棋盘中的数学(三)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十二讲棋盘中的数学(三)
——棋盘对弈的数学问题
我们看这样一个比输赢的问题.
例1 在8×8的棋盘格中的某个格子里已放入一枚棋子“王”(如右图),甲、乙两人轮流移动“王”子,每次只能横向或竖向移动一格.凡“王”子已经占据过的格都不得再进入.谁先遇到无法移动“王”子时,谁就算输方.试证明,先走者存在必胜的策略.
分析“王”子已占一个格,还剩下8×8-1=63个格,比如甲先走一个格,还剩下62个格.若能将62个格分成31对,每对都是相邻的两小格,这时该乙走,乙领先进入一格,甲就随之进入与其配对的格,这样就造成了甲必取胜的态势.因此,将64个格两两配对成为32个1×2的小矩形是解决本题的关键.
证明:设甲为先走的一方,在甲的心目中如上图将64个方格两两配对分成32个1×2的小矩形,“王”子必在某个1×2的小矩形的一个格子中.甲先走,将“王”子走入这个1×2的小矩形的另一个格子中.这时还有31个1×2的小矩形,每个小矩形中都有两个小方格.这时该乙走,乙总是领先进入某个1×2小矩形的第一个格,甲就可以随之进入这个小矩形的第二个格.由于不能重复进入“王”已经进过的格子,所以乙总处于领先进入新的小矩形的第一格的地位,甲就总可随之进入这个小矩形的第二个格.最后必然乙先无法移动“王”子,乙输.甲必取胜.
例2 下图是一盘未下完的中国象棋残局,各子走法必须按中国象棋的规则办事,将对方憋死或无法走子时算取得胜利.如果轮到乙方走,问乙怎样走法才能取胜?
分析在上图中,双方的将(帅)均无法移动,双方的士(仕)也无法移动,底炮也不能在横线上移动(否则对方可将炮沉底打闷将).底线兵(卒)只能横向移动.谁先移动底线兵(卒)打将,会造成对方将(帅)移出,从而出现移兵(卒)方自己必输的态势.因而只有底炮、中炮和边卒(兵)可以在纵线上移动,兵(卒)只能前移1步,中炮只能前移4步,底炮只能前移8步.现在的问题是:乙先走,轮流走完这三对子的13步,问乙怎样走才能取胜?
解:我们把乙的获胜策略及甲的各种走法列表于下(其中,“甲1,乙1”分别表示,“甲第一步走棋”与“乙第二步走棋”,其余类同;“中炮2,相炮3,卒1”分别表示“中路炮进2步”,“相位炮进3步”和“卒进1步”.其余类同;“结果”栏表明乙1,甲1,乙1之后的态势,其中的“距”以步为单位):
其中,情形⑦~⑩显然为乙胜.情形①,②中,如甲2进炮几步,则乙3就将另一路炮进同样步数,…,这样,终将乙胜.情形③,④与⑤,⑥是类似的.以③为例,甲的各种走法及乙的策略见下表:
显然,各种情形中也是乙胜.
注意,若甲某次退炮几步,则乙接着将同一路炮进相同步数(这样,这两只炮之间的间隔没有改变).
说明:本题的深刻道理和规律在于自然数的二进制表示,将1步,4步,8步分别用二进制表示为1,100,1000.
当乙从8步中走了3步后,变为还有5步即1,100,101.
我们把这三个数写成竖式
1
1 0 0
1 0 1
容易看出每一个数位上的数字之和都是偶数.(这里均勿进位).无论甲怎样走,所走的那一行的步数(用二进制表示)至少有一个数位上的数字发生了变化,从而破坏了上面的规律,即不是每一个数位上的数字之和都是偶数了,比如说,甲在中路炮进一步,三路的步数变为:
1
1 1
1 0 1
这时三个数位上的数字之和1+1+1,1+0,1都不是偶数.
乙再接着走,他的办法是恢复上面的规律.这是能办到的.首先,他看一下数字和不是偶数的最高数位,三路步数二进制表示中至少有一路在这数位上的数字是1,然后,他就在这一路上走若干步,使得上述数位上的数字和为0,而较低数位上的数字为1或0以保证这些数位上的数字之和为偶数,其它数位上的数字不变.比如,对于上面的情形,乙应当在“相”位炮所在的路线上走3步,将三路步数变为:
1
1 1
1 0
这样继续下去,步数逐渐减少,必有结束的时候,由于甲走后,不是每个数位上的数字之和都是偶数,所以甲不可能走到最后一步.走最后一步的是乙,所以乙必然取胜.
例3 如下图是一个9×9棋盘,它有81个小正方形的格子,在右上角顶的格子里标有“▲”的符号代表山顶.A、B两人这样来游戏:由A 把一位“皇后”(以一枚棋子代表)放在棋盘的最下面一行或最左边一列的某个格子里(即放在右图中阴影区域的一个格子里),然后由B开始,两人对奕:“皇后”只能向上,向右或向右上方斜着走,每次走的格数不限,但不得倒退,也不得停步不前;谁把“皇后”走进标有“▲”的那格就得胜.
显然,双方对弈下去决不会出现“和棋”,在有限个回合后,必有一胜一负,试分析B必取胜的策略.
这个游戏我们不妨称之为“皇后登山”问题.
分析我们采用倒推分析的方法.如果A把皇后走进下图中带阴影的格子,则B就可一步把皇后走到山顶而获胜.因此任何一方都应该避免把皇后走进右图中的阴影地区,而都应该迫使对方不得不把皇后走至带阴影的格子里去,这是取胜的总的指导思想.
那么B应把皇后走到哪些格子中才能迫使对方不得不把皇后走进上图中带阴影的格子里去呢?从上图中可看出,这样的格子只有两个:有标号①和②的格子.由此可知,如果谁抢占了①或②,只要走法不再失误,就必会得胜.因此,我们形象地称①、②两格为“制高点”.
那么为占①或②,如下图,如果A把皇后走进有★的方格里,则B 就能占领①或②,从而获胜,而B又怎样迫使A不得不把皇后走进有★的或有阴影的方格呢?同样的分析可知,只要B能占领第二对制高点③或④即可.
继续运用上述分析方法,还可以得到下一组制高点⑤和⑥.
这时,不论A开始把皇后放在最左一列与最下面一行的哪个格子中,B第一步都可以抢到一个制高点,或者第一步就直接达到▲,只要走法得当,必能稳操胜券的.
说明:1.如果我们给出的是8×8的国际象棋盘,玩“皇后登山”游戏,A开始把皇后放在最左列或最下行的哪个格时,A必胜?这时我们看到,对8×8棋盘,制高点⑤在最左列上,制高点⑥在最下列上,所以A开始把皇后放于⑤或⑥,则A必胜,放在其它格时,B可抢到制高点,则B必胜.
2.如果在普通的围棋盘上,(共有18×18=324个格)玩“皇后登山”游戏.B取胜的制高点都是哪些?请读者自己找出来.可以告诉大家,一共有六对,计12个制高点.
例4 在8×8的国际象棋盘中(如下页图)有三枚棋子,两个人轮流移动棋子,每一次可将一枚棋子移动任意多格(允许两枚或三枚棋子在同一格),但只能按箭头所表示的方向移动.在所有棋子都移到A点时,游戏结束,并且走最后一步的算赢,问哪一个人能够获胜?