九年级数学复习课件
合集下载
华师大版数学九年级上册全册复习课件精选全文
④解这两个一元一次方程,它们的解就是原方程的解.
第22章┃ 复习
3.一元二次方程根的判别式 由于一元二次方程的根的个数由代数式_b_2_-__4_a_c_____的符 号决定,因此把_b_2_-__4_a_c____叫做一元二次方程根的判别式. (1)当_b_2_-__4_a_c_>__0___时,一元二次方程 ax2+bx+c=0(a≠0) 有 x2=两_个__不_-_相_b_-等__的2_ba_实2_-_数_4_a根_c_,__即__x_1_=_____.-__b_+___2_ab_2-__4_a_c________,
•第二十一章 二次根式 •21.1《二次根式》 •21.2二次根式的乘除法 •21.3二次根式的加减法
第21章┃ 复习
1.二次根式的概念 一般地,我们把形如__a__(a≥0)的式子叫做二次根式.
第21章┃ 复习
2.二次根式的性质
(1) a≥___0___(a≥0);(2)( a)2=___a___(a≥0);
解:移项,得 x2-4x=1,两边都加上 4,得 x2-4x+4=1 +4,即(x-2)2=5,两边开平方,得 x-2=± 5,即 x= 2± 5,所以 x1=2- 5,x2=2+ 5.
Байду номын сангаас
第22章┃ 复习
方法技巧 如果方程具备(x+a)2=b(b≥0)型,用直接开平方法解较简 单,如果不具备,应考虑因式分解法.用因式分解法解方程时, 应先把右边化为 0,再把左边因式分解,因式分解法简单,但 有局限性.因式分解法不能用时,观察如果二次项系数是 1, 一次项系数是偶数,用配方法解较简单.如果都不行,就用公 式法,公式法是解一元二次方程的万能方法,但要先化成一般 式确定 a,b,c,计算 b2-4ac.
人教版九年级上册数学期中复习课件全
通过复习.掌握一元二次方程的概念.并能够熟 练的解一元二次方程.并且利用一元二次方程解决 实际问题.
一般形式 ax2+bx+c=0 (a≠0)
直接开平方法 (x a)2 bb 0
一 元 二
解法
配方法 公式法
x2
bx
b 2
2
x
b 2
2
cc
0
x b b2 4ac 0
次
2a
方
因式分解法 (x a)(x b) 0
ax2 bx c 0 (a,b,c为常数,a≠0)
当 a 0 时,它是一元二次方程;
当 a 0 时,它不是一元二次方程.
方程2ax2 -2bx+a=4x2, (1)在什么条件下此方程为一元二次方程? (2)在什么条件下此方程为一元一次方程?
解: 原方程转化为(2a-4) x2 -2bx+a=0
阶段综合测试一┃ 试卷讲练
【针对第23题训练 】
1.某旅游景点三月份共接待游客25万人次,五月份共接待 游客64万人次,设每月的平均增长率为x,则可列方程为( A )
A.25(1+x)2=64 B.25(1-x)2=64 C.64(1+x)2=25 D.64(1-x)2=25
1.一元二次方程x2+2x+4=0的根的情况是
的解为__x_1____1_,_x_2______4_。
(1)你能举出生活中的中心对称图形吗?
(2)下面的扑克牌中,哪些牌的牌面是中心对 称图形?
6.利用直接开平方的方法去解.
一元二次方程的解法:(公式法)
例:(3) 2x2 3x 4 0
解: a 2,b 3,c 4
b2 4ac 32 4 24
一般形式 ax2+bx+c=0 (a≠0)
直接开平方法 (x a)2 bb 0
一 元 二
解法
配方法 公式法
x2
bx
b 2
2
x
b 2
2
cc
0
x b b2 4ac 0
次
2a
方
因式分解法 (x a)(x b) 0
ax2 bx c 0 (a,b,c为常数,a≠0)
当 a 0 时,它是一元二次方程;
当 a 0 时,它不是一元二次方程.
方程2ax2 -2bx+a=4x2, (1)在什么条件下此方程为一元二次方程? (2)在什么条件下此方程为一元一次方程?
解: 原方程转化为(2a-4) x2 -2bx+a=0
阶段综合测试一┃ 试卷讲练
【针对第23题训练 】
1.某旅游景点三月份共接待游客25万人次,五月份共接待 游客64万人次,设每月的平均增长率为x,则可列方程为( A )
A.25(1+x)2=64 B.25(1-x)2=64 C.64(1+x)2=25 D.64(1-x)2=25
1.一元二次方程x2+2x+4=0的根的情况是
的解为__x_1____1_,_x_2______4_。
(1)你能举出生活中的中心对称图形吗?
(2)下面的扑克牌中,哪些牌的牌面是中心对 称图形?
6.利用直接开平方的方法去解.
一元二次方程的解法:(公式法)
例:(3) 2x2 3x 4 0
解: a 2,b 3,c 4
b2 4ac 32 4 24
2025年九年级中考数学一轮复习课件:第7讲分式方程
可列方程是( C )
-50=
B.
+50=
D.
A.
C.
-50=
+50=
16.[工作量问题](2024·达州)甲、乙两人各自加工120个零件,甲由于个人原因没有和
乙同时进行,乙先加工30分钟后,甲开始加工.甲为了追上乙的进度,加工的速度是
( B )
.×
=0.75
A.0.98×5=0.75x
B.
C.0.75×5=0.98x
.×
D.
=0.98
-
+
20.(2023·呼和浩特)甲、乙两船从相距150km的A,B两地同时匀速沿江出发相向而行,
甲船从A地顺流航行90km时与从B地逆流航行的乙船相遇.甲、乙两船在静水中的航速
C.m<3
D.m<3且m≠-2
B)
分式方程的根或增根
考查角度1:根据分式方程的根求值
-
6.已知x=3是分式方程
−
=2的解,那么实数k的值为(
-
A.-1
B.0
C.1
D.2
7.若关于x的分式方程 =
有解,则字母a的取值范围是(
-
A.a=5或a=0
B.a≠0
C.a≠5
D )
D.a≠5且a≠0
两名程序操作员各输入一遍,比较两人的输入是否一致,本次操作需输入2 640个数
据.已知甲的输入速度是乙的2倍,结果甲比乙少用2小时输完.这两名操作员每分钟各
能输入多少个数据?设乙每分钟能输入x个数据,根据题意列方程正确的是( D )
-50=
B.
+50=
D.
A.
C.
-50=
+50=
16.[工作量问题](2024·达州)甲、乙两人各自加工120个零件,甲由于个人原因没有和
乙同时进行,乙先加工30分钟后,甲开始加工.甲为了追上乙的进度,加工的速度是
( B )
.×
=0.75
A.0.98×5=0.75x
B.
C.0.75×5=0.98x
.×
D.
=0.98
-
+
20.(2023·呼和浩特)甲、乙两船从相距150km的A,B两地同时匀速沿江出发相向而行,
甲船从A地顺流航行90km时与从B地逆流航行的乙船相遇.甲、乙两船在静水中的航速
C.m<3
D.m<3且m≠-2
B)
分式方程的根或增根
考查角度1:根据分式方程的根求值
-
6.已知x=3是分式方程
−
=2的解,那么实数k的值为(
-
A.-1
B.0
C.1
D.2
7.若关于x的分式方程 =
有解,则字母a的取值范围是(
-
A.a=5或a=0
B.a≠0
C.a≠5
D )
D.a≠5且a≠0
两名程序操作员各输入一遍,比较两人的输入是否一致,本次操作需输入2 640个数
据.已知甲的输入速度是乙的2倍,结果甲比乙少用2小时输完.这两名操作员每分钟各
能输入多少个数据?设乙每分钟能输入x个数据,根据题意列方程正确的是( D )
九年级数学《图形的相似》总复习课件-PPT
6或2/3或1.5
6
2.比例中项:
当两个比例内项相等时,即
a b=
cb(,或 a:b=b:c),
那么线段 b 叫做a 和 c 的比例中项.
即: b2 ac
数2与8的比例中项是 ___4_ .线段2cm与8cm的
比例中项是 _4__c_m.
7
3.黄金分割: A
C
B
把一条线段(AB)分成两条线段,使其中较长线段(AC)是 原线段(AB)与较短线段(BC)的比例中项,就叫做把这条 线段黄金分割。
y
·P
O B· C·
x
·A
28
9、如图, 在△ABC中,AB=5,AC=4,E是AB上一点,AE=2,
在AC上取一点F,使以A、E、F为顶点的三角形与
△ABC相似,那么AF=___85_或___52_
A
.E
F1
F2
DC
B
C
A
B
10、 如图, 在直角梯形中, ∠BAD=∠D=∠ACB=90。,
CD= 4, AB= 9, 则 AC=__6____
P
A
C
D
B
33
15、 如图D,E分别AB,AC是上的点, ∠AED=72o, ∠A=58o,∠B=50o, 那么△ADE和△ABC相似吗?
若AE=2,AC=4,则BC是DE的
倍.
A
E D
C B
34
16、若△ ACP∽△ABC,AP=4,BP=5,则AC=___6____,△
ACP与△ABC的相似比是_____2__:,3周长之比是_______,
1
1. 成比例的数(线段):
若 a c 或a : b c : d , 那么 a ,b, c , d 叫做四个数成比例。
人教版数学九年级上册第25章:概率初步复习课件
-40%=60%,所以口袋中白色球的个数=10×60%=6,即布袋中白色球
的个数很可能是6.故选C.
章末复习
专题五 利用概率判断游戏的公平性
【要点指点】通过计算概率判断游戏是否公平是概率知识的一 个 重要应用, 解决游戏是否公平的问题, 应先计算游戏参与者获 胜的概率, 若概率相等, 则游戏公平;若概率不相等, 则游戏不公 平.
章末复习
例5 色盲是伴X染色体隐性先天遗传病, 患者中男性远多于女 生, 从 男性体检信息库中随机抽取体检表, 统计结果如下表:
根据表中数据, 估计在男性中, 男性患色盲的概率为___0_.0_7__ (结 果保留小数点后两位).
章末复习
分析 视察表格发现, 随着抽取的体检表的增多, 在男性中, 男性患色 盲的频率逐渐稳定在0.07附近, 所以估计在男性中, 男生患色盲的概 率为 0.07.
章末复习
例3 一个不透明的袋子中装有4个黑球, 2个白球, 这些球除颜色 不同 外其他都相同, 从袋子中随机摸出1个球, 摸到黑球的概率 是( D ).
章末复习
相关题3 如果从包括小军在内的 10名大学生中任选1名作 为 “保护母亲河”的志愿 者, 那么小军被选中的概 率是( C ).
解析 共有 10 种等可能的结果,小军被选中的结果有 1 种,故 P(小军 被选中)=110.
章末复习
解 (1)获奖的学生中男生3名, 女生4名, 男生、女生共7名, 故参加颁奖 大会的学生是男生的概率为 . (2)从获得美术奖、音乐奖的学生中各选取1名参加颁奖大会, 用列表法 列出所有可能的结果如下:
章末复习
∵共有12种等可能的结果, 其中是1名男生、1名女生的结果有6种, ∴从获得美术奖、音乐奖的学生中各选取1名参加颁奖大会, 刚好是 1名男生、1名女生的概率为
冀教版九年级下册数学《切线的性质和判定》教学说课复习课件
知1-练
1 如图,直线AB经过⊙O上一点C,并且OA =OB, CA=CB. 直线AB与⊙O具有怎样的位置关系?请说 明理由.
解:AB与⊙O相切,理由如下: 连接OC,因为OA=OB, CA=CB,所以△AOB是等 腰三角形,且OC是△AOB 底边上的中线,所以OC⊥AB.又因为直线AB经过半 径OC的外端,所以AB与⊙O相切.
知1-练
4 如图所示,PA与⊙O相切于点A,PO交⊙O于点C, 点B是优弧CA上一点,若∠P=26°,则∠ABC的 度数为( C ) A.26° B.64° C.32° D.90°
知1-练
5 如图,点P在⊙O的直径BA延长线上,PC与⊙O相 切,切点为C,点D在⊙O上,连接PD、BD,已知 PC=PD=BC.下列结论: ①PD与⊙O相切;②四边形PCBD是菱形; ③PO=AB;④∠PDB=120°. 其中,正确的有( A ) A.4个 B.3个 C.2个 D.1个
知1-练
解: 连接OB,则OB=OD, 因为AE与⊙O相切于点B, 所以OB⊥AE,即∠ABO=90°, 又因为∠A=28°, 所以∠AOB=180°-28°-90°=62°. 所以∠OBD=∠ODB=12∠AOB=31°. 所以∠DBE=90°-∠OBD=90°-31°=59°.
知1-练
3 下列说法正确的是( C ) A.圆的切线垂直于半径 B.垂直于切线的直线经过圆心 C.经过圆心且垂直于切线的直线经过切点 D.经过切点的直线经过圆心
知1-练
2 下列四个命题: ①与圆有公共点的直线是圆的切线; ②垂直于圆的半径的直线是圆的切线; ③到圆心的距离等于半径的直线是圆的切线; ④过直径端点,且垂直于此直径的直线是圆的切线. 其中是真命题的是( C ) A.①② B.②③ C.③④ D.①④
人教版初中九年级数学上册数学期末总复习(全面)精品课件
2
一元二次方程根与系数的关系 (韦达定理)
若方程ax bx c 0(a 0)的两根为x1 , x2 ,
2
b c 则x1 x2 , x1 x2 a a
特别地:
2
若方程x px q 0的两根为x1 , x2, 则:x1 x2 p, x1 x2 q
(1)确定对称中心; (2)确定关键点; (3)作关键点的关于对称中心的 对称点; (4)连结各点,得到所需图形.
7、关于原点对称的点的坐标:
( -a,-b) (a,b)关于原点的对称点是 ______
例、点P(-1,3)关于原点对称的点 的坐标是 ; 点P(-1,3)绕着原点顺时针旋转 90o与P’重合,则P’的坐标为 ______
解得
- 5≤x<3
题型2:二次根式的非负性的应用.
4.已知:
x4 +
2x y
=0,求 x-y 的值.
解:由题意,得 解得
x-4=0 且 2x+y=0 x=4,y=-8
x-y=4-(-8)= 4+ 8 =12 5.(2005.湖北黄冈市)已知x,y为实数,且
2 =0,则x-y的值为( +3(y-2) x 1
.
4、已知一元二次方程 2 x2 + b x + c = 0的两个根是 – 1 、3 ,则 b= ,c= .
二、选择 2 1、若方程x m x n 0 中有一个根为零,另一个根非零,则m, n 的值为 ( ) A m 0, n 0 B m 0, n 0 C m 0, n 0 D mn 0
2、垂径定理的逆定理
平分弦(不是直径)的直径垂直于弦,并且平 分弦所对的两条弧.
一元二次方程根与系数的关系 (韦达定理)
若方程ax bx c 0(a 0)的两根为x1 , x2 ,
2
b c 则x1 x2 , x1 x2 a a
特别地:
2
若方程x px q 0的两根为x1 , x2, 则:x1 x2 p, x1 x2 q
(1)确定对称中心; (2)确定关键点; (3)作关键点的关于对称中心的 对称点; (4)连结各点,得到所需图形.
7、关于原点对称的点的坐标:
( -a,-b) (a,b)关于原点的对称点是 ______
例、点P(-1,3)关于原点对称的点 的坐标是 ; 点P(-1,3)绕着原点顺时针旋转 90o与P’重合,则P’的坐标为 ______
解得
- 5≤x<3
题型2:二次根式的非负性的应用.
4.已知:
x4 +
2x y
=0,求 x-y 的值.
解:由题意,得 解得
x-4=0 且 2x+y=0 x=4,y=-8
x-y=4-(-8)= 4+ 8 =12 5.(2005.湖北黄冈市)已知x,y为实数,且
2 =0,则x-y的值为( +3(y-2) x 1
.
4、已知一元二次方程 2 x2 + b x + c = 0的两个根是 – 1 、3 ,则 b= ,c= .
二、选择 2 1、若方程x m x n 0 中有一个根为零,另一个根非零,则m, n 的值为 ( ) A m 0, n 0 B m 0, n 0 C m 0, n 0 D mn 0
2、垂径定理的逆定理
平分弦(不是直径)的直径垂直于弦,并且平 分弦所对的两条弧.
北师大版数学九年级上册全册复习PPT课件
.
9
5.矩形的判定 (1)有一个角是直角的__平__行__四__边__形___是矩形; (2)有三个角是直角的___四__边__形____是矩形; (3)对角线相等的__平__行__四__边__形____是矩形.
.
10
6.正方形的性质
(1)正方形的对边平__行_______; (2)正方形的四边_相__等______;
(3)正方形的四个角都是_直__角_____; (4)正方形的对角线相等、互相垂直、互相平分,每条对角 线平分一组对角;
(5)正方形既是轴对称图形,又是中心对称图形,对称轴有 ___四_____条,对称中心是对角线的交点.
.
11
7.正方形的判定
(1)有一组邻边相等,并且有一个角是直角的平行四边形叫 做正方形;
.
22
方法技巧 正方形是一种特殊的四边形,它里面隐含着许多线段之间的 关系或角之间的关系,我们要充分利用正方形的特性,结合 图形大胆地探索、归纳、验证即可使问题获解.
.
23
第二章 一元二次方程
.
24
┃知识归纳┃
1.一元二次方程
只含有一个未知数的整式方程,并且都可以化为
ax2+bx+c=0
(a,b,c为常数,a≠0)的形式,这样的
(1)由于菱形是平行四边形,所以菱形的面积=底×高;
(2)因为菱形的对角线互相垂直平分,所以其对角线将菱形 分成4个全等的三角形,故菱形的面积等于两对角线乘积的一 半.
.
7
4.矩形的性质 (1)矩形的对边_平__行__且__相__等______; (2)矩形的对角__相__等_______; (3)矩形的对角线__互__相__平__分____、__相__等______;
北师大版九年级上册数学《正方形的性质与判定》特殊平行四边形说课教学复习课件
(x
+
b )2 2a
b2 4ac 4a 2
0
.
移项,得
( x + b )2 b2 4ac . 能直接开方吗?
2a
4a 2
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
探究 任何一个一元二次方程都可以写成一般形式ax2+bx+c=0(a≠0), 请用配方法解此方程.
(x+
b )2 2a
=
1 2
.
创设情境 探究新知 应用新知 巩固新知 课堂小结 布置作业
议一议
(1) 你能解一元二次方程 x2 -2x + 3 = 0 吗?
分析:∵a = 1,b = -2,c = 3, ∴ b2 - 4ac = (-2)2 - 4×1×3= -8 < 0.
你是怎么想 的呢?
根据求根公式的条件知:无法使用求根公式.
正方形判定的两条途径:
(1)
+ 一个直角 对角线相等
先判定菱形
矩形条件
(2)
+ 一组邻边相等 对角线垂直
先判定矩形
菱形条件
正方形 正方形
知识讲解
例1:如图,在矩形ABCD中, BE平分∠ABC , CE平分∠DCB ,
BF∥CE , CF∥BE.
求证:四边形BECF是正方形.
解析:先由两组平行线得出四边形BECF平行四边形; 再由一组邻边相等得出是菱形;最后由一个直角可得 正方形.
随堂练习 2.用公式法解下列方程: (1) 2x2 - 9x + 8 = 0; (3) 16x2 + 8x = 3;
(2) 9x2 + 6x + 1 = 0 ; (4) x(x-3) + 5 = 0 .
人教版九年级上册数学《概率》概率初步研讨复习说课教学课件
数字 1,2,3,4,5 的五个纸团中随机抽取一个,
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
A.
1
5
B.
C.
3
5
D.
第二十五章 概率初步
2
5
4
5
上一页
返回导航
下一页
数学·九年级(上)·配人教
9.【贵州毕节中考】平行四边形 ABCD 中,AC、BD 是两条对角线,现从以下
四个关系:①AB=BC;②AC=BD;③AC⊥BD;④AB⊥BC 中随机取出一个作为
课件 课件
课件 课件
课件 课件
课件
课件
m
等,事件 A 包含其中的 m 种结果,那么事件 A 发生的概率 P(A)= n .
m
注意:在 P(A)= n 中,①当 A 为必然事件时,P(A)=1;②当 A 为不可能事件时,
P(A)=0;③当 A 为随机事件时,0<P(A)<1.
第二十五章 概率初步
上一页
以练助学
名 师 点 睛
课件
课件
课件
课件
课件
课件
课件
个 人 简 历 : 课件 /jianli/
课件
课件
手 抄 报 : 课 件/shouchaobao/
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
知识点1
概率的意义
一般地,对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为随
机事件A发生的概率,记为P(A).
4
第二十五章 概率初步
上一页
返回导航
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
A.
1
5
B.
C.
3
5
D.
第二十五章 概率初步
2
5
4
5
上一页
返回导航
下一页
数学·九年级(上)·配人教
9.【贵州毕节中考】平行四边形 ABCD 中,AC、BD 是两条对角线,现从以下
四个关系:①AB=BC;②AC=BD;③AC⊥BD;④AB⊥BC 中随机取出一个作为
课件 课件
课件 课件
课件 课件
课件
课件
m
等,事件 A 包含其中的 m 种结果,那么事件 A 发生的概率 P(A)= n .
m
注意:在 P(A)= n 中,①当 A 为必然事件时,P(A)=1;②当 A 为不可能事件时,
P(A)=0;③当 A 为随机事件时,0<P(A)<1.
第二十五章 概率初步
上一页
以练助学
名 师 点 睛
课件
课件
课件
课件
课件
课件
课件
个 人 简 历 : 课件 /jianli/
课件
课件
手 抄 报 : 课 件/shouchaobao/
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
知识点1
概率的意义
一般地,对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为随
机事件A发生的概率,记为P(A).
4
第二十五章 概率初步
上一页
返回导航
人教版九年级上册数学《圆周角》圆教学说课复习课件
(1)知道什么是圆周角,并能从图形中准确识别它. (2)探究并掌握圆周角定理及其推论. (3)体会“由特殊到一般”“分类”“化归”等数学思想.
推进新课
知识点1 圆周角的定义及圆周角定理
1.圆心角的定义?
C
顶点在圆心的角叫圆心角.
2.图中∠ACB 的顶点和边有哪些特点? O
顶点在圆上,并且两边都和 圆相交的角叫圆周角.
125°.
5.如图,⊙O中,弦AD平行于弦BC,
∠AOC=78°,求∠DAB的度数.
解:∵AD∥BC,
∴∠DAB=∠B.
又∵∠B=
1 2
∠AOC=39°.
∴∠DAB=39°.
6.如图,⊙O的半径为1,A,B,C是⊙O上的三个点 ,且∠ACB=45°,求弦AB的长. 解:连接OA、OB. ∵∠ACB=45°, ∴∠BOA=2∠ACB=90°. 又OA=OB, ∴△AOB是等腰直角三角形.
A
B
图中圆周角∠ACB 和圆心角∠AOB 有怎样
的关系?
C
先猜一猜,再用 量角器量一量.
O
ACB 12AOB
A
B
(1)在圆上任取B⌒C,画出圆心角∠BOC 和圆 周角∠BAC,圆心角与圆周角有几种位置关系?
A A
A
O
O
O
B
B
C
B
C
C
(2)如何证明一条弧所对的圆周角等于它所 对的圆心角的一半?
周角所对的弦是直径.
圆内接四边形:圆内接四边形的内角和为360°,并且四边形的对角互补.
1 2
α.
证明:由(1)知∠BOM=90°-α.
M
又∠C=β= 12∠AOB,
C
∴β=
最新人教版初中九年级上册数学【圆全章复习】教学课件
请补全解答过程.
E
C
6
4
4D
H4
A
O
BF
10
综合运用
小结:
E
E
C
C
D
D
3
3
1 A2
O
BF
A
12
O
BF
综合运用
小结:
E
E
C D
C D
G
H
A
O
BF
A
O
BF
知识梳理
圆的对称性
圆的有关性质 弧、弦、圆心角之间的关系
同弧上的圆周角和圆心角的关系
圆 点、直线和圆的位置关系
点和圆的位置关系 直线和圆的位置关系
综合运用
例 如图,⊙O是△ABC的外接圆,若AB=6cm,∠C=60°,则⊙O的半径为 ________cm.
C
O
A
B
综合运用
方法1:作OD⊥AB于D,连接OA,OB.
∵∠C=60°,
∴∠AOB=2∠C=120°.
∵OA=OB,OD⊥AB于D, AB=6 cm,
∴△AOD中,∠ADO=90°,
知识梳理
圆的有关性质
圆的对称性 垂径定理 弧、弦、圆心角之间的关系 定理 同弧上的圆周角和圆心角的关系
圆周角定理
初中数学
重点回顾
圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半.
A2 A1
A3
O
B
C
重点回顾
圆周角定理的推论 推论1:同弧或等弧所对的圆周角相等. 推论2:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径. 推论3:圆内接四边形的对角互补.
切线的判定定理:经过半径的外端并且垂直于这 条半径的直线是圆的切线.
E
C
6
4
4D
H4
A
O
BF
10
综合运用
小结:
E
E
C
C
D
D
3
3
1 A2
O
BF
A
12
O
BF
综合运用
小结:
E
E
C D
C D
G
H
A
O
BF
A
O
BF
知识梳理
圆的对称性
圆的有关性质 弧、弦、圆心角之间的关系
同弧上的圆周角和圆心角的关系
圆 点、直线和圆的位置关系
点和圆的位置关系 直线和圆的位置关系
综合运用
例 如图,⊙O是△ABC的外接圆,若AB=6cm,∠C=60°,则⊙O的半径为 ________cm.
C
O
A
B
综合运用
方法1:作OD⊥AB于D,连接OA,OB.
∵∠C=60°,
∴∠AOB=2∠C=120°.
∵OA=OB,OD⊥AB于D, AB=6 cm,
∴△AOD中,∠ADO=90°,
知识梳理
圆的有关性质
圆的对称性 垂径定理 弧、弦、圆心角之间的关系 定理 同弧上的圆周角和圆心角的关系
圆周角定理
初中数学
重点回顾
圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半.
A2 A1
A3
O
B
C
重点回顾
圆周角定理的推论 推论1:同弧或等弧所对的圆周角相等. 推论2:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径. 推论3:圆内接四边形的对角互补.
切线的判定定理:经过半径的外端并且垂直于这 条半径的直线是圆的切线.
人教版九年级数学上册第21-25章《小结与复习》课件全套精选全文完整版
审
设
列
解
检
答
(1)审题:通过审题弄清已知量与未知量之间的数量关系. (2)设元:就是设未知数,分直接设与间接设,应根据实际需要恰当选取设元法. (3)列方程:就是建立已知量与未知量之间的等量关系.列方程这一环节最重 要,决定着能否顺利解决实际问题. (4)解方程:正确求出方程的解并注意检验其合理性. (5)作答:即写出答语,遵循问什么答什么的原则写清答语.
不相等的实数根,则m的值可能是 0 (写出一个即
可).
考点五 一元二次方程的根与系数的关系 例5 已知一元二次方程x2-4x-3=0的两根为m,n, 则m2-mn+n2= 25 .
解析 根据根与系数的关系可知,m+n=4,mn=-3. m2-mn+n2 =m2+n2-mn=(m+n)2-3mn=42-3 ×(-3)=25.故填25.
人教版九年级数学上册
第二十一章 一元二次方程 小结与复习
要点梳理
一、一元二次方程的基本概念
1.定义: 只含有一个未知数的整式方程,并且都可以化为
ax2+bx+c=0(a,b,c为常数,a≠0)的形式,这样的 方程叫做一元二次方程. 2.一般形式:
ax2 + bx +c=0 (a,b,c为常数,a≠0)
(注意:这里的横坚斜小路的的宽度都相等)
课堂小结
一元二次方 程的定义
概念:①整式方程; ②一元; ③二次. 一般形式:ax2+bx+c=0 (a≠0)
直接开平方法
一元二次方 程的解法
一元二次方程
配方法 公式法
x b b2 4ac (b2 4ac 0) 2a
因式分解法
根的判别式及 根与系数的关系
北师大版九年级上册数学 知识点复习课件(共46张PPT)
知识点八 位似
(1) 如果两个图形不仅相似,而且对应顶点的连线相 交于一点,那么这样的两个图形叫做位似图形,这 个点叫做位似中心. (这时的相似比也称为位似比)
(2) 性质:位似图形上任意一对对应点到位似中心的 距离之比等于位似比;对应线段平行或者在 一条直 线上.
(3) 位似性质的应用:能将一个图形放大或缩小.
墙壁等)上得到的影子叫做物体的投影. 投影所在的平面叫做投影面.
投影
投影面
2.中心投影指的是由同一点(知点识光源专)题发出的光线所形成的投影。
中心投影的投射线相交于一点,这 一点称为投影中心。
3.中心投影的特点:
知识专题
1).物体离光源越远,影子越长。
2).物体方向改变,影子方向随之改变。
3).光源离物体越近,影子越短。 4).光源方向改变,影子方向随之改变。
第一章 特殊的平行四边形
本章小结
一、菱形、矩形、正方形的性质
对边
角
平行
对角相等
且四边相等 邻角互补
平行且相等
四个角 都是直角
平行
四个角
且四边相等 都是直角
对角线
互相垂直且平分, 每一条对角线平分
一组对角
互相平分且 相等
互相垂直平分且相 等,每一条对角线
平分一组对角
二、菱形、矩形、正方形的判定方法
(2) 反比例函数的性质
k>0
图象 y
o yk
x
(k≠0) k<0
y
o
所在象限 性质
一、三象 在每个象
限(x,y 限内,y
同号) 随 x 的增
x
大而减小
二、四象 在每个象
限(x,y 限内,y
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)当x ___ = 0 时,y1=y2;
﹥ 0 时,y1﹥y2; 当x___ < 时,y1<y2. 当x___0
y 2x 1 (2) 方程组 y x 1
的解是
x=0 y = -1
考查要点:此题主要考察学生对一次函数图像的有关特征和利用一 次函数的图像解二元一次方程组的掌握情况。
数形结合
——专题复习
情景导入
1、本学期学过用数形结合思想来解决 的数学问题有哪些? 2、在教学和升学考中的地位
1)借助数轴解“数与式”的问题 2)以形助数:利用函数图象解决代 数的问题 3)借助平面直角坐标系解函数问题
1)借助数轴解“数与式”的问题
例1:实数在数轴上的位置如图所示, 化简: a b b a = -2a.
(1)当x ___ 时,y1=y2; 当x___ 时,y1﹥y2; 当x___时,y1<y2.
y 2x 1 (2) 方程组 的解是( y x 1
)
分析:判断技巧:先找到图像的交 点,相交时y值相等,图像在上时 说明y值大,在下时y值小。另外, 两个函数图像的交点的坐标也就是 所对应的方程组的解。
练习1:实数a、b上在数轴上对应位置如图则 a b b 等于( B )
A.a B.a-2b C.-a D.b-a.
图1
分析:(a-b)___ > 0 b ___ < 0
解:原式=(a b) (b) a 2b
2)以形助数:图象如图 1所示,根据图象填空.
. a . 0 图1 . b
分析:计算此题的关键是首先要对(a+b)和(b-a)的值是 负还是非负作出判断,这一判断要从右图的已知中寻找依 据。 解:由右图已知可得(a+b) <0 原式= - (a+b)+(b - a) = - 2a (b - a) >0
考查要点:学生对有理数的加法及大小比较的掌握情况
当x=400时,0.1x=0.05x+20; 当0<x<400时,0.1x<0.05x+20; 当x>400时,0.1x>0.05x+20. 因此, 当上网时间等于400分时,选择方式A、方 式B没有区别。 当一个月内上网时间少于400分时,选择方式A省钱。 当上网时间多于400分时,选择方式B省钱。
3)借助平面直角坐标系解函数问题
例3:已知一次函数y=kx+b的图象如图所示 (1)当x<0时,y的取值范围是______。 (2)求k,b的值.
分析:(1)由图得,当x=0时,y=-4,所以,当 x<0时,y<-4;
(2)函数图象过(2,0)和(0,-4)两点, 代入可求出k、b的值;
解答:(1)由图得,当x<0时,y<-4;
谢谢
练习2.一家电信公司给顾客提供两种上网收费方式:方式A的函数解析
式为y=0.1x,方式B的函数解析式是y=0.05x+20(x表示上网时间,单位 是分,y是表示收取的费用,单位是元),请结合图(11.3-7),如何选 择收费方式能使上网者更合算? 分析:先找到图像的交点,相交时y值相等,图像在上时 说明y值大,在下时y值小。 由图象可知交于点(400,40)
2、已知一次函数y=kx+b的图象经过A(-4,9)和B(3,16), 求一次函数的解析式。
3:一次函数y=kx+4的图象经过点(-3,-2),则 (1)求这个函数表达式; (2)建立适当坐标系,画出该函数的图象; (3)判断(-5,3)是否在此函数的图象上; (4)把这条直线向下平移4个单位长度后的函数关系式是__________
(2)由图可得:函数图象过(2,0)和(0,-4) 两点, 代入得, 2k+b=0 ① b=-4 ② 解得:k=2,b=-4, 故答案为k=2,b=-4.
考察要点: 考察的是学生对形与数之间的内在联系 和对一次函数图像基本特征的掌握情况
练习3:一条直线通过A(2,6),B(-1,3)两点,求此直线的解析式。 分析:题目中明确告知是一条直线,我们知道一次函数的 图像是一条直线,所以“求此直线的解析式”,就是求这 个一次函数的表达式,通过待定系数法来求。 解答:设:此直线的解析式为: y=kx+b(k≠0,b为常数)
根据题意得: 6=2k+b ① 3=-k+b ② 解得:k=1,b=4 故这条直线的解析式为:y=x+4
五、小结归纳
(1)本节课强化了哪一种数学思想?它包 含几个方面? (2)数形结合思想具有怎样的优越 性?
课后作业
1、不等式组
x 1 1 x 4
的解集在数轴上,如图表示应是(
)