统计学课件讲义 第7章 假设检验
假设检验PPT课件
60 62.5 65 67.5 70 72.5 75
b
H0 不真
67.5 70 72.5 75 77.5 80 82.5
两类错误是互相关联的, 当样本容 量固定时,一类错误概率的减少导致另 一类错误概率的增加.
b a
要同时降低两类错误的概率a b,或 者要在 a 不变的条件下降低 b,需要增
加样本容量.
(二)备择假设(alternative hypothesis),与原假设相对立(相反)的假设。 一般为研究者想收集数据予以证实自己观点的假设。 用H1表示。 表示形式:H1:总体参数≠某值 (<) (>)
例:H1: 0
(三)两类假设建立原则 1、H0与H1必须成对出现 2、通常先确定备择假设,再确定原假设 3、假设中的等号“=”总是放在原假设中
•
P>α时,H0成立
多重检验及校正
在同一研究中,有时我们会用到二次或多次显著 性检验,从上表可以看出,如果我们将显著性水平确 定为α=0.05水平,做一次显著性检验后我们只能保证 有95%的研究结果与真值是一致的;如果做两次显著 性检验后,研究结果与真值的符合程度就会降至 95%*95%=90.25,当我们进行5次显著性检验后,就 会降至77.4%,即在5次显著性检验后,由α水平所得 到的显著性检验结果的可靠性只有3/4的可靠性。
用于处理生物学研究中比较不同处理效应 的差异显著性。
数据资料中,两个样本的各个变量从各自 总体中抽取,两个样本之间变量没有任何关 联,即两个抽样样本彼此独立,不论两个样 本容量是否相同。
方法1:两个总体方差都已知(或方差未知大样本)
• 假定条件
– 两个样本是独立的随机样本
– 两个总体都是正态分布 – 若不是正态分布, 可以用正态分布来近似(n130和
《假设检验》PPT课件
样本统计量 临界值
抽样分布
2008-2009
1 -
置信水平 拒绝H0
0
样本统计量
临界值
✓决策规则
1. 给定显著性水平,查表得出相应的临 界值z或z/2, t或t/2
2. 将检验统计量的值与 水平的临界值进 行比较
3. 作出决策
双侧检验:I统计量I > 临界值,拒绝H0 左侧检验:统计量 < -临界值,拒绝H0 右侧检验:统计量 > 临界值,拒绝H0
H1 : <某一数值,或 某一数值
例如, H1 : < 10cm,或 10cm
2008-2009
➢提出假设
【例】一种零件的生产标准是直径应为10cm,为对生产过
程进行控制,质量监测人员定期对一台加工机床检查, 确定这台机床生产的零件是否符合标准要求。如果零件 的平均直径大于或小于10cm,则表明生产过程不正常, 必须进行调整。试陈述用来检验生产过程是否正常的原 假设和备择假设
2008-2009
❖利用P值进行决策
➢什么是P 值(P-value)
1. 在原假设为真的条件下,检验统计量的观察值 大于或等于其计算值的概率 双侧检验为分布中两侧面积的总和
2. 反映实际观测到的数据与原假设H0之间不一致 的程度
3. 被称为观察到的(或实测的)显著性水平 4. 决策规则:若p值<, 拒绝 H0
2008-2009
第6章 假设检验
统计研究目的
统计设计
推
断
客观
统
统
分
现象
计
计
析
数量
调
整
表现
查
理
描 述
医学统计学课件:假设检验
统计推断基础
参数估计
用样本数据估计总体参数的方法。
显著性检验
理解显著性检验的基本原理和方法。
假设检验
根据样本数据对总体参数进行检验的方法。
置信区间
掌握置信区间的概念和计算方法。
03
参数假设检验
单参数假设检验
定义
单参数假设检验是当我们只有一个总 体参数需要检验时的假设检验。例如 ,我们可能需要确定一个药物是否对 一组患者的平均血压有降低作用。
应用场景:例如,检验某种新药的疗效是否显著优于安 慰剂。
案例二:两样本t检验
总结词:两样本t检验是一种常用的假设检验方 法,适用于比较两个独立样本的平均数是否存在 显著差异。
详细描述
1. 定义假设:通常包括零假设(H0,即两个样本的 平均数无差异)和对立假设(H1,即两个样本的平 均数存在差异)。
02
假设检验的数学基础
概率基础
概率定义
表示随机事件发生的可能性程度。
概率运算
掌握加法、乘法和条件概率等运算方法。
独立性和互斥性
理解事件之间的独立性和互斥性。
分布基础
分布定义
描述随机变量取值的概率规律。
连续型和离散型分布
理解连续型和离散型分布的概念和特点。
常用分布
掌握常用的分布及其性质,如正态分布、二项分布等。
假设检验步骤
根据符号分布,计算临界值和p值,判断假设是 否成立。
05
假设检验的注意事项与误用
假设检验的注意事项
明确研究目的和背 景
在假设检验前,需要明确研究目 的和背景,以便确定合适的假设 和检验方法。
合理选择样本量和 样本类型
样本量和样本类型的选择对假设 检验的结果具有重要影响。在确 定样本量时,需要考虑研究目的 、研究设计、误差概率等因素。
《假设检验检验》课件
数据分析中的假设检验
什么是假设检验
假设检验是一种统计方法,用于通过样本数据来推断总体参数的性质。它可以帮助我们判断一个观察结 果是由偶然因素引起的,还是真实存在的差异。
假设检验的步骤
1
2. 选择检验统计量
2
选择适合问题的检验统计量,如t值、
z值等。
3
4. 计算统计量
4
利用样本数据计算检验统计量的值。
5
6. 得出结论
6
根据决策,得出关于总体参数的结论。
1. 建立假设
确定原始假设和备择假设,描述总体 参数的状态。
3. 设定显著性水平
选择显著性水平,决定拒绝原始假设 的界限。
5. 做出决策
根据检验统计量的值和显著性水平, 决定是否拒绝原始假设。
常用的假设检验方法
单样本t检验
结论的解释
根据结果的解释,得出关于总体参数的结论,并提供相应的推论。
实例演示及应用场景
通过具体的实例演示,展示假设检验在各个领域的应用,如医学、市场研究、环境保护等。
总结与展望
假设检验是数据分析中重要的工具之一,它可以帮助我们做出科学的决策, 并推动各个领域的发展。未来,我们可以进一步研究和改进假设检验方法, 提高其效能和适用性。
用于比较一个样本的平均值 与已知值或者另一个样本的 平均值。
独立样本t检验
用于比较两个独立样本的平 均值是否存在显著差异。
相关样本t检验
用于比较两个相关样本的平 均值是否存在显著差异。
如何解读假设检验结果
拒绝原始假设
如
接受原始假设
如果检验结果的p值大于等于显著性水平,我们接受原始假设。
假设检验PPT课件
【学习目标】通过对本章的学习,掌握假设检验的概念和 类型、假设检验的两类错误和假设检验的一般步骤;重点掌握 单个总体均值的检验和比率的检验。
第一节 假设检验的基本问题 第二节 △ 假设检验的应用
假设检验
第一节 假设检验的基本问题
一、假设检验的概念 二、假设检验的两类错误 三、假设检验的类型 四、假设检验的类型一般步骤
假设检验
第一节 假设检验的基本问题
什么小概率?
1.在一次试验中,一个几乎不可能发生的事件发生的概率; 2.在一次试验中小概率事件一旦发生,我们就有理由拒绝原假 设; 3.小概率由研究者事先确定。
假设检验
第一节 假设检验的基本问题
二、假设检验的两类错误(决策风险)
(一) 第一类错误 第一类错误,亦称拒真(弃真)错误。是指当原假设为 真时,但由于样本的随机性使样本统计量的具体值落入 了拒绝区域,这时所作的判断是拒绝原假设。 犯第一类错误的概率亦称拒真概率,它实质上就是前面
t
986 1000 24
2.333>
t n 1 2.1315
16
2
所以接受 H1,即这天包装机工作不正常。
假设检验
第二节 假设检验的应用
二、单个总体比率(成数)的假设检验
比率P是平均数的一种特殊形式,因而前面讲的平均 数检验理论都适用于总体比率P的假设检验,只是估计量 的形式略有不同。
【例4】我国出口的参茸药酒畅销于某国市场。据以往调查, 购买此种酒的顾客中40岁以上的男子占50%。经营该药酒 的进出口公司经理关心这个比率是否发生了变化,于是, 委托一个咨询机构进行调查,这个咨询机构从众多购买该 药酒的顾客中随机抽取了400名进行调查,结果有210名为 40岁以上的男子。试问在0.05的显著水平上,能否认为购 买此种药酒的顾客中40岁以上男子所占比率变化了?
假设检验《统计学原理》课件
X=X1>X0
H0为伪
从上图可以看出,如果临界值沿水平方向右移,α将变小而β变大,即若减小 α错误,就会增大犯β错误的机会;如果临界值沿水平方向左移,α将变大而 β变小,即若减小β错误,也会增大犯α错误的机会,
a 错误和 错误的关系
在样本容量n一定的情况下,假设检验不能同时做到犯α和 β两类错误的概率都很小,若减小α错误,就会增大犯β错误 的机会;若减小β错误,也会增大犯α错误的机会,要使α和 β同时变小只有增大样本容量,但样本容量增加要受人力、 经费、时间等很多因素的限制,无限制增加样本容量就会 使抽样调查失去意义,因此假设检验需要慎重考虑对两类 错误进行控制的问题,
参数假设检验举例
例2:某公司进口一批钢筋,根据要求,钢筋的 平均拉力强度不能低于2000克,而供货商强 调其产品的平均拉力强度已达到了这一要 求,这时需要进口商对供货商的说法是否真 实作出判断,进口商可以先假设该批钢筋的 平均拉力强度不低于2000克,然后用样本的 平均拉力强度来检验假设是否正确,这也是 一个关于总体均值的假设检验问题,
假设检验的两类错误
正确决策和犯错误的概率可以归纳为下表:
假设检验中各种可能结果的概率
H0 为真
接受H0
1-α 正确决策
拒绝H0,接受H1
α 弃真错误
H0 为伪
β 取伪错误
1-β 正确决策
•假设检验两类错误关系的图示
以单侧上限检验为例,设H0 :X≤X0 , H1:X>X0
图a X≤X0 H0为真
a
H0值
样本统计量 临界值
观察到 的样本 统计量
5、假设检验的两类错误
根据假设检验做出判断无非下述四种情况:
1、原假设真实, 并接受原假设,判断正确; 2、原假设不真实,且拒绝原假设,判断正确; 3、原假设真实, 但拒绝原假设,判断错误; 4、原假设不真实,却接受原假设,判断错误, 假设检验是依据样本提供的信息进行判断,有犯错误的可 能,所犯错误有两种类型: 第一类错误是原假设H0为真时,检验结果把它当成不真而 拒绝了,犯这种错误的概率用α表示,也称作α错误 αerror 或弃真错误, 第二类错误是原假设H0不为真时,检验结果把它当成真而 接受了,犯这种错误的概率用β表示,也称作β错误 βerror 或取伪错误,
统计学课件第七章-假设检验
《统计学》第七章 假设检验
假设检验的基本思想:运 用具有概率性质的反证法。
总体 (某种假设)
抽样 检验
(接受)
小概率事件 未发生
样本 (观察结果)
(拒绝) 小概率事件 发生
《统计学》第七章 假设检验
§7.1 假设检验概述
STAT
★ 一、假设检验的基本思想 ★ 二、原假设和备择假设
三、两类错误
四、假设检验的基本程序
H 0: 0 H 1:0
【例】某型号汽车每升汽油平均行
驶里程为10公里。生产厂家研制了
一种新型汽化器以求提高燃料效率。
目前正在进行行驶实H验0:,以≤求1通0 过 实效验 率证。明新型汽化器H可1:以提>高燃10料
《统计学》第七章 假设检验
拒绝域和接受域(右侧检验)
假设的总体 抽样分布
接受域
拒绝域
当实际分布 的均值为未知时, 无法计算出犯第 二类错误的概率。 因此,我们通常 只控制犯第一类 错误的概率。
《统计学》第七章
?
假设检验
假设的总体 抽样分布
- Z b b b a 以左侧检验为例
两类错误总结
《统计学》第七章 假设检验
结论
接受 H0 拒绝 H0
总体实际情况
H0 为真
结论正确
H1 为真
拒绝域
《统计学》第七章 假设检验
㈣建立拒绝原假设的规则(方法二)
p-值
拒绝区域 (概率)
对于单侧检验,p-值 大于或 等于 值,则 接受原假设
接受区域
z z
p-值为从检验统计量到分布拒绝域一侧的面 积。p-值较小说明样本结果的似然程度差, 即根据样本结果不能得出原假设为真的结论
统计学 第7章 假设检验ppt课件
(1)贝努利定理(Bernoulli Theorem)
ln i mPnnA
PA
1
(6.1)
贝努利定理表明事件发生的频率依概率收敛于事件发生的概率。从而 以严格的数学形式表述了频率的稳定性特征,即n当很大时,事件发生 的频率与概率之间出现较大的偏差的可能性很小。由此,在n充分大的 场合,可以用事件发生的频率来替代事件的概率。
抽样分布反映了依据样本计算出来的统计量数值的概率分布,这是科 学地进行统计推断的基础。例如,在大样本场合,由中心极限定理有样 本均值趋于正态分布。
完整版PPT课件
《统计学教程》
第6章 抽样分布与参数估计
6.1 抽样分布
3.抽样分布
抽样分布(Sampling Distribution)是指从同分布总体中,独立抽 取的相同样本容量的样本统计量的概率分布。所以,抽样分布是样本分 布的概率分布,抽样分布是抽样理论的研究对象。
抽样分布反映了依据样本计算出来的统计量数值的概率分布,这是科 学地进行统计推断的基础。例如,在大样本场合,由中心极限定理有样 本均值趋于正态分布。
★ 讨论题 为什么说抽样分布是抽样理论研究的对象,解释三种分布之 间的联系。
完整版PPT课件
《统计学教程》
独立同分布的中心极限定理是应用最多的一种中心极限定理。设随机
变量相互独立,服从同一分布,且具有相同的有限的数学期望和方差,
则
ln i m Fn
x
n lim k1Xk
nx
x
n n
1
t2
e 2dt
(6.3)
2பைடு நூலகம்
统计学试验假设检验PPT(完整版)
一、单个样本的统计假设检验
• σ已知时单个平均数的显著性检验——u检验
2)。在改善栽培条件后,随机抽取9粒,得平 均籽粒重 379.2g。若粒重标准差s仍为3.3g, 问改善栽培条件后是否显著提高了豌豆籽粒 重?
建立工作表
添加数据
• σ未知时平均数的显著性检验——t检验
[例] 已知玉米单交种“群单105”的平均穗重m0= 300g。喷洒植物生长促进剂后,随机抽取9个果穗, 测得穗重为:308、305、311、298、315、300、 321、294、320g。问喷药后与喷药前的果穗重差 异是否显著?
若粒重标准差s仍为3. 问喷药后与喷药前的果穗重差异是否显著?
一、单个样本的统计假设检验 σ未知时平均数的显著性检验——t检验 3g,问改善栽培条件后是否显著提高了豌豆籽粒重? [例] 已知玉米单交种“群单105”的平均穗重m0=300g。 喷洒植物生长促进剂后,随机抽取9个果穗,测得穗重为:308、305、311、298、315、300、321、294、320g。 一、单个样本的统计假设检验
1(X2)
感谢观看
ห้องสมุดไป่ตู้
建立工作表
添加数据
二、两个样本的差异显著性检验 喷洒植物生长促进剂后,随机抽取9个果穗,测得穗重为:308、305、311、298、315、300、321、294、320g。
喷洒植物生长促进剂后,随机抽取9个果穗,测得穗重为:308、305、311、298、315、300、321、294、320g。 问喷药后与喷药前的果穗重差异是否显著?
问喷药后与喷药前的果穗重差异是否显著?
在改善栽培条件后,随机抽取9粒,得平均籽粒重 379. 标准差σ1和σ2未知,但σ1=σ2 —t 检验 若粒重标准差s仍为3.
第七章-假设检验PPT
(Xi X )2
i 1
)
n
[例7-5]某制药厂试制某种安定神经的新药,给10个病人 试服,结果各病人增加睡眠量如表7-2所示。
表7-1 病人服用新药增加睡眠量表
病人号码
1
2
34
5 6 7 8 9 10
增加睡眠(小时) 0.7 -1.1 -0.2 1.2 0.1 3.4 3.7 0.8 1.8 2.0
n N 1
其中, 是假设的总体比例,p 是样本比例
7.3.1 单个总体比例检验
❖ 这个检验统计量近似服从标准正态分布。如果抽样比例n/N 很小时,也可以使用下列形式:
Z p (1 )
n
[例7-7]某企业的产品畅销国内市场。据以往调查,购买该 产品的顾客有50%是30岁以上的男子。该企业负责人关心这 个比例是否发生了变化,而无论是增加还是减少。于是,该企 业委托了一家咨询机构进行调查,这家咨询机构从众多的购买 者中随机抽选了400名进行调查,结果有210名为30岁以上的 男子。该厂负责人希望在显著性水平0.05下检验“50%的顾客 是30岁以上的男子”这个假设。
解:从题意可知,X =1.36米,0=1. 32米, =0.12米。 (1)建立假设:H0: =1.32,H1: 1.32
(2)确定统计量:
Z X 1.36 1.32 1.67 / n 0.12 / 25
(3)Z的分布:Z~N(0,1)
(4)对给定的 =0.05确定临界值。因为是双侧备择假设所以
动生产率的标准差相等.问:在显著性水平0.05下,改革前、 后平均劳动生产率有无显著差异? 解:(1)建立假设H0:1 2 (没有差别)。
H1:1 2 (有差别)(左单侧备择假设) (2)计算统计量:
假设检验完整版PPT课件
消费者协会接到消费者投诉,指控品牌纸包装 饮料存在容量不足,有欺骗消费者之嫌。包装 上标明的容量为250毫升。消费者协会从市场上 随机抽取50盒该品牌纸包装饮品进行假设检验。 试陈述此假设检验中的原假设和备择假设。
解:消费者协会的意图是倾向于证实饮料厂包装 饮料小于250ml 。建立的原假设和备择假设为
显著性水平和拒绝域
(右侧检验 )
抽样分布
置信水平
1-
拒绝H0
0 观察到的样本统计量
样本统计量 临界值
显著性水平和拒绝域
(右侧检验 )
抽样分布
置信水平
1-
拒绝H0
0
样本统计量
临界值
第一节 假设检验概述
1、假设检验的基本思想 2、假设检验的步骤 3、两类错误和假设检验的规则
三、两类错误和假设检验的规则
(单侧检验 )
抽样分布
置信水平
拒绝H0
1-
拒绝域 临界值
0 接受域
样本统计量
显著性水平和拒绝域
(左侧检验 )
抽样分布
置信水平
拒绝H0
1-
临界值
0
样本统计量
观察到的样本统计量
显著性水平和拒绝域
(左侧检验 )
抽样分布
置信水平
拒绝H0
1-
临界值
0
观察到的样本统计量
样本统计量
•【例2】一种罐装饮料采用自动生产线生产,每罐的容量 是255ml,标准差为5ml,服从正态分布。换了一批工人后, 质检人员在某天生产的饮料中随机抽取了16罐进行检验,
一个总体的检验
一个总体
假设检验。《统计学原理》课件
2、假设检验的基本思想
假设检验所依据的基本原理是小概率原理。 什么是小概率?
概率是0~1之间的一个数,因此小概率就是接 近0的一个数 著名的英国统计家Ronald Fisher 把20分之1 作为标准,也就是0.05,从此0.05或比0.05小 的概率都被认为是小概率 Fisher没有任何深奥的理由解释他为什么选择 0.05,只是说他忽然想起来的
样本统计量
右侧检验示意图 (显著性水平与拒绝域 )
抽样分布
置信水平 拒绝域 1-a
a
接受域
H0值 样本统计量
观察到 的样本 统计量
临界值
5、假设检验的两类错误
根据假设检验做出判断无非下述四种情况:
1、原假设真实, 并接受原假设,判断正确; 2、原假设不真实,且拒绝原假设,判断正确; 3、原假设真实, 但拒绝原假设,判断错误; 4、原假设不真实,却接受原假设,判断错误。 假设检验是依据样本提供的信息进行判断,有犯错误的 可能。所犯错误有两种类型: 第一类错误是原假设H0为真时,检验结果把它当成不真 而拒绝了。犯这种错误的概率用α表示,也称作α错误 (αerror)或弃真错误。 第二类错误是原假设H0不为真时,检验结果把它当成真 而接受了。犯这种错误的概率用β表示,也称作β错误 (βerror)或取伪错误。
... 因此我们拒 绝假设 X = 50
... 如果这是总 体的真实均值 20
X
= 50 H0
样本均值
•假设检验的两个特点:
第一,假设检验采用逻辑上的反证法,即为了检验一个假设 是否成立,首先假设它是真的,然后对样本进行观察,如 果发现出现了不合理现象,则可以认为假设是不合理的, 拒绝假设。否则可以认为假设是合理的,接受假设。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第7章假设检验
一、假设检验概述
1.概念:假设检验是利用样本的实际资料来检验事先对总体某些数量特征所作的假设是否可
信的一种统计分析方法。
2.主要目的:在于判决原假设的总体和当前抽样所取自的总体是否发生了显著的差异。
3.假设检验的检验法则
假设检验过程就是比较样本观察结果与总体假设的差异。
差异显著,超过了临界点,拒绝H0;反之,差异不显著,接受H0。
4.假设检验中的两类错误:“弃真”、“取伪”
在假设检验中,在一定样本容量下,不能同时做到犯这两类错误的概率都很小。
因为减少α会引起β增大,减少β会引起α增大。
5.基本思想:反证法思想、小概率原理
6.假设检验的步骤:
根据题意合理地建立原假设和备择假设→选择适当的检验统计量,并确定其分布形式→选定显著性水平,并根据相应统计量的统计分布表查出临界值→根据样本观察值计算检验统计量的观察值→根据检验规则作出接受或拒绝原假设的判断
二、单个正态总体的假设检验(显著水平为α)
三、两个正态总体的假设检(显著水平为α)
注:2
22
1212222212121211
s s n n f s s n n n n ⎛⎫
+ ⎪⎝⎭=⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭+-- 四、总体比率的假设检验
1、根据中心极限定理,在大样本条件下,若np 和nq 都大于5时,样本比率的抽样分布近似服从正态分布,因此,我们可用Z =
作为检验统计量
2、对于两总体比率之差的概率分布,可证明其近似地服从正态分布。
若总体比率未知,且
1111,(1)n p n p -和 2222,(1)n p n p -都大于5时,我们可用样本比率1p 和2p 来替代。
因此,
我们可用Z =
五、假设检验中的其他问题
1、区间估计与假设检验的关系:
两者推断的角度不同、两者立足点不同、两者的主要决策参考点不同。
两者都属于统计推断方法,根据样本统计量对总体参数进行推断 对相同条件的推断问题,其推断的理论依据——抽样分布理论相同
都是建立在概率基础上的推断,推断结果都具有一定的可靠程度或风险 利用置信区间可以进行假设检验
2、假设检验中的p -值
假设检验的p -值就是拒绝原假设的最小显著性水平。
实际上是检验统计量超过(大于或小于)由样本数据所得的数值的概率。
p -值检验是国际上流行的检验格式。
该检验格式是通过计算p -值,再将它与显著性水平α相比较,决定是否接受原假设。
单侧检验
若p α-
<,则拒绝0H ;若p α-
≥,则接受0H 双侧检验 若2
p α
-<,则拒绝0H ;若2
p α
-≥
,则接受0H
步骤:
①. 建立原假设与备择假设 ②. 构造检验统计量及其分布 ③. 计算检验统计量的数值 ④. 计算p -的值
⑤. 根据判断原则做出决策。