实数经典教案

合集下载

《实数》教案教育教学方案

《实数》教案教育教学方案

《实数》教案教育教学方案一、教学内容1. 实数的概念及其分类;2. 实数与数轴的关系;3. 实数的运算性质。

二、教学目标1. 理解实数的定义,掌握实数的分类;2. 掌握实数与数轴的关系,能正确地在数轴上表示实数;3. 理解并掌握实数的运算性质,提高运算能力。

三、教学难点与重点1. 教学重点:实数的定义、分类和运算性质;2. 教学难点:实数与数轴的关系,实数的运算性质。

四、教具与学具准备1. 教具:黑板、粉笔、多媒体设备;2. 学具:教材、练习本、铅笔。

五、教学过程1. 实践情景引入(5分钟)利用数轴上的点表示物体位置,引导学生思考实数与数轴的关系。

2. 知识讲解(15分钟)(1)实数的定义与分类;(2)实数与数轴的关系;(3)实数的运算性质。

3. 例题讲解(15分钟)选取具有代表性的例题,讲解实数运算的步骤和技巧。

4. 随堂练习(10分钟)设计有针对性的练习题,让学生及时巩固所学知识。

5. 小组讨论(5分钟)将学生分成小组,讨论实数运算中遇到的问题及解决方法。

6. 答疑解惑(10分钟)针对学生提出的问题,进行解答,巩固所学知识。

六、板书设计1. 实数的定义、分类;2. 实数与数轴的关系;3. 实数的运算性质;4. 例题及解答过程;5. 练习题及答案。

七、作业设计1. 作业题目:(1)填空题:实数可以分为哪几类?(4)解答题:已知实数a、b,求证:若a²+b²=0,则a=b=0。

2. 答案:(1)有理数、无理数;(2)D;(3)答案不唯一,合理即可;(4)证明过程略。

八、课后反思及拓展延伸1. 课后反思:本节课学生对实数的概念、分类和运算性质掌握程度如何?在教学中是否存在不足之处?2. 拓展延伸:引导学生思考实数在生活中的应用,如温度、长度等,激发学生的学习兴趣。

同时,布置一道拓展题,让学生进一步巩固实数的知识。

重点和难点解析1. 实数的定义、分类和运算性质的教学;2. 实数与数轴的关系的讲解;3. 例题的选取和讲解;4. 随堂练习的设计;5. 作业题目的设计及答案的解析;6. 课后反思与拓展延伸。

实数的教案

实数的教案

实数的教案教案一:引导学生学习实数的基本概念和性质教学目标:1. 理解实数的定义和性质;2. 能够在数轴上表示实数;3. 能够进行实数的加减乘除运算。

教学重点:1. 实数的定义和性质;2. 实数的表示和比较。

教学难点:实数与有理数的关系。

教学资源:1. 教师准备的课件;2. 数轴模型。

教学过程:Step 1:导入与激发兴趣(5分钟)教师通过提问判断学生对实数的理解程度,如“你们觉得实数是什么?有哪些特点?”Step 2:学习实数的定义和性质(15分钟)教师呈现实数的定义和性质,如“实数是包括有理数和无理数的数的集合”、“实数可以无限制地进行加减乘除运算”等。

Step 3:实数的表示和比较(15分钟)教师通过数轴模型展示实数的表示和比较方法,教学过程中引导学生思考,如“如何表示和比较两个实数?”、“怎样在数轴上找到实数的位置?”等。

Step 4:实数的加减乘除运算(20分钟)教师通过例题演示实数的加减乘除运算过程,并解释其中的规律,如“两个正数相加得到正数,两个负数相加也得到负数”,“正数与负数相乘得到负数”,等。

Step 5:练习与巩固(15分钟)教师根据学生的学习情况设计一些实数加减乘除的练习题,让学生在课堂上进行解答,并及时给予指导。

Step 6:拓展与应用(10分钟)教师设计一些拓展问题,让学生进行思考和讨论,如“实数有哪些应用场景?”、“无理数的定义和性质是什么?”等。

Step 7:总结与反思(5分钟)教师引导学生总结本节课所学的知识点,并反思学习过程中的困难和收获。

Step 8:布置作业(5分钟)教师布置课后作业,要求学生巩固所学知识,并提醒学生参考教材和相关资料复习实数的内容。

教学延伸:学生可以通过阅读相关书籍和资料,进一步深入了解实数的定义、性质和应用,拓宽知识面。

还可以进行实际问题的应用实践,探究实数在日常生活中的应用场景。

教学反思:通过本节课的教学,学生对实数的基本概念有了初步了解,并掌握了实数的表示和比较方法,以及加减乘除运算的规律。

实数精品教案设计(通用5篇)

实数精品教案设计(通用5篇)

实数精品教案设计(通用5篇)2022-03-22作为一名为他人授业解惑的教育工作者,很有必要精心设计一份教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。

那么应当如何写教案呢?以下是小编精心整理的实数教案设计,欢迎阅读与收藏。

实数教案设计篇1教学目标●知识与技能目标(1)了解有理数的运算法则在实数范围内仍然适用。

(2)用类比的方法,引入实数的运算法则、运算律,并能用这些法则、运算律在实数范围进行正确计算。

(3)正确运用公式:(≥0,≥0)(≥0,>0)这两个公式,实际上是二次根式内容中的两个公式,但这里不必向学生提出二次根式这个概念。

●过程与方法目标(1)通过具体数值的运算,发现规律,归纳总结出规律。

(2)能用类比的方法解决问题,用已有知识去探索新知识。

●情感与态度目标由实例得出两条运算法则,培养学生归纳、合作、交流的意识,提高数学素养。

教学重点(1)用类比的方法,引入实数的运算法则、运算律,能在实数范围内正确运算。

(2)发现规律:(≥0,≥0)(≥0,>0)教学难点(1)类比的学习方法。

(2)发现规律的过程。

教学准备:教材、、电脑。

电脑软件:Word,Powerpoint。

教学过程第一环节:复习引入(2分钟,学生通过回答问题,回顾旧知)问题1 :有理数中学过哪些运算及运算律?答:加、减、乘、除、乘方,加法()交换律、结合律,分配律。

问题2:实数包含哪些数?答:有理数,无理数。

问题3:有理数中的运算法则、运算律等在实数范围内能继续使用?答:这是我们本节课要解决的新问题。

实数教案设计篇2一.教学目标知识与技能目标:掌握实数运算的法则和运算顺序,会用计算器进行简单的混合运算,并解决一些简单的实际问题。

过程与方法目标:通过回顾有理数的运算法则和运算律,了解有理数的运算法则和运算律在实数范围内同样适用。

情感与态度目标:通过计算器的使用,提高学生的应用意识;通过对实际问题的解决,体验数学的应用性特点。

实数教案(精选3则)

实数教案(精选3则)

实数教案(精选3则)实数教案实数教案(一):初中数学教案----实数一、资料特点在知识与方法上类似于数系的第一次扩张。

也是后继资料学习的基础。

资料定位:了解无理数、实数概念,了解(算术)平方根的概念;会用根号表示数的(算术)平方根,会求平方根、立方根,用有理数估计一个无理数的大致范围,实数简单的四则运算(不要求分母有理化)。

二、设计思路[]整体设计思路:无理数的引入----无理数的表示----实数及其相关概念(包括实数运算),实数的应用贯穿于资料的始终。

学习对象----实数概念及其运算;学习过程----透过拼图活动引进无理数,透过具体问题的解决说明如何表示无理数,进而建立实数概念;以类比,归纳探索的方式,寻求实数的运算法则;学习方式----操作、猜测、抽象、验证、类比、推理等。

具体过程:首先透过拼图活动和计算器探索活动,给出无理数的概念,然后透过具体问题的解决,引入平方根和立方根的概念和开方运算。

最后教科书总结实数的概念及其分类,并用类比的方法引入实数的相关概念、运算律和运算性质等。

第一节:数怎样又不够用了:透过拼图活动,让学生感受无理数产生的实际背景和引入的必要性;借助计算器探索无理数是无限不循环小数,并从中体会无限逼近的思想;会决定一个数是有理数还是无理数。

第二、三节:平方根、立方根:如何表示正方形的边长?它的值到底是多少?并引入算术平方根、平方根、立方根等概念和开方运算。

第四节:公园有多宽:在实际生活和生产实际中,对于无理数我们常常透过估算来求它的近似值,为此这一节资料介绍估算的方法,包括透过估算比较大小,检验计算结果的合理性等,其目的是发展学生的数感。

第五节:用计算器开方:会用计算器求平方根和立方根。

经历运用计算器探求数学规律的活动,发展合情推理的潜力。

第六节:实数。

总结实数的概念及其分类,并用类比的方法引入实数的相关概念、运算律和运算性质等。

三、一些推荐1.注重概念的构成过程,让学生在概念的构成的过程中,逐步理解所学的概念;关注学生对无理数和实数概念的好处理解。

北师大版实数教案(3篇)

北师大版实数教案(3篇)

第1篇教学目标1. 知识与技能目标:使学生理解实数的概念,掌握实数的分类,能够熟练进行实数的运算。

2. 过程与方法目标:通过小组合作、探究活动,培养学生的观察、分析、归纳能力,提高学生解决实际问题的能力。

3. 情感与价值观目标:让学生体会数学与生活的联系,激发学生学习数学的兴趣,培养严谨求实的科学态度。

教学重点1. 实数的概念及分类。

2. 实数的运算。

教学难点1. 实数的概念理解。

2. 实数运算的灵活运用。

教学准备1. 教材:北师大版八年级数学上册2. 课件、投影仪、电脑3. 实物教具:数轴、正方形纸片教学过程第一环节:复习导入(5分钟)1. 复习有理数的分类,引导学生回顾有理数和无理数的概念。

2. 提问:为什么需要引入实数?实数与数轴有什么关系?第二环节:新课讲授(20分钟)1. 实数的概念:- 通过数轴展示实数的概念,引导学生观察数轴上的点与实数之间的关系。

- 举例说明实数的分类:有理数、无理数。

- 讲解无理数的产生背景,如勾股定理、圆周率等。

2. 实数的运算:- 介绍实数的加、减、乘、除运算规则。

- 通过例题展示实数运算的步骤和方法。

- 强调运算过程中的符号运算和绝对值运算。

第三环节:小组合作探究(15分钟)1. 将学生分成小组,每组发放数轴、正方形纸片等教具。

2. 小组合作完成以下任务:- 利用数轴展示实数的分类。

- 通过拼图活动,探究无理数的性质。

- 比较有理数和无理数的运算特点。

第四环节:课堂小结(5分钟)1. 教师总结本节课的主要内容,强调实数的概念、分类和运算。

2. 学生回顾本节课所学知识,提出疑问。

第五环节:作业布置(5分钟)1. 完成课后练习题,巩固所学知识。

2. 搜集生活中与实数相关的实例,进行实际应用。

教学反思本节课通过引导学生观察、探究、合作,使学生理解实数的概念、分类和运算。

在教学过程中,注重培养学生的动手能力和合作意识,提高学生解决实际问题的能力。

在今后的教学中,应继续关注学生的个体差异,针对不同学生的学习需求,调整教学策略,提高教学质量。

实数的教学设计(精编7篇)

实数的教学设计(精编7篇)

实数的教学设计(精编7篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如计划总结、合同协议、管理制度、演讲致辞、心得体会、条据书信、好词好句、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as plan summaries, contract agreements, management systems, speeches, insights, evidence letters, good words and sentences, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!实数的教学设计(精编7篇)实数的教学设计(1)教学目标知识与技能目标(1)了解有理数的运算法则在实数范围内仍然适用。

七年级数学上册《实数》教案、教学设计

七年级数学上册《实数》教案、教学设计
2.讲解无理数的定义,以及如何判断一个数是否为无理数。通过具体例子,让学生理解无理数的性质和特点。
3.介绍实数的四则运算,特别是乘除运算的化简方法。通过讲解和举例,让学生掌握实数运算的规则。
4.引导学生探究实数在数轴上的表示方法,让学生通过实际操作,体验实数与数轴的关系,培养数形结合的思维方式。
(三)学生小组讨论
8.课后辅导和拓展,针对学生在课堂上遗留的问题,进行个别辅导;同时,提供丰富的拓展资源,满足学有余力学生的需求。
四、教学内容与过程
(一)导入新课
1.利用多媒体展示一个正方形和一条对角线,提出问题:“同学们,你们知道这个正方形的对角线有多长吗?”引导学生回顾勾股定理,计算出对角线的长度为$\sqrt{2}$。
1.将学生分成小组,讨论以下问题:
a.举例说明无理数在实际生活中的应用。
b.如何判断一个数是否为无理数?
c.实数在数轴上如何表示?
2.各小组汇报讨论成果,教师点评并总结。
(四)课堂练习
1.设计不同难度的练习题,让学生独立完成。题目包括:
a.判断以下数是否为无理数:$\sqrt{5}$、$\pi$、$\frac{22}{7}$。
在教学过程中,教师应以学生为主体,关注学生的个体差异,充分调动学生的积极性、主动性和创造性。通过本章节的学习,使学生全面掌握实数的知识与技能,形成良好的学习方法和情感态度,为今后的数学学习打下坚实的基础。
二、学情分析
七年级的学生正处于青春期,思维活跃,好奇心强,但注意力容易分散。在数学学习方面,他们已经掌握了有理数的概念和运算,具备了一定的数学基础。然而,对于实数的认识尚处于模糊阶段,特别是对无理数的理解和运用存在一定难度。因此,在教学过程中,应关注以下几点:
2.提问:“$\sqrt{2}$是一个什么类型的数?”让学生回顾有理数的概念,进而引出无理数的概念,为新课的学习做好铺垫。

《实数》教案教育教学方案

《实数》教案教育教学方案

《实数》教案教育教学方案一、教学内容本节课的教学内容选自人教版高中数学必修一第三章《实数》的第三节“实数的运算”。

本节内容主要包括实数的加法、减法、乘法、除法运算,以及实数的乘方和开方运算。

二、教学目标1. 理解实数运算的定义和性质,掌握实数的加法、减法、乘法、除法、乘方和开方运算的方法。

2. 能够运用实数运算解决实际问题,提高学生的数学应用能力。

3. 培养学生的逻辑思维能力和团队合作精神。

三、教学难点与重点1. 教学难点:实数的乘方和开方运算,以及实数运算在实际问题中的应用。

2. 教学重点:实数的加法、减法、乘法、除法运算,以及实数的乘方和开方运算。

四、教具与学具准备1. 教具:黑板、粉笔、投影仪、PPT课件。

2. 学具:笔记本、橡皮、直尺、圆规。

五、教学过程1. 实践情景引入:设计一个实际问题,如“某商店进行打折活动,原价为100元的商品打8折,求打折后的价格。

”让学生思考如何用实数运算解决问题。

2. 知识点讲解:利用PPT课件,逐个讲解实数的加法、减法、乘法、除法、乘方和开方运算的定义和性质。

3. 例题讲解:挑选几个典型的例题,如“已知实数a、b,求(a+b)、(ab)、(a×b)、(a÷b)、(a²)、(√a)的值。

”进行讲解,让学生跟随步骤一起解答。

4. 随堂练习:设计一些实数运算的练习题,让学生在课堂上独立完成,及时巩固所学知识。

5. 小组讨论:将学生分成小组,讨论实数运算在实际问题中的应用,分享解题方法和心得。

六、板书设计板书实数运算的定义和性质,以及关键的步骤和公式。

七、作业设计1. 题目:已知实数a、b,求(a+b)、(ab)、(a×b)、(a÷b)、(a²)、(√a)的值。

2. 答案:(a+b) = a + b(ab) = a b(a×b) = a × b(a÷b) = a ÷ b(a²) = a × a(√a) = √a八、课后反思及拓展延伸1. 课后反思:本节课通过实际问题引入,让学生了解实数运算的应用,通过例题讲解和随堂练习,让学生掌握实数运算的方法。

《实数》教案教育教学方案

《实数》教案教育教学方案

《实数》教案教育教学方案一、教学内容本节课选自教材第十二章《实数》的第一节,内容包括实数的定义、性质及分类。

详细内容如下:1. 实数的定义:有理数和无理数的统称,包括整数、分数、π、e等。

2. 实数的性质:实数具有有序性、稠密性、传递性等。

3. 实数的分类:实数可以分为有理数和无理数,有理数又可分为整数和分数。

二、教学目标1. 理解实数的定义,掌握实数的性质和分类。

2. 学会运用实数进行计算,提高运算能力。

3. 培养学生的数学思维能力和解决问题的能力。

三、教学难点与重点难点:实数的性质和分类。

重点:实数的定义及其在数学运算中的应用。

四、教具与学具准备1. 教具:黑板、粉笔、多媒体设备。

2. 学具:练习本、草稿纸、计算器。

五、教学过程1. 导入:通过实际情景引入实数概念,如测量物体长度、计算面积等。

2. 新课导入:讲解实数的定义、性质和分类。

3. 例题讲解:讲解实数运算的例题,如加减乘除、开方等。

4. 随堂练习:让学生进行实数运算的练习,巩固所学知识。

5. 知识拓展:介绍实数在生活中的应用,如科学计算、工程技术等。

六、板书设计1. 实数的定义2. 实数的性质3. 实数的分类4. 实数运算例题5. 课堂练习七、作业设计1. 作业题目:(1)计算下列各题,并说明其结果是有理数还是无理数:a. √9 + √16b. √7 √3(2)比较下列各组实数的大小:a. 3/2,2b. √5,32. 答案:(1)a. 5(有理数)b. √7 √3(无理数)(2)a. 3/2 < 2 b. √5 < 3八、课后反思及拓展延伸1. 反思:本节课学生对实数的定义和性质掌握情况,以及对实数运算的熟练程度。

2. 拓展延伸:引导学生探索实数在生活中的应用,如测量、计算等,提高学生的数学应用意识。

同时,为学生提供一些实数的高级运算题目,如幂运算、对数运算等,激发学生的学习兴趣。

重点和难点解析1. 实数的定义及性质的教学2. 实数运算的例题讲解3. 课堂练习的设计与指导4. 作业设计中的题目难度和答案解析5. 课后反思与拓展延伸的深度和广度详细补充和说明:一、实数的定义及性质的教学1. 有序性:任意两个实数可以比较大小。

《实数》精品教案

《实数》精品教案

《实数》精品教案一、教学内容本节课选自人教版数学教材八年级下册第十六章《实数》的第一节,内容包括实数的定义、分类及性质。

详细内容如下:1. 实数的定义:有理数和无理数的统称,表示为R。

2. 实数的分类:整数、分数、无理数。

3. 实数的性质:实数具有有序性、稠密性和完备性。

二、教学目标1. 知识与技能:理解实数的定义和分类,掌握实数的性质。

2. 过程与方法:通过例题讲解和随堂练习,提高学生的实数运算能力和解决问题的能力。

3. 情感态度与价值观:培养学生对实数概念的理解,激发学生学习数学的兴趣。

三、教学难点与重点1. 教学难点:实数的定义和性质,尤其是无理数的理解。

2. 教学重点:实数的分类和实数运算。

四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。

2. 学具:练习本、铅笔、橡皮。

五、教学过程1. 引入:通过生活实例,如测量物体长度、计算面积等,引导学生体会实数的必要性。

2. 新课导入:讲解实数的定义、分类及性质,结合多媒体课件进行演示。

3. 例题讲解:选取具有代表性的例题,如实数运算、比较大小等,详细讲解解题思路和方法。

4. 随堂练习:设计具有梯度的问题,让学生独立完成,巩固所学知识。

六、板书设计1. 实数的定义2. 实数的分类1. 整数2. 分数3. 无理数3. 实数的性质4. 实数运算5. 例题及解题方法七、作业设计1. 作业题目:(3)计算:2/3 + √5,(√3 √2)²。

2. 答案:(1)实数:0,3/4,√2,5.6,π,e,…(2)从大到小:e,π,√5,3/2,√3,2(3)2/3 + √5 = 2/3 + √5;(√3 √2)² = 5 2√6。

八、课后反思及拓展延伸1. 课后反思:本节课学生对实数的定义和性质掌握较好,但在实数运算方面还需加强练习。

2. 拓展延伸:引导学生研究实数与数轴的关系,了解实数在数轴上的表示方法,为后续学习函数打下基础。

同时,鼓励学生探索实数在实际问题中的应用,提高学生的数学素养。

八年级数学实数教案5篇

八年级数学实数教案5篇

八年级数学实数教案5篇一节数学课不但要把该节的内容让学生能够接受,更重要的是启发学生去思考,引导学生从抽象的理论到实践的过程,对于方法的探索采用从特殊到一般的思想,下面是小编给大家整理的八年级数学实数教案5篇,希望大家能有所收获!八年级数学实数教案1一.教材分析1.教材的地位和作用本节课是北师大版实验教科书八年级上册第二章《实数》的第六节内容.在本节之前学生已学习了平方根.立方根,认识了无理数,了解了无理数是客观存在的,从而将有理数扩充到实数范围,使学生对数认识进一步深入.中学阶段有关数的问题多是在实数范围内进行讨论的,同时实数内容也是今后学习一元二次方程.函数的基础.2.教学目标:(根据新课程标准的要求,结合本节教材的特点,以及八年级学生的认知规律,我制定如下目标).知识技能:(1)了解无理数和实数的概念以及实数的分类.(2)知道实数与数轴上的点具有一一对应关系.数学思考:(1)经历对实数进行分类的过程,发展学生的分类意识.(2)经历从有理数逐步扩充到实数的过程,了解人类对数的认识是不断发展的.解决问题:通过无理数的引入,使学生对数的认识由有理数扩充到实数.情感态度:(1)通过了解数系扩充体会数系扩充对人类发展的作用.(2)敢于面对数学活动中的困难,并能有意识地运用已有知识解决新问题.3.教学重点.难点重点:了解实数意义,能对实数进行分类,明确数轴上的点与实数一一对应并能用数轴上的点来表示无理数.难点:用数轴上的点来表示无理数.二.学情分析在学习本节课前,学生已掌握对一个非负数开平方和对一个数开立方运算.课本对学生掌握实数要求不高.只要求学生了解无理数和实数的意义.但实数的知识却贯穿中学数学始终,所以我们只能逐步加深学生对实数的认识.本节主要引导学生熟知实数的概念和意义,为后面学习打下基础.三.教法学法分析:教法分析:根据本节课的教学内容和学生的实际水平,我采用的是引导发现法.类比法和多媒体辅助教学.(1)在教学中通过设置疑问,创设出思维情境,然后引导学生动脑.动手,使学生在开放.民主.和谐的教学氛围中获取知识,提高能力,促进思维的发展.(2)借助多媒体辅助教学,增大教学的容量和直观性,增强学习兴趣,从而达到提高教学效果和教学质量的目的.(3)教具:三角板.圆规.多媒体.学法分析:我们在向学生传授知识的同时,必须教给他们好的学习方法,让他们学会学习.享受学习.因此,在本节课的教学中引导学生〝仔细看.动脑想.多交流.勤练习〞的学习,增强参与意识,让他们体验获取知识的历程,掌握思考问题的方法,逐渐培养他们〝会观察〞.〝会类比〞.〝会分析〞.〝会归纳〞的能力.四.教程分析:针对本节教材的特点,我把教学过程设计为以下五个环节:北师大版八年级数学上册第二章《2.6实数》说课稿一.创设问题情景,引出实数的概念内容:问题:(1)什么是有理数?有理数怎样分类?(2)什么是无理数?带根号的数都是无理数吗?意图:回顾以前学习过的内容,为进一步学习引入无理数后数的范围的扩充作准备.学生回答:无理数是无限不循环小数.带根号的数不一定是无理数.3.把下列各数分别填入相应的集合内.有理数集合.无理数集合,,,,,,,,,,0,0.3737737773……(相邻两个3之间7的个数逐次增加1)意图:通过将以上各数填入有理数集合和无理数集合,建立实数概念.教师引导学生得出实数概述并板书:有理数和无理数统称实数(realnumber).教师点明:实数可分为有理数与无理数.最后多媒体展示具体分类,并对有理数和无理数从小数的角度进行说明.二.议一议,1.在实数概念基础上对实数进行不同分类.无理数与有理数一样,也有正负之分,如是正的,是负的.教师提出以下问题,让学生思考:(1)你能把,,,,,,,,,,0,0.3737737773……(相邻两个3之间7的个数逐次增加1)等各数填入下面相应的集合中?正数集合:负数集合:(2)0属于正数吗?0属于负数吗?(3)实数除了可以分为有理数与无理数外,实数还可怎样分?意图:在实数概念形成的基础上对实数进行不同的分类.上面的数中有0,0不能放入上面的任何一个集合中,学生容易遗漏,强调0也是实数,但它既不是正数也不是负数,应单独作一类.提醒学生分类可以有不同的方法,但要按同一标准不重不漏.让学生讨论回答后,教师引导学生形成共识:实数也可以分为正实数.0.负实数.2.了解实数范围内相反数.倒数.绝对值的意义:在有理数中,有理数a的的相反数是什么,不为0的数a的倒数是什么.在实数范围内,相反数.倒数.绝对值的意义和有理数范围内的相反数.倒数.绝对值的意义完全一样.例如,和是互为相反数,和互为倒数.,,,.三.想一想让学生思考以下问题1.a是一个实数,它的相反数为,绝对值为;2.如果,那么它的倒数为.意图:从复习入手,类比有理数中的相关概念,建立实数的相反数.倒数和绝对值等概念,它们的意义和有理数范围内的意义是一致的让学生回答后,教师归纳并板书:实数a的相反数为,绝对值为,若它的倒数为(教师指明:0没有倒数)增加练习:(多媒体展示)第一组1.的绝对值是2.a是一个实数,它的绝对值是第二组:1.的相反数是,绝对值是2.绝对值等于的数是,3.的绝对值是4.正实数的绝对值是,0的绝对值是,负实数的绝对值是例题:求下列各数的相反数.倒数.绝对值(1)(2)(3)学生上黑板完成,教师巡视学生如何书写,对发现的问题及时处理,最后与学生共同纠正.明晰:实数和有理数一样,可以进行加.减.乘.除.乘方运算,而且有理数的运算法则与运算律对实数仍然适用.(媒体展示两个举例)四.议一议.探索用数轴上的点来表示无理数1.每个有理数都可以用数轴上的点表示,那么无理数是否也可以用数轴上的点来表示呢?你能在数轴上找到表示.和这样的无理数的点吗?2.多媒体展示的做法和和的做法如图OA=OB,数轴上A点对应的数是多少?让学生充分思考交流后,引导学生达成以下共识:探讨用数轴上的点来表示实数,将数和图形联系在一起,让学生进一步领会数形结合的思想,利用数轴也可以直观地比较两个实数的大小.(1)A点对应的数等于,它介于1与2之间.(2)每一个有理数都可以用数轴上的点表示(3)每一个无理数都可以用数轴上的点来表示(4)每个实数都可以用数轴上的点来表示,每一个实数都可以用数轴上的点来表示;反过来数轴上的每一个点都表示一个实数.即实数和数轴上的点是一一对应的.(4)和有理数一样,在数轴上,右边的点比左边的点表示的数大.五.随堂练习(多媒体展示)第一组:判断题:①实数不是有理数就是无理数.②无理数都是无限不循环小数.③无理数都是无限小数④带根号的数都是无理数.⑤无理数一定都带根号.⑥两个无理数之积不一定是无理数.⑦两个无理数之和一定是无理数.⑧数轴上的任何一点都可以表示实数.第二组:1.判断下列说法是否正确:(1)无限小数都是无理数;(2)无理数都是无限小数;(3)带根号的数都是无理数.2.求下列各数的相反数.倒数和绝对值:(1)(2)(3)3.在数轴上作出对应的点.意图:通过以上练习,检测学生对实数相关知识的掌握情况.六.小结1.实数的概念2.实数可以怎样分类3.实数a的相反数为,绝对值,若,它的倒数为.4.数轴上的点和实数一一对应.七.作业课本习题2.81.2.3题结束语:多媒体展示:人生的价值,并不是用时间,而是用深度去衡量的.——列夫托尔斯泰八.板书设计:实数1.实数的概念4.实数与数轴上的点的关系2.实数的分类5.例题3.实数a的相反数为,6.学生练习绝对值,若,它的倒数为八年级数学实数教案2学习目标1 了解无理数和实数的概念2会对实数按照一定的标准进行分类;知道实数和数轴上的点的关系.能估算无理数的大小3了解实数范围内相反数和绝对值的意义学习重点正确理解实数的概念学习难点理解实数的概念问题用计算机把下列有理数写成小数的形式5?3,7,8,_90,9我们知道整数和分数统称有理数,所以任意一个有理数都可以写成有限小数或无限不循环小数的形式,反之,任何有限小数或无限小数也都是有理数.那么无限不循环小数叫什么呢?无理数:无限不循环小数叫做无理数.通过上两节课的学习,我们知道许多数的平方根或立方根都是无限不循环小数,例如 . .? . 等都是无理数,π=3.__926…也是无理数.实数:有理数和无理数统称为实数.有理数有限小数或无限小数依此分类实数无理数无限不循环小数像有理数一样,无理数也有正负之分,由于非0有理数和无理数都有3479_5 正负之分,所以依此分类为正实数正有理数正无理数实数0负有理数负实数负无理数例一.把下列各数填入相应的集合内0.6.-43.0.33. 0._ .π.(1)有理数集合:{}(2)无理数集合:{}(3)整数集合 :{}(4)分数集合:{}(5)实数集合:{}我们知道,每个有理数都可以用数轴上的点来表示.无理数是否也可以用数轴上的点来表示呢?事实上,每一个无理数都可以用数轴上的一个点表示出来.即数轴上的点有些表示有理数,有些表示无理数.当数从有理数扩充到实数后,实数与数轴上的点就是一一对应的,即每一个实数都可以用数轴上的一个点来表示:反过来,数轴上的每一个点都表示一个实数.平面直角坐标系中的点与有序实数对之间也是一一对应的.与有理数一样,对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数大.当数从有理数扩充到实数以后,有理数关于相反数的绝对值的意义同样适合实数.(1)数a的相反数是-a,(a表示任何实数)(2)一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.课堂小结1.这节课你学到的知识有2.这节课你的收获有3.这节课应注意的问题有练习题a1.若实数a满足a??1,则() A.a?0B.a?0C.a?0D.a?02.下列说法正确的是().A.无限小数都是无理数B.带根号的数都是无理数C.无理数是无限小数D.无理数是开方开不尽的数3.和数轴上的点一一对应的是()A 整数B 有理数C 无理数D 实数35?_4.绝对值等于的数是,的相反数是,?8的相反数是;1?2的相反数是_________________,绝对值是.5.如果一个实数的绝对值是3?7,那么这个实数是6.比较大小:-7?4八年级数学实数教案3教学难点:绝对值.教学过程:一. 复习:1.实数分类:方法(1) ,方法(2)注:有限小数.无限循环小数是有理数,可化为分数;无限不循环小数是无理数例1判断:(1) 两有理数的和.差.积.商是有理数;(2) 有理数与无理数的积是无理数;(3) 有理数与无理数的和.差是无理数;(4) 小数都是有理数;(5) 零是整数,是有理数,是实数,是自然数; (6) 任何数的平方是正数; (7) 实数与数轴上的点一一对应; (8) 两无理数的和是无理数. 例2下列各数中:-1,0, , ,1.1_0_ , , ,- , ,2, . 有理数集合{ …}; 正数集合{ …};整数集合{ …};自然数集合{…};分数集合{ …}; 无理数集合{ …};绝对值最小的数的集合{ …};2.绝对值: = (1) 有条件化简例3.①当1 ②a,b,c为三角形三边,化简③如图,化简 + . (2) 无条件化简 ;例4.化简解:步骤①找零点;②分段;③讨论.例5.①已知实数abc在数轴上的位置如图,化简|a+b|-|c-b|的结果为②当-3例6.阅读下面材料并完成填空你能比较两个数__和__的大小吗?为了解决这个问题先把问题一般化,既比较nn+1和(n+1)n的大小(的整数),然后从分析=1,=2,=3,....这些简单的情况入手,从中发现规律,经过规纳,猜想出结论.(1) 通过计算,比较下列①——⑦各组中两个数的大小(在横线上填〝 .=. 〞号〞)①_ _ ;②23 32;③34 43;④45 54;⑤56 65;⑥67 76⑦78 87(2)对第(1)小题的结果进行归纳,猜想出nn+1和(n+1)n的大小关系是(3)根据上面的归纳结果猜想得到的一般结论是: __ __练习:(1)若a -6,化简 ;(2)若a 0,化简(3)若 ;(4)若 = ;(5)解方程 ;(6)化简: .二. 小结:;三.作业:四.教后感:八年级数学实数教案41.体现了自主学习.合作交流的新课程理念.对于例题的处理,改变了传统的教学模式,采用了〝尝试—交流—讲评—讨论〞的方式,充分发挥学生的主体性.参与性.同样采用了〝尝试—发现—归纳〞的方式.使学生清楚新旧知识的区别和联系.当然类比的对象也可能出现差异,这在进一步的类比有理数与数轴的关系时就表现出来了,有理数与数轴上的点不是一一对应的,而实数与数轴上的点是一一对应的.2.重视数学思想方法与算法算理的渗透,本节课在这一方面主要是让学生感知研究数学问题的一般方法(分类.辨析.归纳.化归等),通过让学生不断回顾有理数的相反数.绝对值.混合运算等知识,有意识地让学生类比旧知识,自主学习新知识,很好地发展了学生的类比能力.3.在本节课的设计中,注重引导学生参与探究.归纳(用自己的语言叙述)实数范围内的相反数.绝对值含义,以及实数范围内的混合运算法则.4. 注意学生合作学习的学习方式,让学生在与他人合作中受益,学会交流,学会倾听和接受别人的意见和建议.从课堂上学生的反映情况也看到了不足:1.学生自主探索的时间较少.对于学生,会对实数进行分类,没有大面积利用小组合作提高学生的积极性,有些面面俱到包揽太多,过于低估学生的学习能力,应给学生留有一定的学习空间.2.有些细节的重点地方忽略了,比如学生在表示出根号5,根号_等点时引导学生总结无理数也可在数轴上表示,此处如果再设计一问:反过来说,有理数把数轴填满了吗?引导学生回到本节课题实数与数轴的点一一对应. 3.分层教学对于不同层次的学生应该有不同的要求,在教学中应该多加注意,采取不同的评价方式,并且要有相应的激励方法,学生才能有热情去学习.数学课堂不应仅仅是学习的地方,更应是学生〝生活〞的乐园.让生活走进初中数学课堂,适应学生的学习生活和个性发展的需要,让所有的学生都能在数学课堂中接触生活.感悟生活,学习生活中必需的数学,才能更好地实践课改精神,推进高效课堂的进行.八年级数学实数教案5教学目标(一)知识目标:1.通过拼图活动,让学生感受无理数产生的实际背景和引入的必要性.2.能判断给出的数是否为有理数;并能说出现由.(二)能力训练目标:1.让学生亲自动手做拼图活动,感受无理数存在的必要性和合理性,培养大家的动手能力和合作精神.2.通过回顾有理数的有关知识,能正确地进行推理和判断,识别某些数是否为有理数,训练他们的思维判断能力.(三)情感与价值观目标:1.激励学生积极参与教学活动,提高大家学习数学的热情.2.引导学生充分进行交流,讨论与探索等教学活动,培养他们的合作与钻研精神.3.了解有关无理数发现的知识,鼓励学生大胆质疑,培养他们为真理而奋斗的精神.教学重点1.让学生经历无理数发现的过程.感知生活中确实存在着不同于有理数的数.2.会判断一个数是否为有理数.教学难点1.把两个边长为1的正方形拼成一个大正方形的动手操作过程.2.判断一个数是否为有理数.教学方法教师引导,主要由学生分组讨论得出结果.教学过程一.创设问题情境,引入新课[师]同学们,我们学过不计其数的数,概括起来我们都学过哪些数呢?[生]在小学我们学过自然数.小数.分数.[生]在初一我们还学过负数.[师]对,我们在小学学了非负数,在初一发现数不够用了,引入了负数,即把从小学学过的正数.零扩充到有理数范围,有理数包括整数和分数,那么有理数范围是否就能满足我们实际生活的需要呢?下面我们就来共同研究这个问题.二.讲授新课1.问题的提出[师]请大家四个人为一组,拿出自己准备好的两个边长为1的正方形和剪刀,认真讨论之后,动手剪一剪,拼一拼,设法得到一个大的正方形,好吗?[生]好.(学生非常高兴地投入活动中).[师]经过大家的共同努力,每个小组都完成了任务,请各组把拼的图展示一下.同学们非常踊跃地呈现自己的作品给老师.[师]现在我们一齐把大家的做法总结一下:下面请大家思考一个问题,假设拼成大正方形的边长为a,则a应满足什么条件呢?[生甲]a是正方形的边长,所以a肯定是正数.[生乙]因为两个小正方形面积之和等于大正方形面积,所以根据正方形面积公式可知a2=2.[生丙]由a2=2可判断a应是1点几.[师]大家说得都有道理,前面我们已经总结了有理数包括整数和分数,那么a是整数吗?a是分数吗?请大家分组讨论后回答.[生甲]我们组的结论是:因为_=1,_=4,32=9,…整数的平方越来越大,所以a应在1和2之间,故a不可能是整数.[生乙]因为,…两个相同因数的乘积都为分数,所以a不可能是分数.[师]经过大家的讨论可知,在等式a2=2中,a既不是整数,也不是分数,所以a不是有理数,但在现实生活中确实存在像a这样的数,由此看来,数又不够用了.2.做一做投影片§2.1.1 A(1)在下图中,以直角三角形的斜边为边的正方形的面积是多少?(2)设该正方形的边长为b,则b应满足什么条件?b是有理数吗?[师]请大家先回忆一下勾股定理的内容.[生]在直角三角形中,若两条直角边长为a,b,斜边为c,则有a2+b2=c2.[师]在这题中,两条直角边分别为1和2,斜边为b,根据勾股定理得b2=_+_,即b2=5,则b是有理数吗?请举手回答.[生甲]因为_=4,32=9,4 5 9,所以b不可能是整数.[生乙]没有两个相同的分数相乘得5,故b不可能是分数.[生丙]因为没有一个整数或分数的平方为5,所以5不是有理数.[师]大家分析得很准确,像上面讨论的数a,b都不是有理数,而是另一类数——无理数.关于无理数的发现是付出了昂贵的代价的.早在公元前,古希腊数学家毕达哥拉斯认为万物皆〝数〞,即〝宇宙间的一切现象都能归结为整数或整数之比〞,也就是一切现象都可用有理数去描述.后来,这个学派中的一个叫希伯索斯的成员发现边长为1的正方形的对角线的长不能用整数或整数之比来表示,这个发现动摇了毕达哥拉斯学派的信条,据说为此希伯索斯被投进了大海,他为真理而献出了宝贵的生命,但真理是不可战胜的,后来古希腊人终于正视了希伯索斯的发现.也就是我们前面谈过的a2=2中的a不是有理数.我们现在所学的知识都是前人给我们总结出来的,我们一方面应积极地学习这些经验,另一方面我们也不能死搬教条,要大胆质疑,如不这样科学就会永远停留在某处而不前进,要向古希腊的希伯索斯学习,学习他为捍卫真理而勇于献身的精神.三.课堂练习(一)课本P35随堂练习如图,正三角形ABC的边长为2,高为h,h可能是整数吗?可能是分数吗?解:由正三角形的性质可知BD=1,在Rt△ABD中,由勾股定理得h2=3.h不可能是整数,也不可能是分数.(二)补充练习为了加固一个高2米.宽1米的大门,需要在对角线位置加固一条木板,设木板长为a米,则由勾股定理得a2=_+_,即a2=5,a的值大约是多少?这个值可能是分数吗?解:a的值大约是2.2,这个值不可能是分数.四.课堂小结1.通过拼图活动,经历无理数产生的实际背景,让学生感受有理数又不够用了.2.能判断一个数是否为有理数.五.课后作业:见作业本.§2.1 数怎么又不够用了(二)教学目标(一) 知识目标:1.借助计算器探索无理数是无限不循环小数,并从中体会无限逼近的思想.2.会判断一个数是有理数还是无理数.(二)能力训练目标:1.借助计算器进行估算,培养学生的估算能力,发展学生的抽象概括能力,并在活动中进一步发展学生独立思考.合作交流的意识和能力.2.探索无理数的定义,以及无理数与有理数的区别,并能辨别出一个数是无理数还是有理数,训练大家的思维判断能力.(三)情感与价值观目标:1.让学生理解估算的意义,掌握估算的方法,发展学生的数感和估算能力.2.充分调动学生的积极性,培养他们的合作精神,提高他们的辨识能力.教学重点1.无理数概念的探索过程.2.用计算器进行无理数的估算.3.了解无理数与有理数的区别,并能正确地进行判断.教学难点1.无理数概念的建立及估算.2.用所学定义正确判断所给数的属性.教学方法老师指导学生探索法教学过程一.创设问题情境,引入新课[师]同学们,我们在上节课了解到有理数又不够用了,并且我们还发现了一些数,如a2=2,b2=5中的a,b既不是整数,也不是分数,那么它们究竟是什么数呢?本节课我们就来揭示它的真面目.二.讲授新课1.导入:[师]请看图大家判断一下3个正方形的边长之间有怎样的大小关系?说说你的理由.[生]因为3个正方形的面积分别为1,2,4,而面积又等于边长的平方,所以面积大的正方形边长就大.[师]大家能不能判断一下面积为2的正方形的边长a的大致范围呢?[生]因为a2大于1且a2小于4,所以a大致为1点几.[师]很好.a肯定比1大而比2小,可以表示为1 a 2.那么a究竟是1点几呢?请大家用计算器进行探索,首先确定十分位,十分位究竟是几呢?如1._=1._,1._=1.44,1.32=1.69,1.42=1.96,1.52=2.25,而a2=2,故a应比1.4大且比1.5小,可以写成1.4 a 1.5,所以a是1点4几,即十分位上是4,请大家用同样的方法确定百分位.千分位上的数字. p=[生]因为1.4_=1.9881,1.4_=2._64,所以a应比1.41大且比1.42小,所以百分位上数字为1.[生]因为1.4_2=1.99__,1.4_2=1.993744,1.4_2=1.996569,1.4_2=1.999396,1.4_2=2.0__5,所以a应比1.4_大而比1.4_小,即千分位上的数字为4.[生]因为1.4__=1.99996_4,1.4_32=2.00_4449,所以a应比1.4_2大且比1.4_3小,即万分位上的数字为2.[师]大家非常聪明,请一位同学把自己的探索过程整理一下,用表格的形式反映出来.[生]我的探索过程如下.边长a 面积S1 a2 p= 1 s 41.4 a 1.5 p= 1.96 s2.251.41 a 1.42 p= 1.9881 s2._641.4_ a 1.4_ p= 1.999396 s2.0__51.4_2 a 1.4_3 p= 1.99996_4 s2.00_4449[师]还可以继续下去吗?[生]可以.[师]请大家继续探索,并判断a是有限小数吗?[生]a=1.4_2_56…,还可以再继续进行,且a是一个无限不循环小数.[师]请大家用上面的方法估计面积为5的正方形的边长b的值.边长b会不会算到某一位时,它的平方恰好等于5?请大家分组合作后回答.(约4分钟)[生]b=2.236_7978…,还可以再继续进行,b也是一个无限不循环小数.[生]边长b不会算到某一位时,它的平方恰好等于5,但我不知道为什么.[师]好.这位同学很坦诚,不会就要大胆地提出来,而不要冒充会,这样才能把知识学扎实,学透,大家应该向这位同学学习.这个问题我来回答.如果b算到某一位时,它的平方恰好等于5,即b是一个有限小数,那么它的平方一定是一个有限小数,而不可能是5,所以b不可能是有限小数.2.无理数的定义请大家把下列各数表示成小数.3,,并看它们是有限小数还是无限小数,是循环小数还是不循环小数.大家可以每个小组计算一个数,这样可以节省时间.[生]3=3.0, =0.8, = ,,[生]3, 是有限小数, 是无限循环小数.[师]上面这些数都是有理数,所以有理数总可以用有限小数或无限循环小数表示.反过来,任何有限小数或无限循环小数都是有理数.。

人教版七年级下册数学第6章《实数》优秀教学案例(教案)

人教版七年级下册数学第6章《实数》优秀教学案例(教案)
五、案例亮点
1.生活情境的引入:通过购物小票的实际例子,让学生感受实数在生活中的应用,激发学生的学习兴趣,提高学生的学习积极性。
2.问题导向的教学策略:设计一系列递进式的问题,引导学生逐步深入理解实数的相关知识,培养学生的批判性思维和问题意识。
3.小组合作的学习方式:通过小组讨论和合作任务,培养学生的团队合作精神,提高学生的沟通能力和协作能力。
2.理解实数与数轴的关系,能够利用数轴表示和解释实数。
3.掌握实数的运算方法,包括加法、减法、乘法、除法等,并能进行实数的混合运算。
4.能够运用实数的概念和运算方法解决实际问题,提高学生的应用能力。
(二)过程与方法
1.通过观察、思考、讨论等方式,引导学生主动探索实数的概念和性质。
2.利用数轴作为教学工具,帮助学生直观地理解实数与数轴的关系。
2.利用数轴作为教学工具,帮助学生直观地理解实数与数轴的关系。
3.通过实际例子,让学生体会实数在生活中的应用,提高学生解决实际问题的能力。
4.注重个体差异,给予每个学生充分的思考和表达机会,鼓励学生提出不同观点,培养学生的创新思维。
在教学过程中,我还将注重以下几点:
1.关注学生的学习兴趣,创设有趣的教学情境,激发学生的学习热情。
(四)反思与评价
1.个人反思:在教学过程中,鼓励学生进行个人反思,思考自己在学习实数知识过程中的理解、困惑和收获,如“你觉得自己在实数学习中有哪些收获?还有哪些需要改进的地方?”
2.同伴评价:引导学生相互评价,互相借鉴学习方法和解题思路,如“你觉得他的解题方法怎么样?有没有更好的解决办法?”
3.教师评价:教师对学生的学习情况进行评价,关注学生的知识掌握程度、思维过程和团队合作能力等方面的表现,如“你在这次小组合作中表现得很出色,不仅积极参与讨论,还能够提出有深度的观点。”

6.3实数(教案)

6.3实数(教案)
5.实数与数轴:理解实数与数轴的关系,能够将实数在数轴上准确表示。
本节课将结合具体实例,让学生掌握实数的概念和性质,并熟练运用实数进行运算。
二、核心素养目标
1.理解并掌握实数的定义、分类及性质,培养学生的数学抽象和逻辑推理能力。
2.通过实数的运算和数轴表示,提高学生的数学运算和直观想象能力。
3.培养学生运用实数知识解决实际问题的能力,提升数学建模和数据分析素养。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解实数的基本概念。实数是包括有理数和无理数的数集,它是数学中最重要的数系之一,因为它们能够表示数轴上的所有点。
2.案例分析:接下来,我们来看一个具体的案例。通过分析圆的周长与直径的比例,即π,来理解无理数的概念和性质。
3.重点难点解析:在讲授过程中,我会特别强调实数的分类和实数的运算这两个重点。对于难点部分,如无理数的运算,我会通过具体的例子和步骤来帮助大家理解。
2.教学难点
-无理数的理解:无理数的概念对学生来说是抽象的,难以直观理解。
-无理数的运算:无理数的运算规则和有理数不同,学生容易混淆。
-实数与数轴的结合:将实数与数轴对应起来,学生需要建立起抽象与直观的联系。
-解决实际问题时实数的应用:将实数应用于解决具体问题,学生可能难以找到与实数知识的联系。
举例解释:
-实数的运算:熟练进行实数的四则运算,特别是无理数的运算规则。
-实数与数轴的关系:理解实数在数轴上的表示,能够通过数轴直观地分析实数的大小关系。
举例解释:
-通过π和√2等无理数的引入,强调实数的广泛性,不仅仅局限于分数和整数。
-通过具体的运算例子,如(√3+√2)×(√3-√2),强调实数运算的规则和性质。

《实数》精品教案

《实数》精品教案

《实数》精品教案一、教学内容1. 实数的定义及性质2. 无理数的理解与表示3. 实数的分类及数轴上的表示4. 实数的四则运算法则及性质二、教学目标1. 理解实数的概念,掌握实数的分类及性质。

2. 学会表示无理数,理解无理数在数学中的意义。

3. 能够运用实数的四则运算法则进行混合运算,提高解决问题的能力。

三、教学难点与重点教学难点:无理数的理解与表示、实数的混合运算。

教学重点:实数的定义、性质及分类,实数与数轴的关系。

四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔。

2. 学具:直尺、圆规、计算器。

五、教学过程1. 导入:通过实际情景引入实数概念,例如:测量物体长度时,无法得到一个精确的整数,从而引出实数的定义。

2. 新课导入:讲解实数的定义、性质,引导学生理解实数的分类。

3. 实例讲解:以π和√2为例,讲解无理数的概念及表示方法。

4. 互动环节:让学生在数轴上表示出不同的实数,加深对实数与数轴关系的理解。

5. 例题讲解:讲解实数的四则运算法则,通过例题巩固所学知识。

6. 随堂练习:布置一些实数运算的题目,让学生当堂练习,及时发现问题并进行解答。

8. 课堂小结:布置课后作业,提醒学生复习所学内容。

六、板书设计1. 实数的定义、性质及分类2. 无理数的概念及表示方法3. 实数与数轴的关系4. 实数的四则运算法则七、作业设计1. 作业题目:2. 答案:(1)实数:π,3/2,2^3,5;无理数:√2。

(2)2π + 3√2 5 = 2π + 3√2 5,(3 + √2)(2 √2) = 6 2√2 + 2√2 2 = 4。

八、课后反思及拓展延伸1. 反思:本节课学生对实数的概念和性质掌握情况较好,但在无理数的理解和实数混合运算方面还存在问题,需要在今后的教学中加强训练。

2. 拓展延伸:引入更复杂的实数运算,如分数指数幂、对数等,为学生今后的学习打下基础。

同时,通过实际应用问题,让学生体会实数在生活中的重要性。

《实数》精品教案教育教学方案

《实数》精品教案教育教学方案

《实数》精品教案教育教学方案一、教学内容本节课选自教材第十五章第一节《实数》,主要内容包括实数的定义、分类及运算规则。

详细内容如下:1. 实数的定义及分类:有理数、无理数;2. 实数的运算规则:加法、减法、乘法、除法;3. 实数与数轴的关系;4. 实数在实际问题中的应用。

二、教学目标1. 理解实数的概念,掌握实数的分类和运算规则;2. 能够运用实数解决实际问题,提高数学应用能力;3. 培养学生的数感和逻辑思维能力。

三、教学难点与重点1. 教学难点:实数的概念、无理数的理解;2. 教学重点:实数的分类、运算规则及实际应用。

四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔;2. 学具:直尺、圆规、计算器。

五、教学过程1. 导入:通过数轴上点的移动,引导学生发现实数的概念;2. 新课导入:讲解实数的定义、分类及运算规则;3. 实践情景引入:出示数轴,让学生找出有理数和无理数的位置;4. 例题讲解:讲解实数运算的例题,强调运算规则;5. 随堂练习:让学生独立完成实数运算的练习题,并及时给予反馈;7. 课堂小结:对本节课内容进行回顾,检查学生掌握情况。

六、板书设计1. 实数的定义、分类、运算规则;2. 实数与数轴的关系;3. 例题及解答过程;4. 课堂小结。

七、作业设计1. 作业题目:(2)计算:3+2√5、(√3√2)²;(3)已知数轴上点A表示实数a,点B表示实数b,若A在B的左侧,试比较a与b的大小。

2. 答案:(1)有理数、无理数;(2)5+2√5、1;(3)a< b。

八、课后反思及拓展延伸1. 反思:本节课学生对实数的概念、分类及运算规则掌握情况较好,但部分学生对无理数的理解仍有困难,需加强课后辅导;2. 拓展延伸:引导学生探索实数在生活中的应用,如测量、计算等,提高学生的数学应用能力。

重点和难点解析1. 教学难点:实数的概念、无理数的理解;2. 实践情景引入:数轴上点的移动,引导学生发现实数的概念;3. 例题讲解:实数运算的规则及解题方法;4. 课堂小结:检查学生对实数概念、分类、运算规则的掌握情况;5. 作业设计:针对实数概念、分类、运算的巩固练习。

《实数》教案教育教学方案

《实数》教案教育教学方案

《实数》教案教育教学方案一、教学内容本节课选自人教版《数学》七年级下册第十章《实数》,具体内容包括教材第1节“实数的概念”、第2节“实数的性质”以及第3节“实数的运算”。

通过本节课的学习,使学生掌握实数的定义、性质以及运算方法。

二、教学目标1. 知识与技能:理解实数的概念,掌握实数的性质,熟练进行实数的运算。

2. 过程与方法:通过自主探究、合作交流的方式,培养学生的逻辑思维能力和解决问题的能力。

3. 情感态度与价值观:激发学生学习数学的兴趣,提高学生运用数学知识解决实际问题的意识。

三、教学难点与重点重点:实数的概念、性质及运算方法。

难点:理解无理数的概念,掌握实数的运算规则。

四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。

2. 学具:直尺、圆规、三角板。

五、教学过程1. 导入:通过生活中的实例,引入实数的概念,激发学生的学习兴趣。

实践情景:测量一根木料的长度,得到一个无法用分数表示的数值。

2. 自主探究:让学生阅读教材,了解实数的概念、性质及运算方法。

例题讲解:讲解教材例题,引导学生掌握实数的性质和运算规则。

如何表示一个无理数?实数与有理数的区别是什么?随堂练习:布置一些实数运算的练习题,让学生当堂完成。

六、板书设计1. 实数的概念2. 实数的性质3. 实数的运算方法4. 实数与有理数的区别七、作业设计1. 作业题目:证明:如果a、b是实数,那么a²+b²≥0。

2. 答案:(1)3+√2;(2)52√3;(3)8√5;(4)3√2。

证明:根据平方的性质,a²≥0,b²≥0,所以a²+b²≥0。

八、课后反思及拓展延伸1. 反思:本节课学生对实数的概念、性质及运算方法掌握程度如何?哪些地方需要加强?2. 拓展延伸:了解实数在生活中的应用,如测量、建筑等领域,提高学生运用数学知识解决实际问题的能力。

重点和难点解析1. 实数的概念及与有理数的区别。

2023最新-初中七年级下册《实数》教案优质【最新7篇】

2023最新-初中七年级下册《实数》教案优质【最新7篇】

初中七年级下册《实数》教案优质【最新7篇】作为一位杰出的教职工,时常要开展教案准备工作,借助教案可以提高教学质量,收到预期的教学效果。

我们应该怎么写教案呢?下面是为大伙儿带来的7篇《初中七年级下册《实数》教案优质》,如果能帮助到亲,我们的一切努力都是值得的。

数学实数教案篇一学习目标:1、能借助数轴理解相反数和绝对值得意义,会求一个数的相反数与绝对值。

2、理解实数的意义,能用数轴上的点表示数。

3、了解平方根算数平方根、立方根的概念。

重点:实数的分类。

难点:绝对值的意义和运用。

过程:一、复习回顾实数的分类,方式:师生共同回顾后,师展示二、自学:(一)知识类:1、相反数。

a的相反数是,相反数等子本身的数量,若a、b互为相反数,则。

2、倒数。

a(a≠0)的倒数是。

用负指数表示为没有倒数。

倒数等子本身的数是a、b互为倒数,则3、绝对值。

绝对值等于本身的数是,即lal=4、数轴。

数轴的三要素为一一对应。

5、实数大小的比较。

(1)在数轴上表示两个数的点,左边的点表示的数表示的数。

(2)正数大于零;两个正数绝对值大的较。

两个负数绝对值小的较(3)设a.b是任意两实数。

若a-b>0,则b;若a-b=0,则b;若a-b<0,则b。

6、非负数的表现形式有7、常见的几个实数:最小的自然数是,最大的负整数是,绝对值最小的整数是(二)运用类:1、某水井水位最低时低于水平面5米,记做-5米,最高时低于水平面1米,则水井位h米中h的取值范围是2、若x的相反数是3,lyl=5,则-l-2l的倒数是实数教案设计篇二知识目标:掌握平方根、算术平方根、立方根的概念与表示,认识开平(立)方与平(立)方的联系,会用计算器求平方根与立方根,了解无理数和实数的概念,实数与数轴的对应关系。

过程目标:经历从有理数到实数的扩展,体验实数与数轴上的点一一对应,探究用实数运算解决一些简单的实际问题。

情感目标:运用实际例子帮助学生了解这些抽象概念的实际意义,学会用数形结合的数学思想解决问题。

实数经典教案

实数经典教案

主动地参与到数学学习过程中,亲自体验知识的形成过程.
课题: 10.3 实数(2)
1、知道实数与数轴上的点一一对应,有序实数对与平面上的点一
一对应;
2、学会比较两个实数的大小;
教学目标
母了解在有理数范围内的运算及运算法则、运算性质等在实数范围 内仍然成立,能熟练地进行实数运算;在实数运算时,根据问题的
的绝对值是它的相反数;0 的绝对值是 0.
练一练
例 1 求下列各数的相反数和绝对值:
2.5,- 7 , ,0, 3 2 , -3 5
例 2 一个数的绝对值是 3 ,求这个数。
例 3 求下列各式的实数 x:
3
(1)|x|=|- |;
2
教学中应该给学生充 分发表自己想法的时 间,自己体会有理数 关于相反数和绝对值 的意义同样适用于实 数。
循环小数都能化成分数吗?引入了无理数和实数的概念后要求学生对所学过的数按照一
定的标准进行分类.分类思想是解决数学问题的常用的思想,在教学过程中,教师应该
创造条件,让学生体会分类标准与分类结果之间的关系.本课提出的问题“你能尝试着
找出三个无理数来吗?”具有较大的开放性,给学生提供了思维空间,能促使学生积极
轴上的点之间的对应
试一试
教师启发学生得出结论:每一个无理数都可 以用数轴上的一个点表示出来.
关系. 通过练习,让学
练习:学生自己完成课本第 178 页练习第 1 生对于实数可以用数
题.
抽上的点表示,数抽
在此基础上,教师引导学生进一步得出结论: 上的一个点表示一个
在数从有理数扩充到实数后,实数与数轴上的点 实数有了直现的认识,
算一算
出 2 的近似值,再通过比较它们近似值(取近似
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
探一探
我们知道,在有理数中只有符号不同的两个数叫做互为相反数,例如3和-3, 和- 等,实数的相反数的意义与有理数一样。
请学生回忆在有理数中绝对值的意义.例如,|-3|=3,|0|=0,| |= 等等.实数绝对值的意义和有理数的绝对值的意义相同.
试一试完成课本第176页思考题.
引导学生类比地归纳出下列结论:
学生自己回忆有理数的分类,为引入实数的分类作好铺
垫.
让学生动手实践,自己去发现并学会与他人交流.
在学生解决了一个问题后,层层深入地提出了一个对学生
有更大挑战性的问题,激发学生学习探索的兴趣.
引入新知
1、在前面两节的学习中,我们知道,许多数的平方根和立方根都是无限不循环小数,它们不能化成分数.我们给无限不循环小数起个名,叫“无理数”.有理数和无理数统称为实数.
例1(1)你能尝试着找出三个无理数来吗?
(2)下列各数中,哪些是有理数?哪些是无理数?
解决问题后,可以再问同学:“用根号形式表示的数一定是无理数吗?”
2、实数的分类
(1)画一画
学生自己回忆并画出有理数的分类图.
(2)挑战自己
请学生尝试画出实数的分类图.
例2把下列各数填人相应的集合内:
整数集合{…}
负分数集合{…}
(1)|x|=|- |;
(2)求满足x≤4 的整数x
教学中应该给学生充分发表自己想法的时间,自己体会有理数关于相反数和绝对值的意义同样适用于实数。
小结与作业
布置作业
必做:课本第178页习题10.3第1、2、3题;
选做:课本第179页习题10.3第7题
本课教育评注(课堂设计理念,实际教学效果及改进设想)
课题:
教学目标
1、知道实数与数轴上的点一一对应,有序实数对与平面上的点一一对应;
2、学会比较两个实数的大小;
母了解在有理数范围内的运算及运算法则、运算性质等在实数范围内仍然成立,能熟练地进行实数运算;在实数运算时,根据问题的要求取其近似值,转化为有理数进行计算;
3、通过学习“实数与数轴上的点的一一对应关系”,渗透“数学结合”的数学思想。
教学难点
对“实数与数轴上的点一一对应关系”的理解
知识重点
实数与数轴上的点一一对应关系
教学过程(师生活动)
设计理念
试一试
我们知道有理数都可以用数轴上的点来表示,但是数轴上的点是否都表示有理数?无理数可以用数轴上的点来表示吗?
1、课件演示课本第175页探究题;学生动手操作,利用课前准备好的硬纸板的圆片在自己画好的数轴上实践体会.
类比在有理数范围内相反数、绝对值的几何意义,结合数轴,在实数范围内理解相反数、绝对值的几何意义.
3、深入探讨:平面直角坐标系中的点与有序实数对之间也存在着一一对应关系吗?
除了课件演示外再让学生动手实践操作的目的是让学生直现认识到可以用数轴上的点来表示无理数,而每一个无理数都可以用数抽上的一个点来表示,即无理数与数轴上的点之间的对应关系.
数a的相反数是-a
一个正实数的绝对值是它本身,一个负实数的绝对值是它的相反数;0的绝对值是0.
随着数从有理数扩充到实数,原来在有理数范围里讨论的相反数、绝对值等,自然地拓展到实数范围内。
练一练
例1求下列各数的相反数和绝对值:
2.5,- , ,0, , -3
例2一个数的绝对值是 ,求这个数。
例3求下列各式的实数x:
正数集合{…}
负数集合{…}
有理数集合{…}
无理数集合{…}
给出无理数定义后,请学生自己找找无理数,让学生在寻找的过程中,体会无理数的基本特征.
应该让学生自己小结得出结论:判断一个数是有理数还是
无理数,应该从它们的定义去辩别,而不能从形式上去分辩.
学生自己尝试画出实数的分类图,体会依据分类标准的不
同会有不同的分法.
波利亚认为,“头脑不活动起来,是很难学到什么东西的,也肯定学不到更多的东西”“学东西的最好途径是亲自去发现它”“学生在学习中寻求欢乐”.在本节课的教学设计中注意从学生的认知水平和亲身感受出发,创设学习情境,提高学生学习数学的积极性和学习兴趣,设计系列活动让学生经历不同的学习过程.在活动过程中让学生动手试一试,说说自己的发现并与同学交流结论,在交流中尝试得出结论:任何一个有理数都可以写成有限小数或无限循环小数的形式.进一步地提出问题:任何一个有限小数或无限循环小数都能化成分数吗?引入了无理数和实数的概念后要求学生对所学过的数按照一定的标准进行分类.分类思想是解决数学问题的常用的思想,在教学过程中,教师应该创造条件,让学生体会分类标准与分类结果之间的关系.本课提出的问题“你能尝试着找出三个无理数来吗?”具有较大的开放性,给学生提供了思维空间,能促使学生积极主动地参与到数学学习过程中,亲自体验知识的形成过程.
课题:
教学目标
1、了解无理数和实数的概念;会对实数按照一定的标准进行分类,培养分类能力;
2、了解分类的标准与分类结果的相关性,进一步了解体会“集合”的含义;
3、了解实数范围内相反数和绝对值的意。
教学难点
理解实数的概念。
知识重点
正确理解实数的概念。
教学过程(师生活动)
设计理念
试一试
学生以前学过有理数,可以请学生简单地说一说有理数的基本概念、分类.
试一试
1、使用计算器计算,把下列有理数写成小数的形式,你有什么发现?
3, , , , ,
动手试一试,说说你的发现并与同学交流.
(结论:上面的有理数都可以写成有限小数或无限循环小数的形式)
可以在此基础上启发学生得到结论:任何一个有理数都可以写成有限小数或无限循环小数的形式.
2、追问:任何一个有限小数或无限循环小数都能化成分数吗?
(课件展示)
阅读下列材料:Biblioteka 设x=0. =0.333…①
则10x=3.333…②
则②-①得9x-3,即x=
即0. =0.333…=
根据上面提供的方法,你能把0. ,0. 化成分数吗?且想一想是不是任何无限循环小数都可以化成分数?
在此基础上与学生一起得到结论:任何一个有限小数或无限循环小数都能化成分数,所以任何一个有限小数或无限循环小数都是有理数。
2、你能在数轴上画出坐标是 的点吗?画一画,说说你的方法.
教师启发学生得出结论:每一个无理数都可以用数轴上的一个点表示出来.
练习:学生自己完成课本第178页练习第1题.
在此基础上,教师引导学生进一步得出结论:在数从有理数扩充到实数后,实数与数轴上的点是一一对应的.即:每一个实数都可以用数轴上的点来表示;数轴上的每一个点都表示一个实数.
相关文档
最新文档