬菌体的能力强(5)生产目的产物的时间短且产量高(6)目的产物易分离提纯2.工业微生物育种的基础是什么?答:工业微生物育种的基础是遗传和变异。
3.常用的工业微生物育种技术有哪些?答:常用技术:(1)自然选育【选择育种】(2)诱变育种(3)代谢控制育种(4)杂交育种(5)基因工程育种第二章微生物育种的遗传基础1.基因突变的类型有哪些?答:有碱基突变,染色体畸变2.叙述紫外线诱变的原理?答:原理:紫外线对微生物诱变作用,主要引起DNA的分子结构发生改变(同链DNA的相邻嘧啶间形成共价结合的胸腺嘧啶二聚体),从而引起菌体遗传性变异。
3.基因修复的种类有哪些?答:种类:(1)光复活修复(2)切除修复(3)重组修复(4)SOS修复4.真核微生物基因重组的方式有哪些?答:方式:(1)有性杂交(2)准性生殖(3)原生质体融合第三章出发菌株的分离与筛选1.什么是富集培养?答:富集培养:指在目的微生物含量较少时,根据微生物的生理特点,设计一种选择性培养基,创造有利的生长条件,使目的微生物在最适的环境下迅速地生长繁殖,数量增加,由原来自然条件下的劣势种变成人工环境中的优势种,以利于分离到所需要的菌株。
2.哪些分离方法能达到“菌落纯”?哪些分离方法能达到“细胞纯(菌株纯)”?答:菌落纯:稀释分离法、划线法、组织法细胞纯:单细胞或单孢子的分离法3.分离好氧微生物常用的方法有哪些?答:(1)稀释涂布法(2)划线分离法(3)平皿生化反应分离法4.平皿生化反应分离法有哪些?分别用来筛选哪些菌?各自原理如何?答:(1)透明圈法原理:在平板培养基中加入溶解性较差的底物,使培养基混浊,能分解底物的微生物便会在菌落周围产生透明圈,圈的大小可以放映该菌株利用底物的能力。
代谢控制和育种..
二、抗分解调节突变株的选育 (三)解除磷酸盐调节突变株的选育 初级代谢必须
过量时影响次级代谢
磷酸盐基本耗竭,抗生素合成开始 发酵工业中,磷酸盐常被控制在亚适量。
4.2 抗分解调节突变株的选育
3. 解除磷酸盐调节突变株的选育
(A)磷酸盐对次生产物的调节机制
(1) 通过初级代谢的变化影响次级代谢
分解代谢阻遏现象:在初级或次级代谢中都存在,其含义 是指代谢过程中酶的合成往往受高浓度的葡萄糖或其他易 分解利用的碳源或氮源所抑制。 选育抗分解调节突变株(如碳源、氮源或磷酸盐分解调节), 其实就是筛选合成酶的产生不受碳、氮、磷的代谢阻遏或 抑制的突变株,使抗生素提前到菌体生长期开始合成,延 长产抗期以提高产量。
筛选方法与实例
4.2 抗分解调节突变株的选育
1. 解除碳源调节突变株的选育
(1) 循环培养法
交 替 培 养
快速利用的 碳源培养基
慢速利用的 碳源培养基
突变型解除了阻遏现象,在乳糖的 培养基上比野生型生长速度快,
4.2 抗分解调节突变株的选育
1. 解除碳源调节突变株的选育
涂布诱 变后的 菌体
4.2 抗分解调节突变株的选育
1. 解除碳源调节突变株的选育
(4) 葡萄糖结构类似物
① 特性:2-dG和3-mG既不被微生物代谢又具有分解阻遏作用, 因此可用来筛选抗分解阻遏的突变株。
2-dG
3-mG
4.葡萄糖结构类似物-------(1)筛选方法
出发菌株 诱变 涂琼脂平板
抗2-dG或 3-mG
4.2 抗分解调节突变株的选育
2. 解除氮源分解调节突变株的选育
生产菌种的选育培养—微生物代谢控制育种的措施
代谢的人工控制:人为地打破微生物细胞内代谢的制发酵:
利用生物化学和遗传学的原理,控制培养条件,使微生物代谢朝向人们希望的 方向进行,过量积累代谢产物。
2. 代谢控制育种:
通过遗传变异来改变微生物的正常代谢,使某种代谢产物形成和积累。
结构类似物(抗代谢物antimetabolite)是一种与初级代谢产物结构 类似但缺乏生理功能的化合物
筛选突变株中常用的几种结构类似物
结构类似物突变株的应用的典型例子
三、 其他类型突变株
组成型突变株:操纵基因或调节基因突变引起的酶合成诱导机制失灵的 突变株(如在无诱导物存在的条件下能正常地合成诱导酶)。 应用:可用一些廉价的原料生产诱导酶。
代谢调控育种的措施
人工育种控制措施 针对细胞正常代谢时的自动调节机制
营养缺陷型突变
条件解除反馈调节 条件控制膜透性
渗漏营养缺陷突变
解除反馈调节
营养缺陷回复突变
解除反馈调节
结构类似物抗性突变
解除反馈调节
一、营养缺陷型突变株
营养缺陷型:因某种突变的结果而失去合 成某种生长及代谢所需物质(生长因子) 的能力的突变菌株。必须在培养基中补加 该物质,否则不能生长。
(解除反馈调节的营养缺陷型突变菌株)
控制细胞膜通透性的营养缺陷型突变菌株
生物素 生物素是乙酰-CoA 羧化酶的辅基 乙酰-CoA 羧化酶 脂肪酸 生物素 磷脂 膜透性 调节
青霉素
二、 代谢终产物的结构类似物抗性突变株
抗反馈调节突变株:是指一种对反馈抑制不敏感或对阻遏有抗性的 组成型突变株,或兼而有之的突变株。
温度敏感突变株:经过诱变后只能在低温下生长而不能在高温下生长繁 殖的突变株。 应用:控制细胞壁合成的酶在高温条件下失活,从而解除了反馈抑制。
微生物的代谢与调控
微生物的代谢与调控吴俊康 220130450(东南大学能源与环境学院江苏南京210096)摘要:本文叙述了微生物的代谢过程,微生物代谢的自我调节和人工调控以及微生物代谢和调控在工农业生产中的应用。
微生物的代谢过程包括能量代谢和物质代谢,能量代谢包括吸能代谢和放能代谢,物质代谢包括合成代谢和分解代谢,物质代谢和能量代谢密不可分,往往生命体在物质代谢的同时伴随着能量代谢;同时本文所叙述的微生物的代谢调节过程包括细胞内酶水平的自我调节和人工调控。
利用微生物的代谢途径并通过外界的人工调控获得特定的代谢产物,在工农业生产中已广泛应用,因此,研究微生物的代谢途径和调控,是微生物工农业应用极其重要的一部分。
关键词:微生物;代谢;调节Abstract:In this paper,the metabolism of microorganisms is discussed,including the process of microbial metabolism,the way of their self-control and artificial control,and the application of microbial metabolism in industry and agriculture.The process of metabolism can be classified as energy metabolism,including endergic and exergenic reactions,and material metabolism,including. anabolic and catabolic metabolism,which always have the interwovenness.At the same time,the way of self-control and artificial control of the metabolism is also introduced in this article,covering the level of enzyme in the cell.Now that using and controlling microbial metabolism for some targeted product has been widely applicated in industry and agriculture,so doing many researches on the process and contol of microbial metabolism is an extremely important part of their application.Keywords:microorganisms;microbial metabolism;metabolic regulation目录第一章微生物的代谢................................................................................................. - 2 -1.1 微生物代谢的分类与特点 ......................................................................................- 2 -1.1.1 代谢的分类 .....................................................................................................- 2 -1.1.2 代谢的特点 .....................................................................................................- 3 -1.2 微生物的能量代谢....................................................................................................- 3 -1.2.1 ATP与生物氧化 .............................................................................................- 4 -1.2.2 发酵...................................................................................................................- 6 -1.2.3 好氧呼吸....................................................................................................... - 13 -1.2.4 无氧呼吸....................................................................................................... - 16 -1.3 微生物的物质代谢................................................................................................. - 19 -1.3.1 微生物的合成代谢 ..................................................................................... - 19 -1.3.2 微生物的分解代谢 ..................................................................................... - 27 -1.3.3 合成代谢和分解代谢的联系.................................................................... - 27 - 第二章微生物的代谢调节....................................................................................... - 29 -2.1 微生物的自我调节................................................................................................. - 29 -2.1.1 酶活性的调节 .............................................................................................. - 30 -2.1.2 酶合成的调节 .............................................................................................. - 32 -2.1.3 其他调节....................................................................................................... - 37 -2.2 人工调控 .................................................................................................................. - 39 -2.2.1 遗传学法....................................................................................................... - 39 -2.2.2 生物化学法 .................................................................................................. - 39 - 第三章微生物代谢及调控的应用........................................................................... - 41 -3.1 代谢调控应用 ......................................................................................................... - 41 -3.1.1 代谢控制育种 .............................................................................................. - 41 -3.1.2 代谢控制发酵 .............................................................................................. - 42 -3.1.3 其他................................................................................................................ - 42 -3.2 案例——生料酿酒 ................................................................................................. - 43 -3.2.1 生料酿酒简介 .............................................................................................. - 43 -3.2.2 生料酿酒的基本原理................................................................................. - 43 -3.2.3 生料酒曲的生产工艺................................................................................. - 44 -3.2.4 生料酿酒工艺 .............................................................................................. - 45 -3.2.5 生料酿酒在我国的应用............................................................................. - 46 -前言新陈代谢是生命的最基本的特征,生物从外界吸取所需物质和能量,经过复杂的生物化学变化,转化成自身的物质,并贮存能量;同时,生物分解自身的物质,释放能量;细胞不断的吸收释放物质和能量,使机体不断地自我更新,从而保证机体生长、发育、繁殖、运动等生命活动正常进行,这就是生物的新陈代谢。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、组成型突变株的选育
组成型突变株是指操纵基因或调节基因 突变引起酶合成诱导机制失灵,菌株不经 诱导也能合成酶、或不受终产物阻遏的调 节突变型。
这两种突变株在工业上都可能得到应用, 特别是在微生物酶制剂工业上。
Regulatory gene
repressor NO operator
operator NO repressor
筛选方法: 1、循环培养法
葡萄糖
乳糖
O-硝基苯
酚-β-D-半
突变株 野生株
乳糖苷
2、鉴别培养基 有半乳糖酶
喷ONPG,抗分解阻遏的菌落呈黄色,野
生 型是白色。
3、特殊氮源
组氨酸酶突变株
葡萄糖+组氨酸
分解代谢抑制物+唯一必须被分解的氮源
4、葡萄糖结构类似物
CHO H OH HO H H OH H OH
(一)解除碳源调节突变株的选育
在次级代谢中,高浓度的葡萄糖对青霉素转 酰酶、链霉素转咪基酶和放线菌色素合成酶等 抗生素的关键酶均有分解阻遏作用。
在实际生产中,采用流加葡萄糖或应用混合 碳源可以控制中间代谢产物的积累,来减少不 利影响。
根本的解决办法是筛选抗碳源分解调节突变 株。
(一)解除碳源调节突变株的选育
底物采用苯- β-半乳糖
二、抗分解调节突变株的选育
抗分解调节突变株:指抗分解阻遏和分解抑 制的突变 (一)解除碳源调节突变株的选育 (二)解除氮源分解调节突变株的选育 (三)解除磷酸盐调节突变株的选育
选育有关抗分解调节的突变株,其实就 是筛选合成酶产生不受碳、氮、磷的代谢阻 遏或抑制的突变株,使抗生素提前到菌体生 长期开始合成,从而延长了产抗期而提高产 量。
筛选芽孢杆菌中耐氨基酸菌株,是提高蛋白酶 产量的一种有效方法。因为高浓度氨基酸会抑 制芽孢的形成,并且阻遏蛋白酶的合成。
氨基酸1.5mg/ml
水解蛋白10mg/ml
(三)磷酸盐对次级代谢的调节
机制
1.通过初级代谢的变化影响次级代谢 加强初级代谢,推迟抗生素合成的起
始。 磷酸盐是许多初级代谢反应酶的 效应物。
(一)在初级代谢调节育种的应用
1. 阻断代谢流或切断支路代谢,使代谢途 径朝着有益产物合成方向进行。
2. 还可以通过营养缺陷型解除协同反馈效 应,降低终产物的数量,以累积支路代 谢中某一末端产物。
1、在直线式生物合成途径中
谷氨酸
N-乙酰谷氨酸
N-乙酰-γபைடு நூலகம்谷氨酸磷酸
CHO HH HO H H OH H OH
CHO H OHO H3C-O H H OH H OH
CH2OH
CH2OH
CH2OH
葡萄糖 2-脱氧-葡萄糖 3-O-甲基- 葡萄糖
特 性: 1、结构与葡萄糖类似。
2、不被微生物代谢, 也不阻抑微 生物生长。
3、和葡萄糖 一样 会阻遏诱导酶的 合成,其 阻遏作用 甚至比葡萄糖还 要强。
2.改变糖类分解代谢途径: 磷酸盐有利于糖酵解,从而降低了戊
糖途径的活力,导致以戊糖途径为先导 的抗生素合成受抑制。
例如:四环素、金霉素、土霉素、竹桃 霉素
3.限制抗生素合成的诱导物 甲硫氨酸是头孢霉素和磷霉素的诱导物
色氨酸是麦角碱的诱导物,而磷酸盐是色氨酸 合成酶等的抑制剂;
4.抑制或阻遏磷酸酯酶类的合成 链霉素、紫霉素、新霉素等生物合成中某些
发酵中磷酸盐浓度控制在亚适量水平。
解除(抗)磷酸盐调节突变株的选育
灰色链霉菌
诱变后涂布于琼脂平 板
含10mol/LNa3PO4
脱敏感 突变
不含Na3PO4
底部加浸润250mm/L 磷酸盐的滤纸
敏感菌
三、营养缺陷型在代谢调节育种中 的应用
生物遗传学上:阐述代谢途径
工业微生物代谢控制育种上:筛选 到解除反馈的菌株。
中间代谢产物需经磷酸化,因此从中间产物到 终产物需由磷酸酯酶类, 而磷酸盐抑制或阻遏 磷酸酯酶的合成。
例如磷酸盐明显抑制链霉素的生物合成通过抑 制形成链霉胍的三步 磷酸盐分解反应。
磷酸盐对ATP调节:cAMP ATP
例如:灰色链霉菌静息细胞研究磷酸盐 对杀假丝菌素合成的影响。当加入 10mol//L磷酸盐后,5minATP增加5倍, 15min抗生素合成受抑制。
筛选方法:
诱变 后的 菌株
培养基含有氮源、无机盐、生 长因子、低浓度的2-dG或3- mG及一种生长碳源 ,该碳源
需诱导酶才能利用
涂布
验证
比不 较含
含阻遏物
阻
遏
物
例如: 桔林油脂酵母合成淀粉酶:玉米淀粉 、 酵母膏、蛋白胨及含有0.01%2dG的琼脂平板。
木霉合成 纤维素酶:含酸膨胀纤维素 、蛋白 胨、无机盐、胆汁 、防菌扩展剂、2-dG的琼 脂平板。
抗性突变株的性质
在2-dG或3-mG平板上生长的菌落接入斜面, 对它们在含阻遏物和不含阻遏物培养基中的产 酶能力比较,结果表明,大部分变株是抗分解 阻遏突变型,并发现它们在去除阻遏物的培养 基中酶活力往往高于野生型菌株。
含葡萄糖
不含 葡萄糖
含淀粉
(二)解除氮源分解调节突变株的 选育
次级代谢的氮降解物的阻遏主要指铵盐和其他 快速利用的氮源对抗生素生物合成具有分解调 节作用。
筛选方法
1、限量诱导物法
诱变 恒化器
低乳糖浓 度
突变株不需诱导物也能合成 β- 半乳糖 苷酶,把乳糖分解成葡萄糖和半乳糖作为 能源和代谢原料,而迅速生长。
野生型菌株因缺少诱导物和相应的诱导 酶,不能利用乳糖而淘汰。
2、循环培养法
诱变
含诱导物
含诱导物
不含诱
不含诱
导物
导物
3、鉴别性培养基的应用
涂布
调节体系
诱导 分解阻遏 分解抑制 反馈阻遏 反馈抑制
细胞膜渗透性
育种措施
1组成型突变株的选育 2抗分解调节突变株的选育
解除碳、氮、磷源分解调节突变株
营养缺陷突变株 渗漏缺陷突变株 回复突变株 耐自身代谢产物突变株 抗终产物结构类似物 耐前体物突变株 条件突变株
营养缺陷突变株 生物素、油酸、甘油缺陷型 温敏突变株
向菌落上喷射 O-硝基苯酚β-D-半乳糖苷
组成型 突变株
诱导型
诱变后的 以甘油为唯一碳源 孢子 原理 : 组成型菌株在没有诱导物的作用下
仍能合成 β-半乳糖苷酶,将无色试剂水解 , 放出 O-硝基苯酚。
4、筛选
将处理后的菌体移接到含有诱导能力 低,但能作为良好碳源的诱导物的培养 基中培养,突变体能良好生长,野生型 不能生长。 例:β-半乳糖苷酶组成突变株的筛选