圆的标准方程练习题

合集下载

高二数学圆的方程练习-(附答案)

高二数学圆的方程练习-(附答案)

高二数学圆的方程练习【同步达纲练习】A 级一、选择题1.若直线4x-3y-2=0与圆x 2+y 2-2ax+4y+a 2-12=0总有两个不同交点,则a 的取值范围是( )A.-3<a <7B.-6<a <4C.-7<a <3D.-21<a <192.圆(x-3)2+(y-3)2=9上到直线3x+4y-11=0的距离等于1的点有( ) A.1个 B.2个 C.3个 D.4个3.使圆(x-2)2+(y+3)2=2上点与点(0,-5)的距离最大的点的坐标是( ) A.(5,1) B.(3,-2)C.(4,1)D.(2 +2,2-3)4.若直线x+y=r 与圆x 2+y 2=r(r >0)相切,则实数r 的值等于( ) A.22B.1C.2D.25.直线x-y+4=0被圆x 2+y 2+4x-4y+6=0截得的弦长等于( ) A.8B.4C.22D.42二、填空题6.过点P(2,1)且与圆x 2+y 2-2x+2y+1=0相切的直线的方程为 .7.设集合m={(x,y)x 2+y 2≤25,N={(x,y)|(x-a)2+y 2≤9},若M ∪N=M ,则实数a 的取值范围是 .8.已知P(3,0)是圆x 2+y 2-8x-2y+12=0内一点则过点P 的最短弦所在直线方程是 ,过点P 的最长弦所在直线方程是 .三、解答题9.已知圆x 2+y 2+x-6y+m=0和直线x+2y-3=0交于P 、Q 两点,若OP ⊥OQ(O 是原点),求m 的值.10.已知直线l:y=k(x-2)+4与曲线C :y=1+24x 有两个不同的交点,求实数k 的取值范围.AA 级一、选择题1.圆(x-3)2+(y+4)2=2关于直线x+y=0的对称圆的标准方程是( )A.(x+3)2+(y-4)2=2B.(x-4)2+(y+3)2=2C.(x+4)2+(y-3)=2D.(x-3)2+(y-4)2=22.点P(5a+1,12a)在圆(x-1)2+y 2=1的内部,则实数a 的取值范围是( )A.|a |<1B.|a |<51 C.|a |<121D.|a |<1313.关于x,y 的方程Ax 2+Bxy+Cy 2+Dx+Ey+F=0表示一个圆的充要条件是( )A.B=0,且A=C ≠0B.B=1且D 2+E 2-4AF >0C.B=0且A=C ≠0,D 2+E 2-4AF ≥0D.B=0且A=C ≠0,D 2+E 2-4AF >0 4.过点P(-8,-1),Q(5,12),R(17,4)三点的圆的圆心坐标是( ) A.(314,5) B.(5,1) C.(0,0)D.(5,-1)5.若两直线y=x+2k 与y=2x+k+1的交点P 在圆x 2+2=4的内部,则k 的范围是( )A.-51<k <-1 B.-51<k <1 C.- 31<k <1D.-2<k <2二、填空题6.圆x 2+y 2+ax=0(a ≠0)的圆心坐标和半径分别是 .7.若方程a 2x 2+(2a+3)y 2+2ax+a+1=0表示圆,则实数a 的值等于 .8.直线y=3x+1与曲线x 2+y 2=4相交于A 、B 两点,则AB 的中点坐标是 . 三、解答题9.求圆心在直线2x-y-3=0上,且过点(5,2)和(3,-2)的圆的方程.10.光线l 从点P(1,-1)射出,经过y 轴反射后与圆C :(x-4)2+(y-4)2=1相切,试求直线l 所在的直线方程.【素质优化训练】一、选择题1.直线3x+y-23=0截圆x 2+y 2=4得的劣弧所对的圆心角为(全国高考题)( )A.6πB.4π C.3π D.2π 2.对于满足x 2+(y-1)2=1的任意x,y ,不等式x+y+d ≥0恒成立,则实数d 的取值范围是( )A.[2-1,+∞]B.(-∞,2-1)C.[2 +1,+∞]D.(-∞, 2 +1)3.若实数x ,y 满足x 2+y 2=1,则12--y y 的最小值等于( )A.41 B.43C.23 D.24.过点P(1,2)的直线l 将圆x 2+2-4x-5=0分成两个弓形,当大、小两个弓形的面积之差最大时,直线l 的方程是( )A.x=1B.y=2C.x-y+1=0D.x-2y+3=05.一辆卡车宽2.7米,要经过一个半径为4.5米的半圆形隧道(双车道,不得违章),则这辆卡车的平顶车篷篷顶距离地面的高度不得超过( )A.1.8米B.3米C.3.6米D.4米 二、填空题6.若实数x,y 满足x 2+y 2-2x+4y=0,则x-2y 的最大值是 .7.若集合A={(x 、y)|y=-|x |-2},B={(x,y)|(x-a)2+y 2=a 2}满足A ∩B= ,则实数a 的取值范围是 .8.过点M(3,0)作直线l 与圆x 2+y 2=16交于A 、B 两点,当θ= 时,使△AOB 的面积最大,最大值为 (O 为原点).三、解答题9.令圆x 2+y 2-4x-6y+12=0外一点P(x,y)向圆引切线,切点为M ,有|PM |=|PO |,求使|PM |最小的P 点坐标.10.已知圆C :(x+4)2+y 2=4和点A(-23,0),圆D 的圆心在y 轴上移动,且恒与圆C外切,设圆D 与y 轴交于点M 、N ,求证:∠MAN 为定值.11.已知直角坐标平面内点Q(2,0),圆C :x 2+y 2=1,动点M 到圆C 的切线长与|MQ |的比等于常数λ(λ>0),求动点M 的轨迹方程,并说明轨迹是什么曲线.12.自点A(-3,3)发出的光线l 射到x 轴上,被x 轴反射,其反射光线m 所在直线与圆x 2+y 2-4x-4y+7=0相切,求光线l 与m 所在直线方程.13.AB 是圆O 的直径,且|AB |=2a,M 是圆上一动点,作MN ⊥AB ,垂足为N ,在OM 上取点P ,使|OP |=|MN |,求点P 的轨迹.参考答案:【同步达纲练习】A 级1.B2.C3.B4.D5.C6.x=2或3x-4y-2=07.-2≤a ≤28.x+y-3=0,x-y-3=09.m=3 10.(125,43) AA 级1.B2.D3.D4.D5.B6.(- 2a ,0), 2a7.-18.(- 103,101)9.(x-2)2+(y-1)2=10 10.3x+4y+1=0或4x+3y-1=0【素质优化训练】1.C2.A3.B4.D5.C6.107.-2(2+1)<a <2(2+1)8.θ=arccot22 或π-arccot22, 89.P(1312,1318) 10.60° 11.M 的轨迹方程为(λ2-1)(x 2+y 2)-4λ2x+(1+4x 2)=0,当λ=1时,方程为直线x=45. 当λ≠1时,方程为(x-1222-λλ)2+y 2=222)1(31-+λλ它表示圆,该圆圆心坐标为(1222-λλ,0)半径为13122-+λλ12.l 的方程为:3x+4y-3=0或4x+3y+3=0 M 的方程为3x-4y-3=0或4x-3y+3=0 13.x 2+(y ±2a )2=(2a )2轨迹是分别以CO ,CD 为直径的两个圆.。

圆的标准方程练习题

圆的标准方程练习题

圆的标准方程练习题圆的标准方程练题一、选择题1.以点(2,-2)为圆心,以32为半径的圆的标准方程是() A。

(x-2)²+(y+2)²=9B。

(x-2)²+(y+2)²=3C。

(x+2)²+(y-2)²=3D。

(x+2)²+(y+2)²=92.方程(x+1)²+y=4表示圆的圆心与半径分别是()A。

(1,0)。

4B。

(-1,0)。

4C。

(-1,0)。

2D。

(1,0)。

23.点(1,1)与圆x+y=1的位置关系是()A。

点在圆上B。

点在圆外C。

点在圆内D。

不能确定4.过点A(1,-1),B(-1,1)且圆心在直线x+y-2=0上的圆的方程是()A。

(x-3)²+(y+1)²=4B。

(x-3)²+(y+1)²=2C。

(x+3)²+(y-1)²=4D。

(x+1)²+(y+1)²=4二、填空题5.自点(-1,4)作圆(x-2)²+(y-3)²=1的切线,则切线长为-------------------------.答案:26.圆(x-3)²+(y+4)²=1关于直线x+y=0对称的圆的方程为------------------------------------.答案:(x+4)²+(y-3)²=17.已知正三角形的两个顶点是(0,0),(6,0),则它的外接圆方程为----------------------------------.答案:(x-3)²+y²=98.已知一圆的圆心是(2,-3),它的一条直径的两个端点分别在x轴和y轴上,则此圆的方程为----------------------------------.答案:(x-2)²+(y+3)²=13三、解答题9.已知一个圆和y轴相切,在直线y=x上截得的弦长为27,求圆的方程.解:设圆的方程为(x-a)²+(y-b)²=r²,由于圆和y轴相切,所以a=r,又因为圆在直线y=x上截得的弦长为27,所以圆心到直线的距离为27/2,即|a-b|/√2=27/2,代入a=r得到|b-r|/√2=27/2,解得b=r+27/√2.代入圆的标准方程得到(x-r)²+(y-r-27/√2)²=r²,化简可得(x-3r/2)²+(y-r/2-27/2√2)²=(3r/2)²,即(x-3)²+(y-9)²=81.10.一条光线从点A(-1,1)出发,经x轴反射到圆C:(x-2)²+(y-3)²=1上,求光线的最短路程和最长路程.解:设光线的方程为y=kx+k+2,其中k为斜率,k+2为截距。

高考数学圆的方程练习题附答案

高考数学圆的方程练习题附答案

高考数学圆的方程练习题附答案1.若圆c的半径为1,圆心在第一象限,且与直线4x-3y=0和x轴都相切,则该圆的标准方程是________.[分析]将圆心设为Ca,Ba>0,b>0,从问题的意义中得出b=1又圆心c到直线4x-3y=0的距离d==1,解决方案是a=2或a=-四舍五入所以该圆的标准方程为x-22+y-12=1.[答:]x-22+Y-12=12.2021·南京质检已知点p2,1在圆c:x2+y2+ax-2y+b=0上,点p关于直线x+y-1=0的对称点也在圆c上,则圆c的圆心坐标为________.【分析】因为点P相对于直线x+Y-1=0的对称点也在圆上,该直线过圆心,即圆心满足方程x+y-1=0,因此-+1-1=0,解为a=0,所以中心坐标为0,1[答案] 0,13.如果已知圆的中心位于直线y=-4x上,且圆在点P3,-2处与直线L:x+y-1=0相切,则圆的方程式为:___[解析] 过切点且与x+y-1=0垂直的直线为y+2=x-3,与y=-4x联立可求得圆心为1,-4.半径r=2,圆的方程式为X-12+y+42=8[答案] x-12+y+42=84.2022·江苏常州模拟知道实数x,y满足x2+y2-4x+6y+12=0,那么| 2x-y |的最小值为___[解析] x2+y2-4x+6y+12=0配方得x-22+y+32=1,令x=2+cosα,y=-3+sinα,然后| 2x-y |=|4+2cosα+3-sinα|=|7-sinα-φ|≥7-tanφ=2.[答:]7-5.已知圆x2+y2+4x-8y+1=0关于直线2ax-by+8=0a>0,b>0对称,则+的最小值是________.【分析】从圆的对称性来看,直线2aX by+8=0必须穿过圆的中心-2,4,因此a+B=2,+=+=++5≥ 2+5=9,from=,然后A2=4B2,再从a+B=2,所以当且仅当a=,B时取等号=[答案] 96.2022. 南京市和盐城市的第三次模拟考试是在平面直角坐标系xoy中进行的。

圆的方程数学知识点与练习

圆的方程数学知识点与练习

圆的方程●圆的方程的三种形式 (1)圆的标准方程(x-a)2+(y-b)2=r 2,方程表示圆心为(a,b),半径为r 的圆. (2)圆的一般方程对于方程x 2+y 2+Dx+Ey+F=0①当D 2+E 2-4F >0时,表示圆心为(-D 2,-E 2),半径为12②当D 2+E 2-4F=0时,表示一个点(-D 2,-E2);③当D 2+E 2-4F <0时,它不表示任何图形.(3)圆的参数方程x a rcos ,y b rsin θθ=+⎧⎨=+⎩,圆心(a,b ),半径r >0,θ∈R. ●点与圆的位置关系圆的标准方程(x-a )2+(y-b)2=r 2,圆心A (a,b ),半径r ,若点M (x 0,y 0)在圆上,则(x 0-a)2+(y 0-b)2=r 2; 若点M (x 0,y 0)在圆外,则(x 0-a)2+(y 0-b)2>r 2; 若点M (x 0,y 0)在圆内,则(x 0-a)2+(y 0-b)2<r 2. ●确定圆的方程的方法(1)确定圆的方程的主要方法是待定系数法.如果选择标准方程,一般步骤为: ①根据题意,设所求圆的标准方程为(x-a )2+(y-b)2=r 2; ②根据已知条件,建立关于a 、b 、r 的方程组;③解方程组,并把它们代入所设的方程中,整理后,就得到所求方程. 求圆的标准方程时,尽量利用圆的几何性质,可以大大地减少计算量. (2)如果已知条件中圆心的位置不能确定,可考虑选择圆的一般方程,圆的一般方程也含有三个独立的参数,因此,必须具备三个独立的条件,才能确定圆的一般方程,其方法仍采用待定系数法.设所求圆的方程为x 2+y 2+Dx+Ey+F=0,由三个条件得到关于D 、E 、F 的一个三元一次方程组,解方程组,求出参数D 、E 、F 的值即可.(3)以A (x 1,y 1),B(x 2,y 2)为直径的两端点的圆的方程为(x-x 1)(x-x 2)+(y-y 1)(y-y 2)=0. (4)在求圆的方程时,常用到圆的以下几个性质: ①圆心在过切点且与切线垂直的直线上; ②圆心在任一弦的中垂线上;③两圆内切或外切时,切点与两圆圆心三点共线. ●与圆有关的最值问题(1)求与圆有关的最值问题多采用几何法,就是利用一些代 数式的几何意义进行转化.如①形如m=y bx a--的最值问题,可转化为动直线斜率的最值问题;②形如t=ax+by 的最值问题,可转化为直线在y 轴上的截距的最值问题;③形如m=(x-a)2+(y-b)2的最值问题,可转化为两点间的距离平方的最值问题. (2)特别要记住下面两个代数式的几何意义:yx表示点(x,y )与原点(0,0)连线的直线斜率表示点(x,y )与原点的距离. 1.方程x 2+y 2+4mx-2y+5m=0表示圆的充要条件是( )A.14<m<1 B.m>1 C.m<14D.m<14或m>1解析:若方程表示圆,则(4m)2+(-2)2-4×5m>0,解得m<14或m>1.答案:D2.若点(4a-1,3a+2)不在圆(x+1)2+(y-2)2=25的外部,则a的取值范围是( )A.|a|B.|a|<1C.|a|D.|a|≤1解析:点(4a-1,3a+2)不在圆(x+1)2+(y-2)2=25的外部,则(4a-1+1)2+(3a+2-2)2≤25,即|a|≤1. 答案:D3.圆(x+2)2+y2=5关于直线y=x对称的圆的方程为( )A.(x-2)2+y2=5B.x2+(y-2)2=5C.(x+2)2+(y+2)2=5D.x2+(y+2)2=5解析:圆(x+2)2+y2=5的圆心(-2,0)关于y=x对称的点的坐标为(0,-2),所以,所求圆的方程是x2+(y+2)2=5.答案:D4.已知x、y满足x2+y2-4x-6y+12=0,则x2+y2的最小值为__________.解析:点(x,y)在圆(x-2)2+(y-3)2=1上,故点(x,y)到原点距离的平方即x2+y2的最小值为2答案:5.已知圆x2+y2+kx+2y=-k2,当该圆的面积取最大值时,圆心坐标为__________.答案:(0,-1)自我诊断①若圆x2+y2+(a2-1)x+2ay-a=0关于直线x-y+1=0对称,则实数a的值为__________.答案:3自我诊断②以点A(-3,0),B(0,-3),C(157,247)为顶点的三角形与圆x2+y2=R2(R>0)没有公共点,则圆半径R的取值范围是())∪,+∞) B.( ) )∪(3,+∞)D.(,3)2解析:如图,若圆与△ABC没有公共点,需考虑两种情况,①圆在三角形内部;②圆在三角形外部.当圆在三角形内部时,圆与BC;当圆在三角形外部时,圆过点C,所以选A.答案:A题型一圆的方程的求法【例1】根据下列条件求圆的方程:(1)经过点P(1,1)和坐标原点,并且圆心在直线2x+3y+1=0上;(2)圆心在直线y=-4x上,且与直线l:x+y-1=0相切于点P(3,-2);(3)过三点A(1,12),B(7,10),C(-9,2).规律方法:求圆的方程时,应根据条件选用合适的圆的方程.一般来说,求圆的方程有两种方法:(1)几何法,通过研究圆的性质而求出圆的基本量;(2)代数法,即设出圆的方程,用待定系数法求解. 创新预测1根据下列条件求圆的方程:(1)已知一圆过P(4,-2)、Q(-1,3)两点,且在y轴上截得的线段长为(2,圆心在直线y=2x上,圆被直线x-y=0截得的弦长为题型二与圆有关的最值问题【例2】已知实数x、y满足方程x2+y2-4x+1=0.(1)求yx的最大值和最小值;(2)求y-x的最大值和最小值;(3)求x2+y2的最大值和最小值.规律方法:化x、y满足的关系式为(x-2)2+y2=3,明确yx、y-x、x2+y2的几何意义,数形结合求解.创新预测2已知实数x、y满足方程x2+y2-4x+1=0.(1)求y2x1++的最大值和最小值.(2)求x-2y的最大值和最小值.(3)求点P(x,y)到直线3x+4y+12=0的距离的最大值和最小值.题型三与圆有关的轨迹问题【例3】设定点M(-3,4),动点N在圆x2+y2=4上运动,以OM、ON为两边作平行四边形MONP,求点P的轨迹.\规律方法:求与圆有关的轨迹问题时,根据题设条件的不同常采用以下方法:直接法,直接根据题目提供的条件列出方程;定义法,根据圆、直线等定义列方程;几何法,利用圆与圆的几何性质列方程;代入法,找到要求点与已知点的关系,代入已知点满足的关系式等.创新预测3 已知圆x2+y2=4上一定点A(2,0),B(1,1)为圆内一点,P,Q为圆上的动点. (1)求线段AP中点的轨迹方程;(2)若∠PBQ=90°,求PQ中点的轨迹方程.题型四与圆有关的实际应用问题【例4】有一种大型商品,A、B两地都有出售,且价格相同,某地居民从两地之一购得商品后运回的费用是:A地每千米的运费是B地每千米运费的3倍.已知A、B两地距离为10 km,顾客选择A地或B地购买这件商品的标准是:包括运费和价格的总费用较低.求P地居民选择A地或B地购货总费用相等时,点P所在曲线的形状,并指出曲线上、曲线内、曲线外的居民应如何选择购物地点.规律方法:审清题意,根据题意求轨迹方程.求方程前必须建立平面直角坐标系,否则曲线就不能转化为方程,坐标系选取得当,可使运算过程简单,所得方程也较简单.创新预测4 设有一个半径为3 km的圆形村落,A、B两人同时从村落中心出发,A向东而B向北前进.A出村后不久,改变前进方向,沿着切于村落边界的方向前进,后来恰好与B相遇.设A、B 两人的速度都一定,其比为3∶1,问:两人在何处相遇?精品作业自我测评·技能备考一、选择题:每小题6分,共36分.1.(2009·许昌模拟)P(x,y)是圆x2+y2=1与直线x+y+2m=0(m>0)的公共点,则直线008=0的倾斜角的最大值为( )A.45°B.60°C.90°D.135°答案:A2.(2009·天津汉沽模拟)已知两点A(-2,0),B(0,2),点C 是圆x 2+y 2-2x=0上任意一点,则△ABC 面积的最小值是( )C.3-2D.32 答案:A3.(2009·山东临沂模拟)若直线ax+2by-2=0(a >0,b >0)始终平分圆x 2+y 2-4x-2y-8=0的周长,则1a +2b的最小值为( )A.1B.5 答案:D4.(2008·山东)已知圆的方程为x 2+y 2-6x-8y=0.设该圆过点(3,5)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为( )答案:B5.(2009·湖北沙市模拟)直线l:4x-3y-12=0与x、y轴的交点分别为A、B,O为坐标原点,则△AOB内切圆的方程为( )A.(x-1)2+(y+1)2=1B.(x-1)2+(y-1)2=1C.(x-1)2+(y+1)2D.(x-1)2+(y+1)2=2 答案:A解析:A(3,0),B(0,-4),O(0,0),∴内切圆的半径r=OA OB AB2+-=1,由图象知,圆心为(1,-1),∴方程为(x-1)2+(y+1)2=1,故选A.6.(2009·西南师大附中模拟)已知点P(x,y)是直线kx+y+4=0(k>0)上一动点,PA、PB是圆C:x2+y2-2y=0的两条切线,A、B是切点,若四边形PACB的最小面积是2,则k的值为( )A.3B.2C.22D.2 答案:D二、填空题:每小题6分,共18分.7.(2009·江苏江宁高级中学3月模拟)直线ax+by=1过点A(b,a),则以坐标原点O为圆心,OA 长为半径的圆的面积的最小值是______.答案:π解析:直线过点A(b,a),∴ab=12,圆面积S=πr2=π(a2+b2)≥2πab=π.8.(2009·广东华南师大附属中学测试)从圆(x-1)2+(y-1)2=1外一点P(2,3)向这个圆引切线,则切线长为____________.答案:2解析:圆心(1,1),则|PC|2=5,∴切线长9.(2009·浙江金华模拟)已知圆O的方程为x2+y2=4,P是圆O上的一个动点,若OP的垂直平分线总是被平面区域|x|+|y|≥a覆盖,则实数a的取值范围是_____________.答案:a≤1解析:易知OP的垂直平分线即为单位圆的切线,当a≤0时,平面区域即坐标平面,显然满足题意;当a>0时,由图象易知0<a≤1,综上,a≤1.三、解答题:10、11题每题15分,12题16分,共46分.10.(2009·江苏通州调研)如图,在平面直角坐标系xOy中,A(a,0)(a>0),B(0,a),C(-4,0),D(0,4),设△AOB的外接圆圆心为E.(1)若⊙E与直线CD相切,求实数a的值.(2)设点P在⊙E上,使△PCD的面积等于12的点P有且只有三个,试问:这样的⊙E是否存在?若存在,求出⊙E的标准方程;若不存,说明理由.11.(2009·江苏盐城模拟)已知以点C(t,2t)(t∈R,t≠0)为圆心的圆与x轴交于点O、A,与y轴交于点O、B,其中O为原点.(1)求证:△OAB的面积为定值;(2)设直线y=-2x+4与圆C交于点M、N,若OM=ON,求圆C的方程.\12.设O 为坐标原点,曲线x 2+y 2+2x-6y+1=0上有两点P 、Q ,满足关于直线x+my+4=0对称,又满足OP ·OQ =0.(1)求m 的值;(2)求直线PQ 的方程.。

圆的标准方程练习题

圆的标准方程练习题

圆的标准方程练习题圆的标准方程练习题圆是数学中的一个基本几何形状,它在我们的生活中随处可见。

在解决与圆相关的问题时,掌握圆的标准方程是非常重要的。

本文将通过一些练习题来帮助读者加深对圆的标准方程的理解和应用。

练习题一:求圆的标准方程1. 已知圆心为(2, -3),半径为5,求圆的标准方程。

解析:圆的标准方程为$(x - h)^2 + (y - k)^2 = r^2$,其中(h, k)为圆心坐标,r 为半径。

代入已知条件,得到$(x - 2)^2 + (y + 3)^2 = 25$。

2. 已知圆心为(-1, 4),过点(3, 2),求圆的标准方程。

解析:首先求得半径,半径的长度等于圆心到过点的距离。

利用距离公式$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$,代入已知条件,得到$d = \sqrt{(3 - (-1))^2 + (2 - 4)^2} = \sqrt{20} = 2\sqrt{5}$。

然后代入圆心和半径,得到$(x + 1)^2 + (y - 4)^2 = 20$。

练习题二:判断给定方程是否为圆的标准方程1. $x^2 + y^2 + 2x - 4y = 0$解析:这个方程可以通过将其进行配方来判断是否为圆的标准方程。

将方程进行配方,得到$(x + 1)^2 - 1 + (y - 2)^2 - 4 = 0$,化简后得到$(x + 1)^2 + (y - 2)^2 = 5$。

因此,这个方程是圆的标准方程。

2. $x^2 + y^2 + 3x - 2y + 4 = 0$解析:同样地,将方程进行配方,得到$(x + \frac{3}{2})^2 - (\frac{3}{2})^2 + (y - 1)^2 - 1 = 0$,化简后得到$(x + \frac{3}{2})^2 + (y - 1)^2 = \frac{9}{4} + 1$。

因此,这个方程不是圆的标准方程。

(完整版)圆的一般方程练习题

(完整版)圆的一般方程练习题

(限时:10分钟)1 .若圆x2 + y 2— 2x — 4y = 0的圆心到直线x — y + a = 0的距离为 誓,则a 的值为()1 3A . — 2 或 2 B.2或2C . 2 或 0D . — 2 或 0解析:圆的标准方程为(x — 1)2 + (y — 2)2 = 5,圆心为(1,2),圆心2. 若圆x 2+ y 2 — 2ax + 3by = 0的圆心位于第三象限,那么直线x + ay + b = 0 一定不经过( )A .第一象限B .第二象限C .第三象限D .第四象限解析:圆心为a ,— 2b ,则有a<0, b>0.直线x +ay + b = 0变为1 b 1 by = — ?—二由于斜率—a>0,在y 轴上截距—b >0,故直线不经过第 a a aa四象限.答案:D3. 直线y = 2x + b 恰好平分圆x 2 + y 2 + 2x —4y = 0,则b 的值为()A . 0B . 2C . 4D . 1解析:由题意可知,直线y = 2x + b 过圆心(—1,2),••• 2=2X (— 1)+ b , b = 4.答案:C4. M(3,0)是圆x 2+ y 2 — 8x — 2y + 10=0内一点,过M 点最长的弦到直线的距离 答案:C解得a = 0或2.课时作业23圆的一般方程所在的直线方程为 ________ ,最短的弦所在的直线方程是 ________ .解析:由圆的几何性质可知,过圆内一点M的最长的弦是直径,最短的弦是与该点和圆心的连线CM垂直的弦.易求出圆心为C(4,1),1 — 0k cM = = 1,二最短的弦所在的直线的斜率为—1,由点斜式,分 4-3别得到方程:y = x — 3 和 y = — (x — 3),即 x —y — 3= 0 和 x + y —3= 0.答案:x — y — 3= 0 x + y — 3= 05. 求经过两点A(4,7), B(— 3,6),且圆心在直线2x + y — 5= 0上 的圆的方程.解析:设圆的方程为x 2 + y 2 + Dx + Ey + F = 0 ,其圆心为D E-2,- 2,42+ 72 + 4D +7E + F = 0,由题意得—3 2 + 62 — 3D + 6E + F = 0,D E2 • — 2 + —㊁—5 = 0.4D + 7E + F = —65,即 3D — 6E — F = 45,2D + E =— 10,D = — 2, 解得E = — 6,F =— 15.x 2 + y 2— 2x — 6y —课后练|小和沖课时作婕曰日洁KEHOULI^ I(限时:30分钟)1. 圆x2+ y2+ 4x—6y—3 = 0的圆心和半径分别为()A . (2, —3); 16 B. (—2,3); 4C. (4, —6); 16D. (2, —3); 4解析:配方,得(x+ 2)2+ (y—3)2= 16,所以,圆心为(—2,3), 半径为4.答案:B2. 方程x2+ y2+ 4x—2y+ 5m= 0表示圆的条件是()1A. 4<m<1B. m>11C. m<4D. m<1解析:由42+ (—2)2—4X5m>0解得m<1.答案:D3. 过坐标原点,且在x 轴和y 轴上的截距分别是2和3的圆的 方程为()A . x 2+ y 2 — 2x — 3y = 0B . x 2 + y 2 + 2x — 3y = 0C . x 2 + y 2 — 2x + 3y = 0D . x 2+ y 2 + 2x + 3y = 0解析:解法一(排除法):由题意知,圆过三点 0(0,0), A(2,0), B(0,3),分别把A , B 两点坐标代入四个选项,只有 A 完全符合,故 选A.解法二(待定系数法):设方程为x 2 + y 2 + Dx + Ey + F = 0,F = 0,则 2D + F = — 4,3E + F = — 9, 故方程为 x 2 + y 2 — 2x — 3y = 0.解法三(几何法):由题意知,直线过三点 0(0,0), A(2,0), B(0,3),由弦AB 所对的圆心角为90 °知线段AB 为圆的直径,即所求的 圆是以AB 中点1, 2为圆心,2|AB 匸乎为半径的圆,其方程为(x —1)2 + y — |2 =于2,化为一般式得 x 2 + y 2— 2x — 3y = 0.答案:A4. 设圆的方程是 x 2*? + 2ax + 2y +(a — 1)2 = 0,若 0<a<1,则原 点()A .在圆上B. 在圆外C. 在圆内D .与圆的位置关系不确定解析:圆的标准方程是(x + a)2 + (y +1)2= 2a ,因为0<a<1,所以 (0 + a)2 + (0+ 1)2— 2a = (a — 1)2>0,即 0+a 2+ 0+ 1 2> 2a ,所以D = — 2, 解得E = — 3,F = 0,原点在圆外.答案:B5. 已知动点M到点(8,0)的距离等于点M到点(2,0)的距离的2倍, 那么点M的轨迹方程是()A . x2+ y2= 32B . x2+ y2= 16C. (x- 1)2+ y2= 16D. x2+ (y-1)2= 16解析:设M(x, y),贝S M 满足:x—8 2+ y2= 2 x —22+ y2,整理得x2+ y2= 16.答案:B6. 已知圆C: x2+ y2+2x+ ay—3= 0(a为实数)上任意一点关于直线I: x—y+ 2 = 0的对称点都在圆C上,贝S a= _______a解析:由题意可得圆C的圆心一1,—2在直线x—y+ 2= 0上, aa将—1,—2代入直线方程得—1——2+ 2 = 0,解得a= —2.答案:—2 ____7. 若实数x, y满足x2+ y2+ 4x—2y—4= 0,则寸x2+ y2的最大值是 ________ .关键是搞清式子寸x2+ y2的意义.实数x, y满足方程x2+ y2+ 4x —2y— 4 = 0,所以(x, y)为方程所表示的曲线上的动点,x2+ y2=.x—02+ y —02,表示动点(x, y)到原点(0,0)的距离.对方程进行配方,得(x+ 2)2+ (y—1)2= 9,它表示以C( —2,1)为圆心,3为半径的圆,而原点在圆内.连接CO交圆于点M, N,由圆的几何性质可知,MO 的长即为所求的最大值.|CO|= — 2 2+ 12= . 5, |MO|=, 5 + 3.答案:5 + 38. _____________________ 设圆x2+ y2—4x + 2y—11 = 0的圆心为A,点P在圆上,则FA 的中心M的轨迹方程是.解析:设M的坐标为(x, y),由题意可知圆心A为(2,—1), P(2x—2,2y+1)在圆上,故(2x —2)2+ (2y + 1)2—4(2x—2) + 2(2 y + 1)—11 = 0,即x2+ y2—4x+2y+ 1 = 0.答案:x2+ y2—4x + 2y + 1 = 09. 设圆的方程为x2+ y2—4x—5= 0,(1)求该圆的圆心坐标及半径;⑵若此圆的一条弦AB的中点为P(3,1),求直线AB的方程.解析:(1)将x2+ y2—4x— 5 = 0 配方得:(x—2)2+ y2= 9.二圆心坐标为C(2,0),半径为r = 3.⑵设直线AB的斜率为k.由圆的几何性质可知,CP丄AB,二k cp •=—1.1 —0二k cp= = 1,3—2二k=— 1.直线AB的方程为y— 1 = —(x—3),即x+y —4= 0.10. 已知定点0(0,0), A(3,0),动点P到定点O的距离与到定点1A的距离的比值是入,求动点P的轨迹方程,并说明方程表示的曲线.解析:设动点P的坐标为(x, y),则由.?|PO| = |PA|,得X x2+ y2) = (x—3)2+ y2,整理得:(X- 1)x2+ ( —1)y2+ 6x—9= 0.•/ X0,•••当后1时,方程可化为2x —3= 0,故方程表示的曲线是线段当X1时,方程可化为即方程表示的曲线是以3—X_ 1, 0为圆X—:i为半径的圆. OA的垂直平分线;x+ 2。

高中圆的方程基础练习题及讲解

高中圆的方程基础练习题及讲解

高中圆的方程基础练习题及讲解### 高中圆的方程基础练习题及讲解#### 练习题一题目:已知圆心在原点的圆的方程为 \(x^2 + y^2 = r^2\),求半径为3的圆的方程。

解答:将 \(r = 3\) 代入圆的标准方程,我们得到:\[ x^2 + y^2 = 3^2 \]\[ x^2 + y^2 = 9 \]这就是半径为3的圆的方程。

#### 练习题二题目:圆 \(x^2 + y^2 + 6x - 8y + 20 = 0\) 与直线 \(x + y - 1 = 0\) 相切。

求圆的半径。

解答:首先,将圆的方程化为标准形式:\[ (x + 3)^2 + (y - 4)^2 = r^2 \]\[ x^2 + 6x + y^2 - 8y + 20 = r^2 \]\[ x^2 + y^2 + 6x - 8y = r^2 - 20 \]由于圆与直线相切,圆心到直线的距离等于圆的半径。

圆心坐标为\((-3, 4)\),直线方程可以写成 \(y = -x + 1\)。

使用点到直线距离公式:\[ \text{距离} = \frac{|-3 + 4 - 1|}{\sqrt{2}} \]将距离等于半径代入:\[ r = \frac{|-3 + 4 - 1|}{\sqrt{2}} \]\[ r = \frac{1}{\sqrt{2}} \]#### 练习题三题目:已知圆 \(x^2 + y^2 = 1\) 与直线 \(y = x + b\) 相切,求\(b\) 的值。

解答:由于圆与直线相切,圆心到直线的距离等于圆的半径,即1。

圆心坐标为 \((0, 0)\),直线方程可以写成 \(x - y + b = 0\)。

使用点到直线距离公式:\[ 1 = \frac{|0 - 0 + b|}{\sqrt{1^2 + (-1)^2}} \]\[ 1 = \frac{|b|}{\sqrt{2}} \]解得:\[ b = \pm \sqrt{2} \]#### 练习题四题目:求圆 \(x^2 + y^2 - 4x - 6y + 9 = 0\) 的圆心坐标和半径。

圆的标准方程-练习题

圆的标准方程-练习题

一、选择题1. 圆心是(4, -1),且过点(5.2)的圆的标准方程是( )Λ. α-4)2+(y+l)2=10 B. (A ^+4)2+(y-l)2=10 C. (χ-4)2+(y÷l)2=100D. (%-4)2÷ (y+1)2=√W2. 已知圆的方程是(χ-2)2+(y-3)2=4,则点P(3,2)满足() A.是圆心B.在圆上C.在圆内3. 圆(A -+1)2+(7-2)2=4的圆心坐标和半径分别为() Λ. (-1,2), 2B. (1, -2), 2C. (-1,2), 44. (2016 •锦州高一检测)若圆C 与圆(x+2)2÷(y-l)2= 1关于原点对称,则圆C 的方程是()Λ. α-2)2+(y+l)2=l B. (χ-2)2+(y-l)2=l C. U-l)2+(y+2)2=lD. (A ÷1)2÷(7+2)2=15. (2016 •全国卷II)圆√+∕-2χ-8y+13=0的圆心到直线ax+y-1 =0的距离为1,则日=()6. 若Pa 一1)为圆(χ-l)2+y=25的弦/矽的中点,则直线/矽的方程是(Λ )二、 填空题7. 以点(2, — 1)为圆心且与直线x+y=6相切的圆的方程是8. 圆心既在直线x —y=0上,又在直线x+y —4=0上,且经过原点的圆的方程是三、 解答题9. 圆过点 Atl 9 一2)、B(-l,4).求 (1) 周长最小的圆的方程;⑵圆心在直线2x —y —4 = 0上的圆的方程.10. 已知圆川的标准方程为(%-5)2+(y-6)2=a 2(a>0).Λ.B.C. √3D. 2 D.在圆外D. (h -2), 4A. X —y —3=0B ・ 2x+ y — 3 = 0C ・ x+ y — 1 =0D. 2%—y —5=0(1)若点M6.9)在圆上,求。

的值;(2)已知点A3,3)和点0(5.3),线段図(不含端点)与圆再有且只有一个公共点,求臼的取值范围.B级素养提升一、选择题1. (2016〜2017-宁波高一检测)点与圆√+∕=j的位置关系是Λ.在圆上 B.在圆内 C.在圆外 D.不能确定2.若点(2o, a-l)在圆√÷(y+l)2=5的内部,则&的取值范围是( )Λ. (一8, 1] B. (一1・1) C. (2.5) D・(1, +∞)3.若点P(l, 1)为圆α-3)2+72=9的弦的中点,则弦聽V所在直线方程为( )Λ. 2x+y—3=0 B・X—2y+l=0 C. x+2y—3=0 D・(IX—y—1=04.点"在圆(Λ--5)2+(7-3)2=9上,则点J/到直线3x+4y-2=0的最短距离为( )Λ. 9B・8 C・5 D・2二、填空题5.已知圆C经过力(5∙1). 0(1∙3)两点,圆心在才轴上,则C的方程为6.以玄线2x+y-4 = 0与两坐标轴的一个交点为圆心,过另一个交点的圆的方程为C级能力拔高1・如图,矩形力仇0的两条对角线相交于点M2,0), /矽边所在直线的方程为χ-3y-6=0, 边所在的直线上•求力〃边所在直线的方程・2.求圆心在直线4x+y=0上,且与直线才+y—l =0切于点Λ3, 一2)的圆的方程,并找出圆的圆心及半径.一、选择题1・圆z÷√-4x+6y= O的圆心坐标是( )Λ. (2.3) B. (-2,3) C. (一2, -3) D. (2, -3)2・(2016〜2017 •曲靖高一检测)方程√+∕÷2^r-Λy÷c= 0表示圆心为67(2,2),半径为2的圆,则血b、C 的值依次为( )Λ. —2,4.4 B. —2, —4,4 C. 2, —4,4 D. 2, —4, —43.(2016〜2017 •长沙高一检测)已知圆C过点J∕(l,l), A r(5,1),且圆心在直线y=x~2上,则圆C的方程为 ( )A・ X ÷y-6A r-2y÷6 = 0 B. x ÷y÷6%-2y÷6=0[C・ x'÷y ÷6x÷2y÷6=0 D・ A r÷y —2χ-6y÷6=04.设圆的方程是Y÷y2+2ax÷2y+(a-l)2=0,若O<X1,则原点与圆的位置关系是( )Λ.在圆上 B.在圆外 C.在圆内 D.不确定5・若圆√+∕-2χ-4y= 0的圆心到直线AT-y÷5= 0的距离为专,则日的值为( )1 3A. —2 或2B. §或O C・ 2 或0 D. —2 或06.圆Z÷∕-2y-l =O关于直线y=x对称的圆的方程是( )Λ. (X—1)^+y =2 B. (x+l)'+y i=2C. (A-I)2+y =4D. (^+l)2+y=4二、填空题7.圆心是(-3,4),经过点.f∕(5,l)的圆的一般方程为______________________ .8.设圆√+y-4,r+2y-ll= 0的圆心为儿点P在圆上,则刊的中点〃的轨迹方程是一三、解答题9.判断方程X + y -4^+ 2my+ 20/»-20=0能否表示圆,若能表示圆,求出圆心和半径.10.求过点J(-l,0). g(3∙0)和C(0.1)的圆的方程.B级素养提升一、选择题1.若圆x2+y2-2ax÷36y= 0的圆心位于第三象限,那么直线x+ay+b =0—定不经过( )A.第一象限B.第二象限C.第三象限D.第四象限2•在圆√+y2-2-γ-6y =0内,过点F(OJ)的最长弦和最短弦分别为和加,则四边形/处9的面只为( )Λ. 5√2 B. 10√5 C. 15√2D・20√23.若点(2o, a— 1)在圆x2÷y2—(Iy-5a'=0的内部,则日的取值范围是( )4 4 4 Q QΛ. ( — 8, -] B. (―-, ξ) C. (―[, +∞) D. (丁,+∞)4.若直线7:乩γ+by+l=O始终平分圆J/: z+y+4x÷2y÷l=0的周长,则(a-2)2+(Z,-2)2的最小值为)二、填空题5.已知圆C: √+∕+2,γ+ay-3 = 0U为实数)上任意一点关于直线/:χ-y+2=0的对称点都在圆C上,则。

高中数学必修2圆的方程练习题(基础训练)

高中数学必修2圆的方程练习题(基础训练)

专题:直线与圆1.圆C 1 : x 2+y 2+2x +8y -8=0与圆C 2 : x 2+y 2-4x +4y -2=0的位置关系是( ). A .相交B .外切C .内切D .相离2.两圆x 2+y 2-4x +2y +1=0与x 2+y 2+4x -4y -1=0的公共切线有( ). A .1条B .2条C .3条D .4条3.若圆C 与圆(x +2)2+(y -1)2=1关于原点对称,则圆C 的方程是( ). A .(x -2)2+(y +1)2=1 B .(x -2)2+(y -1)2=1 C .(x -1)2+(y +2)2=1D .(x +1)2+(y -2)2=14.与直线l : y =2x +3平行,且与圆x 2+y 2-2x -4y +4=0相切的直线方程是( ). A .x -y ±5=0 B .2x -y +5=0 C .2x -y -5=0D .2x -y ±5=05.直线x -y +4=0被圆x 2+y 2+4x -4y +6=0截得的弦长等于( ). A .2B .2C .22D .426.一圆过圆x 2+y 2-2x =0与直线x +2y -3=0的交点,且圆心在y 轴上,则这个圆的方程是( ).A .x 2+y 2+4y -6=0B .x 2+y 2+4x -6=0C .x 2+y 2-2y =0D .x 2+y 2+4y +6=07.圆x 2+y 2-4x -4y -10=0上的点到直线x +y -14=0的最大距离与最小距离的差是( ). A .30B .18C .62D .528.两圆(x -a )2+(y -b )2=r 2和(x -b )2+(y -a )2=r 2相切,则( ). A .(a -b )2=r 2 B .(a -b )2=2r 2 C .(a +b )2=r 2D .(a +b )2=2r 29.若直线3x -y +c =0,向右平移1个单位长度再向下平移1个单位,平移后与圆x 2+y 2=10相切,则c 的值为( ). A .14或-6B .12或-8C .8或-12D .6或-1410.设A (3,3,1),B (1,0,5),C (0,1,0),则AB 的中点M 到点C 的距离|CM | =( ). A .453B .253 C .253 D .21311.若直线3x -4y +12=0与两坐标轴的交点为A ,B ,则以线段AB 为直径的圆的一般方程为____________________.12.已知直线x =a 与圆(x -1)2+y 2=1相切,则a 的值是_________. 13.直线x =0被圆x 2+y 2―6x ―2y ―15=0所截得的弦长为_________.14.若A(4,-7,1),B(6,2,z),|AB|=11,则z=_______________.15.已知P是直线3x+4y+8=0上的动点,P A,PB是圆(x-1)2+(y-1)2=1的两条切线,A,B是切点,C是圆心,则四边形P ACB面积的最小值为.三、解答题16.求下列各圆的标准方程:(1)圆心在直线y=0上,且圆过两点A(1,4),B(3,2);(2)圆心在直线2x+y=0上,且圆与直线x+y-1=0切于点M(2,-1).17.棱长为1的正方体ABCD-A1B1C1D1中,E是AB的中点,F是BB1的中点,G是AB1的中点,试建立适当的坐标系,并确定E,F,G三点的坐标.18.圆心在直线5x―3y―8=0上的圆与两坐标轴相切,求此圆的方程.19.已知圆C :(x-1)2+(y-2)2=2,点P坐标为(2,-1),过点P作圆C的切线,切点为A,B.(1)求直线P A,PB的方程;(2)求过P点的圆的切线长;(3)求直线AB的方程.20.求与x轴相切,圆心C在直线3x-y=0上,且截直线x-y=0得的弦长为27的圆的方程.参考答案一、选择题 1.A解析:C 1的标准方程为(x +1)2+(y +4)2=52,半径r 1=5;C 2的标准方程为(x -2)2+(y +2)2=(10)2,半径r 2=10.圆心距d =224 - 2+ 1 + 2)()(=13. 因为C 2的圆心在C 1内部,且r 1=5<r 2+d ,所以两圆相交. 2.C解析:因为两圆的标准方程分别为(x -2)2+(y +1)2=4,(x +2)2+(y -2)2=9, 所以两圆的圆心距d =222 - 1 -+ 2 + 2)()(=5. 因为r 1=2,r 2=3,所以d =r 1+r 2=5,即两圆外切,故公切线有3条. 3.A解析:已知圆的圆心是(-2,1),半径是1,所求圆的方程是(x -2)2+(y +1)2=1. 4.D解析:设所求直线方程为y =2x +b ,即2x -y +b =0.圆x 2+y 2―2x ―4y +4=0的标准方程为(x -1)2+(y -2)2=1.由221+ 2 + 2 - 2 b =1解得b =±5.故所求直线的方程为2x -y ±5=0. 5.C解析:因为圆的标准方程为(x +2)2+(y -2)2=2,显然直线x -y +4=0经过圆心. 所以截得的弦长等于圆的直径长.即弦长等于22. 6.A解析:如图,设直线与已知圆交于A ,B 两点,所求圆的圆心为C . 依条件可知过已知圆的圆心与点C 的直线与已知直线垂直. 因为已知圆的标准方程为(x -1)2+y 2=1,圆心为(1,0), 所以过点(1,0)且与已知直线x +2y -3=0垂直的直线方程为y =2x -2.令x =0,得C (0,-2).联立方程x 2+y 2-2x =0与x +2y -3=0可求出交点A (1,1).故所求圆的半径r =|AC |=223 + 1=10.所以所求圆的方程为x 2+(y +2)2=10,即x 2+y 2+4y -6=0.(第6题)解析:因为圆的标准方程为(x -2)2+(y -2)2=(32)2,所以圆心为(2,2),r =32. 设圆心到直线的距离为d ,d =210>r ,所以最大距离与最小距离的差等于(d +r )-(d -r )=2r =62. 8.B解析:由于两圆半径均为|r |,故两圆的位置关系只能是外切,于是有 (b -a )2+(a -b )2=(2r )2. 化简即(a -b )2=2r 2. 9.A解析:直线y =3x +c 向右平移1个单位长度再向下平移1个单位. 平移后的直线方程为y =3(x -1)+c -1,即3x -y +c -4=0. 由直线平移后与圆x 2+y 2=10相切,得221+ 34 - + 0 - 0 c =10,即|c -4|=10,所以c =14或-6. 10.C解析:因为C (0,1,0),容易求出AB 的中点M ⎪⎭⎫ ⎝⎛3 ,23 ,2, 所以|CM |=2220 - 3 + 1 -23 + 0 - 2)()(⎪⎭⎫⎝⎛=253. 二、填空题11.x 2+y 2+4x -3y =0.解析:令y =0,得x =-4,所以直线与x 轴的交点A (-4,0). 令x =0,得y =3,所以直线与y 轴的交点B (0,3). 所以AB 的中点,即圆心为⎪⎭⎫ ⎝⎛23 2, -. 因为|AB |=223 + 4=5,所以所求圆的方程为(x +2)2+223 - ⎪⎭⎫ ⎝⎛y =425.即x 2+y 2+4x -3y =0. 12.0或2.解析:画图可知,当垂直于x 轴的直线x =a 经过点(0,0)和(2,0)时与圆相切, 所以a 的值是0或2.解析:令圆方程中x =0,所以y 2―2y ―15=0.解得y =5,或y =-3. 所以圆与直线x =0的交点为(0,5)或(0,-3).所以直线x =0被圆x 2+y 2―6x ―2y ―15=0所截得的弦长等于5-(-3)=8. 14.7或-5.解析:由2221 - + 7 + 2 + 4 - 6)()()(z =11得(z -1)2=36.所以z =7,或-5. 15.22.解析:如图,S 四边形P ACB =2S △P AC =21|P A |·|CA |·2=|P A |,又|P A |=12-||PC ,故求|P A |最小值,只需求|PC |最小值,另|PC |最小值即C 到直线3x +4y +8=0的距离,为2243843+|++|=3.于是S 四边形P ACB 最小值为132-=22. 三、解答题16.解:(1)由已知设所求圆的方程为(x -a )2+y 2=r 2,于是依题意,得⎪⎩⎪⎨⎧.=+)(,=+)(2222 4 - 3 16 - 1r a r a 解得⎪⎩⎪⎨⎧.,-20 = 1 = 2r a 故所求圆的方程为(x +1)2+y 2=20.(2)因为圆与直线x +y -1=0切于点M (2,-1),所以圆心必在过点M (2,-1)且垂直于x +y -1=0的直线l 上. 则l 的方程为y +1=x -2,即y =x -3. 由⎪⎩⎪⎨⎧.=+,-=023 y x x y 解得⎪⎩⎪⎨⎧.- =,=2 1 y x 即圆心为O 1(1,-2),半径r =222 + 1 -+ 1 - 2)()(=2. 故所求圆的方程为(x -1)2+(y +2)2=2.17.解:以D 为坐标原点,分别以射线DA ,DC ,DD 1的方向为正方向,以线段DA ,DC ,DD 1的长为单位长,建立空间直角坐标系Dxyz ,E 点在平面xDy 中,且EA =21. 所以点E 的坐标为⎪⎭⎫⎝⎛0 ,21 ,1, (第15题)又B 和B 1点的坐标分别为(1,1,0),(1,1,1),所以点F 的坐标为⎪⎭⎫ ⎝⎛21 ,1 ,1,同理可得G 点的坐标为⎪⎭⎫ ⎝⎛21 21 1,,. 18.解:设所求圆的方程为(x -a )2+(y -b )2=r 2, 因为圆与两坐标轴相切,所以圆心满足|a |=|b |,即a -b =0,或a +b =0. 又圆心在直线5x ―3y ―8=0上,所以5a ―3b ―8=0.由方程组⎪⎩⎪⎨⎧,=-,=--00835b a b a 或⎪⎩⎪⎨⎧,=+,=--00835b a b a解得⎪⎩⎪⎨⎧,=,44b a =或⎪⎩⎪⎨⎧.=-,11=b a 所以圆心坐标为(4,4),(1,-1).故所求圆的方程为(x -4)2+(y -4)2=16,或(x -1)2+(y +1)2=1.19.解:(1)设过P 点圆的切线方程为y +1=k (x -2),即kx ―y ―2k ―1=0. 因为圆心(1,2)到直线的距离为2,1+ 3 - - 2k k =2, 解得k =7,或k =-1.故所求的切线方程为7x ―y ―15=0,或x +y -1=0.(2)在Rt △PCA 中,因为|PC |=222 - 1 -+ 1 - 2)()(=10,|CA |=2, 所以|P A |2=|PC |2-|CA |2=8.所以过点P 的圆的切线长为22.(3)容易求出k PC =-3,所以k AB =31.如图,由CA 2=CD ·PC ,可求出CD =PC CA 2=102.设直线AB 的方程为y =31x +b ,即x -3y +3b =0.由102=23 + 1 3 + 6 - 1 b 解得b =1或b =37(舍).所以直线AB 的方程为x -3y +3=0.(3)也可以用联立圆方程与直线方程的方法求解.20.解:因为圆心C 在直线3x -y =0上,设圆心坐标为(a ,3a ), 圆心(a ,3a )到直线x -y =0的距离为d =22 - a .又圆与x 轴相切,所以半径r =3|a |,(第19题)设圆的方程为(x -a )2+(y -3a )2=9a 2, 设弦AB 的中点为M ,则|AM |=7. 在Rt △AMC 中,由勾股定理,得 22 2 - ⎪⎪⎭⎫⎝⎛a +(7)2=(3|a |)2. 解得a =±1,r 2=9.故所求的圆的方程是(x -1)2+(y -3)2=9,或(x +1)2+(y +3)2=9.。

(完整word版)圆的标准方程练习题.docx

(完整word版)圆的标准方程练习题.docx

第四章4.14.1.1A 级基础巩固一、选择题1.圆心是 (4,- 1),且过点 (5,2)的圆的标准方程是()A .(x- 4)2+( y+1) 2= 10B.( x+ 4)2+ (y-1)2= 10C. (x-4) 2+ (y+1) 2= 100D.( x- 4)2+ (y+1)2= 102.已知圆的方程是 (x- 2)2+ (y- 3)2=4,则点 P(3,2) 满足 ()A .是圆心B.在圆上C.在圆内 D .在圆外3.圆 (x+ 1)2+ (y- 2)2= 4 的圆心坐标和半径分别为()A .(- 1,2), 2B. (1,- 2),2C. (-1,2), 4 D . (1,- 2), 44. (2016 锦·州高一检测 )若圆 C 与圆 (x+ 2)2+ (y- 1)2= 1关于原点对称,则圆 C 的方程是 ()A .(x- 2)2+( y+1) 2= 1B. (x- 2) 2+ (y- 1)2= 1C. (x-1) 2+ (y+2) 2= 1D. (x+ 1)2+ (y+2) 2= 15. (2016 全·国卷Ⅱ )圆 x2+ y2- 2x-8y+ 13=0 的圆心到直线ax+y- 1= 0 的距离为1,则 a= () 43A .-3B.-4C. 3 D . 26.若 P(2,- 1)为圆 (x- 1)2+ y2= 25 的弦 AB 的中点,则直线AB 的方程是 ( A)A . x- y- 3= 0B. 2x+ y- 3= 0C. x+ y-1= 0D. 2x- y- 5= 0二、填空题7.以点 (2,- 1)为圆心且与直线x+ y= 6 相切的圆的方程是.8.圆心既在直线x- y= 0 上,又在直线x+ y- 4= 0 上,且经过原点的圆的方程是三、解答题9.圆过点A(1,- 2)、 B(- 1,4),求(1)周长最小的圆的方程;(2)圆心在直线2x- y- 4= 0 上的圆的方程.10.已知圆 N的标准方程为 (x- 5)2+ (y- 6)2= a2(a>0).(1)若点 M(6,9)在圆上,求 a 的值;(2)已知点 P(3,3) 和点 Q(5,3),线段 PQ(不含端点 )与圆 N 有且只有一个公共点,求 a 的取值范围.B 级素养提升一、选择题1, 3与圆 x2+ y2=1的位置关系是()1. (2016 ~2017 ·宁波高一检测 )点222A .在圆上B.在圆内C.在圆外 D .不能确定2.若点 (2a, a- 1)在圆 x2+ (y+ 1)2=5的内部,则 a 的取值范围是 ()A .(-∞, 1]B. (- 1,1)C. (2,5) D . (1,+∞ )3.若点 P(1,1)为圆 (x- 3)2+ y2= 9 的弦 MN 的中点,则弦 MN 所在直线方程为()A .2x+ y- 3= 0B. x- 2y+ 1= 0C. x+ 2y- 3=0 D . 2x-y- 1= 04.点 M 在圆 (x- 5)2+ (y- 3)2= 9 上,则点M 到直线 3x+ 4y- 2= 0 的最短距离为()A .9B. 8C. 5 D . 2二、填空题5.已知圆 C 经过 A(5,1) 、B(1,3)两点,圆心在 x 轴上,则 C 的方程为 ____.6.以直线 2x+ y-4= 0 与两坐标轴的一个交点为圆心,过另一个交点的圆的方程为____.C 级能力拔高1.如图,矩形 ABCD 的两条对角线相交于点M(2,0), AB 边所在直线的方程为x- 3y- 6= 0,点 T(- 1,1)在 AD 边所在的直线上.求AD 边所在直线的方程 .2.求圆心在直线4x+y= 0 上,且与直线l :x+ y- 1= 0 切于点 P(3,- 2)的圆的方程,并找出圆的圆心及半径.第四章 4.1 4.1.2A 级 基础巩固一、选择题1.圆 x 2 +y 2-4x + 6y = 0 的圆心坐标是 ( )A .(2,3)B . (- 2,3)C . (-2,- 3)D . (2,- 3)2. (2016 ~2017 ·曲靖高一检测 )方程 x 2+ y 2+ 2ax - by + c = 0 表示圆心为 C(2,2),半径为 2 的圆,则 a , b , c 的值依次为 ()A .- 2,4,4B .- 2,- 4,4C . 2,- 4,4D . 2,- 4,- 43.(2016 ~2017 ·长沙高一检测)已知圆 C 过点 M(1,1) ,N(5,1) ,且圆心在直线 y = x - 2 上,则圆 C 的方程为( )A .x 2+ y 2 -6x - 2y + 6= 0B . x 2+ y 2+ 6x - 2y + 6= 0C . x 2+y 2 +6x + 2y + 6= 0D . x 2+ y 2 -2x - 6y + 6= 04. 设圆的方程是 x 2+ y 2+ 2ax + 2y +(a - 1)2=0,若 0<a<1,则原点与圆的位置关系是()A .在圆上B .在圆外C .在圆内D .不确定22x -y + a = 0 的距离为2)5. 若圆 x + y - 2x - 4y = 0 的圆心到直线 ,则 a 的值为 (2A .- 2 或 2B .1或3C . 2 或 0D .- 2 或 02 26. 圆 x 2 +y 2-2y - 1= 0 关于直线 y = x 对称的圆的方程是 ( )A .(x - 1)2+y 2=2B . (x + 1) 2+ y 2= 2C . (x -1) 2+ y 2=4D . (x + 1)2+ y 2=4二、填空题7.圆心是(- 3,4),经过点M(5,1)的圆的一般方程为____.8. 设圆 x 2+ y 2- 4x + 2y - 11=0 的圆心为 A ,点 P 在圆上,则 PA 的中点 M 的轨迹方程是 _ 三、解答题9.判断方程 x 2+ y 2- 4mx + 2my + 20m - 20= 0 能否表示圆,若能表示圆,求出圆心和半径.10.求过点 A(-1,0)、 B(3,0)和 C(0,1)的圆的方程 .B 级素养提升一、选择题1.若圆 x2+ y2- 2ax+ 3by= 0 的圆心位于第三象限,那么直线x+ ay+ b= 0 一定不经过()A .第一象限B.第二象限C.第三象限 D .第四象限2.在圆 x2+ y2-2x- 6y= 0 内,过点 E(0,1)的最长弦和最短弦分别为AC 和 BD,则四边形 ABCD 的面只为() A .5 2B. 10 2C. 15 2 D . 20 23.若点 (2a, a- 1)在圆 x2+ y2- 2y- 5a2= 0 的内部,则 a 的取值范围是()444)3,+∞ ) D .3A .(-∞, ]B. (-,C. (-( ,+∞ )533444.若直线 l :ax+ by+ 1= 0 始终平分圆 M:x2+ y2+4x+ 2y+ 1=0的周长,则( a- 2)2+ (b- 2)2的最小值为()二、填空题5.已知圆 C: x2+ y2+ 2x+ ay- 3= 0(a 为实数 )上任意一点关于直线l: x- y+ 2= 0 的对称点都在圆 C 上,则 a6.若实数 x、 y 满足 x 2+ y2+ 4x- 2y-4= 0,则 x2+ y2的最大值是___.C 级能力拔高1.设圆的方程为x2+ y2=4,过点M(0,1)的直线 l 交圆于点 A、 B, O 是坐标原点,点P 为 AB 的中点,当 l 绕点 M 旋转时,求动点P 的轨迹方程 .2.已知方程x2+ y2- 2(m+ 3)x+ 2(1- 4m2)y+ 16m4+ 9= 0 表示一个圆 .(1)求实数 m 的取值范围;(2)求该圆的半径r 的取值范围;(3)求圆心 C 的轨迹方程.第四章 4.2 4.2.1A 级基础巩固一、选择题1.若直线 3x+ y+a= 0 平分圆 x2+ y2+ 2x- 4y=0,则 a 的值为 ()A .- 1B. 1C. 3 D .- 32. (2016 高·台高一检测 )已知直线 ax+ by+ c= 0(a、 b、 c 都是正数 )与圆 x2+ y2= 1 相切,则以a、 b、c 为三边长的三角形是 ()A .锐角三角形B.直角三角形C.钝角三角形 D .不存在3. (2016 北·京文 )圆 (x+ 1)2+ y2= 2 的圆心到直线 y= x+ 3的距离为 ()A .1B. 2C. 2 D . 2 2[4. (2016 铜·仁高一检测)直线 x+y=m 与圆 x2+ y2= m(m>0)相切,则m= ()1B.2C. 2 D . 2A .225.圆心坐标为 (2,- 1)的圆在直线x- y-1= 0 上截得的弦长为 22,那么这个圆的方程为()A .(x- 2)2+( y+1) 2= 4B. (x- 2) 2+ (y+ 1)2= 2C. (x-2) 2+ (y+1) 2= 8D. (x- 2)2+ (y+1) 2= 166.圆 (x- 3)2+ (y- 3)2= 9上到直线 3x+ 4y- 11= 0 的距离等于 1 的点有 ()A .1 个B. 2 个C. 3 个 D . 4 个二、填空题7. (2016 天·津文 )已知圆 C 的圆心在 x 轴的正半轴上,点 M(0,5)在圆 C 上,且圆心到直线2x- y=0 的距离为45,则圆 C 的方程为 ____.58.过点 (3,1)作圆 (x- 2)2+ (y- 2)2= 4 的弦,其中最短弦的长为 ____.三、解答题9.当 m 为何值时,直线x- y- m= 0 与圆 x2+ y2- 4x- 2y+ 1= 0 有两个公共点?有一个公共点?无公共点2210. (2016 ·坊高一检测潍 )已知圆 C: x + (y- 1) = 5,直线 l: mx-y+ 1- m= 0.(1)求证:对m∈R,直线 l 与圆 C 总有两个不同的交点;(2)若直线 l 与圆 C 交于 A、 B 两点,当 |AB |=17时,求 m 的值.B 级素养提升一、选择题1.过点 (2,1)的直线中,被圆x2+ y2- 2x+ 4y= 0 截得的弦最长的直线的方程是()A .3x- y- 5= 0B. 3x+ y- 7= 0C. 3x- y- 1=0 D . 3x+y- 5= 02. (2016 泰·安二中高一检测)已知 2a2+2b2= c2,则直线 ax+ by+ c= 0 与圆 x2+y2= 4 的位置关系是() A .相交但不过圆心B.相交且过圆心C.相切D.相离3.若过点A(4,0)的直线 l 与曲线 (x- 2)2+ y2= 1 有公共点,则直线l 的斜率的取值范围为 ()A .(- 3, 3)B. [- 3, 3]3, 3D . [ -3, 3 C. (-3 3)3 3]4.设圆 (x- 3)2+ (y+ 5)2= r2( r>0) 上有且仅有两个点到直线4x- 3y-2= 0 的距离等于1,则圆半径 r 的取值范围是 ()A .3<r<5B. 4<r <6C. r>4 D . r >5二、填空题5. (2016 ~2017 ·宜昌高一检测 )过点 P(1, 1)的直线 l 与圆 C: ( x- 1)2+y2= 4 交于 A, B 两点, C 为圆心,当∠2ACB 最小时,直线 l 的方程为 ____.6. (2016 ~2017 ·福州高一检测 )过点 ( -1,- 2)的直线 l 被圆 x2+ y2- 2x- 2y+ 1=0截得的弦长为2,则直线 l 的斜率为 ____.C 级能力拔高1.求满足下列条件的圆x2+y2= 4 的切线方程:(1)经过点 P( 3, 1);(2)斜率为- 1;(3)过点 Q(3,0) .2.设圆上的点A(2,3)关于直线x+ 2y= 0 的对称点仍在圆上,且与直线x- y+ 1= 0 相交的弦长为 2 2,求圆的方程 .第四章4.24.2.2A 级基础巩固一、选择题1.已知圆 C1: (x+1) 2+ (y- 3)2= 25,圆 C2与圆 C1关于点 (2,1)对称,则圆 C2的方程是 ()A .(x- 3)2+( y-5) 2= 25B. (x- 5) 2+ (y+ 1)2= 25C. (x-1) 2+ (y-4) 2= 25D. (x- 3)2+ (y+2) 2= 252.圆 x2+y2-2x- 5= 0 和圆 x2+ y2+ 2x- 4y- 4= 0 的交点为 A、 B,则线段 AB 的垂直平分线方程为 ()A .x+ y- 1=0B. 2x- y+ 1=0C. x- 2y+ 1=0D. x- y+ 1=03.若圆 (x-a) 2+( y-b)2=b2+ 1 始终平分圆 (x+ 1)2+ (y+ 1)2= 4 的周长,则a、b 应满足的关系式是()A .a2- 2a- 2b- 3= 0B. a2+ 2a+ 2b+5= 0C. a2+ 2b2+ 2a+ 2b+ 1= 0D. 3a2+ 2b2+ 2a+2b+ 1=04. (2016 ~2017 ·太原高一检测 )已知半径为 1 的动圆与圆 (x-5)2+( y+7) 2= 16 相外切,则动圆圆心的轨迹方程是 ()A .(x- 5)2+( y+7) 2= 25B. (x- 5) 2+ (y+ 7)2= 9C. (x-5) 2+ (y+7) 2= 15D. (x+ 5)2+ (y-7) 2= 255.两圆 x2+ y2= 16 与 (x- 4)2+ (y+ 3)2= r2(r>0) 在交点处的切线互相垂直,则r =A .5B. 4C. 3 D . 2 26.半径长为 6 的圆与 y 轴相切,且与圆 (x- 3)2+ y2= 1 内切,则此圆的方程为()A .(x- 6)2+( y-4) 2= 6B. (x- 6) 2+ (y±4)2= 6C. (x-6)2+ (y-4) 2= 36D. (x- 6)2+ (y±4) 2=36二、填空题7.圆 x2+y2+6x- 7= 0 和圆 x2+ y2+ 6y- 27= 0 的位置关系是 ____.8.若圆 x2+ y2= 4 与圆 x2+ y2+ 2ay- 6= 0(a>0) 的公共弦长为2 3,则 a= ____.三、解答题9.求以圆C1: x2+y2-12x- 2y- 13= 0 和圆C2: x2+ y2+ 12x+16y- 25= 0 的公共弦为直径的圆 C 的方程.10.判断下列两圆的位置关系.(1)C1: x2+ y2- 2x- 3= 0, C2: x2+y2- 4x+ 2y+ 3=0;(2)C1: x2+ y2- 2y= 0, C2: x2+ y2- 2 3x- 6=0;(3)C1: x2+ y2- 4x- 6y+ 9= 0,C2: x2+ y2+ 12x+6y- 19= 0;(4)C1: x2+ y2+ 2x- 2y- 2= 0,C2: x2+ y2- 4x- 6y- 3= 0.B 级素养提升一、选择题1.已知 M 是圆 C:(x- 1)2+ y2= 1 上的点, N 是圆 C′:(x- 4)2+ (y- 4)2= 82上的点,则|MN|的最小值为()A .4B. 4 2- 1C. 2 2-2 D . 22.过圆 x2+ y2= 4 外一点 M(4,- 1)引圆的两条切线,则经过两切点的直线方程为()A .4x- y- 4= 0B. 4x+ y- 4= 0C. 4x+ y+ 4=0 D . 4x-y+ 4= 03.已知两圆相交于两点A(1,3), B(m,- 1),两圆圆心都在直线x- y+ c= 0 上,则 m+ c 的值是 ()A .- 1B. 2C. 3 D . 04. (2016 山·东文 )已知圆 M: x2+ y2- 2ay=0(a>0)截直线 x+ y= 0 所得线段的长度是22,则圆 M 与圆 N: (x - 1)2+ (y-1) 2= 1 的位置关系是 ()A .内切B.相交C.外切 D .相离[二、填空题5.若点 A(a, b)在圆 x2+ y2= 4上,则圆 (x- a)2+ y2= 1 与圆 x2+ (y-b) 2=1 的位置关系是 ____.6.与直线 x+ y-2= 0 和圆 x2+y2-12x- 12y+54= 0 都相切的半径最小的圆的标准方程是____.C 级能力拔高1.已知圆 M: x2+ y2- 2mx-2ny+ m2-1= 0 与圆 N: x2+ y2+2x+ 2y- 2= 0 交于 A、 B 两点,且这两点平分圆N 的圆周,求圆心M 的轨迹方程 .2. (2016 ~2017 ·金华高一检测 )已知圆 O: x2+ y2= 1 和定点 A(2,1),由圆 O 外一点 P(a, b)向圆 O 引切线 PQ,切点为 Q, |PQ|= |PA|成立,如图 .(1)求 a, b 间的关系;(2)求 |PQ|的最小值.第四章4.24.2.3A 级基础巩固一、选择题1.一辆卡车宽 1.6 m,要经过一个半圆形隧道(半径为 3.6 m),则这辆卡车的平顶车篷篷顶距地面高度不得超过()A .1.4 m B. 3.5 m C. 3.6 m D . 2.0 m2.已知实数 x、y 满足 x2+ y2- 2x+4y- 20= 0,则 x2+ y2的最小值是 ()A .30- 10 5B. 5- 5C. 5 D . 253.方程 y=-4- x2对应的曲线是 ()4. y= |x|的图象和圆x2+ y2= 4 所围成的较小的面积是()πB.3πC.3πD .πA .442 5.方程 1- x2=x+ k 有惟一解,则实数k 的范围是 ()A .k=- 2B. k∈ (- 2,2)C. k∈ [- 1,1) D . k=2或- 1≤k<16.点 P 是直线 2x+ y+10= 0 上的动点,直线 PA、PB 分别与圆x2+ y2= 4 相切于 A、B 两点,则四边形PAOB(O 为坐标原点 )的面积的最小值等于 ()A .24B. 16C. 8 D . 4二、填空题7.已知实数 x、y 满足 x2+ y2= 1,则y+2的取值范围为 ____ x+ 18.已知 M= {( x,y)|y=9-x2,y≠ 0} ,N= {( x,y)|y= x+ b} ,若 M∩N≠ ?,则实数 b 的取值范围是 __]__.三、解答题9.为了适应市场需要,某地准备建一个圆形生猪储备基地(如右图 ),它的附近有一条公路,从基地中心O 处向东走 1 km 是储备基地的边界上的点A,接着向东再走 7 km 到达公路上的点 B;从基地中心 O 向正北走8 km 到达公路的另一点 C.现准备在储备基地的边界上选一点D,修建一条由 D 通往公路 BC 的专用线 DE,求 DE 的最短距离10.某圆拱桥的示意图如图所示,该圆拱的跨度AB 是36 m ,拱高OP是6 m,在建造时,每隔 3 m需用一个支柱支撑,求支柱A2P2的长.(精确到0.01 m)1. (2016 葫·芦岛高一检测 )已知圆 C 的方程是2222的最大值为 () x + y + 4x-2y- 4= 0,则 x+ yA .9B. 14C. 14- 6 5 D . 14+ 6 52.对于两条平行直线和圆的位置关系定义如下:若两直线中至少有一条与圆相切,则称该位置关系为“平行相切”;若两直线都与圆相离,则称该位置关系为“平行相离”;否则称为“平行相交”.已知直线l 1: ax+ 3y+ 6= 0, l 2: 2x+ (a+ 1)y+ 6=0与圆 C: x2+y2+ 2x= b2- 1(b>0) 的位置关系是“平行相交”,则实数 b 的取值范围为()A .( 2,322)B. (0,322)C. (0, 2)3232,+∞ ) D. ( 2,2 )∪ ( 23.已知圆的方程为x2+ y2- 6x- 8y=0.设该圆过点 (3,5)的最长弦和最短弦分别为AC 和 BD,则四边形 ABCD 的面积为 ()A .10 6B. 20 6C. 30 6 D . 40 64.在平面直角坐标系中,A,B 分别是 x 轴和 y 轴上的动点,若以AB 为直径的圆 C 与直线 2x+ y- 4= 0 相切,则圆 C 面积的最小值为()4πB.3πC. (6- 2 5) π5πA .54 D .4二、填空题5.某公司有 A、 B 两个景点,位于一条小路(直道 )的同侧,分别距小路 2 km 和 2 2 km,且 A、 B 景点间相距 2 km,今欲在该小路上设一观景点,使两景点在同时进入视线时有最佳观赏和拍摄效果,则观景点应设于____.6.设集合 A= {( x, y)|(x- 4)2+y2= 1} ,B= {( x, y)|(x- t) 2+ (y- at+ 2)2= 1} ,若存在实数t,使得 A∩ B≠ ?,则实数 a 的取值范围是 ___.C 级能力拔高1.如图,已知一艘海监船O 上配有雷达,其监测范围是半径为25 km 的圆形区域,一艘外籍轮船从位于海监船正东 40 km 的 A 处出发,径直驶向位于海监船正北30 km 的 B 处岛屿,速度为 28 km/h.问:这艘外籍轮船能否被海监船监测到?若能,持续时间多长?(要求用坐标法 )。

高二圆的方程练习题

高二圆的方程练习题

高二圆的方程练习题在高二数学中,圆是一个重要的几何形状。

了解圆的方程和性质是解决与圆相关问题的基础。

下面是一些高二圆的方程练习题,帮助你巩固和应用这方面的知识。

1. 已知圆C的半径为r,圆心坐标为(h, k)。

写出圆C的标准方程和一般方程。

解答:圆C的标准方程为:(x - h)² + (y - k)² = r²圆C的一般方程为:x² + y² - 2hx -2ky + h² + k² - r² = 02. 试写出过坐标原点的圆,半径为r的标准方程和一般方程。

解答:过坐标原点的圆的圆心坐标为(0, 0)。

标准方程为:x² + y² = r²一般方程为:x² + y² - r² = 03. 已知圆C过点A(2, 3)和B(4, 1),且圆心在y轴上。

写出圆C的方程。

解答:设圆C的圆心坐标为(0, k)。

由于圆心在y轴上,所以圆C的方程为x² + (y - k)² = r²。

将点A(2, 3)代入方程得:2² + (3 - k)² = r²。

将点B(4, 1)代入方程得:4² + (1 - k)² = r²。

由此可求得圆C的方程。

4. 已知圆C的直径的两个端点分别为A(3, 5)和B(-1, -2),写出圆C的方程。

解答:直径的中点坐标为[(3 + (-1))/2, (5 + (-2))/2] = (1, 1)。

由于直径的中点即为圆心,所以圆C的圆心坐标为(1, 1)。

圆C的半径为AB的一半,即√[(3 - (-1))² + (5 - (-2))²] / 2。

将圆心坐标和半径代入圆的标准方程可求得圆C的方程。

5. 已知圆C的方程为2x² + 2y² + 4x - 6y + 9 = 0,写出圆C的圆心坐标和半径。

高中数学(人教A版)选择性必修一课后习题:圆的标准方程(课后习题)【含答案及解析】

高中数学(人教A版)选择性必修一课后习题:圆的标准方程(课后习题)【含答案及解析】

圆的方程圆的标准方程 课后篇巩固提升必备知识基础练1.已知圆的方程是(x-2)2+(y-3)2=4,则点P (3,2)( )A.是圆心B.在圆上C.在圆内D.在圆外(3-2)2+(2-3)2=2<4,∴点P 在圆内.2.已知点A (-4,-5),B (6,-1),则以线段AB 为直径的圆的方程是( ) A.(x+1)2+(y-3)2=29 B.(x+1)2+(y-3)2=116 C.(x-1)2+(y+3)2=29 D.(x-1)2+(y+3)2=116A (-4,-5),B (6,-1),所以线段AB 的中点为C (1,-3),所求圆的半径r=12|AB|=12√102+42=√29,所以以线段AB 为直径的圆的方程是(x-1)2+(y+3)2=29,故选C .3.方程x=√1-y 2表示的图形是( ) A.两个半圆 B.两个圆 C.圆 D.半圆x ≥0,方程两边同时平方并整理得x 2+y 2=1,由此确定图形为半圆,故选D .4.一个动点在圆x 2+y 2=1上移动时,它与定点A (3,0)的连线中点的轨迹方程是( ) A.(x+3)2+y 2=4 B.(x-3)2+y 2=1 C.(2x-3)2+4y 2=1D.x+322+y 2=12M (x 0,y 0)为圆上的动点,则有x 02+y 02=1,设线段MA 的中点为P (x ,y ),则x=x 0+32,y=y 0+02,则x 0=2x-3,y 0=2y ,代入x 02+y 02=1,得(2x-3)2+(2y )2=1,即(2x-3)2+4y 2=1.5.圆(x-2)2+(y+3)2=2的圆心是 ,半径是 .-3) √26.圆(x+1)2+y 2=5关于直线y=x 对称的圆的标准方程为 .(x+1)2+y 2=5的圆心坐标为(-1,0),它关于直线y=x 的对称点坐标为(0,-1),即所求圆的圆心坐标为(0,-1),所以所求圆的标准方程为x 2+(y+1)2=5.2+(y+1)2=57.若直线3x-4y+12=0与两坐标轴交点为A ,B ,则以线段AB 为直径的圆的方程是 .解析由题意得A (0,3),B (-4,0),AB 的中点-2,32为圆的圆心,直径AB=5,以线段AB 为直径的圆的标准方程为(x+2)2+y-322=254.答案(x+2)2+y-322=2548.已知圆M 过A (1,-1),B (-1,1)两点,且圆心M 在直线x+y-2=0上. (1)求圆M 的方程;(2)若圆M 上存在点P ,使|OP|=m (m>0),其中O 为坐标原点,求实数m 的取值范围.设圆M 的方程为(x-a )2+(y-b )2=r 2(r>0),根据题意得{a +b -2=0,(1-a )2+(-1-b )2=r 2,(-1-a )2+(1-b )2=r 2,解得{a =1,b =1,r =2,所以圆M 的方程为(x-1)2+(y-1)2=4. (2)如图,m=|OP|∈[2-√2,2+√2].关键能力提升练9.若直线y=kx 与圆(x-2)2+y 2=1的两个交点关于直线2x+y+b=0对称,则k ,b 的值分别为( ) A.12,-4B.-12,4C.12,4D.-12,-4y=kx 与圆(x-2)2+y 2=1的两个交点关于直线2x+y+b=0对称,直线2x+y+b=0的斜率为-2,所以k=12,并且直线2x+y+b=0经过已知圆的圆心,所以圆心(2,0)在直线2x+y+b=0上,所以4+0+b=0,所以b=-4.故选A .10.已知圆O :x 2+y 2=1,点A (-2,0)及点B (2,a ),从A 点观察B 点,要使视线不被圆O 挡住,则实数a 的取值范围是( ) A .(-∞,-1)∪(-1,+∞) B .(-∞,-2)∪(2,+∞) C .-∞,-4√33∪4√33,+∞D .(-∞,-4)∪(4,+∞)方法1)(直接法)写出直线方程,将直线与圆相切转化为点到直线的距离来解决.过A ,B 两点的直线方程为y=a 4x+a 2, 即ax-4y+2a=0, 令d=√a 2+16=1,化简后,得3a 2=16,解得a=±4√33.再进一步判断便可得到正确答案为C . (方法2)(数形结合法)如图,设直线AB 切圆O 于点C 在Rt △AOC 中,由|OC|=1,|AO|=2,可求出∠CAO=30°.在Rt △BAD 中,由|AD|=4,∠BAD=30°,可求得BD=4√33,再由图直观判断,故选C .11.(2020四川成都石室中学高二上期中)已知实数x ,y 满足x 2+y 2=1,则√3x+y 的取值范围是( ) A.(-2,2) B.(-∞,2] C.[-2,2]D.(-2,+∞)解析因为x 2+y 2=1,所以设x=sin α,y=cos α,则√3x+y=√3sin α+cos α=2sin α+π6,所以√3x+y 的取值范围是[-2,2].故选C .12.(多选题)若经过点P (5m+1,12m )可以作出圆(x-1)2+y 2=1的两条切线,则实数m 的取值可能是( ) A.110B.113C.-113D.-12P 可作圆的两条切线,说明点P 在圆的外部,所以(5m+1-1)2+(12m )2>1,解得m>113或m<-113,对照选项知AD 可能.13.(多选题)设有一组圆C k :(x-k )2+(y-k )2=4(k ∈R ),下列命题正确的是( ) A.不论k 如何变化,圆心C 始终在一条直线上 B.所有圆C k 均不经过点(3,0) C.经过点(2,2)的圆C k 有且只有一个 D.所有圆的面积均为4π(k ,k ),在直线y=x 上,故A 正确;令(3-k )2+(0-k )2=4,化简得2k 2-6k+5=0,∵Δ=36-40=-4<0,∴2k 2-6k+5=0无实数根,故B 正确;由(2-k )2+(2-k )2=4,化简得k 2-4k+2=0,∵Δ=16-8=8>0,有两个不等实根,∴经过点(2,2)的圆C k 有两个,故C 错误;由圆的半径为2,得圆的面积为4π,故D 正确.故选ABD .14.已知点A (8,-6)与圆C :x 2+y 2=25,P 是圆C 上任意一点,则|AP|的最小值是 .82+(-6)2=100>25,故点A 在圆外,从而|AP|的最小值为√82+(-6)2-5=10-5=5.15.已知圆C 的半径为2,圆心在x 轴的正半轴上,且圆心到直线3x+4y+4=0的距离等于半径长,则圆C 的标准方程为 .(a ,0),且a>0,则点(a ,0)到直线3x+4y+4=0的距离为2,即|3×a+4×0+4|√3+4=2,所以3a+4=±10,解得a=2或a=-143(舍去),则圆C 的标准方程为(x-2)2+y 2=4.x-2)2+y 2=416.矩形ABCD 的两条对角线相交于点M (2,1),AB 边所在直线的方程为x-2y-4=0,点T (-1,0)在AD 边所在直线上.(1)求AD 边所在直线的方程; (2)求矩形ABCD 外接圆的方程.因为AB 边所在直线的方程为x-2y-4=0,且AD 与AB 垂直,所以直线AD 的斜率为-2.又因为点 T (-1,0)在直线AD 上,所以AD 边所在直线的方程为y-0=-2(x+1),即2x+y+2=0.(2)由{x -2y -4=0,2x +y +2=0,解得{x =0,y =-2,所以点A 的坐标为(0,-2),因为矩形ABCD 两条对角线的交点为M (2,1),所以M 为矩形外接圆的圆心.又|AM|=√(2-0)2+(1+2)2=√13,从而矩形ABCD 外接圆的方程为(x-2)2+(y-1)2=13.学科素养创新练17.设A (x A ,y A ),B (x B ,y B )为平面直角坐标系内的两点,其中x A ,y A ,x B ,y B ∈Z .令Δx=x B -x A ,Δy=y B -y A ,若|Δx|+|Δy|=3,且|Δx|·|Δy|≠0,则称点B 为点A 的“相关点”,记作B=τ(A ). (1)求点(0,0)的“相关点”的个数.(2)点(0,0)的所有“相关点”是否在同一个圆上?若在,写出圆的方程;若不在,请说明理由.因为|Δx|+|Δy|=3(Δx ,Δy 为非零整数),所以|Δx|=1,|Δy|=2或|Δx|=2,|Δy|=1,所以点(0,0)的“相关点”有8个.(2)是.设点(0,0)的“相关点”的坐标为(x ,y ).由(1)知|Δx|2+|Δy|2=5,即(x-0)2+(y-0)2=5,所以所有“相关点”都在以(0,0)为圆心,√5为半径的圆上,所求圆的方程为x 2+y 2=5.。

【高中数学】新人教A版高二2.4.1 圆的标准方程(练习题)

【高中数学】新人教A版高二2.4.1 圆的标准方程(练习题)

新人教A版高二2.4.1 圆的标准方程(2016)1.方程|x−1|=√1−(y−1)2表示的曲线是()A.一个圆B.两个半圆C.两个圆D.半圆2.已知直线l过圆x2+(y−3)2=4的圆心,且与直线x+y+1=0垂直,则l的方程为()A.x+y−2=0B.x−y+2=0C.x+y−3=0D.x−y+3=03.圆心为(3,1),半径为5的圆的标准方程是()A.(x+3)2+(y+1)2=5B.(x+3)2+(y+1)2=25C.(x−3)2+(y−1)2=5D.(x−3)2+(y−1)2=254.点(2a,a−1)在圆x2+(y−1)2=5的内部,则a的取值范围是()A.−1<a<1B.0<a<1C.−1<a<15D.−15<a<15.已知圆C的一条直径的端点坐标分别是(4,1)和(−2,3),则圆C的方程是()A.(x+1)2+(y+2)2=10B.(x−1)2+(y−2)2=40C.(x−1)2+(y−2)2=10D.(x+1)2+(y+2)2=406.已知某圆的圆心为点A(2,−3),一条直径的端点分别在x轴和y轴上,则该圆的标准方程为()A.(x+2)2+(y−3)2=13B.(x−2)2+(y+3)2=13C.(x−2)2+(y+3)2=52D.(x+2)2+(y−3)2=527.已知直线(3+2λ)x+(3λ−2)y+5−λ=0恒过定点P,则与圆C:(x−2)2+(y+3)2=16有公共的圆心且过点P的圆的标准方程为()A.(x−2)2+(y+3)2=36B.(x−2)2+(y+3)2=25C.(x−2)2+(y+3)2=18D.(x−2)2+(y+3)2=98.过点A(−1,3),B(3,−1),且圆心在直线x−2y−1=0上的圆的标准方程为()A.(x+1)2+(y+1)2=4B.(x+1)2+(y+1)2=16C.(x−1)2+y2=13D.(x−1)2+y2=59.以点(−2,3)为圆心且过坐标原点的圆的方程是.10.圆(x−3)2+(y+1)2=1关于直线x+y−3=0对称的圆的标准方程是.11.若圆C的半径为1,点C与点(2,0)关于点(1,0)对称,则圆C的标准方程为.12.以A(2,2),B(5,3),C(3,−1)为顶点的三角形的外接圆的标准方程是.13.已知圆C的圆心在直线x−2y−3=0上,且过点A(2,−3),B(−2,−5),求圆C的标准方程.14.已知三点A(3,2),B(5,−3),C(−1,3),以点P(2,−1)为圆心作一个圆,使A,B,C 三点中一点在圆外,一点在圆上,一点在圆内,求这个圆的方程.15.设P(x,y)是圆C:(x−2)2+y2=1上任意一点,则(x−5)2+(y+4)2的最大值为()A.6B.25C.26D.3616.设A(x A,y A),B(x B,y B)为平面直角坐标系内的两点,其中x A,y A,x B,y B∈Z.令Δx=x B−x A,Δy=y B−y A,若|Δx|+|Δy|=3,且|Δx|·|Δy|≠0,则称点B为点A的“相关点”,记作B=τ(A).(1)求点(0,0)的“相关点”的个数.(2)点(0,0)的所有“相关点”是否在同一个圆上?若在,写出圆的方程;若不在,请说明理由.参考答案1.【答案】:A2.【答案】:D【解析】:圆x2+(y−3)2=4的圆心坐标为(0,3). 因为直线l与直线x+y+1=0垂直,所以直线l的斜率k=1.由点斜式得直线l的方程是y−3=x−0,化简得x−y+3= 0.3.【答案】:D【解析】:∵所求圆的圆心为(3,1),半径为5,∴所求圆的标准方程为(x−3)2+(y−1)2=25.故选D.4.【答案】:D【解析】:∵点(2a,a−1)在圆x2+(y−1)2=5的内部,<a<1.∴(2a)2+(a−1−1)2<5,整理得5a2−4a−1<0,解得−155.【答案】:C【解析】:圆C的一条直径的端点坐标分别是(4,1)和(−2,3),故利用中点坐标√(4+2)2+(1−3)2=√10,故圆的方程为(x−1)2+公式得圆心为(1,2),半径为12(y−2)2=10,故选C.6.【答案】:B【解析】:如图,结合圆的性质可知,原点在圆上,圆的半径r=√(2−0)2+(−3−0)2=√13.故所求圆的标准方程为(x−2)2+(y+3)2=13.7.【答案】:B【解析】:由(3+2λ)x+(3λ−2)y+5−λ=0,得到(2x+3y−1)λ+(3x−2y+5)=0,由{2x +3y −1=0,3x −2y +5=0,得{x =−1,y =1,即P(−1,1).∵圆C :(x −2)2+(y +3)2=16的圆心坐标是(2,−3),∴|PC|=√(−1−2)2+(1+3)2=5,∴所求圆的标准方程为(x −2)2+(y +3)2=25.故选 B.8.【答案】:B【解析】:过AB 的直线的方程为y =−x +2,AB 的中点为(1,1), 所以AB 的垂直平分线为y =x , 所以圆心坐标(x,y)满足{y =x,x −2y −1=0, 解得{x =−1,y =−1, 即圆心坐标为(−1,−1), 半径r =√(−1+1)2+(−1−3)2=4, 所以圆的方程为(x +1)2+(y +1)2=16, 故选 B.9.【答案】:(x +2)2+(y −3)2=13【解析】:以点(−2,3)为圆心且过坐标原点的圆的半径r =√(0+2)2+(0−3)2=√13, 故圆的标准方程为(x +2)2+(y −3)2=13.10.【答案】:(x −4)2+y 2=1【解析】:设圆心A(3,−1)关于直线x +y −3=0对称的点B 的坐标为(a ,b), 则{b+1a−3·(−1)=−1,a+32+b−12−3=0,解得{a =4,b =0, 故所求圆的标准方程为(x −4)2+y 2=1.11.【答案】:x 2+y 2=1【解析】:因为点C 与点(2,0)关于点(1,0)对称,所以点C 的坐标为(0,0).又圆C 的半径为1,所以圆C 的标准方程为x 2+y 2=1.12.【答案】:(x −4)2+(y −1)2=5【解析】:设所求圆的标准方程为(x −a)2+(y −b)2=r 2,则有 {(2−a)2+(2−b)2=r 2,(5−a)2+(3−b)2=r 2,(3−a)2+(−1−b)2=r 2, 解得{a =4,b =1,r 2=5,则ABC 的外接圆的标准方程为(x −4)2+(y −1)2=5.13.【答案】:由题知,线段AB 的中垂线所在直线与直线x −2y −3=0的交点即为圆C 的圆心.直线AB 的斜率k AB =−3+52−(−2)=12,∴线段AB 的中垂线所在直线的斜率为−2,又∵线段AB 的中点为(0,−4),∴线段AB 的中垂线所在直线的方程为y +4=−2x ,即2x +y +4=0.由{x −2y −3=0,2x +y +4=0,得{x =−1,y =−2,∴圆C 的圆心坐标为(−1,−2),圆C 的半径r =√(2+1)2+(−3+2)2=√10,∴圆C 的标准方程为(x +1)2+(y +2)2=10.14.【答案】:要使A ,B ,C 三点中一点在圆外,一点在圆上,一点在圆内, 则圆的半径是|PA|,|PB|,|PC|的中间值.因为|PA|=√10,|PB|=√13,|PC|=5,所以|PA|<|PB|<|PC|,所以圆的半径r =|PB|=√13.故所求圆的方程为(x −2)2+(y +1)2=13.15.【答案】:D【解析】:(x −5)2+(y +4)2的几何意义是点P(x,y)到点Q(5,−4)的距离的平方.因为点P 在圆(x −2)2+y 2=1上,所以所求最大值为(|QC|+1)2=36.16(1)【答案】因为|Δx|+|Δy|=3(Δx,Δy 为非零整数),所以|Δx|=1,|Δy|=2或|Δx|=2,|Δy|=1,所以点(0,0)的“相关点”有8个.(2)【答案】设“相关点”的坐标为(x 1,y 1),因为(Δx)2+(Δy)2=5,即(x 1−0)2+(y 1−0)2=5,所以所有“相关点”都在以(0,0)为圆心,√5为半径的圆上,且圆的方程为x 2+y 2=5.。

高中有关圆的练习题及讲解

高中有关圆的练习题及讲解

高中有关圆的练习题及讲解### 高中数学:圆的练习题及讲解#### 练习题一:圆的方程题目:已知圆心在(2,3),半径为5,求这个圆的标准方程。

解答:圆的标准方程为 \( (x-h)^2 + (y-k)^2 = r^2 \),其中 \( (h,k) \) 是圆心的坐标,\( r \) 是半径。

将已知的圆心坐标(2,3)和半径5代入公式,得到:\[ (x-2)^2 + (y-3)^2 = 5^2 \]\[ (x-2)^2 + (y-3)^2 = 25 \]#### 练习题二:圆与直线的位置关系题目:已知直线 \( y = x + 1 \) 与圆 \( (x-1)^2 + (y-2)^2 = 9 \),求直线与圆的位置关系。

解答:首先,确定圆心和半径。

圆心为(1,2),半径为3。

接着,计算圆心到直线的距离 \( d \):\[ d = \frac{|Ax_0 + By_0 + C|}{\sqrt{A^2 + B^2}} \]对于直线 \( y = x + 1 \),即 \( Ax + By + C = 0 \),我们有\( A = 1, B = -1, C = -1 \),圆心坐标 \( (x_0, y_0) = (1, 2) \)。

代入公式计算得:\[ d = \frac{|1\cdot1 - 1\cdot2 - 1|}{\sqrt{1^2 + (-1)^2}} =\frac{2}{\sqrt{2}} = \sqrt{2} \]因为 \( d < r \)(\( \sqrt{2} < 3 \)),所以直线与圆相交。

#### 练习题三:圆的切线题目:在圆 \( x^2 + y^2 = 25 \) 上求一点P,使得过P的切线与直线 \( y = x \) 平行。

解答:圆 \( x^2 + y^2 = 25 \) 的圆心在原点(0,0),半径为5。

过P的切线与直线 \( y = x \) 平行,意味着切线的斜率为1。

圆与方程教案及练习题

圆与方程教案及练习题

圆与方程一、圆的标准方程 1、情境设置:在直角坐标系中,确定直线的基本要素是什么?圆作为平面几何中的基本图形,确定它的要素又是什么呢?什么叫圆?在平面直角坐标系中,任何一条直线都可用一个二元一次方程来表示,那么,圆是否也可用一个方程来表示呢?如果能,这个方程又有什么特征呢? 探索研究: 2、探索研究:确定圆的基本条件为圆心和半径,设圆的圆心坐标为A(a,b),半径为r 。

(其中a 、b 、r 都是常数,r>0)设M(x,y)为这个圆上任意一点,那么点M 满足的条件是(引导学生自己列出)P={M||MA|=r},由两点间的距离公式让学生写出点Mr = ①化简可得:222()()x a y b r -+-= ②引导学生自己证明222()()x a y b r -+-=为圆的方程,得出结论。

方程②就是圆心为A(a,b),半径为r 的圆的方程,我们把它叫做圆的标准方程。

1. 圆的标准方程:方程222()()(0)x a y b r r -+-=>表示圆心为A (a ,b ),半径长为r 的圆.2. 求圆的标准方程的一般步骤为:(1)根据题意,设所求的圆的标准方程为222)()(r b y a x =-+-.(2)根据已知条件,建立关于a ,b ,r 的方程组; (3)解此方程组,求出a ,b ,r 的值; .(4)将所得的a ,b ,r 的值代回所设的圆的方程中,就得到所求的圆的标准方程.3. 求圆的标准方程的常用方法:(1)几何法:根据题意,求出圆心坐标与半径,然后写出标准方程;(2)待定系数法:先根据条件列出关于a ,b ,r 的方程组,然后解出a ,b ,r ,再代入标准方程. 二、圆的一般方程1.方程022=++++F Ey Dx y x 表示的曲线不一定是圆,只有当0422>-+F E D 时,它表示的曲线才是圆,我们把形如022=++++F Ey Dx y x 的表示圆的方程称为圆的一般方程.2. 对于方程022=++++F Ey Dx y x .(1)当D 2+E 2-4F >0时,方程表示(1)当0422>-+F E D 时,表示以(-2D,-2E )为圆心,F E D 42122-+为半径的圆;(2)当0422=-+F E D 时,方程只有实数解2D x -=,2E y -=,即只表示一个点(-2D,-2E); (3)当0422<-+F E D 时,方程没有实数解,因而它不表示任何图形3.圆的一般方程的特点:(1)①x 2和y 2的系数相同,不等于0. ②没有xy 这样的二次项.(2)圆的一般方程中有三个特定的系数D ,E ,F ,因之只要求出这三个系数,圆的方程就确定了.(3)与圆的标准方程相比较,它是一种特殊的二元二次方程,代数特征明显,圆的标准方程则指出了圆心坐标与半径大小,几何特征较明显. 例1.求过三点A (0,0),B (1,1),C (4,2)的圆的方程,并求这个圆的半径长和圆心坐标。

圆的标准方程练习题

圆的标准方程练习题

圆的标准方程练习题在解决圆的问题时,我们经常使用到的一个重要工具就是圆的标准方程。

通过掌握圆的标准方程的用法,我们可以更方便地进行圆的解析几何运算。

接下来,我将为大家提供一些圆的标准方程练习题,帮助大家加深对这一概念的理解。

练习题一:给定圆心和半径,求标准方程1. 已知圆心为 (2, 3),半径为 5,求圆的标准方程。

解析:设圆的标准方程为 (x-a)² + (y-b)² = r²,其中 (a, b) 为圆心坐标,r 为半径。

将已知数据代入方程,得到:(x-2)² + (y-3)² = 5²,即 (x-2)² + (y-3)² = 25。

练习题二:给定标准方程,求圆心和半径1. 已知圆的标准方程为 x² + y² - 6x + 8y + 9 = 0,求圆的圆心和半径。

解析:观察标准方程可得出:(x-3)² + (y+4)² = 16。

由此可知圆的圆心为 (3, -4),半径为 4。

练习题三:给定圆上一点,求标准方程1. 已知圆上一点为 (5, 2),圆心为 (3, 4),求圆的标准方程。

解析:设圆的标准方程为(x-a)²+ (y-b)²= r²。

将已知数据代入方程,可得到:(x-3)² + (y-4)² = r²。

由于圆上一点为 (5, 2),代入方程得到 (5-3)² + (2-4)² = r²,化简得 4 + 4 = r²,即 8 = r²。

所以圆的标准方程为 (x-3)² + (y-4)² = 8。

通过以上几道练习题,我们对圆的标准方程的应用有了更深入的了解。

掌握了圆的标准方程的求解方法,我们在解决与圆相关的数学问题时,就能更加得心应手。

不过,还需要注意的是,在使用圆的标准方程时,我们需要确保给定的数据准确无误。

圆的方程练习题

圆的方程练习题

圆的方程练习题1.求过点()()1,1,1,1A B --,且圆心在直线20x y +-=上的圆的方程. 【答案】()()22114x y -+-=.【解析】试题分析:由,A B 的坐标计算可得AB 的垂直平分线方程y x =,进而得到:{20y xx y =+-=,解可得,x y 的值,即可得圆心坐标,而圆的半径22r ==,代入圆的标准方程计算即可得到答案。

解析:由已知得线段AB 的中点坐标为()0,0,所以()11111AB k --==---所以弦AB 的垂直平分线的斜率为1k =, 所以AB 的垂直平分线方程为y x = 又圆心在直线20x y +-=上,所以{ 20y x x y =+-= 解得1{ 1x y == 即圆心为()1,1圆的半径为22r ==所以圆的方程为()()22114x y -+-=.2.若圆过A (2,0),B (4,0),C (0,2)三点,求这个圆的方程. 【答案】x 2+y 2﹣6x ﹣6y+8=0【解析】试题分析:设所求圆的方程为220,x y Dx Ey F ++++=将()2,0A ,()()4,0,0,2B C三点代入,即可求得圆的方程。

解析:设所求圆的方程为x 2+y 2+Dx+Ey+F=0,则有4+20{1640 240D F D F E F +=++=++=①②③②﹣①得:12+2D=0,∴D=﹣6 代入①得:4﹣12+F=0,∴F=8代入③得:2E+8+4=0,∴E=﹣6 ∴D=﹣6,E=﹣6,F=8∴圆的方程是x 2+y 2﹣6x ﹣6y+8=03.已知圆经过()()2,5,2,1-两点,并且圆心在直线12y x =上。

(1)求圆的方程;(2)求圆上的点到直线34230x y -+=的最小距离。

【答案】(1)()()222116x y -+-=.(2)1【解析】试题分析:(1)设出圆的一般方程,利用待定系数法求解;(2)结合几何图形,先求出圆心到直线的距离,再减去半径的长度即可。

高中数学第2章平面解析几何初步 圆的标准方程同步练习湘教版选择性必修第一册

高中数学第2章平面解析几何初步 圆的标准方程同步练习湘教版选择性必修第一册

2.5 圆的方程2.5.1 圆的标准方程A级必备知识基础练1.(2022陕西西安新城高一期末)与圆(x-1)2+y2=4同圆心且经过点P(-2,4)的圆的标准方程为()A.(x-1)2+y2=17B.(x+1)2+y2=25C.(x+1)2+y2=17D.(x-1)2+y2=252.(2022四川阆中中学高二月考)圆心在y轴上,半径长为1,且过点(1,2)的圆的标准方程为()A.x2+(y-2)2=1B.x2+(y+2)2=1C.x2+(y-1)2=1D.x2+(y+1)2=13.圆心为(2,1)且和x轴相切的圆的标准方程是()A.(x-2)2+(y-1)2=1B.(x+2)2+(y+1)2=1C.(x-2)2+(y-1)2=5D.(x+2)2+(y+1)2=54.(2022广西钦州高一期末)圆C:(x+2)2+(y-4)2=2的圆心关于原点的对称点为()A.(4,-2)B.(-2,4)C.(2,-4)D.(4,2)5.(多选题)下列说法正确的是()A.圆(x-1)2+(y-2)2=5的圆心为(1,2),半径为B.圆(x+2)2+y2=b2(b≠0)的圆心为(-2,0),半径为bC.圆(x-)2+(y+)2=2的圆心为(,-),半径为D.圆(x+2)2+(y+2)2=5的圆心为(2,2),半径为6.(多选题)已知点(1,1)在圆(x-a)2+(y+a)2=4的内部,则a的值不可能是()A.-2B.-C.D.27.(2022浙江名校联盟高二联考)已知圆C的圆心在直线2x-y+3=0上,半径为r,且与直线l:x-y+4=0相切于点P(-2,2),则圆C的圆心为;半径r= .8.已知圆C过O(0,0),A(1,1),B(4,2).(1)求圆C的标准方程;(2)判断P(3,2)和圆C的位置关系.B级关键能力提升练9.(2022福建三明一中高二月考)已知圆心为(-2,1)的圆与y轴相切,则该圆的标准方程是()A.(x+2)2+(y-1)2=1B.(x+2)2+(y-1)2=4C.(x-2)2+(y+1)2=1D.(x-2)2+(y+1)2=410.已知直线l平分圆x2+(y-3)2=4,且与直线x+y=0垂直,则直线l的方程是()A.x+y-2=0B.x-y+2=0C.x+y-3=0D.x-y+3=011.(多选题)关于圆(x-2)2+y2=5的说法,正确的是()A.关于点(2,0)对称B.关于直线y=0对称C.关于直线x-y+2=0对称D.关于直线x+3y-2=0对称12.(多选题)圆上的点(2,1)关于直线x+y=0的对称点仍在圆上,且圆的半径为,则圆的标准方程可能是()A.x2+y2=5B.(x-1)2+y2=5C.x2+(y+1)2=5D.(x-1)2+(y+1)2=513.(多选题)(2022山西芮城中学高二月考)设有一组圆C k:(x-k)2+(y-k)2=4(k∈R),下列说法正确的是()A.不论k如何变化,圆心C始终在一条直线上B.所有圆C k均不经过点(3,0)C.经过点(2,2)的圆C k有且只有一个D.所有圆的面积均为4π14.(2022浙江精诚联盟高二联考)圆心在第一象限,半径为1,且同时与x,y轴相切的圆的标准方程为.15.已知三点A(3,2),B(5,-3),C(-1,3),以P(2,-1)为圆心作一个圆,使得A,B,C三点中的一个点在圆内,一个点在圆上,一个点在圆外,则该圆的标准方程为.16.(2022山西长治二中等校高二联考)已知△ABC的三个顶点坐标分别为A(-1,5),B(5,5),C(6,-2).(1)求△ABC外接圆的标准方程;(2)动点D在△ABC的外接圆上运动,点E坐标为(7,4),求线段DE中点M的轨迹.C级学科素养创新练17.(多选题)已知圆M与两坐标轴都相切,且M到直线y=2x-2的距离为,则圆M的直径为()A.4B.C.8D.10参考答案2.5圆的方程2.5.1圆的标准方程1.D由圆(x-1)2+y2=4的方程可知圆心为(1,0).设所求圆的标准方程为(x-1)2+y2=r2,点P(-2,4)代入得(-2-1)2+42=r2,解得r2=25,所以圆的标准方程为(x-1)2+y2=25.故选D.2.A设圆心(0,b),圆的标准方程为x2+(y-b)2=1,则12+(2-b)2=1,解得b=2.所以圆心为(0,2),所以圆的标准方程为x2+(y-2)2=1.故选A.3.A圆心为(2,1)且和x轴相切的圆的半径为1,故该圆的标准方程是(x-2)2+(y-1)2=1,故选A.4.C由题知,圆C:(x+2)2+(y-4)2=2的圆心为(-2,4),该点关于原点对称的点为(2,-4).故选C.5.AC圆(x-1)2+(y-2)2=5的圆心为(1,2),半径为,故A正确;圆(x+2)2+y2=b2(b≠0)的圆心为(-2,0),半径为|b|,故B错误;圆(x-)2+(y+)2=2的圆心为(,-),半径为,故C正确;圆(x+2)2+(y+2)2=5的圆心为(-2,-2),半径为,故D错误.故选AC.6.AD由已知条件可得(1-a)2+(1+a)2<4,即2a2+2<4,解得-1<a<1.故选AD.7.(-1,1)设圆心坐标为(m,n),则由题可得解得则圆C的圆心为(-1,1).所以r=.8.解(1)设圆C的标准方程为(x-a)2+(y-b)2=r2,因为圆C过O(0,0),A(1,1),B(4,2),则解得故所求圆C的标准方程为(x-4)2+(y+3)2=25.(2)因为(3-4)2+(2+3)2=26>25,所以点P(3,2)在圆C外.9.B由题意知,圆的圆心为(-2,1),且该圆与y轴相切,则该圆半径为2,故圆的标准方程为(x+2)2+(y-1)2=4.故选B.10.D因为直线l平分圆x2+(y-3)2=4,且与直线x+y=0垂直,所以直线l过圆心(0,3),且斜率为1,所以直线l的方程是y-3=x,整理得x-y+3=0.故选D.11.ABD由题可知,该圆圆心的坐标为(2,0).圆是关于圆心对称的中心对称图形,而点(2,0)是圆心,所以选项A正确;圆是关于直径对称的轴对称图形,直线必过圆心,直线x-y+2=0不过圆心,直线x+3y-2=0过圆心,所以选项B,D正确,选项C不正确;故选ABD.12.AD∵圆上的点A(2,1)关于直线x+y=0的对称点仍在这个圆上,∴圆心在直线x+y=0上.设圆心坐标为(a,-a),圆的标准方程为(x-a)2+(y+a)2=5,则(2-a)2+(1+a)2=5,解得a=0或a=1.则该圆的圆心为(1,-1)或(0,0),故所求圆的标准方程为(x-1)2+(y+1)2=5或x2+y2=5.故选AD.13.ABD圆心坐标为(k,k),在直线y=x上,故A正确;令(3-k)2+(0-k)2=4,化简得2k2-6k+5=0.∵Δ=36-40=-4<0,∴2k2-6k+5=0无实数根,故B正确;由(2-k)2+(2-k)2=4,化简得k2-4k+2=0.∵Δ=16-8=8>0,则方程k2-4k+2=0有两个不等实根,∴经过点(2,2)的圆C k有两个,故C错误; 由圆的半径为2,得圆的面积为4π,故D正确.故选ABD.14.(x-1)2+(y-1)2=1因为圆心在第一象限,半径为1,且同时与x,y轴相切,则该圆的圆心为(1,1),故该圆的标准方程为(x-1)2+(y-1)2=1.15.(x-2)2+(y+1)2=13由题可得|PA|=,|PB|=,|PC|=5,则|PA|<|PB|<|PC|.要使A,B,C三点中的一个点在圆内,一个点在圆上,一个点在圆外,则该圆以|PB|为半径,故圆的标准方程为(x-2)2+(y+1)2=13.16.解(1)因为A(-1,5),B(5,5),C(6,-2),所以k AB==0,线段AB的中点为(2,5),则AB的垂直平分线的方程为x=2.k BC==-7,BC的中点为,则BC的垂直平分线的方程为y-,整理得x-7y+5=0.解方程组解得所以圆心坐标为(2,1),半径为=5,所以△ABC外接圆的标准方程为(x-2)2+(y-1)2=25.(2)设M(x,y),D(x0,y0),由中点坐标公式得将(2x-7,2y-4)代入(x-2)2+(y-1)2=25得DE中点M的轨迹方程为(2x-7-2)2+(2y-4-1)2=25,整理得,所以线段DE中点M的轨迹是以点为圆心,以为半径的圆.17.C由题意,圆M与两坐标轴都相切,因此可设圆心坐标为M(a,a)或M(a,-a)(a≠0),则半径r=|a|.若圆心为M(a,a),由点到直线的距离公式得d=,解得a=4,a=0(舍去),所以圆M的直径为2r=2|a|=8;若圆心M(a,-a),由点到直线的距离公式得d=,解得a=,a=0(舍去),所以圆M的直径为2r=2|a|=.故选C.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆的标准方程练习题
一、选择题
1. 以点(2,-2)为圆心,以3
为半径的圆的标准方程是 ( ) A .3)2()2(22=-+-y x B .
3)2()2(22=++-y x C . 3)2()2(22=-++y x D . 3)2()2(22=+++y x
2. .方程 4)1(22=++y x 表示圆的圆心与半径分别是 ( )
A.(1,0),4
B.(-1,0),4 C .(-1,0),2 D.(1,0),2
3. 点(1,1)与圆122=+y x 的位置关系是
( )
A.点在圆上 B . 点在圆外 C. 点在圆内 D.不能确定
4.过点A (1,-1),B(-1,1)且圆心在直线x+y-2=0上的圆的方程是 ( )
A .4)1()3(22=++-y x
B .
4)1()3(22=-++y x C. 4)1()1(22=-+-y x D.
4)1()1(22=+++y x 二、填空题
5.自点(-1, 4)作圆1)3()2(22=-+-y x 的切线,则切线长为----------------------
---.
6.圆1)4()3(22=++-y x 关于直线x+y=0对称的圆的方程为-------------------------
-----------.
7.已知正三角形的两个顶点是(0,0),(6,0),则它的外接圆方程为----------------------------
------.
8. 已知一圆的圆心是(2,-3),它的一条直径的两个端点分别在x 轴和 y 轴上,则此圆的

程为----------------------------------.
三、解答题
9.已知一个圆和y轴相切,在直线y =x上截得的弦长为27
,且圆心在直线x-3y=0
上,求圆的方程.
10.一条光线从点A(-1,1)出发,经x 轴反射到圆C:1)3()2(22=-+-y x 上,求光线的最短路程和最长路程.
答案:
一、1.B 2..C 3.B 4.C
二、5. 3
6.
1)3()4(22=++-y x 7. 12)3()3(22=++-y x 或 12)3()3(22=-+-y x
8. 13)3()2(22=++-y x
三、9. 9)1()3(22=-+-y x 或 9)1()3(2
2=+++y x
10.最短路程 4 , 最长路程 6。

相关文档
最新文档