《数据的分析小结》学案

合集下载

《数据分析》教案

《数据分析》教案

《数据分析》教案引言概述:数据分析是一门应用广泛且日益重要的技术,它通过采集、清洗、整理和解释数据,为决策提供有力支持。

本文将从数据分析的基本概念、数据采集、数据清洗、数据整理和数据解释五个方面进行详细阐述。

一、数据分析的基本概念1.1 数据分析的定义:数据分析是指通过采集、整理和解释数据,从中提取实用的信息和洞察力,为决策提供支持。

1.2 数据分析的重要性:数据分析可以匡助我们了解问题的本质、发现问题的原因、预测未来的趋势,并制定相应的决策和策略。

1.3 数据分析的应用领域:数据分析广泛应用于市场营销、金融、医疗、人力资源等领域,为企业和组织提供决策支持。

二、数据采集2.1 数据采集的目的:数据采集是为了获取需要分析的数据,以便进行后续的数据处理和分析。

2.2 数据采集的方法:数据采集可以通过问卷调查、实地观察、网络爬虫等方式进行,根据具体情况选择合适的方法。

2.3 数据采集的注意事项:在进行数据采集时,需要注意数据的准确性、完整性和可靠性,避免数据偏差和误差对分析结果的影响。

三、数据清洗3.1 数据清洗的目的:数据清洗是为了去除数据中的噪声、异常值和缺失值,保证数据的质量和准确性。

3.2 数据清洗的步骤:数据清洗包括数据去重、数据筛选、数据填充等步骤,通过这些步骤可以清理出高质量的数据集。

3.3 数据清洗的工具:数据清洗可以使用Excel、Python等工具进行,根据数据的规模和复杂度选择合适的工具。

四、数据整理4.1 数据整理的目的:数据整理是为了将原始数据转化为可分析的格式,方便后续的数据处理和分析。

4.2 数据整理的方法:数据整理可以通过数据转换、数据合并、数据透视等方法进行,根据具体需求选择合适的方法。

4.3 数据整理的技巧:在进行数据整理时,需要注意数据的一致性、格式的规范性和数据的可读性,以便于后续的数据分析和可视化。

五、数据解释5.1 数据解释的目的:数据解释是为了从数据中提取实用的信息和洞察力,为决策提供支持和指导。

人教版八年级数学下册《数据分析小结与复习》导学案

人教版八年级数学下册《数据分析小结与复习》导学案

人教版八年级数学下册第20章《小结与复习》教学设计★课标要求★本课是全章的回顾与复习,是在学习完本章内容后,回顾数据的收集、整理、描述、分析的过程,整理数据分析相关的概念及其关系,建立统计知识之间的联系,综合运用统计知识解决实际问题,再次感悟样本估计总体的思想.★学习目标★知识与技能会计算平均数、中位数、众数和方差;过程与方法进一步理解平均数、中位数、众数和方差的统计意义,能根据问题的实际需要选择合适的量表示数据的集中趋势和波动程度;.经历数据处理的基本过程,体会用样本估计总体的思想,感受统计在生活和生产中的作用.情感态度与价值观培养统计意识,形成尊重事实,用数据说话的有态度,认识数据处理的实际意义。

★学习重、难点★分析数据的集中趋势和波动程度,体会样本估计总体的思想.★教法分析★1.注意与前两个学段相关内容的衔接,将三个学段的学习连成一个相互联系、螺旋上升的整体。

因此,教学中要注意对已有知识的复习,在复习的基础上学习新内容,使学生对于分析数据的知识和方法形成整体认识。

2.准确把握教学要求,通过较多实例,从不同的方面进一步感受抽样的必要性,并初步感受样本的代表性,体会不同的抽样可能得到不同的结果,能够用样本的平均数,方差估计总体的平均数、方差等。

★学情学法★学情分析学生在此前已经学习了算术平均数的计算方法,学习了数据的收集和数据的表示等统计知识,在此基础上进行加权平均数的学习,可以加深学生对知识的理解与应用。

另外,学生在此前学习了扇形统计图、条形统计图、折线统计图,在此基础上学习平均数、中位数、众数、方差等知识,可以加深学生对知识的掌握和应用。

学法建议1.本章知识与生产、生活等方面联系非常密切,它的应用已渗透到社会的各个方面。

实际上,我们从事任何工作都离不开数据和统计知识。

因此学习时,多注意联系现实生活问题,提高应用能力。

2.注意多与同学展开讨论,合作交流,提高自己的阅读能力和理解水平及根据计算结果对实际问题作出正确评判的能力。

第20章 数据的分析小结复习 导学案

第20章  数据的分析小结复习  导学案

第20章数据的分析小结复习导学案一、复习导入(一)导入课题:本节课我们一起复习“数据的分析”(板书课题).(二)复习目标:1.复习与回顾本章的重要知识点.2.总结本章的重要思想方法.(三)复习重、难点:重点:平均数、中位数、众数和方差.难点:运用上述知识分析数据.二、分层复习第一层次学习(一)复习指导1.复习内容:P111页到P137页.2.复习时间:10分钟.3.复习指导:通过课本和笔记复习和回顾本章的重要知识点.4.复习参考提纲:(1)n个数据x1,x2,…,xn的算术平均数x= ;如果一组数据中,x1,x2,x3,…,xk出现的次数分别是f1, f2,f3,…,fk,那么这组数据的加权平均数x= .(2)在一组数据中,出现叫做这组数据的众数(一组数据的众数有时不只一个).(3)将一组数据按的顺序排列,把处在最中间的数据(或最中间数据的)叫做这组数据的中位数.(4)数据x1,x2,x3,…,xn的方差S2= .方差是用来反映一组数据的特征数,常常用来比较两组数据的,方差越大,数据的波动;方差越小,数据的波动;方差的单位是原数据单位的 .求方差的一般步骤:第一步:求出;第二步:求出;第三步:求出 .(二)自主复习:学生可参考复习参考提纲进行自学.(三)互助学习:1.师助生:明了学情;差异指导.2.生助生:小组研讨.(四)强化:1. 平均数、中位数、众数和方差.2.强调本章的数学思想方法.第二层次学习(一)复习指导1.复习内容:典例剖析,考点跟踪.2.复习时间:15分钟.3.复习指导:完成所给例题,也可查阅资料或和其他同学研讨.4.复习参考提纲:例1某校田径运动会需要组织一支由64名女生组成的女子方队,并且要求她们个个身高相同,由于年龄的限制,只能从初三学生中选拔,现有一份从该校随机抽取的初三某班15名女生(各班女生人数均超过30人)的身高资料(单位:cm)164 163 158 157 162 154 163 160 163 155 162 162 165 164 163 (1)求出这15名学生身高的平均数、众数和中位数;(2)如果这所学校初三年级一共有10个班,那么该校能完成这项任务吗?试说明理由.例2某校八(7)班50名学生的校服尺码统计得下表:例3为了比较甲、乙两种水稻秧苗是否出苗整齐,每种秧苗各取5株并量出每株的长度如下表所示(单位:厘米)。

初中数学_《数据的分析》小结(二)教学设计学情分析教材分析课后反思

初中数学_《数据的分析》小结(二)教学设计学情分析教材分析课后反思

《数据的分析》小结(二)教学设计一、教学设计思想通过学生的合作交流总结出本节的知识结构,针对本章的主要内容,设计一组思考题,让学生在独立思考的基础上分组讨论交流,并用自己的语言来表达对问题的理解,以达到梳理知识,理解统计的思想和方法,增强统计意识的目的。

最后通过练习巩固本章的知识点。

二、教学目标知识技能:回顾本章主要内容,说出知识之间的联系;说出各统计量在刻画数据特征方面的优点与局限。

会用计算器计算统计量;发展归纳与概括的能力。

体验数据收集、处理、分析和推断过程,理解抽样方法,体验用样本估计总体的过程数学思考:经历总结与反思的过程,结合具体问题情境表述各统计量的意义,进一步发展建立数据分析观念。

问题解决:初步学会在具体的情境中从数学的角度发现问题和提出问题,并综合运用数学知识和方法等解决简单的实际问题,增强应用意识,提高实践能力。

归纳解决实际问题的一般过程积累数学活动的经验。

情感态度:进一步感受知识点之间的联系,感受知识来源于生活又应用于生活。

敢于发表自己的想法、勇于质疑,养成认真勤奋、独立思考、合作交流等学习习惯,形成实事求是的科学态度。

三、教学重点和难点重点是分析数据的集中趋势和波动程度,体会样本估计总体的思想。

难点是能灵活运用本章知识点解题。

解决办法:通过阶梯式问题引导学生复习主要知识点,通过练习来巩固这些知识。

四、教学方法讨论法,在总结讨论的基础上,使学生掌握本章的内容。

五、课时安排1课时六、教具学具准备多媒体七、教学过程设计(一)情景导入:教师讲:用《啤酒与尿布》这一成功利用数据分析的经典营销案例,导入新课(教师板书课题)。

学生回顾在《数据的分析》里主要学习了哪些统计量?如何计算?有何异同?(二)问题(教师出示问题并板书;学生细心计算,并说说各统计量的计算方法:)数据2,1,2,4,2,1的平均数是______,中位数是_______,众数是_______,方差是_______.(1)加权平均数:(先让学生举几个生活中的例子,后教师出示案例,学生可分组讨论后交流):《招工启事》因我公司扩大规模,现需招若干名员工。

人教版八年级数学下册第二十章数据的分析小结(教案)

人教版八年级数学下册第二十章数据的分析小结(教案)
-众数:讲解众数在一组数据中的出现次数最多,可能有一个或多个众数的特点。
-方差、标准差的计算与应用:这两个指标是描述数据离散程度的关键,要使学生理解其在实际中的应用。
-方差:重点讲解方差计算公式,强调每个数据值与平均数差的平方在方差计算中的重要性。
-标准差:介绍标准差是方差的平方根,使学生理解标准差在数据标准化描述中的作用。
1.培养学生运用数据分析解决问题的能力,增强数据处理和数学建模的核心素养。
2.提高学生运用平均数、中位数、众数等描述数据集中趋势的能力,理解并运用方差、标准差描述数据离散程度。
3.培养学生制作频数分布表、绘制频数分布直方图的能力,提升几何直观和数据分析素养。
4.引导学生在实际问题中发现数学规律,培养逻辑思维和问题解决能力,增强数学应用意识。
五、教学反思
在今天的教学中,我尝试通过生活中的实例导入新课,希望以此激发学生对数据分析的兴趣。在讲解平均数、中位数、众数等基本概念时,我注意引导学生理解这些指标在描述数据集中趋势时的作用。同时,通过具体案例的分析,让学生感受到数据分析在实际中的应用价值。
在新课讲授过程中,我发现学生在理解方差、标准差等概念时存在一定难度。为了突破这个难点,我采用了举例和比较的方法,帮助他们理解这些指标在描述数据离散程度方面的意义。在实践活动中,学生们分组讨论并进行了实验操作,这有助于巩固他们对数据分析方法的理解。
3.重点难点解析:在讲授过程中,我会特别强调平均数、中位数、众数的计算方法和应用场景。对于难点部分,如方差的计算,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与数据分析相关的实际问题,如“如何选择合适的统计指标来描述班级同学的体育成绩”。

八年级数学下册第二十章《数据的分析》小结与复习教案(新版)新人教版

八年级数学下册第二十章《数据的分析》小结与复习教案(新版)新人教版

信息,但它受极端值的影响较大;它
的 大小与一组数据中的每个数据均有关系,任何一个数据的变动都会相应引起
的变动 .
⑵一组 数据中出现最
的数据称为这组数据的众数;众数是当一组数据中某一数据重复出现较多时,人
们往往关心的一个量,众数不受极端值的影响。
(3) 将一组数据按照由小到大 ( 或由大到小的 ) 的顺序排列,如果数据的个数是奇数,则处于中间位置的数
第二十章《数据的分析》
教案目标数、中位数、众数和方差的统计
意义,能根据问题的实际需要选择合适的量表示数
据的集中趋势和波动程度;
3.经历数据处理的基本过程,体会用样本估计总体的思想,感受统计在生活和生
产中的作用.
学习重点:分析数据的集中趋势和波动程度,体会样本估计总体的思想.
1200 人,图 20-10-1
是该校各年级学生人数.比.例.. 分布的扇形统计图,图 20-10-2 是该校学生人均.存.款.. 情况的条形统计图.
( 1)九年级学生人均存款多少元?
( 2)该校学生人均存款多少元?
( 3)已知银行一年期定期存款的年利率是 2.25% (“爱心储蓄”免收利息税) ,且每 351 元能提供给一位
).
A . 12 B . 18 C . 14 D . 12
2、衡量样本和总体的波动大小的特征数是(

A .平均数 B .方差 C .众数 D .中位数
3、一组数据按从小到大排列为 1,2,4,x,6,9 这组数据的中位数为 5,?那么这组数据的众数为 ( )
A . 4 B . 5 C .5.5 D .6
_________.
3、若 10 个数的平均数是 3,方差是 4,则将这 10 个数都扩大 1 0 倍,则这组数据的平均数是

人教版2022-2022年八下数学第20章《数据的分析》全章教学案(含解析)

人教版2022-2022年八下数学第20章《数据的分析》全章教学案(含解析)

第二十章数据的分析1.进一步理解平均数、中位数和众数等统计量的统计意义.2.会计算加权平均数,理解“权”的意义,能选择适当的统计量表示数据的集中趋势.3.会计算极差和方差,理解它们的统计意义,会用它们表示数据的波动情况.1.探索并掌握平均数、方差的计算公式,会找一组数据的中位数、众数、极差,用样本估计总体,并解决生产、生活中的有关问题.2.从事收集、整理、描述和分析数据得出结论的统计活动,经历数据处理的基本过程,体验统计与生活的联系,感受统计在生活和生产中的作用,养成用数据说话的习惯和实事求是的科学态度.1.能用计算器的统计功能进行统计计算,进一步体会计算器的优越性.2.会用样本平均数、方差估计总体的平均数、方差,进一步感受抽样的必要性,体会用样本估计总体的思想.3.通过创设问题情境,激发学生自主探求的热情和积极参与的意识;通过合作交流,培养学生团结协作、乐于助人的品质.本章属于“统计与概率”领域.对于“统计与概率”领域的内容,共有三章.这三章内容采用统计和概率分开编排的方式,前两章是统计,最后一章是概率.统计部分的两章内容按照数据处理的基本过程来安排.我们在7年级下册学习了“第10章数据的收集、整理与描述”,本章“数据的分析”主要学习分析数据的集中趋势和离散程度的常用方法.在前一章中,我们学习了收集、整理和描述数据的常用方法,将收集到的数据进行分组、列表、绘图等处理工作后,数据分布的一些面貌和特征可以通过统计图表等反映出来.为了进一步了解数据分布的特征和规律,还需要计算出一些代表数据一般水平(典型水平)或分布状况的特征量.对于统计数据的分布的特征,可以从三个方面来分析:一是分析数据分布的集中趋势,反映数据向其中心值(平均数)靠拢或聚集的程度;二是分析数据分布的离散程度,反映数据远离其中心值(平均数)的趋势;三是分析数据分布的偏态和峰度,反映数据分布的形状.这三个方面分别反映了数据分布特征的不同侧面.根据《标准》的要求,本章就从前两个方面研究数据的分布特征.【重点】平均数、众数、中位数、方差的定义及其应用.【难点】应用所学的统计知识解决实际问题.1.注意与前两个学段相关内容的衔接.本章在教学时,注意与前两个学段的衔接,将三个学段的相关内容,在分析数据的这个大背景下统一起来,在对学生已有的相关知识进行整理的基础上学习新的知识.例如,对于平均数、中位数、众数,本章就是在研究数据集中趋势的大背景下,在整理学生已有的关于这三种统计量的认识的基础上,学习加权平均数,研究如何根据统计量的特征选择适当的统计量描述数据的集中趋势等.这样的一种编写方式,将三个学段的学习连成一个相互联系、螺旋上升的整体.因此,教学中要注意对已有知识的复习,在复习的基础上学习新内容,使学生对于分析数据的知识和方法形成整体认识.2.准确把握教学要求.本章要求通过较多实例,从不同的方面进一步感受抽样的必要性,并初步感受样本的代表性,体会不同的抽样可能得到不同的结果,能够用样本的平均数、方差估计总体的平均数、方差等.因此,在本章教学时,要注意把握教学要求.3.合理使用计算器.信息技术的发展给统计学的研究带来很大变化,为统计工作的高效、准确提供了便捷的工具.对于计算器等现代信息技术对统计的作用,本章中,编写了使用计算器求一组数据的平均数和方差的内容作为必学内容,还编写了利用计算机求平均数、中位数、众数和方差等集中统计量的内容作为选学内容等.教学中要注意发挥计算器在处理数据中的作用,也要注意合理地使用计算器.20.1 数据的集中趋势20.1.1平均数(2课时) 20.1.2中位数和众数(2课时)4课时20.2 数据的波动程度1课时20.3 课题学习体质健康测试中的数据分析1课时单元概括整合1课时20.1数据的集中趋势1.进一步掌握算术平均数、加权平均数的概念,会求一组数据的算术平均数和加权平均数.2.理解中位数和众数的定义和意义,会求一组数据的中位数和众数,能结合具体问题解释中位数和众数的实际意义.3.能分清平均数、中位数、众数三者的区别,根据实际问题情境选择适当的统计量表示数据的特征.经历应用加权平均数对数据处理和探索中位数、众数的过程,体验对统计基本思想的理解过程.能运用数据信息的分析解决一些简单的实际问题.通过加权平均数、中位数和众数的学习,初步认识数学与人类生活的密切联系,感受数学结论的确定性,激发学生学好数学的热情,感受统计在生活中的应用,增强统计意识,培养统计能力.【重点】算术平均数、加权平均数的概念及计算,会求一组数据的中位数和众数,能结合实际情境理解其实际意义.【难点】理解平均数、中位数和众数这三个统计量之间的联系与区别,能根据具体问题选择适当的统计量分析数据信息并作出决策.20.1.1平均数1.进一步掌握算术平均数、加权平均数的概念.2.会求一组数据的算术平均数和加权平均数.经历应用加权平均数对数据处理的过程,体验对统计基本思想的理解过程.能运用数据信息的分析解决一些简单的实际问题.通过加权平均数的学习,初步认识数学与人类生活的密切联系,感受数学结论的确定性,激发学生学好数学的热情.【重点】1.算术平均数、加权平均数的概念及计算.2.掌握加权平均数的实际应用.【难点】1.体会平均数在不同情境中的应用.2.应用加权平均数对数据做出合理判断.第课时1.使学生理解数据的权和加权平均数的概念.2.使学生掌握加权平均数的计算方法.1.通过加权平均数的学习,经历运用数据描述信息,作出推断的过程,形成和发展统计观念.2.通过加权平均数的学习,进一步认识数据的作用,体会统计的思想方法.渗透数学公式的简单美和结构的严谨美,展示了寓深奥于浅显、寓纷繁于严谨的辩证统一的数学美.【重点】会求加权平均数.【难点】对“权”的正确理解.【教师准备】教学中出示的课件和例题.【学生准备】预习课本内容.导入一:刘木头开了一家小工厂,生产儿童玩具.工厂的管理人员由刘木头、他的弟弟及其他6个亲戚组成.工作人员由5个领工和10个工人组成.现在需要一个新工人,刘木头正在与一个叫小王的青年人谈招聘问题.刘木头说:“我们这里报酬不错,平均每个人的薪金是每周300元,但在学徒期间每周是75元,不过很快就可以加工资.”小王上了几天班以后,要求和厂长谈谈.小王说:“你骗我,我已经和其他工人核对过了,没有一个人的工资超过每周100元.每人平均工资怎么可能是一周300元呢?”刘木头皮笑肉不笑地回答:“小王,不要激动嘛!每人平均工资确实是300元,不信你自己算一算.”刘木头拿出一张表,说道:“这是我每周付出的薪金.我得2400元,我弟弟得1000元,我的6个亲戚每人得250元,5个领工每人得200元,10个工人每人得100元.总共是每周6900元,付给23个人,平均每人得300元,对吗?”“对,对,你是对的,每人的平均工资是每周300元.可你还是骗了我.”小王生气地说.刘木头拍着小王的肩膀说:“这我可不同意,你自己算的结果也表明我没骗你呀!小兄弟,你根本不懂得平均数的含义,怪不得别人哟!”同学们,你能当个小法官来判一下谁说的对吗?[设计意图]让学生明确数学问题来源于生活实践,同时数学又指导生活实践,从而达到激发学生思考问题、探究新知的强烈欲望及引入新课的目的.导入二:农科院为了选出适合某地种植的甜玉米种子,对甲、乙两个品种各用10块试验田进行试验,得到各试验田每公顷的产量(见下表),根据这些数据,应为农科院选择甜玉米种子提出怎样的建议呢?品各试验田每公顷产量种(单位:吨)甲7.657.57.627.597.65 7.647.57.47.417.41乙7.557.567.537.447.49 7.527.587.467.537.49提问:如何考察一种玉米的产量和产量的稳定性?学生随意说出自己的一些想法后,教师说明本章学习的知识内容:(1)平均数、中位数、众数和方差等概念;(2)用样本的平均数和方差估计总体的平均数和方差;(3)课题学习,解决实际问题.[设计意图]问题的提出,学生难以用已学到的平均数的公式解决这个问题,需要研究新的方法,学习新的知识,让学生了解本章研究的基本知识内容,培养学生用样本估计总体的基本思想.[过渡语]前面我们学过算术平均数的计算,我们一起来探究加权平均数.1.加权平均数思路一问题:某市三个郊县的人数及人均耕地面积如下表:郊县人数/万人均耕地面积/公顷A15 0.15 B7 0.21 C10 0.18这个市郊县的人均耕地面积是多少?(精确到0.01公顷)问题1小明求得这个市郊县的人均耕地面积为:= =0.18(公顷).你认为小明的做法有道理吗?为什么?组织学生讨论,教师参与,并适时指导:(1)对“平均数”和“人均耕地面积”的准确理解;(2)三个郊县人数的多少对人均耕地面积有无影响,分析小明同学的计算错误.问题2这个市郊县的总耕地面积是多少?总人口是多少?你能算出这个市郊县的人均耕地面积是多少吗?引导学生列出正确算式,即这个市郊县的人均耕地面积为:≈0.17(公顷).问题3三个郊县的人数(单位:万)15,7,10在计算人均耕地面积时有何作用?教师指出:上面的平均数0.17称为三个数0.15,0.21,0.18的加权平均数.三个郊县的人数(单位:万)15,7,10分别为三个数据的权.追问:你能正确理解数据的权和三个数的加权平均数吗?在活动中教师应重点关注学生对数据的权及加权平均数的理解.问题4若n个数x1,x2,…,x n的权分别是w1,w2,…,w n,则这n个数的加权平均数是多少?教师引导学生从三个数据的加权平均数的计算方法中,归纳得出n 个数的加权平均数的计算公式.学生思考、总结归纳:若n个数x1,x2,…,x n的权分别是w1,w2,…,w n,则叫做这n个数的加权平均数.[设计意图]通过讨论、分析、思考认识到用已学过的平均数的计算方法来计算这个市郊县的人均耕地面积是根本行不通的,使学生意识到需要学习新知识、新方法,激发学生去探究.通过大胆猜想,培养学生的探究意识,通过教师的有效引导,让学生体会数学的归纳思想方法,理解n个数的加权平均数的计算公式及其结构特征,认识数据的权的作用.思路二问题1一家公司打算招聘一名英文翻译,对甲乙两名应试者进行了听、说、读、写的英语水平测试,他们各项的成绩(百分制)如下:应试听说读写者甲85 83 78 75乙73 80 85 82提问:如果这家公司想招一名综合能力较强的翻译,计算两名应试者的平均成绩(百分制),从他们的成绩看,应该录取谁?录用依据是什么?学生提出评判依据,若学生提出以总分作为依据,教师要引导学生思考:已学过的哪个统计量可反映数据的集中趋势?学生计算平均数,解决问题.追问:这家公司在招聘英文翻译的过程中,对甲、乙两名应试者进行了哪几个方面的英语水平测试?成绩分别为多少?学生同桌讨论,计算后提出自己的意见.问题2如果这家公司想招一名笔译能力较强的翻译,听、说、读、写成绩按照2∶1∶3∶4的比确定,计算两名应试者的平均成绩,从他们的成绩看,应该录取谁?引导学生讨论:招聘口语能力或笔译能力较强的翻译时,听、说、读、写四项成绩的重要程度是否相同,公司侧重哪两个方面的成绩?从给出的比值是否体现这两方面更加“重要”?根据算术平均数的计算公式,让学生依据题目要求,分别计算出甲、乙两名应试者的成绩,教师引导写出解答过程.问题3在问题2中,各个数据的重要程度不同(权不同),这种计算平均数的方法能否推广到一般?追问:若n个数据x1,x2,…,x n的权分别为w1,w2,…,w n,这n个数据的平均数该如何计算?教师引导学生思考归纳得出n个数的加权平均数的计算公式:若n个数x1,x2,…,x n的权分别是w1,w2,…,w n,则叫做这n个数的加权平均数.问题4如果这家公司想招一名口语能力较强的翻译,应该侧重哪些分项成绩?如果听、说、读、写成绩按照3∶3∶2∶2的比确定两人的测试成绩,那么谁将被录取?与问题2相比较,你能体会到权的作用吗?学生独立完成计算过程,体会权的改变对加权平均数的影响.追问:你认为问题1中各数据的权有什么关系?通过上述问题的解决,说说你对权的认识.师生活动:引导学生分析加权平均数公式,发现问题1中各数可看作是权相同的,教师指出两种平均数之间的联系.[设计意图]回顾学过的平均数的意义,为引入加权平均数作铺垫.通过讨论,让学生充分发表自己的见解,同时接纳和吸引别人的正确意见,相互交流、相互探讨,培养学生的合作意识.通过改变同一个问题背景中数据的权,得到不同的结果,从而进一步体会权的意义与作用.[知识拓展](1)当所给的数据在一常数a上下波动时,一般选用='+a.一组数据x1,x2,…,x n的各个数据比较大的时候,我们可以把各个数据同时减去一个适当的常数a,得x'1=x1-a,x'2=x2-a,…,x'n=x n-a.于是x1=x'1+a,x2=x'2+a,…,x n=x'n+a.因此=(x1+x2+…+x n)=(x1'+x2'+…+x n')+·na='+a;(2)平均数的大小与每个数据都有关系,它反映一组数据的集中趋势,是一组数据的“重心”,也是度量一组数据波动大小的基准;(3)加权平均数是算术平均数的特例.加权平均数的实质就是考虑不同权重的平均数,当加权平均数的各项权相等时,就变成了算术平均数.2.例题讲解一次演讲比赛中,评委将从演讲内容、演讲能力、演讲效果三个方面为选手打分,各个成绩均按百分制,再按演讲内容占50%、演讲能力占40%、演讲效果占10%的比例,计算选手的综合成绩(百分制),进入决赛的前两名选手的单项成绩如下表所示:(单位:分)选手演讲内容演讲能力演讲效果A85 95 95B95 85 95请确定两人的名次.教师出示例题并指导学生阅读分析:这个问题可以看成是求两名选手三项成绩的加权平均数,50%,40%,10%说明演讲内容、演讲能力、演讲效果三项成绩在总成绩中的重要程度,是三项成绩的权.学生在阅读过程中明确下列问题:(1)演讲内容、演讲能力、演讲效果三项成绩在总成绩中的重要程度用什么数据说明?(2)要想决出两人的名次,必须求两人的总成绩,实质上是求这两名选手三项成绩的加权平均数.学生根据加权平均数的计算公式先分别计算出两名选手的总成绩,教师进一步引导写出解答过程.解:选手A的最后得分是=90,选手B的最后得分是=91.由上可知选手B获得第一名,选手A获得第二名.[设计意图]让学生掌握自学的方法,提高学生独立分析问题、解决问题的能力.通过问题的解决,让学生进一步体会数据的权的作用,体验参与数学活动的乐趣.(1)加权平均数的意义:在一组数据中,由于每个数据的权不同,所以计算平均数时,用加权平均数,才符合实际.(2)数据的权的意义:数据的权能够反映数据的相对“重要程度”.(3)加权平均数公式:=.1.晨光中学规定学生的学期体育成绩满分为100分,其中平时体育活动评估成绩占20%,期中成绩占30%,期末成绩占50%.则平时体育活动评估成绩、期中成绩、期末成绩的权分别为、和.解析:根据权的概念解决即可.答案:20%30%50%2.学校把学生学科的期中、期末两次成绩分别按40%,60%的比例计入学期学科总成绩.小明期中数学成绩是85分,期末数学成绩是90分,那么他的学期数学总成绩是()A.85分B.87.5分C.88分D.90分解析:根据学期数学成绩=期中数学成绩×所占的百分比+期末数学成绩×所占的百分比即可求得学期总成绩.故选C.3.一家公司打算招聘一名部门经理,现对甲、乙两名应聘者从笔试、面试、实习成绩三个方面表现进行评分,笔试占总成绩的20%,面试占30%,实习成绩占50%,各项成绩如下表所示:(单位:分)应聘笔试面试实习者甲85 83 9080 85 92试判断谁会被公司录用,为什么?解:甲的平均成绩为=86.9,乙的平均成绩为=87.5.因此,乙会被公司录用.4.某单位欲招聘一名技术部门负责人,对甲、乙、丙三位候选人进行了三项能力测试,且各项测试成绩满分均为100分,根据结果择优录取,三位候选人的各项测试成绩如下表所示:(单位:分)测试项目测试成绩甲乙丙沟通能力85 73 73 科研能70 71 65组织能64 72 84力(1)如果根据三项测试的平均成绩,谁将被录用?说明理由.(2)根据实际需要,该单位将沟通能力、科研能力和组织能力三项测试得分按5∶3∶2的比例确定每人的成绩,谁将被录用?说明理由.解:(1)甲的平均成绩为(85+70+64)÷3=73,乙的平均成绩为(73+71+72)÷3=72,丙的平均成绩为(73+65+84)÷3=74,因此,丙的平均成绩最高,丙将被录用.(2)甲的成绩为=76.3,乙的成绩为=72.2,丙的成绩为=72.8.因此,甲的成绩最高,甲将被录用.第1课时1.加权平均数2.例题讲解例题一、教材作业【必做题】教材第113页练习第1,2题;教材第121页习题20.1第1题.【选做题】教材第122页习题20.1第5题.二、课后作业【基础巩固】1.在中国好声音选秀节目中,四位参赛选手的各项得分如下表,如果将专业、形象、人气这三项得分按3∶2∶1的比例确定最终得分,最终得分最高的进入下一轮比赛,则进入下一轮比赛的是()(每项按10分制)测试内测试成绩容小赵小王小李小黄专业素6 7 8 8质形象表8 7 6 9现人气指8 10 9 6数A.小赵B.小王C.小李D.小黄2.学校广播站要招聘1名记者,小明、小亮和小丽报名参加了3项素质测试,成绩如下:采访写计算机创意设作计小70分60分86分明小90分75分51分亮小60分84分72分丽现在要计算3人的加权平均分,如果将采访写作、计算机和创意设计这三项的权重比由3∶5∶2变成5∶3∶2,成绩变化情况是() A.小明增加最多 B.小亮增加最多C.小丽增加最多D.三人的成绩都增加3.希望中学一个学期的数学总平均分是按下图进行计算的.该校李飞同学这个学期的数学成绩如下:(单位:分)李飞平时作业期中考试期末考试90 8588则李飞这个学期数学总平均分为.4.某商场用加权平均数来确定什锦糖的单价,由单价为15元/千克的甲种糖果10千克,单价为12元/千克的乙种糖果20千克,单价为10元/千克的丙种糖果30千克混合成的什锦糖果的单价应定为.【能力提升】5.学生的学科期末成绩由期考分数、作业分数、课堂参与分数三部分组成,按各占30%,30%,40%的比例确定.已知晓明的数学期考80分,作业90分,课堂参与85分,则他的数学期末成绩为分.6.小丽家上个月吃饭费用为500元,教育费用为200元,其他费用为500元.本月小丽家这三项费用分别增长了10%,30%和5%.小丽家本月的总费用比上个月增长的百分数是多少?7.小李同学七年级第二学期的数学成绩如下表所示:测验类别平时期中考试期末考试测验1测验2测验3测验4成绩88 92 94 90 92 89如果学期的总评成绩是根据如图所示的权重计算,那么小李同学该学期的总评成绩为多少分?(四舍五入精确到1分)8.老师在计算学期总平均分的时候按如下标准:作业占10%,测验占20%,期中考试占35%,期末考试占35%,小关和小兵的成绩如下表:学生作业测验期中考试期末考试小关80 75 71 88 小76 80 68 90分别算出小关和小兵的总平均分.【拓展探究】9.某单位欲从内部招聘管理人员一名,对甲、乙、丙三名候选人进行了笔试和面试两项测试,三人的测试成绩如下表所示:测试成绩(单位:分)测试项甲乙丙目笔试75 80 90面试93 7068根据录用程序,组织200名职工对三人利用投票推荐的方式进行民主评议,三人得票率(没有弃权票,每位职工只能推荐1人)如图所示,每得一票记作1分.(1)请算出三人的民主评议得分;(2)如果根据三项测试的平均成绩确定录用人选,那么谁将被录用?(精确到0.01)(3)根据实际需要,单位将笔试、面试、民主评议三项测试得分按4∶3∶3的比例确定个人成绩,那么谁将被录用?【答案与解析】1.D(解析:将四个人的测试成绩按比例求出最终成绩,找出成绩最高的即可.)2.B(解析:根据加权平均数的概念分别计算出3人的各自成绩.先求出采访写作、计算机和创意设计这三项的权重比是3∶5∶2各自的成绩,再求出这三项的权重比是5∶3∶2各自的成绩,进行比较.)3.87.5(解析:先从统计图得到相应数据的权重,再利用加权平均数的计算方法求解.)4.11.5元/千克(解析:将三种糖果的总价算出,再除以60即可.)5.85(解析:根据加权平均数的计算公式计算即可.)6.解:500×10%+200×30%+500×5%=135(元),135÷(500+200+500)×100% =11.25%.7.解:平时平均成绩为=91(分),总评成绩为=90.1≈90(分).8.解:小关的学期总平均分为=80×10%+75×20%+71×35%+88×35%=78.65(分),小兵的学期总平均分为'=76×10%+80×20%+68×35%+90×35%=78.9(分).9.解:(1)甲、乙、丙三人的民主评议得分分别为:200×25%=50(分),200×40%=80(分),200×35%=70(分).(2)甲的平均成绩为≈72.67(分),乙的平均成绩为≈76.67(分),丙的平均成绩为=76.00(分).由于76.67>76>72.67,所以候选人乙将被录用.(3)甲的个人成绩为=72.9(分);乙的个人成绩为=77(分);丙的个人成绩为=77.4(分).由于丙的个人成绩最高,所以候选人丙将被录用.本节课把学生的探索和验证活动放在首位,一方面要求学生在老师的引导下自主探索,合作交流,另一方面要求学生对探究过程中用到的数学思想方法有一定的领悟和认识,达到培养能力的目的.平均数是统计中的一个重要概念,新教材注重了学生在经历统计活动的过程中体会平均数的本质内涵,理解平均数的意义,发展学生的统计观念.基于以上认识,我在设计中突出了让学生在具体情境中体会为什么要学习平均数,注重引导学生在统计的背景中理解平均数的含义,在比较、观察中把握平均数的特征,进而运用平均数解决实际问题,了解它的价值,努力做到由传统的数学课堂向实验课堂转变.在教学过程中,高估了学生理解加权平均数的能力,主要困难在于一些学生不能对权的含义理解透彻.适当增加学生熟知的一些实例,通过计算平均数,深刻理解权的含义及对平均数的影响.练习(教材第113页)1.解:(1)甲:=88(分),乙:=87.5(分),故甲将被录取.(2)甲:=87.6(分),乙:=88.4(分),故乙将被录取.2.解:=88.5(分).故小桐这学期的体育成绩是88.5分.学生在第二学段已学过平均数,初步了解了平均数的实际意义,这个课时将在此基础上,在研究数据集中趋势的大背景下,学习加权平。

数据的分析教案

数据的分析教案

数据的分析教案一、教学目标1.了解数据分析的基本概念和方法;2.掌握数据分析的基本流程和方法;3.能够运用数据分析方法解决实际问题;4.培养学生的数据分析能力和创新思维。

二、教学内容1. 数据分析的基本概念和方法1.1 数据分析的定义和意义数据分析是指通过对数据进行收集、整理、分析和解释,从中提取有用信息,为决策提供支持的过程。

数据分析在商业、科学、医疗、金融等领域都有广泛应用,是一种重要的决策工具。

1.2 数据分析的基本方法数据分析的基本方法包括描述统计、推断统计和数据挖掘。

其中,描述统计是对数据进行概括和描述,包括中心趋势、离散程度和分布形态等;推断统计是通过对样本数据进行推断,得出总体数据的特征和规律;数据挖掘是通过对大量数据进行分析和挖掘,发现其中的关联和规律。

2. 数据分析的基本流程和方法2.1 数据分析的基本流程数据分析的基本流程包括数据收集、数据清洗、数据分析和数据可视化。

其中,数据收集是指从各种渠道获取数据;数据清洗是指对数据进行去重、缺失值处理、异常值处理等预处理工作;数据分析是指对数据进行统计分析、模型建立等工作;数据可视化是指将分析结果以图表等形式展示出来,便于理解和交流。

2.2 数据分析的基本方法数据分析的基本方法包括描述统计、推断统计和数据挖掘。

其中,描述统计是对数据进行概括和描述,包括中心趋势、离散程度和分布形态等;推断统计是通过对样本数据进行推断,得出总体数据的特征和规律;数据挖掘是通过对大量数据进行分析和挖掘,发现其中的关联和规律。

3. 运用数据分析方法解决实际问题3.1 数据分析在商业领域的应用数据分析在商业领域的应用包括市场调研、客户分析、销售预测、风险管理等。

通过对市场、客户、销售等数据进行分析,可以帮助企业制定更科学的营销策略和决策。

3.2 数据分析在科学研究中的应用数据分析在科学研究中的应用包括生物信息学、天文学、地质学等领域。

通过对大量数据进行分析和挖掘,可以发现其中的规律和关联,为科学研究提供支持。

《数据分析》教案

《数据分析》教案

《数据分析》教案数据分析是当今社会中非常重要的一项技能,越来越多的人开始学习数据分析,因此教学资源也变得愈发重要。

本文将介绍一份完整的《数据分析》教案,匡助教师更好地教授学生数据分析的知识和技能。

一、教案概述1.1 教案名称:《数据分析》教案1.2 适合对象:高中或者大学学生1.3 教学目标:匡助学生掌握数据分析的基本概念和技能,培养他们的数据思维和解决问题的能力二、教学内容2.1 数据分析基础知识- 数据的概念和分类- 数据的采集和整理- 数据的清洗和处理2.2 数据分析方法- 描述性统计分析- 探索性数据分析- 假设检验和判断统计2.3 数据可视化- 条形图、折线图、饼图等基本图表的绘制- 数据分布的直方图和箱线图- 数据之间的关系的散点图和热力图三、教学方法3.1 理论授课- 介绍数据分析的基本概念和方法- 解释数据分析中常用的统计学原理- 分析真实案例,匡助学生理解数据分析的应用3.2 实践操作- 使用数据分析软件进行实际数据分析操作- 完成数据分析项目,包括数据清洗、分析和可视化- 分析实际数据集,培养学生的数据分析能力3.3 课堂讨论- 组织学生讨论数据分析中的问题和挑战- 分享数据分析经验和技巧- 激发学生的学习兴趣和思量能力四、教学评估4.1 课堂表现- 学生在课堂上的参预度和表现- 学生对数据分析知识的掌握程度- 学生在实践操作中的表现和成果4.2 作业和考核- 布置数据分析作业,包括理论和实践部份- 设计数据分析考核题目,考察学生对数据分析的理解和应用能力- 定期进行作业和考核评估,及时反馈学生学习情况4.3 教学反馈- 采集学生对教学内容和方法的反馈意见- 分析学生学习情况和需求,调整教学计划和教学方法- 持续改进教学质量,提高学生的学习效果和满意度五、教学资源5.1 教材和参考书籍- 选用适合学生水平的数据分析教材和参考书籍- 提供相关资料和案例,匡助学生更好地理解和应用数据分析知识5.2 数据分析软件- 推荐常用的数据分析软件,如Python、R、Excel等- 提供软件的学习资源和教学指导,匡助学生熟练使用数据分析工具5.3 网络资源和实践项目- 提供数据分析的在线课程和教学视频- 组织学生参预数据分析实践项目,锻炼他们的数据分析能力- 搭建数据分析交流平台,促进学生之间的学习和合作总结:通过本文介绍的《数据分析》教案,希翼能够匡助教师更好地教授学生数据分析的知识和技能,培养他们的数据思维和解决问题的能力,为他们未来的学习和工作打下坚实的基础。

《数据分析》教案

《数据分析》教案

《数据分析》教案数据分析是当今社会中非常重要的一项技能,它不仅可以匡助人们更好地理解数据,还可以为决策提供重要的支持。

为了更好地教授数据分析知识,制定一份完善的教案是非常必要的。

本文将从教案的制定、内容安排、教学方法、评价方式和课程实践五个方面进行详细介绍。

一、教案的制定1.1 确定教学目标:明确教学目标,包括学生应该掌握的知识、技能和能力。

1.2 设计教学内容:根据教学目标设计教学内容,包括数据分析的基本概念、常用工具和技术等。

1.3 制定教学计划:根据教学内容制定教学计划,包括每节课的内容安排、教学方法和评价方式等。

二、内容安排2.1 数据分析基础知识:介绍数据分析的基本概念、数据类型、数据清洗和数据可视化等。

2.2 数据分析工具和技术:介绍常用的数据分析工具,如Python、R等,以及数据分析常用技术,如统计分析、机器学习等。

2.3 数据分析实践案例:通过实际案例演练,让学生了解数据分析在实际问题中的应用。

三、教学方法3.1 理论教学结合实践:结合理论知识和实际案例,让学生更好地理解数据分析的原理和方法。

3.2 互动教学:采用互动式教学方法,如讨论、小组合作等,激发学生的学习兴趣。

3.3 多媒体辅助教学:利用多媒体技术辅助教学,如PPT、视频等,提高教学效果。

四、评价方式4.1 考试评价:定期进行考试,测试学生对数据分析知识的掌握程度。

4.2 作业评价:布置数据分析作业,评价学生对数据分析工具和技术的掌握情况。

4.3 项目评价:组织数据分析项目,评价学生在实际问题中运用数据分析的能力。

五、课程实践5.1 实践课程设计:设计数据分析实践课程,让学生在实际问题中应用数据分析技术。

5.2 实践案例分析:分析实际数据案例,让学生掌握数据分析方法和技术。

5.3 实践成果展示:组织学生展示实践成果,让学生展示他们在数据分析领域的成就。

综上所述,一份完善的数据分析教案应该包括教案的制定、内容安排、教学方法、评价方式和课程实践五个方面。

人教版八年级数学下册《数据的分析》单元小结教学设计

人教版八年级数学下册《数据的分析》单元小结教学设计

课题:20.3 《数据的分析》单元小结
来源
重点关
注学

教学活动过程个性教案一、知识要点
二、典例分析
针训一:
1、一个样本的数据按从小到大的顺序排列为:13,
14,19,x,23,27,28,31。

若其中位数为22,则
x等于()
A、20
B、21
C、22
D、23
2、已知一组数据按从小到大的顺
序排列为-1,0,4,x,6,15。

且这组数据的中位数为5,则这组数据的众数是()
A、5
B、6
C、4
D、5.5
3、如图20-2是某市6天内的最高气温折线统计图,则最高气温的众数是___℃。

针训二:
1、甲、乙两位同学在几次数学测验中,各自的平均分都是88分,甲的方差为0.61,乙0.72,()A、甲的成绩比乙的成绩稳定 B、乙的成绩比甲的成绩稳定
C、甲、乙两人的成绩一样好
D、甲、乙两人的成绩无法比较
2、超市里有甲、乙、丙、丁四种牌子的酱油,标准质量都是500g,各从中抽取5袋,测得质量如下,
根据下列数据(单位:g)判定,质量最稳定的是()
A、甲:501 500 506 510 509
B、乙:493 494 511 494 508
C、丙:503 504 499 501 500
D、丁:497 495 507 502 501
针训三:
在一次运动会上,根据参加男子跳高初赛的运动员的成(单位:m)绘制出如图20-4和的统计图,根据相关信息解答下列问题:
三、课堂小结
四、作业布置。

数据的分析教案初中

数据的分析教案初中

数据的分析教案初中教学目标:1. 让学生掌握数据收集、整理和分析的基本方法。

2. 培养学生运用数据解决实际问题的能力。

3. 培养学生合作、探究的学习态度。

教学内容:1. 数据收集与整理2. 数据分析方法3. 实际问题分析教学过程:一、导入(5分钟)1. 教师通过提问方式引导学生思考:在日常生活中,我们为什么要收集和分析数据?2. 学生分享自己的观点,教师总结并导入本节课的主题——数据的分析。

二、数据收集与整理(10分钟)1. 教师提出一个实际问题:某班级要举办一次运动会,需要确定参加跳远、跳绳和跑步三个项目的学生人数。

2. 学生分组讨论,提出数据收集和整理的方法。

3. 各小组汇报自己的方案,教师点评并总结。

三、数据分析方法(10分钟)1. 教师介绍常用的数据分析方法:描述性统计、图表分析、概率论等。

2. 学生通过实例了解各种分析方法的应用。

3. 教师引导学生选择合适的分析方法解决实际问题。

四、实际问题分析(10分钟)1. 教师提出一个实际问题:某班级有50名学生,男生28名,女生22名,请问男生和女生的人数比例是多少?2. 学生分组讨论,选择合适的分析方法解决问题。

3. 各小组汇报自己的解答,教师点评并总结。

五、课堂小结(5分钟)1. 教师引导学生回顾本节课所学内容,总结数据收集、整理和分析的方法。

2. 学生分享自己的学习收获,教师给予鼓励和评价。

六、课后作业(课后自主完成)1. 请学生运用本节课所学方法,分析家中近一个月用电情况,并提出节能建议。

2. 完成课后练习题。

教学反思:本节课通过实际问题的解决,让学生掌握了数据收集、整理和分析的基本方法。

在教学过程中,教师注重引导学生主动参与、合作探究,培养了学生的动手操作能力和解决问题的能力。

同时,通过课后作业的设置,使学生能够将所学知识运用到实际生活中,提高学生的实践能力。

但在教学过程中,教师也发现部分学生对数据分析方法的理解不够深入,需要在今后的教学中加强引导和练习。

第20章数据的分析小结与(教案)

第20章数据的分析小结与(教案)
(五)总结回顾(用时5分钟)
今天的学习,我们了解了数据分析的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对数据分析的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在今天的数据分析课程中,我尝试了多种教学方法,希望学生们能够更好地理解和掌握数据分析的基本概念和方法。我发现,通过引入日常生活中的实例,学生们对于数据分析的兴趣被有效地激发了。他们开始意识到数据分析不仅仅是一个学术概念,而是与他们的生活息息相关。
三、教学难点与重点
1.教学重点
(1)数据分析的基本概念:数据、数据分析的定义及其在实际生活中的应用。
-解释数据的概念,如定量数据、定性数据等。
-举例说明数据分析在不同领域的作用,如商业、科研、政府决策等。
(2)数据的收集与整理:掌握数据收集和整理的方法,能够使用表格、图表等形式表示数据。
-介绍数据收集的途径,如调查、实验、网络爬虫等。
4.应用意识:结合实际案例,引导学生体会数据分析在生活中的广泛应用,增强学生的应用意识,提高解决实际问题的能力。
5.合作交流:鼓励学生在学习过程中积极参与讨论,学会倾听、表达和协作,培养团队精神和沟通能力。
本章节核心素养目标与新教材要求相符,注重培养学生的数据观念、探究能力、数学思维、应用意识和合作交流能力,全面提升学生的学科素养。
最后,我也要反思自己在课堂上的语言和表达,是否足够清晰、生动,能否让学生们更容易理解和接受。我会不断学习和改进,希望能够在下一节课中,带给学生们更好的学习体验。
二、核心素养目标
1.数据观念:培养学生对数据的敏感性,掌握数据分析的基本方法,形成数据驱动的思维习惯,能从数据中提取有效信息,对实际问题进行合理分析。

《数据分析》教案

《数据分析》教案

《数据分析》教案数据分析是当今社会中一项非常重要的技能,它可以帮助我们从海量数据中提取有用信息,做出正确的决策。

因此,教授数据分析课程也变得越来越重要。

本文将探讨数据分析教案的设计和内容,希望能够帮助教师们更好地教授这门课程。

一、教案设计1.1 教学目标:明确教学目标是设计一个成功的教案的关键。

教师需要确定学生应该掌握的知识和技能,以便能够制定合适的教学计划。

1.2 教学内容:确定教学内容是教案设计的基础。

教师需要根据教学目标确定需要教授的内容,包括数据分析的基本概念、常用工具和技术等。

1.3 教学方法:选择合适的教学方法可以提高教学效果。

数据分析是一门实践性很强的学科,因此可以采用案例教学、实践操作等方法来帮助学生更好地理解和掌握知识。

二、教学内容2.1 数据采集:数据分析的第一步是数据采集。

教师可以介绍不同的数据来源和采集方法,帮助学生了解如何获取数据。

2.2 数据清洗:数据清洗是数据分析中非常重要的一步,可以帮助学生处理数据中的错误和缺失值,提高数据质量。

2.3 数据可视化:数据可视化是数据分析中展示数据结果的重要手段,可以帮助学生更直观地理解数据。

三、教学方法3.1 案例教学:通过真实案例的分析,可以帮助学生将理论知识应用到实际中,提高他们的实践能力。

3.2 实践操作:数据分析是一门实践性很强的学科,学生需要通过实践操作来巩固所学知识,提高数据分析的能力。

3.3 小组讨论:小组讨论可以促进学生之间的交流和合作,帮助他们更好地理解和掌握知识。

四、评估方式4.1 作业和考试:通过作业和考试可以检验学生对数据分析知识的掌握程度,帮助教师及时发现学生的问题并进行针对性的辅导。

4.2 项目实践:项目实践是一个更加贴近实际的评估方式,可以帮助学生将所学知识应用到实际项目中,提高他们的实践能力。

4.3 反馈机制:建立良好的反馈机制可以帮助教师了解学生的学习情况,及时调整教学方法和内容,提高教学效果。

五、教学资源5.1 教材和资料:选择合适的教材和资料是教学中非常重要的一环,可以帮助学生更好地理解和掌握知识。

数据的分析教案

数据的分析教案

教学设计2、一组数据中,由于每个数据的权不同,所以计算平均数时,用加权平均数,才符合实际.问题1的权相等,也就是重要程度同等主要。

今后我们学习要怎样学才能取得好成绩?问题2的权不同。

分析问题1、2中的加权平均数:问题1、2中的计算都可以看作是求加权平均数。

加权平均数:一般说来,如果在n 个数n x x x ,...,,21的权分别是nωωωω,...,,,321( ) 则nn n x x x x ωωωωωω++++++= (212211)相应练习:某市的7月下旬最高气温统计如下:气温 35度 34度 33度 32度 28度 天数23221(1)在这十个数据中,34的权是_____,32的权是______.(2)该市7月中旬最高气温的平均数是_____,这个平均数是_________平均数.(三 )例题讲授,探索新知例1、一家公司打算招聘一名英文翻译,对甲、乙两名应试者进行了听、说、读、写的英语水平测试,他们的各项成绩(百分制)如下:(1)如果公司想招一名口语能力强的翻译,听、说、读、写成绩按3:3:2:2 的比确定,计算两名应试者的平均成绩(百分制).从他们的成绩看应该录取谁?(2)如果公司想招一名笔译能力强的翻译,听、说、读、写成绩按2:2:3:3 的比确定,计算两名应试者的平均成绩(百分制).从他们的成绩看应该录取谁?本道例题学生独立分析,发表自己的看法。

培养学生养成自学的好习惯,并能根据情况解决简单的问题,为下面的学习做好铺垫通过讨论交流结合自己的预习情况学习,对培养学生的自学能力和合作学习都有很大的帮助。

教师在教学中的作用是进行适当的引导,使学生能把握住知识的重点,强调知识要点是必不可少的。

n n =+++ωωω 21相应队员数 1 3 1 4 2(1)在这五个数据中,28的权是_____,31的权是______.(2) 中国篮球队队队员的平均年龄是_____,这个平均数是_________平均数.3、某市三个郊县的人数与人均耕地面积如下表:求这个市三个郊县的人均耕地面积 (精确到0.01公顷). 小明的作法:18.0318.021.015.0=++=x(公顷)你认为小明的这种做法有道理吗?为什么?在上面的问题中,三个数据0.15、0.21、0.18的权分别是15、7、10,说明三个数据在计算这个市郊县人均耕地面积时的相对重要程度不同.(五)课堂小结 反思升华1、什么情况下用加权平均数来求平均数答:在一组数据中,由于每个数据的权不同,所以计算平均数时,用加权平均数,才符合实际. 2、数据的权的意义是什么?答:数据的权能够反映数据的相对“重要程度”.3、加权平均数公式:4、权的几种表现形式? (1)直接以数据形式给出; (2)比例形式给出; (3)百分数形式给出.例2与例1的区别主要在于权的形式又有变化,以百分数的形式出现,加深了学生对权的意义的理解。

人教版数学八年级下期末复习试卷(五)数据的分析含教学反思设计案例学案说课稿

人教版数学八年级下期末复习试卷(五)数据的分析含教学反思设计案例学案说课稿

期末复习(五)数据的分析各个击破命题点1平均数、中位数、众数【例1】为了大力宣传节约用电,某小区随机抽查了10户家庭的月用电量情况,统计如下表.关于这10户家庭的月用电量说法正确的是()A.中位数是40C.平均数是20.5 D.平均数是41【思路点拨】由题意可知排序后第5,6户的用电量都是40度,故中位数是40;用电量40度的户数有4户,故众数是40;平均数为25+30×2+40×4+50×2+6010=40.5.【方法归纳】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(数据总数为奇数)或两个数的平均数(数据总数为偶数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个;平均数为所有数据的和除以数据的个数.1.(锦州中考)某销售公司有营销人员15人,销售部为了制定某种商品的月销售量定额,统计了这15人某月的销售量,如下表所示:那么这15A.320,210,230 B.320,210,210C.206,210,210 D.206,210,2302.(德阳中考)如图是某位射击选手5次射击成绩的折线图,根据图示信息,这5次成绩的众数、中位数分别是()A.7,8 B.7,9 C.8,9 D.8,10命题点2方差【例2】(德州中考)在甲、乙两位同学中选拔一人参加“中华好诗词”知识竞赛,在相同的测试条件下,两人5次测试成绩(单位:分)如下:甲:79,86,82,85,83;乙:88,79,90,81,72.回答下列问题:(1)甲成绩的平均数是________,乙成绩的平均数是________;(2)经计算知s2甲=6,s2乙=42.你认为选派谁参加比赛更合适,说明理由.【思路点拨】(1)根据平均数的定义列式计算;(2)由平均数所表示的平均水平及方差所衡量的成绩稳定性综合判断.【方法归纳】 计算方差:“先平均、再作差、平方后、再平均”,也就是说,先求出一组数据的平均数,再将每一个数据都与平均数作差,然后将这些差进行平方,最后求这些差的平方的平均数,其结果就是这组数据的方差.3.(朝阳中考)六箱救灾物资的质量(单位:千克)分别是17,20,18,17,18,18,则这组数据的平均数、众数、方差依次是( )A .18,18,3B .18,18,1C .18,17.5,3D .17.5,18,14.(达州中考)已知一组数据0,1,2,2,x ,3的平均数为2,则这组数据的方差是____________.命题点3 用样本估计总体【例3】 某校260名学生参加植树活动,要求每人植4~7棵,活动结束后随机抽查了20名学生每人的植树量,并分为四种类型,A :4棵;B :5棵;C :6棵;D :7棵.将各类的人数绘制成扇形图(如图1)和条形图(如图2),经确认扇形图是正确的,而条形图尚有一处错误.回答下列问题:(1)写出条形图中存在的错误,并说明理由;(2)写出这20名学生每人植树量的众数、中位数;(3)在求这20名学生每人植树量的平均数时,小宇是这样分析的:第一步:求平均数的公式是x =x 1+x 2+…+x nn;第二步:在该问题中,n =4,x 1=4,x 2=5,x 3=6,x 4=7;第三步:x =4+5+6+74=5.5.①小宇的分析是从哪一步开始出现错误的?②请你帮他计算正确的平均数,并估计这260名学生共植树多少棵.【思路点拨】 (1)结合扇形统计图中数据分别计算各种类型的人数,再与条形统计图中数据对照;(2)根据条形统计图及扇形统计图得出众数与中位数即可;(3)①小宇的分析是从第二步开始出现错误的;②求出正确的平均数,乘以260即可得到结果.【方法归纳】用样本估计总体是统计的核心思想.具体的有用样本平均数估计总体平均数,用样本百分率估计总体百分率,用样本方差估计总体方差等.5.某果园有果树200棵,从中随机地抽取5棵,每棵果树的产量如下(单位:千克):98,102,97,103,105,这5棵树的平均产量为____________千克;估计这200棵果树的总产量约为____________千克.命题点4分析数据作决策【例4】(青岛中考)甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:根据以上信息,整理分析数据如下:(1)(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?【思路点拨】(1)利用加权平均数的计算公式直接计算平均分即可;将乙的成绩按从小到大的顺序重新排列,用中位数的定义直接写出中位数即可;根据乙的平均数利用方差公式计算即可;(2)结合平均数、中位数、众数和方差四方面的特点进行分析.【方法归纳】分析数据作出决策,取决于对数据分析的角度.平均数相同的情况下,方差越小的那组数据越稳定.6.在甲、乙两名学生中选拔一人参加国家数学冬令营集训.经统计,两人近期的8次测试成绩分别制作成统计图、表如下.如果让你选拔,打算让谁参加?统计图、表中,哪一种较能直观地反映出两者的差异?中位数乙74.6 77.6 无167 35整合集训一、选择题(每小题3分,共30分)1.命中环数(单位:环) 7 8 9 10甲命中相应环数的次数 2 2 0 1乙命中相应环数的次数 1 3 1 0A.甲比乙高B.甲、乙一样C.乙比甲高D.不能确定2.(江西中考)某市6月份某周气温(单位:℃)为23,25,28,25,28,31,28,则这组数据的众数和中位数分别是()A.25,25 B.28,28C.25,28 D.28,313.(茂名中考)甲、乙两个同学在四次模拟测试中,数学的平均成绩都是112分,方差分别是s2甲=5,s2乙=12,则成绩比较稳定的是()A.甲B.乙C.甲和乙一样D.无法确定4.已知数据:-4,1,2,-1,2,则下列结论错误的是()A.中位数为1 B.方差为26C.众数为2 D.平均数为05.对于数据组3,3,2,3,6,3,8,3,6,3,4.①这组数据的众数是3;②这组数据的众数与中位数的数值不等;③这组数据的中位数与平均数的数值相等;④这组数据的平均数与众数的数值相等.其中正确的结论有()A.4个B.3个C.2个D.1个6.某校四个绿化小组一天植树的棵数如下:10,x,10,8.已知这组数据的众数与平均数相等,则这组数据的中位数是()A.8 B.9 C.10 D.127.张大叔有一片果林,共有80棵果树.某日,张大叔开始采摘今年第一批成熟的果子,他随机选取1棵果树的10个果子,称得质量分别为(单位:kg)0.28,0.26,0.24,0.23,0.25,0.24,0.26,0.26,0.25,0.23.如果一棵树平均结有120个果子,以此估算,张大叔收获的这批果子的单个质量和总质量分别约为()A.0.25 kg,2 400 kg B.2.5 kg,2 400 kgC.0.25 kg,4 800 kg D.2.5 kg,4 800 kg8.(厦门中考)已知某校女子田径队23人年龄的平均数和中位数都是13岁,但是后来发现其中有一位同学的年龄登记错误,将14岁写成15岁.经重新计算后,正确的平均数为a岁,中位数为b 岁,则下列结论中正确的是()A.a<13,b=13 B.a<13,b<13C.a>13,b<13 D.a>13,b=139.(兰州中考)期中考试后,班里有两位同学议论他们所在小组同学的数学成绩,小明说:“我们组成绩是86分的同学最多”,小英说:“我们组的7位同学成绩排在最中间的恰好也是86分”,上面两位同学的话能反映的统计量是()A.众数和平均数B.平均数和中位数C.众数和方差D.众数和中位数10.(通辽中考)一次“我的青春,我的梦”演讲比赛,有五名同学的成绩如下表所示,有两个数据被遮盖,A.80,2C.78,2 D.78, 2二、填空题(每小题4分,共24分)11.某招聘考试分笔试和面试两种,其中笔试按60%,面试按40%计算加权平均数,作为总成绩.孔明笔试成绩90分,面试成绩85分,那么孔明的总成绩是____________分.12.(呼和浩特中考)某校五个绿化小组一天植树的棵数如下:10,10,12,x,8.已知这组数据的平均数是10,那么这组数据的方差是____________.13.小李和小林练习射箭,射完10箭后两人的成绩如图所示,通常新手的成绩不太稳定.根据图中的信息,估计这两人中的新手是____________.14.为了发展农业经济,致富奔小康,李伯伯家2013年养了4 000条鲤鱼,现在准备打捞出售,那么,15.(牡丹江中考)一组数据2,3,x,y,12中,唯一众数是12,平均数是6,这组数据的中位数是____________.16.已知2,3,5,m,n五个数据的方差是2,那么3,4,6,m+1,n+1五个数据的方差是____________.三、解答题(共46分)17.(8分)某专业养羊户要出售100只羊.现在市场上羊的价格为每千克11元,为了估计这100只羊能卖多少钱,该专业养羊户从中随机抽取5只羊,称得它们的质量(单位:kg)分别为26,31,32,36,37.(1)估计这100只羊中每只羊的平均质量;(2)估计这100只羊一共能卖多少钱.18.(12分)某校八年级(1)班积极响应校团委的号召,每位同学都向“希望工程”捐献图书,全班40名同学共捐图书400册.特别值得一提的是李保、王刚两位同学在父母的支持下各捐献了90册(2)请算出捐书册数的平均数、中位数和众数,并判断其中哪些统计量不能反映该班同学捐书册数的一般状况,说明理由.19.(12分)(山西中考)某公司招聘人才,对应聘者分别进行阅读能力、思维能力和表达能力三项测试,(1)(2)根据实际需要,公司将阅读、思维和表达能力三项测试得分按3∶5∶2的比确定每人的最后成绩,若按此成绩在甲、乙两人中录用一人,谁将被录用?(3)公司按照(2)中的成绩计算方法,将每位应聘者的最后成绩绘制成如图所示的频数分布直方图(每组分数段均包含左端数值,不包含右端数值,如最右边一组分数x为85≤x<90),并决定由高分到低分录用8名员工,甲、乙两人能否被录用?请说明理由,并求出本次招聘人才的录用率.20.(14分)甲、乙两名同学进入八年级后,某科6次考试成绩如图所示:(1)(2)①从平均数和方差相结合看;②从折线图上两名同学分数的走势上看,你认为反映出什么问题?参考答案【例1】 A【例2】(1)x 甲=(79+86+82+85+83)÷5=83;x 乙=(88+79+90+81+72)÷5=82.(2)选派甲参加比赛比较合适.因为甲的平均成绩高于乙的平均成绩,并且甲的方差小于乙的方差,说明甲成绩更好更稳定,因此选派甲参加比赛比较合适. 【例3】(1)D 错误,理由:∵共随机抽查了20名学生每人的植树量,由扇形图知D 占10%,∴D 的人数为20×10%=2≠3.(2)众数为5,中位数为5.(3)①小宇的分析是从第二步开始出现错误的.②x =4×4+5×8+6×6+7×220=5.3,估计260名学生共植树5.3×260=1 378(棵). 【例4】(1)甲的平均成绩:a =5×1+6×2+7×4+8×2+9×11+2+4+2+1=7,∵乙射击的成绩从小到大排列为3,4,6,7,7,8,8,8,9,10,∴乙射击成绩的中位数:b =7+82=7.5.其方差:c =110×[(3-7)2+(4-7)2+(6-7)2+2×(7-7)2+3×(8-7)2+(9-7)2+(10-7)2]=110×(16+9+1+3+4+9)=4.2.(2)从平均成绩看,甲、乙二人的成绩相等均为7环; 从中位数看,甲射中7环以上的次数小于乙;从众数看,甲射中7环的次数最多而乙射中8环的次数最多;从方差看,甲的成绩比乙的成绩稳定.综合以上各因素,若选派一名学生参加比赛的话,可选择乙参赛,因为乙获得高分的可能性更大. 题组训练1.B 2.A 3.B 4.535.101 20 2006.由发展趋势宜选拔乙参加,折线图反映两者差异比较明显. 整合集训1.B 2.B 3.A 4.B 5.D 6.C 7.A 8.A 9.D 10.C 11.88 12.1.6 13.小李 14.6 800 15.3 16.217.(1)每只羊的平均质量为x =15×(26+31+32+36+37)=32.4(kg).则可估计这100只羊中每只羊的平均质量约为32.4 kg. (2)32.4×100×11=35 640(元).答:估计这100只羊一共能卖约35 640元.18.(1)设捐7册图书的有x 人,捐8册图书的有y 人. ∴⎩⎪⎨⎪⎧4×6+5×8+6×15+7x +8y +90×2=400,6+8+15+x +y +2=40.解得⎩⎪⎨⎪⎧x =6,y =3. (2)平均数是10,中位数是6,众数是6.其中平均数10不能反映该班同学捐书册数的一般情况,因为40名同学中38名同学的捐书册数都没有达到10册,平均数主要受到捐书90册的2位同学的捐书册数的影响,故而不能反映该班同学捐书册数的一般情况.19.(1)∵x 甲=93+86+733=84(分),x 乙=95+81+793=85(分),∴x 甲<x 乙.∴乙将被录用.(2)∵x 甲′=93×3+86×5+73×23+5+2=85.5(分),x 乙′=95×3+81×5+79×23+5+2=84.8(分),∴x 乙′<x 甲′.∴甲将被录用.(3)甲一定被录用,而乙不一定能被录用.理由:由直方图可知成绩最高一组分数段85≤x<90中有7人,公司招聘8人,又x 甲′=85.5分,显然甲在该组,所以甲一定能被录用;在80≤x<85这一组内有10人,仅有1人能被录用,而x乙′=84.8分在这一组内不一定是最高分,所以乙不一定能被录用.由直方图知,应聘人数共有50人,录用人数为8人,所以本次招聘人才的录用率为8 50×100%=16%.20.(1)125757572.570①从平均数和方差相结合看:甲、乙两名同学的平均数相同,但甲成绩的方差为125,乙同学成绩的方差为33.3,因此乙同学的成绩更为稳定.②从折线图中甲、乙两名同学分数的走势上看,乙同学的6次成绩有时进步,有时退步,而甲的成绩一直是进步的.。

人教版八年级数学同步学案:第20章 数据的分析

人教版八年级数学同步学案:第20章 数据的分析

20.1数据的集中趋势20.1.1平均数「概念课」加权平均数学习目标☐掌握加权平均数的概念☐理解加权平均数中权的含义,会计算一组数据的加权平均数视频助学请.先.思考....【加权平均数】,然后完成引导问题下方的摘要填空.....,再看视频..引导问题引导问题1什么是加权平均数?(00:00-04:17)1.体现每个数据所占________的数叫做权.2.加权平均数是改良版的平均数,能够反映出每个数据的________,想提高哪个数据的________,增加它的________就可以了.3.计算加权平均数时要注意:最后要除以________.引导问题2如何给每个数据“加权”?(04:17-07:13)4.数据的权经常以________的形式出现,把5、10、15按照2:3:4来算加权平均数,列出的式子是________________________.5.数据的权还经常以________的形式出现,因为这里的权的总和是________,也就是________,所以我们直接把每一项与自己的权________,再________就可以了.6.把5、10、15按照20%:30%:50%来算加权平均数,列出的式子是________________________.7.给数加权,能够改变数据所占的________,改变它在平均数中的________.线上练习完成视频后相应的【专项练习】.提出疑问预习过程中还有什么疑问没有解决呢?请你将有疑问的问题记录下来:______________________________________________________________________「概念课」频数与加权平均数学习目标☐理解加权平均数☐能根据频数分布表求加权平均数,从而解决实际问题视频助学请.先.思考....【频数与加权平均数】,然后完成引导问题下方的摘要填空.....,再看视频..引导问题引导问题1频数和权有什么关系?(00:00-03:06)1.数据出现的________能体现出它所占的________,因此可以把它当做________.2.________表可以记录每个数出现的次数,也就是________.我们把________当做权,计算加权平均数时,要注意除以________.引导问题2在没有具体数据时,如何计算加权平均数?(03:06-05:40)3.题目中并没有给出具体数据,只给出一定范围的情况下,我们需要进行________估算.第一步:找到每组的________,也就是一组范围两端的________,把这个范围内的数都按照________处理.第二步:根据每组数据的________,再估算加权平均数.4.篮球小组里50个人的身高被整理成一个频数分布表,求这50个人的平均身高.第二步:引导问题3如何用符号语言定义“加权平均数”?(05:40-07:44),,n x表示,把权用1w,2w,3w ,,n w表示,加权5.我们把数据用1x,2x,3x式子就是“加权平均数”的定义式.线上练习完成视频后相应的【专项练习】.提出疑问预习过程中还有什么疑问没有解决呢?请你将有疑问的问题记录下来:______________________________________________________________________「概念课」根据样本估计总体学习目标会用样本平均数估计总体平均数视频助学请.先.思考....【样本平均数估计总体平均数】,然后完成引导问题下方的摘..引导问题....,再看视频要填空.引导问题1为什么要用样本平均数估计总体平均数?(00:00-02:28)1.把所有数据一个不落的全部收集起来,称为________,也叫普查.但是,当考察对象________,或者对考察对象带有________时,不适合全面调查.这时我们可以抽取一部分个体,用这部分个体的情况去估计总体情况,这种方法称为________.2.统计学中常常通过用________估计________的方法来获得对总体的认识,实际生活中经常用________平均数估计________平均数.引导问题2用样本平均数估计总体平均数有什么应用?(02:28-06:07)3.有一家工厂生产了10000支笔,需要了解书写长度的平均数,抽取其中100支,书写长度如下表,请利用这张表估算这10000支笔的总体书写长度.Array第一步:求出组中值.第二步:用频数做权,求出平均数.第三步:用样本平均数估计出总体平均数.4.已知数据个数和平均数,求数据之和.例如:如何估算两千只狗的总重量?第一步:抽取20只狗,________.第二步:将算出的________乘以_______,得到总重量.5.已知数据之和与平均数,求数据个数.例如:有一大筐鸡蛋,如何估计鸡蛋的个数?第一步:抽取几个鸡蛋作为________,求出它们的________.第二步:称出全部重量,除以________,得到鸡蛋个数.线上练习完成视频后相应的【专项练习】.提出疑问预习过程中还有什么疑问没有解决呢?请你将有疑问的问题记录下来:______________________________________________________________________20.1.2中位数和众数「概念课」中位数学习目标☐认识中位数,会求一组数据的中位数☐理解中位数的意义和作用☐会根据中位数分析数据信息作出决策视频助学请.先.思考....【中位数】,然后完成引导问题下方的摘要填空.....,再看视频..引导问题引导问题1什么是中位数?(00:00-05:08)1.将一组数据按从小到大(或从大到小)的顺序排列,如果数据的个数是________,则称位于________位置上的数叫中位数.如果数据的个数是偶数,则称中间两个数据的________为这组数据的中位数.2.找2,4,5,6,3,7的中位数.第一步:把数据按顺序排列.________________________.第二步:判断数据个数是奇数还是偶数.________.第三步:确定中位数.________________.3.按上面的方法找15,14,14,13,14,14,13,14,104的中位数.引导问题2中位数有什么特点和意义?(05:08-06:41)4.中位数能够反映出数据的________,不容易受________值的影响,计算量小.5.中位数在统计学中的意义是:衡量一个数在________中偏大还是偏小.线上练习完成视频后相应的【专项练习】.提出疑问预习过程中还有什么疑问没有解决呢?请你将有疑问的问题记录下来:______________________________________________________________________「概念课」众数学习目标☐认识众数,会求一组数据的众数☐理解众数的意义和作用☐会根据众数分析数据信息作出决策视频助学请.先.思考..引导问题....【众数】,然后完成引导问题下方的摘要填空.....,再看视频引导问题1什么是众数?(00:00-02:34)1.一组数据中________最多的数叫做众数.2.1,5,0,1,3,5,5,1,1.这组数的众数是________.3.如果有出现次数相同的几个数,它们都________(填写“是”或“不是”)众数.如果所有数字出现的频率都相同,它们都________(填写“是”或“不是”)众数,这组数没有众数.4.1,1,2,2,3,3,4,4,5,5.这组数________(填写“有”或“无”)众数.引导问题2众数有什么特点和意义?(02:34-06:25)5.众数能够反映出数据的________,不易受________值的影响,不需要排序和计算,且一定出现在原数据中.6.商场进货最多的鞋号应该是这组数据的平均数、中位数还是众数?平均数:中位数:众数:7.总结以下三个统计指标的区别:8.2,4,8,x的平均数是4,则众数、中位数分别是多少?线上练习完成视频后相应的【专项练习】.提出疑问预习过程中还有什么疑问没有解决呢?请你将有疑问的问题记录下来:______________________________________________________________________「概念课」集中趋势的变化规律学习目标进一步认识度量集中趋势的平均数、中位数、众数三个特征数视频助学 请.先.思考..引导问题....,再看视频....【集中趋势的变化规律】, 然后完成引导问题下方的摘要填空.引导问题1 数据整体加减同一个数,平均数、中位数和众数如何变化?(00:00-04:21) 1. 一组数据1x ,2x , ,n x ,假设平均数为x ,中位数为'x ,众数为"x ,把这组数整体加一个数a 后,平均数、中位数、众数的变化为: ○1平均数()()()1212n n x a x a x a x x x na n n ++++++++++===________. ○2一组数据整体加上一个数a ,________(填“会”或者“不会”)影响到数据大小的排列,因此中间位置上的数只随数据整体_______,所以整体加上a 后的中位数变为:______. ○3一组数据整体加上一个数a ,________(填“会”或者“不会”)影响到数据中众数的位置,因此众数位置上的数只随数据整体________,整体加上a 后的众数变为:________. 引导问题2 数据整体乘除同一个数,平均数、中位数和众数如何变化?(04:21-06:45) 2. 一组数据1x ,2x , ,n x ,平均数为x ,中位数为'x ,众数为"x ,把它们整体乘一个数()0b b ≠后,平均数、中位数、众数的变化为: ○1平均数()1212n n b x x x bx bx bx n n ++++++===________. ○2一组数据整体乘一个数()0b b ≠,________(填“会”或者“不会”)影响到数据排列,因此中间位置上的数只随数据整体________,所以整体乘以b 后的中位数变为:______. 3. 一组数据整体乘一个数()0b b ≠,________(填“会”或者“不会”)影响到数据中众数的位置,因此众数位置上的数只随数据整体_______,整体加上b 后的众数变为:________.线上练习完成视频后相应的【专项练习】.提出疑问预习过程中还有什么疑问没有解决呢?请你将有疑问的问题记录下来:______________________________________________________________________20.2数据的波动程度20.2.1数据的波动程度「概念课」数据的波动程度学习目标理解数据的波动程度、极差的概念视频助学请.先.思考....【数据的波动程度】,然后完成引导问题下方的摘要填空.....,再看视频..引导问题引导问题1什么是数据的波动程度?(00:00-01:48)1.变化剧烈的数据的波动程度________,变化缓和的数据的波动程度________.引导问题2什么是极差?如何比较数据的波动程度?(01:48-04:56)2.一组数据中,________减去________叫做极差.它能表明数据的________范围,但对最大值、最小值以外的数据利用不够,容易受________值影响.3.计算以下数据的极差:○151,78,55,18,22,28,47的极差为________.○2132,124,120,41,33,58,56的极差为________.4.一组数据中,每个数据与________的差距能够反映出波动程度.线上练习完成视频后相应的【专项练习】.提出疑问预习过程中还有什么疑问没有解决呢?请你将有疑问的问题记录下来:______________________________________________________________________「概念课」方差学习目标☐ 理解方差的定义并掌握方差的计算公式☐ 会用方差比较两组数据波动的大小视频助学请.先.思考..引导问题....,再看视频....【方差】,然后完成引导问题下方的摘要填空.引导问题1 什么是方差?如何比较两组数据波动程度的大小?(00:00-05:49) 1. 我们用差距的平方和除以____________来代表这组数据的平均差距;这个可用来衡量数据的波动程度的指标叫做数据的________. 引导问题2 如何计算方差?方差有什么应用?(05:49-07:51) 2. 计算方差的步骤: 第一步:求出这组数据的________.12n x x x n +++=________. 第二步:每个数据与平均数________.1x x -,2x x -,,n x x -. 第三步:求________.()()()22212n x x x x x x -+-++-. 第四步:除以________________.()()()22212n x x x x x x n -+-++-. 3. 按上面的步骤计算7,7,8,9,9的方差. 求平均数:x =________________________; 数据与平均数做差:____________________________________________; 求平方和:____________________________________________________; 除以数据个数:____________________________________________________. 4. 小李和小锤数次考试的成绩是:小李:59,61,57,58,65;小锤:64,58,62,缺考,56.谁的成绩比较稳定?线上练习完成视频后相应的【专项练习】. 提出疑问预习过程中还有什么疑问没有解决呢?请你将有疑问的问题记录下来:______________________________________________________________________「概念课」波动程度的变化规律学习目标进一步认识度量波动程度的方差视频助学请.先.思考..引导问题....,再看视频....【波动程度的变化规律】,然后完成引导问题下方的摘要填空.引导问题1 数据整体加减同一个数,方差如何变化?(00:00-01:56) 1. 3,4,5的方差是________,每个数据都加上3后,方差是________. 2. 一组数据1x ,2x ,…,n x ,平均数为x ,把它们整体加一个数a ,平均数变为x a +,每个数据与平均数的差为________,与加上a 之前没有变化,因此方差也________(填写“会”或“不会”)有变化. 引导问题2 数据整体乘除同一个数,方差如何变化?(01:56-04:28) 3. 4,5,6的方差是________,每个数据都乘以3后,方差是________. 4. 一组数据1x ,2x , ,n x ,平均数为x ,把它们整体乘一个数()0b b ≠,平均数变为________,每个数据与平均数的差变为原来的________倍,每个数据与平均数的差平方后变成之前的________倍,方差也变为原来的________倍. 5. 请总结一下数据整体变化时平均数、中位数、众数、方差的变化:线上练习完成视频后相应的【专项练习】. 提出疑问预习过程中还有什么疑问没有解决呢?请你将有疑问的问题记录下来:______________________________________________________________________「解题课」统计量的应用(上)能力目标利用统计量作分析与决策拔高练习1不看视频....先试试...!.做完再看视频【统计量的应用(上)】讲题.1.等腰屯技术公司现有员工50名,所有员工的月工资情况如下表.问:(1)该公司的高级技工有多少人?(2)该公司的工资极差是多少?(3)三角君向公司咨询月工资情况,请你计算出公司的整体平均工资和一般员工的平均工资?(4)去掉最高工资的前五名,再去掉最低工资的后五名,然后再算一算余下40人的平均工资,并说说你的看法.攻略根据实际需要选择合适的统计量2.某皮鞋销售部对应聘者小锤、三角君、狗蛋进行面试,从商品知识、工作经验、仪表形象三方面进行了打分,每项满分20分,最后的得分形成条形图(如图).问:(1)利用图中的信息填空:在商品知识方面3人得分的最大差距是________;在仪表形象方面最有优势的是________;(2)如果商品知识、工作经验、仪表形象三个方面的权重比为10:7:3,那么作为人事主管,你认为应该录用哪一位应聘者,为什么?3.三角君销售皮鞋时,发现各种尺码的皮鞋销量并不均衡,于是他把这个发现记录下来交给了老板,你认为这个销售记录对老板有用吗?如果有用请说明理由,并策划一下如何利用这些信息?检查梳理看视频【统计量的应用(上)】,核对拔高练习标准...,最后完整梳理一遍解题过........答案..并订正程.线上练习完成视频后相应的【专项练习】.「解题课」统计量的应用(下)能力目标综合运用统计量,做数据分析以及决策拔高练习2 不看视频....先试试...!.做完再看视频【统计量的应用(下)】讲题. 1. 实验中学运动队要从小锤和雷姐两名优秀选手中选一名参加全球射击比赛,运动队预先对这两名选手进行了8次测试.请你运用统计知识来判断,派谁参加比赛比较好呢?2. 实验中学要从琳达、田豆花两名跳远运动员中挑选一人参加全省比赛,在最近的10次选拔赛中,她们的成绩(单位:cm )如图.(1)她们的平均成绩分别是多少?(2)琳达、田豆花这10次比赛成绩的方差分别是多少?(3)请说明琳达和田豆花各自的成绩特点.(4)历届比赛表明,成绩达到5.96m 就可能夺冠,为了夺冠,你觉得要选谁参加比赛呢?如果历届比赛表明,成绩超过6.10m 就会打破记录,那应该选谁呢?检查梳理 看视频【统计量的应用(下)】,核对拔高练习标准........答案..并订正...,最后完整梳理一遍解题过程.线上练习 完成视频后相应的【专项练习】. 攻略 数据中平均数越大的,综合实力越强.方差反映了数据的波动程度,方差越小说明发挥越稳定. 攻略根据目标选择合适的统计量。

人教版八年级数学下册《数据的分析小结与复习》教学设计

人教版八年级数学下册《数据的分析小结与复习》教学设计

人教版八年级数学下册第20章《数据的分析小结》教学设计难点分析数据的集中趋势和波动程度,体会样本估计总体的思想.教学资源教材,教参,备课组意见教法设计自主学习、启发引导本课重点解决问题构建知识体系本课学生所得课前准备学生预习准备预习课本,完成自主学习任务单教师教学准备研读教材、教参,分析学生学情教学过程1复习平均数、中位数、众数基本概念2举例说明平均数、中位数、众数的意义.3算术平均数与加权平均数有什么联系和区别?举例说明加权平均数“权”的意义.举例说明怎样用方差刻画数据的波动程度.5举例说明刻画数据特征的量在决策中的作用.6搜集关于“统计学”方面的资料(如学科发展史、思想方法、人物等),从某个角度谈谈你对统计的认识.分组展示第一组:1复习平均数、中位数、众数相关概念;平均数: 一组数据的总和与这组数据的个数之比叫做这组数据的平均数.计算公式:平均数:是反映一组数据的平均水平情况的量.中位数定义:把一组数据从小到大的顺序排列,位于中间的数称为这组数据的中位数.众数的定义:在一组数据中,把出现次数最多的数叫做这组数据的众数.(允许一组数据有多个众数出现)2举例说明平均数、中位数、众数的意义;本周是学校合理化建议周,为此我们小组对于参加体育锻炼的情况进行了调查,从三个年级随机抽取了50名学生,对他们在一周内平均每天参加体育锻炼的时间进行了统计,请你根据统计表所提供的信息回答以下问题:(1)样本中每天参加体育锻炼的时间为60分钟的学生有名;(2)样本的平均数约为分钟,中位数是分钟,众数是分钟;(3)若全校共有1200名学生,请你估计每天参加体育锻炼时间超过1小时的有人(4)请指出用(2)中的哪个数据反映该学校的学生参加体育锻炼的实际水平更合理些.请说出你的理由;(5)为保证学生每天有1小时的体育锻炼时间,我们应向校长提出哪些合理化建议?3拓展延伸;小明同学所在班级有36个人,这次他考了80分,全班同学的平均分是78分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十章数据的分析小结学案
(一)生活中的数学
李大爷家种植两种苹果,他为了了解苹果甜度(糖度),关注一下苹果市场的情况,他请专业的苹果质检员对苹果糖度进行了检测。

质检员抽样调查各5 个甲、乙两种苹果的糖度,得到的结果分别如下(糖度越高,苹果越甜):甲:14 11 11 12 12
乙:13 9 11 10 12
你对这两种苹果的品质作何评价?
(二)回忆旧知,形成网络:(想一想)
(1)本章我们学习了哪些统计的量?
(2)在数据分析时,我们是怎样运用样本估计总体的?
(三)(练一练)练习1数学期末总评成绩由作业分数、课堂表现分数、期末考分数三部分组成,并按3︰3︰4的比例确定.已知小明的作业分数90 分,课堂表现分数85 分,期末考分数80 分,则他的总评成绩为________
练习2数据2,0,-2,2,4,2,-1 的平均数是_________,中位数是_________,众数是_________,方差是_________.
练习3某米店经营某种品牌的大米,该店记录了一周中不同包装(10 kg,20 kg,50 kg)的大米的销售量(单位:袋)如下:10 kg装100袋;20 kg装220袋;
50 kg装80袋。

如果每500 g大米的进价和销价都相同,则他最应该关注的是这些销售数据(袋数)中的().
A.平均数
B.中位数
C.众数
D.最大值
练习4.为了了解某小区居民的用水情况,随机抽查了该小区10•户家庭的月用水量,结果如下:
户家庭的平均月用水量是吨.
(2)如果该小区有500户家庭,根据上面的计算结果,估计该小区居民每月共用水吨.
练习5一组数据中的一个数大小发生了变化,一定会影响这组数据的平均数、众数、中位数中的().
A.1个 B.2个C.3个D.0个
(四)巩固总结旧知用一用
(2) 请从下列五个不同的角度对这次测试结果进行分析:
①从平均数和中位数相结合看;
②从平均数和众数相结合看;
③从平均数和方差相结合看;
④从平均数和命中9环以上(包括9环)次数相结合看;
⑤从10次射击两人命中环数的走势看.
(3) 假设你是甲、乙二人的教练,要选择一人参加射击比赛,根据(2) 的分析,你该如何选择?
(五)小结升华
谈一谈这节课复习了本章的哪些内容?有什么感受?
(六)课后作业
作业:必做题教科书第136~137页第1,4,7题选做题8题。

相关文档
最新文档