2013年重庆市中考数学模拟试卷

合集下载

2013重庆中考数学试题及答案(09修订版).

2013重庆中考数学试题及答案(09修订版).

数学中考 第1页(共16页) 数学中考 第2页(共16页)重庆市2013年初中毕业暨高中招生考试(模拟)数 学 试 卷(本卷共五个大题,满分150分,考试时间120分钟)参考公式:抛物线2y ax bx c =++(0a ≠)的顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,,对称轴公式为2b x a=-.一、选择题:(本大题10个小题,每小题4分,共40分)1.5-的相反数是( ) A .5B .5-C .15D .15-2.计算322x x ÷的结果是( ) A .xB .2xC .52xD .62x3.函数13y x =+的自变量x 的取值范围是( )A .3x >-B .3x <-C .3x ≠-D .3x -≥4.如图,直线A B C D 、相交于点E ,D F AB ∥.若100A E C ∠=°,则D ∠等于( ) A .70° B .80° C .90° D .100° 5.下列调查中,适宜采用全面调查(普查)方式的是( ) A .调查一批新型节能灯泡的使用寿命 B .调查长江流域的水污染情况C .调查重庆市初中学生的视力情况D .为保证“神舟7号”的成功发射,对其零部件进行检查6.如图,O ⊙是A B C △的外接圆,AB 是直径.若80B O C ∠=°, 则A ∠等于( )A .60°B .50°C .40°D .30°7.由四个大小相同的正方体组成的几何体如图所示,那么它的左视图是( )A .B .C .D .8.观察下列图形,则第n 个图形中三角形的个数是( )A .22n +B .44n +C .44n -D .4n9.如图,在矩形A B C D 中,2A B =,1B C =,动点P 从点B 出发, 沿路线B C D →→作匀速运动,那么A B P △的面积S 与点P 运动 的路程x 之间的函数图象大致是( )10.如图是二次函数y=ax 2+bx+c 的图象,下列结论中:①abc >0;②b=2a ;③a+b+c <0;④a-b+c >0; ⑤4a+2b+c <0.正确的个数是( ) A .4个 B .3个 C .2个 D .5个二、填空题:(本大题6个小题,每小题4分,共24分)在每小题中,请将答案直接填在题后的横线上.11.据重庆市统计局公布的数据,今年一季度全市实现国民生产总值约为7840000万元.那么7840000万元用科学记数法表示为 万元. 12.分式方程1211x x =+-的解为 .13.已知A B C △与D EF △相似且面积比为4∶25,则A B C △与D EF △的相似比为 .14.已知1O ⊙的半径为3cm ,2O ⊙的半径为4cm ,两圆的圆心距12O O 为7cm ,则1O ⊙与2O ⊙的位置关系是 .15.在平面直角坐标系xOy 中,直线3y x =-+与两坐标轴围成一个AO B △.现将背面完全相同,正面分别标有数1、2、3、12、13的5张卡片洗匀后,背面朝上,从中任取一张,将该卡片上的数作为点P 的横坐标,将该数的倒数作为点P 的纵坐标,则点P 落在AO B △内的概率为 .16.某公司销售A 、B 、C 三种产品,在去年的销售中,高新产品C 的销售金额占总销售金额的40%.由于受国际金融危机的影响,今年A 、B 两种产品的销售金额都将比去年减少20%,因而高新产品C 是今年销售的重点.若要使今年的总销售金额与去年持平,那么今年高新产品C 的销售金额应比去年增加 %.A .B .C .D .CAE BFD 4题图……第1个第2个第3个6题图D C PBA题图三、解答题:(本大题4个小题,每小题6分,共24分)17.计算:1021|2|(π(1)3-⎛⎫-+⨯---⎪⎝⎭.18.解不等式组:303(1)21xx x+>⎧⎨--⎩,①≤.②19.如图所示,为求出河对岸两棵树A、B间的距离,小坤在河岸上选取一点C,然后沿垂直于A C 的直线前进了12米到达点D,测得90CDB=∠.取C D的中点E,测得56AEC=∠,67BED=∠,求河对岸两树间的距离(提示:过点A作AF BD⊥于点F).(参考数据:4sin565≈,tan56 ≈23,sin67 ≈1514,tan67 ≈37.)20.为了建设“森林重庆”,绿化环境,某中学七年级一班同学都积极参加了植树活动,今年4月该班同学的植树情况的部分统计如下图所示:(1)请你根据以上统计图中的信息,填写下表:四、解答题:(本大题4个小题,每小题10分,共40分)21.先化简,再求值:22121124x xx x++⎛⎫-÷⎪+-⎝⎭,其中3x=-.(株)20题图植树2株的人数占32%数学中考第3页(共16页)数学中考第4页(共16页)数学中考 第5页(共16页) 数学中考 第6页(共16页)22.已知:如图,在平面直角坐标系xOy 中,直线AB 分别与x y 、轴交于点B 、A ,与反比例函数的图象分别交于点C 、D ,C E x ⊥轴于点E ,1tan 422A B O O B O E ∠===,,.(1)求该反比例函数的解析式; (2)求直线AB 的解析式.23.有一个可自由转动的转盘,被分成了4个相同的扇形,分别标有数1、2、3、4(如图所示),另有一个不透明的口袋装有分别标有数0、1、3的三个小球(除数不同外,其余都相同),小亮转动一次转盘,停止后指针指向某一扇形,扇形内的数是小亮的幸运数,小红任意摸出一个小球,小球上的数是小红的吉祥数,然后计算这两个数的积.(1)请你用画树状图或列表的方法,求这两个数的积为0的概率;(2)小亮与小红做游戏,规则是:若这两个数的积为奇数,小亮赢;否则,小红赢.你认为该游戏公平吗?为什么?如果不公平,请你修改该游戏规则,使游戏公平.24.已知:如图,在直角梯形ABCD 中,AD ∥BC ,∠ABC =90°,DE ⊥AC 于点F ,交BC 于点G ,交AB 的延长线于点E ,且A E A C =. (1)求证:B G F G =;(2)若2AD D C ==,求AB 的长.五、解答题:(本大题2个小题,第25小题10分,第26小题12分,共22分)25.某电视机生产厂家去年销往农村的某品牌电视机每台的售价y (元)与月份x 之间满足函数关系502600y x =-+,去年的月销售量p (万台)与月份x 之间成一次函数关系,其中两个月的销售情况如下表:(2)由于受国际金融危机的影响,今年1、2月份该品牌电视机销往农村的售价都比去年12月份下降了%m ,且每月的销售量都比去年12月份下降了1.5m%.国家实施“家电下乡”政策,即对农村家庭购买新的家电产品,国家按该产品售价的13%给予财政补贴.受此政策的影响,今年3至5月份,该厂家销往农村的这种电视机在保持今年2月份的售价不变的情况下,平均每月的销售量比今年2月份增加了1.5万台.若今年3至5月份国家对这种电视机的销售共给予了财政补贴936万元,求m 的值(保留一位小数). 5.831 5.9166.083 6.164)DC EB GA24题图 F x23题图26.已知:如图,在平面直角坐标系xOy中,矩形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=2,OC=3.过原点O作∠AOC的平分线交AB于点D,连接DC,过点D作DE ⊥DC,交OA于点E.(1)求过点E、D、C的抛物线的解析式;(2)将∠EDC绕点D按顺时针方向旋转后,角的一边与y轴的正半轴交于点F,另一边与线段OC交于点G.如果DF与(1)中的抛物线交于另一点M,点M的横坐标为65,那么EF=2GO是否成立?若成立,请给予证明;若不成立,请说明理由;(3)对于(2)中的点G,在位于第一象限内的该抛物线上是否存在点Q,使得直线GQ与AB的交点P与点C、G构成的△PCG理由.26题图x数学中考第7页(共16页)数学中考第8页(共16页)数学中考 第9页(共16页) 数学中考 第10页(共16页)(第23题)FAC数学试题参考答案及评分意见一、选择题1.A 2.B 3.C 4.B 5.D 6.C 7.A 8.D 9.B 10.A 二、填空题11.67.8410⨯ 12.3x =- 13.2:5 14.外切 15.3516.30三、解答题17.解:原式23131=+⨯-+ ···············································································(5分) 3=. ································································································(6分) 18.解:由①,得3x >-.····················································································(2分)由②,得2x ≤.·····················································································(4分) 所以,原不等式组的解集为32x -<≤.·················································(6分)19.解:∵E 为CD 中点,CD =12,∴CE =DE =6. 在Rt △ACE 中∵tan56°=CEAC ,∴AC =CE ·tan56°≈6×23=9.在Rt △BDE 中, ∵tan67°= BDDE, ∴BD =DE ·tan67°≈6×37=14 .∵AF ⊥BD ,∴AC =DF =9,AF =CD =12, ∴BF =BD -DF =14-9=5.在Rt △AFB 中,AF =12,BF =5, ∴135122222=+=+=BFAFAB .∴两树间距离为13米.20················(4分)(2)补图如下:····························(6分)四、解答题: 21.解:原式221(1)2(2)(2)x x x x x +-+=÷++- ·······························································(4分)21(2)(2)2(1)x x x x x ++-=++ ···························································································(6分) 21x x -=+. ··············································································································(8分)当3x =-时,原式325312--==-+. ······································································· (10分)22.解:(1)42O B O E == ,,246B E ∴=+=.C E x ⊥轴于点E .1tan 2C E A B O B E∴∠==,3C E ∴=. ···································································(1分)∴点C 的坐标为()23C -,. ···················································································(2分) 设反比例函数的解析式为(0)m y m x=≠.将点C 的坐标代入,得32m=-,············································································(3分)6m ∴=-. ···········································································································(4分)∴该反比例函数的解析式为6y x=-.····································································(5分) (2)4O B = ,(40)B ∴,. ················································································(6分) 1tan 2O A A B O O B∠== ,2O A ∴=,(02)A ∴,.·························································································(7分) (株)数学中考 第11页(共16页) 数学中考 第12页(共16页)设直线AB 的解析式为(0)y kx b k =+≠.将点A B 、的坐标分别代入,得240.b k b =⎧⎨+=⎩, ··························································(8分)解得122.k b ⎧=-⎪⎨⎪=⎩, ·······································································································(9分) ∴直线AB 的解析式为122y x =-+. ································································· (10分) 23.解:(1)画树状图如下: ·······················(4分)或列表如下:由图(表)知,所有等可能的结果有12种,其中积为0的有4种, 所以,积为0的概率为41123P ==.······································································(6分)(2)不公平.········································································································(7分) 因为由图(表)知,积为奇数的有4种,积为偶数的有8种. 所以,积为奇数的概率为141123P ==, ·································································(8分)积为偶数的概率为282123P ==. ···········································································(9分)因为1233≠,所以,该游戏不公平.游戏规则可修改为:若这两个数的积为0,则小亮赢;积为奇数,则小红赢.······································ (10分) (只要正确即可)24.(1)证明:90ABC D E AC ∠= °,⊥于点F , ABC AFE ∴∠=∠. ······································(1分)A C A E E A F C AB =∠=∠ ,,A B C A F E ∴△≌△········································(2分)AB AF ∴=.·················································(3分) 连接A G , ······················································(4分) A G A G A B A F == ,,R t R t ABG AFG ∴△≌△. ··························(5分) B G F G ∴=. ················································(6分)(2)解:AD D C D F AC = ,⊥,1122A F A C A E ∴==.························································································(7分) 30E ∴∠=°. 30FAD E ∴∠=∠=°,·························································································(8分)AF ∴= ········································································································(9分)AB AF ∴==····························································································· (10分)五、解答题:25.解:(1)设p 与x 的函数关系为(0)p kx b k =+≠,根据题意,得3.954.3.k b k b +=⎧⎨+=⎩,········································································································(1分) 解得0.13.8.k b =⎧⎨=⎩,所以,0.1 3.8p x =+. ···································································(2分)设月销售金额为w 万元,则(0.1 3.8)(502600)w py x x ==+-+. ·······················(3分) 化简,得25709800w x x =-++,所以,25(7)10125w x =--+.当7x =时,w 取得最大值,最大值为10125.答:该品牌电视机在去年7月份销往农村的销售金额最大,最大是10125万元. ····(4分) (2)去年12月份每台的售价为501226002000-⨯+=(元),去年12月份的销售量为0.112 3.85⨯+=(万台), ···············································(5分) 根据题意,得2000(1%)[5(1 1.5%) 1.5]13%3936m m -⨯-+⨯⨯=. ····················(8分)令%m t =,原方程可化为27.514 5.30t t -+=.D CEB GA F 0 1 3 0 1 3 0 1 3 0 1 3 2 3 4 1 幸运数 吉祥数 积数学中考 第13页(共16页) 数学中考 第14页(共16页)27.515t ∴==⨯.10.528t ∴≈,2 1.339t ≈(舍去)答:m 的值约为52.8.························································································· (10分) 26.解:(1)由已知,得(30)C ,,(22)D ,,90AD E C D B BC D ∠=-∠=∠ °, 1tan 2tan 212A E A D A D E B C D ∴=∠=⨯∠=⨯= .∴(01)E ,. ············································································································(1分) 设过点E D C 、、的抛物线的解析式为2(0)y ax bx c a =++≠. 将点E 的坐标代入,得1c =.将1c =和点D C 、的坐标分别代入,得42129310.a b a b ++=⎧⎨++=⎩,····································································································(2分) 解这个方程组,得56136a b ⎧=-⎪⎪⎨⎪=⎪⎩故抛物线的解析式为2513166y x x =-++. ···························································(3分) (2)2E F G O =成立. ·························································································(4分)点M 在该抛物线上,且它的横坐标为65,∴点M 的纵坐标为125.························································································(5分)设D M 的解析式为1(0)y kx b k =+≠, 将点D M 、的坐标分别代入,得1122612.55k b k b +=⎧⎪⎨+=⎪⎩, 解得1123k b ⎧=-⎪⎨⎪=⎩,. ∴D M 的解析式为132y x =-+.·········································································(6分) ∴(03)F ,,2E F =. ···························································································(7分) 过点D 作D K O C ⊥于点K ,则D A D K =.90A D K F D G ∠=∠= °, F D A G D K ∴∠=∠.又90F A D G K D ∠=∠= °,D AF D K G ∴△≌△. 1K G A F ∴==.1G O ∴=.············································································································(8分) 2E F G O ∴=.(3) 点P 在AB 上,(10)G ,,(30)C ,,则设(12)P ,.∴222(1)2PG t =-+,222(3)2PC t =-+,2G C =.①若P G P C =,则2222(1)2(3)2t t -+=-+, 解得2t =.∴(22)P ,,此时点Q 与点P 重合.∴(22)Q ,. ···········································································································(9分) ②若PG G C =,则22(1)22t 2-+=,解得 1t =,(12)P ∴,,此时G P x ⊥轴.G P 与该抛物线在第一象限内的交点Q 的横坐标为1,∴点Q 的纵坐标为73.∴713Q ⎛⎫⎪⎝⎭,. ······································································································· (10分)x。

2013年重庆市名校数学中考模拟

2013年重庆市名校数学中考模拟

A 的坐标为(1,2),将 △AOB 绕点 A 逆时针旋转 90°,点 O
的对应点
C
恰好落在双曲线
y
k x
(x
0)
上,则
k
的值为
A. 2
B. 3
C. 4
D. 6
第 11 题图
A
D
B
EC
第 12 题图
二、填空题 (本大题 6 个小题,每小题 4 分,共 24 分)在每小题中,请将答案填在答题 卷相应位置的横线上.
C. 40°
D. 45°
7.已知一个多项式与 3x2 x 的和等于 3x2 4x 1 ,则这个多项
式是
第 4 题图
B
O
A
C 第 6 题图
A. 3x 1 B. 3x 1 C. 3x 1
D. 3x 1
8.估算 10 1的值在
A.2 和 3 之间
B.3 和 4 之间
C.4 和 5 之间
D.5 和 6 之间
个这样的三角形拼接而成的四边形的周长是
A
┅┅
B
C
A.2015
B.2016
C.2017
D.2018
11.如图,在等腰 RtABC 中,C 90 , AC 6 , D 是 AC 上
一点.若
tan
ห้องสมุดไป่ตู้
DBA
1 5
,那么
AD
的长为
A. 2
B. 3
C. 2
D. 1
12.如图,平面直角坐标系中, OB 在 x 轴上, ABO 90°,点
重庆一中初 2013 级初三下期半期考试 数 学 试 卷 2013.4
(全卷共五个大题,满分 150 分,考试时间 120 分钟)

重庆2013中考模拟数学(可直接打印完美编辑免费下载)

重庆2013中考模拟数学(可直接打印完美编辑免费下载)

重庆市2013年初中毕业暨高中招生模拟考试数 学 试 卷(全卷共五个大题,满分150分,考试时间120分钟)参考公式:抛物线y=ax 2+bx+c (a ≠0)的顶点坐标为(—a b 2,ab ac 442),对称轴公式为x =—a b 2.一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号填入题后的括号内. 1.在—5,—2,0,3这四个数中,最大的数是( ) A .—5B .—2C .0D .32.计算(—x 3y )2的结果是( ) A .—x 6y 2B .x 5y 2C .x 6y 2D .—x 5y 23.如图,AB ∥CD ,AC =AB ,∠A =100°,则∠BCD 的度数等于( ) A .40° B .50°C .45°D .30°4.下列调查中,适宜采用全面调查(普查)方式的是( ) A .对“天宫一号”飞船的零部件进行检查 B .对我市中小学生视力情况进行调查 C .对一天内离开我市的人流量进行调查 D .对我市市民塑料制品使用情况进行调查5.若等腰三角形的两边长分别为2和4,则这个等腰三角形的周长为( ) A .10B .8C .10或8D .无法确定 6.若x =1是一元二次方程x 2—3x +m =3的一个根,则m 的值为( ) A .5 B .—1C .1D .—57.如图,△ABC 内接于⊙O ,若∠ACB =60°,则∠OAB 的度数等于( ) A .20°B .25°ABCD3题图7题图C .30°D .35°8.观察139713……,268426……等数字,它们都是由如下方式得到的:将第1位数字乘以3,若积为一位数,则将其写在第2位上;若积为两位数,则将其个位数字写在第2位上,对第2位数字再进行如上操作得到第3位数字……后面的每一位数字都是由前一位数字进行如上操作得到的.若第1位数字是3,仍按上述操作得到一个多位数,则这个多位数第2012位数字是( ) A .3B .9C .7D .19.小明同学为响应我市“阳光体育运动”的号召,与同学一起登山.他们在早上8:00出发,在9:00到达半山腰,休息30分钟后加快速度继续登山,在10:00到达山顶.下面能反映他们距山顶的距离y (米)与时间x (分钟)的函数关系的大致图象是( )10.如图,在平面直角坐标系xOy 中,二次函数y =ax 2+bx +c (a ≠0) 的图象与x 轴相交于点A (—2,0)和点B ,与y 轴相交于点C (0,4),且S △ABC =12,则该抛物线的对称轴是直线( )A .x =21B .x =1C .x =23D .x =2二、填空题:(本大题6个小题,每小题4分,共24分)在每小题中,请将答案直接填在题后的横线上. 11.地球的表面积约为5.1亿平方千米,其中海洋约占70%,则海洋的面积用科学记数法可表示为 平方千米. 12.如图,直线AB 、CD 相交于点O ,AC ∥BD .若BO =2AO ,AC =5,则BD 的长度为 .13.分解因式:x 2+2xy +y 2—4= .14.如图,点A 、B 在⊙O 上,且AB =BO .∠ABO 的平分线与AO 相交于点C ,若AC =3,则⊙O 的周长为 .(结果保留π) 15.有六张正面分别标有数字—2,—1,0,1,2,3的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a ,A .B .C .D .ACDB O12题图14题图 10题图将该卡片上的数字加1记为b ,则函数y =ax 2+bx +2的图象过点(2,3)的概率为 . 16.某果蔬饮料由果汁、蔬菜汁和纯净水按一定质量比配制而成,且纯净水、果汁、蔬菜汁的成本价格比为1:2:2.由于市场原因,果汁、蔬菜汁的成本价格上涨15%,而纯净水的成本价格下降20%,但该饮料的总成本仍与从前一样,那么该饮料中果汁和蔬菜汁的总质量与纯净水的质量之比为 . 三、解答题:(本大题4个小题,每小题6分,共24分)解答时每小题必须给出必要的演算过程或推理步骤.17.计算:9+(—1)2012—(31)-1+(π—4)0+tan45°.18.解不等式组:⎪⎩⎪⎨⎧->-<-183347215x x x19.如图,△ADE 的顶点D 在△ABC 的BC 边上,且∠ABD =∠ADB ,∠BAD =∠CAE ,AC =AE .求证:BC =DE .20.如图,AD 是△ABC 中BC 边上的高,且∠B =30°,∠C =45°,CD =2.求BC 的长.ABCDE19题图ABC20题图①②四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤.21.先化简,再求值:(14++-x x x )1442++-÷x x x ,其中x =—1.22.如图,在平面直角坐标系xOy 中,一次函数y =kx +b(k ≠0)的图象与反比例函数y =xm(m ≠0)的图象 相交于第一、三象限内的A 、B 两点,与x 轴相交于 点C ,连结AO ,过点A 作AD ⊥x 轴于点D ,且OA=OC =5,cos ∠AOD =53.(1)求该反比例函数和一次函数的解析式; (2)若点E 在x 轴上(异于点O ),且S △BCO =S △BCE求点E 的坐标.22题图23.香港的“公屋制度”解决了30%以上,约200万人口的居住问题.内地对公租房建设也多有讨论,但尚未有一个城市真正大规模尝试.重庆市建设公共租赁住房,意在重点解决“夹心层”的住房问题,力争城市保障性住房的“全覆盖”.某班对学生以“公租房知识知多少”为主题进行了调查,该班的数学兴趣小组将本组的调查情况绘制成如下两幅不完整的统计图:(其中“A ”表示“非常了解”,“B ”表示“了解”,“C ”表示“比较了解”,“D ”表示“不了解”)(1)根据上图,计算出该组的总人数,并将该条形统计图补充完整; (2)若该班共有50人,试估计该班对公租房非常了解的人数;(3)该数学兴趣小组决定从本组“非常了解”的同学中人选两名代表本班参加学校的公租房知识抢答竞赛.若该组“非常了解”的同学中有1名女生,请用画树状图的方法,求出所选两名同学恰好是一男一女的概率.人数“公租房知识知多少”调查结果扇形统计图“公租房知识知多少”调查结果条形统计图23题图24.如图,正方形ABCD的对角线相交于点O.点E是线段DO上一点,连结CE.点F是∠OCE的平分线上一点,且BF⊥CF与CO相交于点M.点G是线段CE上一点,且CO=CG.(1)若OF=4,求FG的长;(2)求证:BF=OG+CF.D 24题图五、解答题:(本大题2个小题,第25小题10分,第26小题12分,共22分)解答时每小题必须给出必要的演算过程或推理步骤.25.“相约红色重庆,共享绿色园博”,位于重庆市北部新区的国际园林博览会是一个集自然景观和人文景观为一体的大型城市生态公园.自2011年11月19日开园以来,某商家在园博园内出售纪念品“山娃”玩偶.十周以来,该纪念品深受游人喜爱,其销售量不断增加,销售量y(件)与周数x(1≤x≤10,且x取整数)之间所满足的函数关系如下表所示:为回馈顾客,该商家将此纪念品的价格不断下调,其销售单价z(元)与周数x(1≤x≤10,且x取整数)之间成一次函数关系,且第一周的销售单价为68元,第二周的销售单价为66元.另外,已知该纪念品每件的成本为30元.(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出y与x 之间的函数关系式;根据题意,直接写出z与x之间满足的一次函数关系式;(2)求前十周哪一周的销售利润最大,并求出此最大利润;(3)从十一周开始,其他商家陆续入驻园博园,因此该商店的销售情况不如从前.该纪念品的销售量比十周下降a%(0<a<10),于是该商家将此纪念品的销售单价在十周的基础上提高1.4a%.另外,随着园博园管理措施的逐步完善,该商家需每周交纳200元的各种费用.这样,十一周的销售利润恰好与十周持平.请参考以下数据,估算出a的整数值.(参考数据:222=484,232=529,242=576,252=625)26.如图,在Rt△ABC中,AB=AC=24.一动点P从点B出发,沿BC方向以每秒1个单位长度的速度匀速运动,到达点C即停止.在整个运动过程中,过点P作PD⊥BC与Rt△ABC的直角边相交于点D,延长PD至点Q,使得PD=QD,以PQ为斜边在PQ左侧作等腰直角三角形PQE.设运动时间为t秒(t>0).(1)在整个运动过程中,设△ABC与△PQE重叠部分的面积为S,请直接写出S与t之间的函数关系式以及相应的自变量t的取值范围;(2)当点D在线段AB上时,连结AQ、AP,是否存在这样的t,使得△APQ成为等腰三角形?若存在,求出对应的t的值;若不存在,请说明理由;(3)当t=4秒时,以PQ为斜边在PQ右侧作等腰直角三角形PQF,将四边形PEQF绕点P旋转,PE与线段AB相交于点M,PF与线段AC相交于点N.试判断在这一旋转过程中,四边形PMAN 的面积是否发生变化?若发生变化,求出四边形PMAN的面积y与PM的长x之间的函数关系式以及相应的自变量x的取值范围;若不发生变化,求出此定值.C26题图26题备用图重庆市2013年初中毕业暨高中招生模拟考试数学试卷参考答案及评分意见一、选择题:二、填空题: 11.3.57×108; 12.10; 13.(x +y +2)(x +y —2);14.12π;15.61;16.2:3.三、解答题:17.解:原式=3+1—3+1+1.………………………………………………………………………………(5分) =3.……………………………………………………………………………………………(6分) 18.解:由①:3(5x —1)<2(7x —4).…………………………………………………………………(1分) 15x —3<14x —8.………………………………………………………………………(2分)x <—5.…………………………………………………………………………(4分)由②:x >—6.……………………………………………………………………………………(5分) ∴原不等式组的解集为—6<x <—5.……………………………………………………………(6分)19.证明:∵∠ABD =∠ADB ,∴AB =AD .………………………………………………………………………………………(1分) ∵∠BAD =∠CAE ,∴∠BAD +∠DAC =∠CAE +∠DAC ,即∠BAC =∠DAE .……………………………………(3分) 又∵AC =AE ,∴△ABC ≌△ADE .……………………………………………………………………………(5分) ∴BC =DE .………………………………………………………………………………………(6分)20.解:∵AD 是△ABC 中BC 边上的高,∴AD ⊥BC ,∴∠ADB =∠ADC =90°.…………………………………………………………………………(1分) 在R t △ACD 中:∵tan C =CD AD =2AD=tan45°=1, ∴AD =2.……………………………………………………………………………………………(3分) 在Rt △ABD 中:∵tan B =BD AD =BD 2=tan30°=33, ∴BD =32.………………………………………………………………………………………(5分) ∴BC =BD +CD =32+2,即BC 的长为32+2.……………………………………………………………………………(6分)四、解答题:21.解:原式=(1412++-++x x x x x )÷1)2(2+-x x .…………………………………………………………(2分) =22)2(114-+⋅+-x x x x .…………………………………………………………………………(5分)=2)2()2)(2(--+x x x .……………………………………………………………………………(7分) =22-+x x .………………………………………………………………………………………(8分) 当x =—1时,原式=2121--+-.……………………………………………………………………(9分)=31-.…………………………………………………………………………(10分)22.解:(1)∵AD ⊥x 轴,∴∠ADO =90°.在Rt △AOD 中,∵cos ∠AOD =AO DO =5DO =53∴DO =3.………………………………(2分)∴AD =22DO AO -=4. ∵点A 在第一象限内,∴点A 的坐标是(3,4). …………(3分)将点A (3,4)代入y =x m (m ≠0),3m=4,m =12.∴该反比例函数的解析式为y =x 12.………………………………………………………(4分)∵OC =5,且点C 在x 轴负半轴上,22题答图∴点C 的坐标是(—5,0).………………………………………………………………(5分) 将点A (3,4)和点C (—5,0)代入y =kx +b (k ≠0),⎩⎨⎧=+-=+0543b k b k 解得⎪⎪⎩⎪⎪⎨⎧==2521b k ∴该一次函数的解析式为y =21x +25.………………………………………………………(7分) (2)过点B 作BH ⊥x 轴于点H .∵S △BCO =S △BCE , ∴21×OC ×BH =21×CE ×BH , ∴OC =CE =5.…………………………………………………………………………………(8分) ∴OE =OC +CE =5+5=10.……………………………………………………………………(9分) 又∵点E 在x 轴负半轴上,∴点E 的坐标是(—10,0).……………………………………………………………(10分)23.解:(1)该组的总人数=2÷20%=10(人).…………………………………………………………(1分)补图如下:…………………………………………………………………………………………………(3分) (2)50×30%=15(人).…………………………………………………………………………(4分)∴估计该班对公租房非常了解的人数约为15人.…………………………………………(5分) (3)将这一名女生用A 表示,另两名男生用B 1,B 2表示,由题意得树状图:23题答图“公租房知识知多少”调查结果条形统计图…………………………………………………………………………………………………(8分) 共有6种情况,每种情况可能性相等,所选两名同学恰好是一男一女有4种情况.…(9分) ∴P (所选两名同学恰好是一男一女)=64=32.…………………………………………(10分) 24.(1)解:∵CF 平分∠OCE ,∴∠OCF =∠ECF .……………………………………………………………………………(1分) 又∵OC =CG ,CF =CF ,∴△OCF ≌△GCF .…………………………………………………………………………(3分) ∴FG =OF =4,即FG 的长为4.……………………………………………………………………………(4分)(2)证明:在BF 上截取BH =CF ,连结OH .………………………………………………………(5分)∵正方形ABCD 已知, ∴AC ⊥BD ,∠DBC =45°, ∴∠BOC =90°,∴∠OCB =180°—∠BOC —∠DBC =45°. ∴∠OCB =∠DBC .∴OB =OC .…………………………………………………………………………………(6分) ∵BF ⊥CF , ∴∠BFC =90°.∵∠OBH =180°—∠BOC —∠OMB =90°—∠OMB , ∠OCF =180°—∠BFC —∠FMC =90°—∠FMC , 且∠OMB =∠FMC ,开始A B 1 B 2B 1 B 2 A B 2 A B 1(A ,B 1) (A ,B 2)(B 1,A ) (B 1,B 2)(B 2,A ) (B 2,B 1)第一位 第二位结果D24题答图∴∠OBH =∠OCF .………………………………………………………………………(7分) ∴△OBH ≌△OCF .∴OH =OF ,∠BOH =∠COF .……………………………………………………………(8分) ∵∠BOH +∠HOM =∠BOC =90°, ∴∠COF +∠HOM =90°,即∠HOF =90°. ∴∠OHF =∠OFH =21(180°—∠HOF )=45°. ∴∠OFC =∠OFH +∠BFC =135°. ∵△OCF ≌△GCF , ∴∠GFC =∠OFC =135°,∴∠OFG =360°—∠GFC —∠OFC =90°. ∴∠FGO =∠FOG =21(180°—∠OFG )=45°. ∴∠GOF =∠OFH ,∠HOF =∠OFG . ∴OG ∥FH ,OH ∥FG , ∴四边形OHFG 是平行四边形.∴OG =FH .…………………………………………………………………………………(9分) ∵BF =FH +BH ,∴BF =OG +CF .…………………………………………………………………………(10分)五、解答题:25.解:(1)y =10x +100(1≤x ≤10,且x 取整数).………………………………………………………(1分)z =—2x +70(1≤x ≤10,且x 取整数).………………………………………………………(2分) (2)设前十周内第x 周的销售利润为W (元),由题意知:W =y (z —30).………………………………………………………………………………(3分) =(10x +100)(—2x +70—30).=—20x 2+200x +4000.………………………………………………………………………(4分) =—20(x —5)2+4500.……………………………………………………………………(5分) ∵—20<0,∴抛物线开口向下,有最大值. ∴当x =5时,W 取得最大值4500.∴前十周内第五周的销售利润最大,为4500元.…………………………………………(6分) (3)十周的销售量由表知为200件.十周的销售单价=—2×10+70=50(元).十周的销售利润=200×(50—30)=4000(元).…………………………………………(7分) 由题意,得200(1—a %)[50(1+1.4a %)—30]—200=4000.………………………(8分) 设t =a %,原方程可整理为:70t 2—50t +1=0.………………………………………………(9分) 解得t =7055525±. ∵232=529,242=576,而555更接近576,∴t ≈702425±, ∴t 1≈0.7或t 2≈0.014,∴a 1≈70或a 2≈1. ∵0<a <10,∴a 1≈70舍去.∴a =1.∴a 的整数值为1.…………………………………………………………………………(10分)26.解:(1)当0<t ≤4时,S =41t 2.………………………………………………………………………(1分) 当4<t ≤316时,S =—43t 2+8t —16.…………………………………………………………(2分)当316<t <8时,S =43t 2—12t +48.…………………………………………………………(3分) (2)存在,理由如下:当点D 在线段AB 上时, ∵AB =AC , ∴∠B =∠C =21(180°—∠BAC )=45°. ∵PD ⊥BC , ∴∠BPD =90°, ∴∠BDP =45°. ∴PD =BP =t , ∴QD =PD =t , ∴PQ =QD +PD =2t .CP H 26题答图①过点A 作AH ⊥BC 于点H . ∵AB =AC , ∴BH =CH =21BC =4,AH =BH =4. ∴PH =BH —BP =4—t .在R t △APH 中,AP =328222+-=+t t PH AH .……………………………………(4分) (ⅰ)若AP =PQ ,则有3282+-t t =2t .解得:t 1=3474-,t 2=3474--(不合题意,舍去).…………………………(5分)(ⅱ)若AQ =PQ ,过点Q 作QG ⊥AP 于点G .∵∠BPQ =∠BHA =90°, ∴PQ ∥AH . ∴∠APQ =∠P AH . ∵QG ⊥AP , ∴∠PGQ =90°, ∴∠PGQ =∠AHP =90°, ∴△PGQ ∽△AHP . ∴AP PQ AH PG =,即328242+-=t t t PG , ∴PG =32882+-t t t .若AQ =PQ ,由于QG ⊥AP ,则有AG =PG ,即PG =21AP , 即32882+-t t t=213282+-t t .解得:t 1=12—74,t 2=12+74(不合题意,舍去).……………………………(6分) (ⅲ)若AP =AQ ,过点A 作AT ⊥PQ 于点T .易知四边形AHPT 是矩形,故PT =AH =4. 若AP =AQ ,由于AT ⊥PQ ,则有QT =PT ,即PT =21PQ , 即4=21×2t .解得t =4.当t =4时,A 、P 、Q 三点共线,△APQ 不存在,故t =4舍去.综上所述,存在这样的t ,使得△APQ 成为等腰三角形,即t 1=3474 秒或t 2=(12—74)秒.………………………………………………………………………………………………(7分)(3)四边形PMAN 的面积不发生变化.…………………………………………………………(8分)理由如下:∵等腰直角三角形PQE 已知, ∴∠EPQ =45°.∵等腰直角三角形PQF 已知, ∴∠FPQ =45°.∴∠EPF =∠EPQ +∠FPQ =45°+45°=90°. ……………………………………(9分) 连结AP . ∵此时t =4秒, ∴BP =4×1=4=21BC , ∴点P 为BC 的中点. ∵△ABC 是等腰直角三角形, ∴AP ⊥BC ,AP =21BC =CP =BP =4,∠BAP =∠CAP =21∠BAC =45°. ∴∠APC =90°,∠C =45°. ∴∠C =∠BAP =45°.∵∠APC =∠CPN +∠APN =90°, ∠EPF =∠APM +∠APN =90°,∴∠CPN =∠APM .…………………………………………………………………………(10分) ∴△CPN ≌△APM .∴S △CPN =S △APM .………………………………………………………………………………(11分) ∴S 四边形PMAN =S △APM +S △APN =S △CPN +S △APN =S △ACP =21×CP ×AP =21×4×4=8. ∴四边形PMAN 的面积不发生变化,此定值为8.………………………………………(12分)ABC PFQEMN26题答图②。

2013重庆市中考数学最新模拟题4

2013重庆市中考数学最新模拟题4

初2013级毕业暨高中招生模拟考试数 学 试 题(六)(全卷共五个大题,满分150分,考试时间120分钟)参考公式:抛物线y=ax 2+bx+c (a ≠0)的 顶点坐标为(- b 2a ,4ac -b 24a ),对称轴公式为x=- b2a.一、选择题(本大题共12个小题,每小题4分,共48分.) 1.如图,在数轴上点A 表示的数的相反数可能是( )A .1.5B .-1.5C .-2.6D .2.6 2.下列计算正确的是( ) A .(x+y )2=x 2+y 2B .(x -y )2=x 2-2xy -y 2C .(x+2y )(x -2y )=x 2 -2y 2D .(-x+y )2=x 2-2xy+y 23.在函数y=1-2xx -12中,自变量的取值范围是( ) A .x≠12 B .x≤12 C .x<12 D .x≥124.若a>b ,则下列不等式不一定成立的是( )A .a+m>b+mB .a (m 2+1)>b (m 2+1)C .-a 2<-b 2D .a 2>b 25.下列调查:①调查一批灯泡的使用寿命;②调查全班同学的身高;③调查市场上某种食品的色素含量是否符合国家标准;④企业招聘,对应聘人员进行面试.其中符合用抽样调查的是( ) A .①② B .①③ C .②④ D .②③6如图,将三角尺的直角顶点放在直线a 上,a ∥b ,∠1=50°,∠2=60°,则∠3的度数为【 】A .50°B .60°C .70°D .80°7.如图,△ABC 内接于⊙O ,OD ⊥BC 于D ,∠A=50°,则∠OCD 的度数是( )A .40°B .45°C .50°D .60°8.如图,已知点A 、D 、C 、F 在同一条直线上,AB=DE ,BC=EF ,要使△ABC ≌△DEF ,还需要添加一个条件是( )A .∠BCA=∠FB .∠B=∠EC .BC ∥EFD .∠A=∠EDF9.如图,已知点A 在反比例函数y =4x 图象上,点B 在反比例函数y=kx (k≠0)的图象上,AB ∥x 轴,分别过点A 、B 向x 轴作垂线,垂足分别为C 、D ,若OC=13错误!未找到引用源。

2013重庆市中考数学最新模拟题

2013重庆市中考数学最新模拟题

x第7题图第6题图第3题图第1题图P Q NM B重庆市初2013级毕业暨高中招生模拟考试数 学 试 题(全卷共5个大题,满分150分,考试时间120分钟)参考公式:抛物线()20y ax bx c a =++≠的顶点坐标为24(,)24b ac b a a--,对称轴为2b x a =-。

一、选择题:(本大题12个小题,每小题4分,共48分) 1、如图,数轴上表示数2的相反数的点是( ) A 、点MB 、点NC 、 点PD 、点Q2、下列运算中,正确的是( )A 、2232a a -= B 、()325aa = C 、369a a a ⋅= D 、()22422a a =3、如图,已知D 、E 在△ABC 的边上,DE ∥BC ,∠B =60°,∠AED =45°,则∠A 的度数为( ) A 、65°B 、75°C 、85°D 、95°4、若x =-2是关于x 的方程2x +3m +1=0的解,则m 的值为( ) A 、53B 、53- C 、1- D 、1 5、下面调查中,适宜采用全面调查方式的是( )A 、调查全国中小学身体素质状况B 、调查重庆市冷饮市场某种品牌的冰淇淋的质量情况C 、调查我校初2013级某班学生的出生日期D 、调查我国居民对汽车废弃污染环境的看法 6、如图, AB 是⊙O 的直径,若∠BAC =35°,则∠ADC =( ) A 、35°B 、55°C 、70°D 、110°7、如图,在Rt △ABC 中,CD 是斜边AB 上的中线,若CD =5,AC =6,则tanB 的值是( ) A 、45B 、35C 、43D 、348、在重庆八中“树人之星”知识竞赛中,10名参赛学生的成绩如下:则下列说法正确的是( ) A 、学生成绩的极差是4B 、学生成绩的众数是1C 、学生成绩的中位数是80分D 、学生成绩的平均数是80分第11题图第9题图69图1图2……9、如图,菱形ABCD 的两条对角线相交于O ,若菱形的周长为20,AC =8,则菱形的面积是( ) A 、24 B 、48 C 、12 D 、4010、3月23日,“母亲河畔的奔跑”—2013重庆国际马拉松赛在南滨公园门口鸣枪开炮,甲、乙两选手的行程y (千米)随时间x (时)变化的图像(全程)如图所示,有下列说法,其中错误的说法是( ) A 、起跑后1小时内,甲在乙的前面; B 、第1小时两人都跑了21千米; C 、甲比乙先到达终点; D 、两人都跑了42.195千米;11、小明用棋子摆放图形来研究数的规律,图1中棋子围成的三角形,其棵数3,6,9,12,…称为三角形数.类似地,图2中的4,8,12,16,…称为正方形数.下列数中既是三角形数又是正方形数的是( ) A 、18B 、20C 、21D 、2412、已知二次函数()20yax bx c a =++≠的图像如图所示,现有下列结论:①abc >0;②240b ac -<;③42a b c -+<0;④2b a =-则其中正确的是( )A 、①③ B 、③④ C 、②③ D 、①④二、填空题:(本大题6个小题,每小题4分,共24分)。

2013重庆中考数学模拟试题3

2013重庆中考数学模拟试题3

1 2 33题2013重庆中考数学模拟试题(三)一、选择题 (本大题12个小题,每小题4分,共48分) 1.下列各数中,最大的数是( ) AB .0C .1D .-32.计算22(-)x y 的结果是( ) A .4-x y B .22x yC .42x yD .422x y3.将三角尺的直角顶点放在直尺的一边上,130250∠=∠=°,°,则3∠的度数等于( )A .20°B .30°C .50°D .15°4.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .5.下列调查中,适宜采用普查的调查方式的是( )A .了解在校学生的主要娱乐方式B .了解重庆市居民对废电池的处理情况C .检测一批灯管的使用寿命D .对甲型H1N1流感患者的同一车厢的乘客进行医学检查 6.如图,AB 是O ⊙的直径,点C 、D 在O ⊙上,110BOC ∠=°,AD OC ∥,则AOD∠等于( ) A .40° B .60° C .50° D .70° 7. ⎩⎨⎧==21y x 是关于x ,y 的二元一次方程13=-y ax 的解,则a 的值为( ) A .-5 B .-1 C .2 D .78. 用同样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺地板,则第(6)个图形中黑色瓷砖的块数为( )A .19B .16C .18D .229.若⊙O 1、⊙O 2的半径分别为4和6,圆心距O 1 O 2=8,则⊙O 1、⊙O 2的位置关系是( ) A 、内切 B 、相交 C 、外切 D 、外离10.某人骑车沿直线旅行,先前进了a 千米,休息了一段时间又原路返回了b 千米(b <a ),再前进了c 千米,则此人离起点的距离s 与时间t 的关系示意图是( )11.二次函数c bx ax y ++=2的图象如图所示,则下列关系式不正确...的是( ) A .a <0B .abc >0C .c b a ++>0D .ac b 42->012.如图,已知E 、F 分别为正方形ABCD 的边AB ,BC 的中点,AF 与DE 交于点M , O 为BD 的中点,则下列结论: ①∠AME =90° ②∠BAF =∠EDB ③∠BMO =90°④MD=2AM=4EM ⑤AM=23MF . 其中正确结论的个数是 ( )A .5个B .4个C .3个D .2个二、填空题 (本大题6个小题,每小题4分,共24分)13. 2013年第一季度,重庆市完成全社会固定资产投资827000万元,用科学记数法表示这个数,结果为 万元. 14.某中学篮球队12名队员的年龄情况如下表:则这个队队员年龄的中位数是________岁.15.已知△ABC ∽△DEF ,且△ABC 中BC 边的高为4,△DEF 中EF 边上的高为9,则△ABC 与△DEF 这两个三角形的周长之比为 .16.已知在⊙O 中,半径r=2,∠AOB=150°,则劣弧AB 的弧长为 cm . 17.现将背面完全相同,正面分别标有数1、0、-2、-3的4张卡片洗匀后,背面朝上,从中任取一张,将该卡片上的数记为m ,将卡片放回,混合均匀后再从中任取一张,将该卡片上的数记为n ,则数字m ,n 使得关于x 的一元一次不等式mx +3n >2的解一定大于2的概率是_____________.18.某城市有一段马路需要整修,这段马路的长不超过3500米,今有甲乙丙三个施工队,分别施工人行道、非机动车道和机动车道,他们于某天零时同时开工,每天24小时连续施工,若干天后的零时甲完成任务,几天后的18时乙完成任务;自乙队完成的当天零时起,再过几天后的8时,丙完成任务,已知三个施工队每天完成的施工任务分别是300米,240米,180米,问这段路面的长为____________米. 三、解答题 (本大题2个小题,每小题7分,共14分)CA EB MC D O11题190(3)π--21()2-+-2010(1)--5--20作图:请你在下图中作出一个以线段AB 为斜边的等腰.Rt ABC ∆ (要求:用尺规作图,,保留作图痕迹,不写作法和结论)四、解答题 (本大题4个小题,每小题10分,共40分)21.先化简,再求值:222(+1)-121x x x x x x x --÷-+ ,其中x 满足方程33422x x x -+=--.22. 如图, 已知在平面直角坐标系xOy 中, A B ⊥x 轴于B ,直线AD 的解析式为:1y ax =+与反比例函数m y x =(0,0a m ≠≠)交于A 、D形ABO 的面积3=∆ABO S .求:(1)求反比例函数与一次函数的解析式; (2) 求△AOD 的面积;23. 某校四个年级的学生分布如图①②,现通过对四个年级全体学生暑假期间所读课外书B情况进行调查,并制成各年级读书情况的条形统计图③,请根据统计图回答下列问题: ⑴本次调查的四个年级的总人数有 人. ⑵补全图②的条形图.⑶图③表示各年级的人均读书量,试求这四个年级平均每人读了 本书.⑷现有高二和初二年级的同学共8人,其中初二的同学有3人,其中2位是男生,高二的同学中共有2位女生,现在准备从这两个年级中分别选一人代表学校参加知识竞赛,试问选取到一位男生和一位女生的概率是多少?24. 如图,在四边形ABCD 中,AB=AD ,∠B AD =60°,∠BCD =120°,连接AC ,BD 交于点E . ⑴若BC=CD=2,M 为线段AC 上一点,且AM :CM=1:2,连接BM ,求点C 到BM 的距离.⑵证明:BC+CD=AC .高一初一28%图①初二 24%高二500 750 图②图③DC五、解答题:(本大题2个小题,每小题 12分,共24分)25. 陈老师为学校购买运动会的奖品后,回学校向后勤处王老师脚帐说:"我买了两种书,共105本,单价分别为8元和12元,买书前我领了1500元,现在还余418元."王老师算了一下,说"你肯定搞错了."(1) 王老师为什么说他搞错了?试用方程的知识给予解释(2) 陈老师连忙拿出购物发票,发现的确错了,因为他还买了一本笔记本. 但笔记本的单价已模糊不清,只能辩论出应为小于8元的整数,笔记本的单价可能多少元?26. 已知:m 、n 是方程2650x x -+=的两个实数根,且m<n ,抛物线2y x bx c =-++的图像经过点A(m ,0)、B(0,n). (1)求这个抛物线的解析式;(2)设(1)中抛物线与x 轴的另一交点为C ,抛物线的顶点为D ,试求出点C 、D 的坐标和△BCD 的面积;(3)P 是线段OC 上的一点,过点P 作PH ⊥x 轴,与抛物线交于H 点,若直线BC 把△PCH 分成面积之比为2:3的两部分,请求出P 点的坐标.23、某校四个年级的学生分布如图①②,现通过对四个年级全体学生暑假期间所读课外书情况进行调查,并制成各年级读书情况的条形统计图③,请根据统计图回答下列问题:(1)本次调查的四个年级的总人数有3600人.(2)补全图②的条形图.(3)图③表示各年级的人均读书量,试求这四个年级平均每人读了6.4本书.(4)现有高二和初二年级的同学共8人,其中初二的同学有3人,其中2位是男生,高二的同学中共有2位女生,现在准备从这两个年级中分别选一人代表学校参加知识竞赛,试问选取到一位男生和一位女生的概率是多少?考点:条形统计图;扇形统计图;列表法与树状图法.专题:图表型.分析:(1)用初一的学生人数除以所占的百分比,然后进行计算即可得解;(2)用总人数乘以初二学生所占的百分比求出初二的学生人数,然后根据总人数与初一、初二、高二的人数求出高一的学生的人数,补全统计图即可;(3)利用加权平均数的计算方法列式进行计算即可得解;(4)求出初二女生人数,高二的学校的人数与男生人数,然后画出树状图,得到总的情况数与一男一女的情况数,再根据概率公式列式计算即可得解.解答:解:(1)1008÷28%=3600(人);(2)初二学生人数:3600×24%=864(人),高一学生人数:3600-1008-864-792=936(人),补全统计图如图;(3)5×1008+7×864+6×936+8×7923600=5040+6048+5616+63363600=230403600=6.4(本);(4)∵初二的同学有3人,2位是男生,∴初二女生有3-2=1位,∵高二和初二年级的同学共8人,∴高二的学生人数是8-3=5人,∵高二的同学中共有2位女生,∴男生有5-2=3人,画树状图如下:共有15种情况,其中一位男生和一位女生的情况有7种情况,P(一位男生和一位女生)=715.点评:本题考查的是条形统计图和扇形统计图的综合运用,以及画树状图法求概率,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24、(1)解:∵BC=CD,∴∠CBD=∠CDB.又∵AB=AD,∴∠ABD=∠ADB.∴∠ADC=∠ABD+∠CBD=∠ADB+∠CDB=∠ADC.又AB=AD,BC=DC,∴△ABC≌△ADC. 又∠BAD=60°,∠BCD=120°,∴∠BAC=∠DAC=30°,∠ACB=∠ACD=60°.∴△ABC与△ADC都为直角三角形.∴在Rt△ABC中,AC=2BC=4.∵AM:CM=1:2,∴AM=4/3,MC=8/3.又依题意可知△ABD为等边三角形,∴∠CBD=∠CDB=90°-60°=30°.∴∠BEC=∠DEC=90°.∴在Rt△BCE中,BE=√3,CE=1.∴EM=MC-CE=5/3.∴在Rt△BEM中,MB=(2√13)/3.设C到BM的距离为h,则有S△BCM=(1/2)·MC·BE=(1/2)·MB·h,即有,(8/3)·√3=h·(2√13)/3.∴h=(4√39)/13.所以,点C到BM的距离为(4√39)/13.(2)证明:延长BC至点F,使得CF=CD,又∵∠BCD=120°∴∠DCF=60°.∴△DCF为等边三角形.∴∠ADC=∠ADB+∠BDC=60+∠BDC=∠FDC+∠BDC=∠BDF.又AD=BD,DC=DF,∴△ADC≌△BDF.∴AC=BF.又CD=CF,BF=BC+CF,∴AC= BC+CD.25、解:(1)设单价为8元的书买了X本,则单价为12元的书买了(105-X)本8X+12(105-X)=1500-4188X+1260-12X=1082-4X=-178X=44.5因为本数不能为小数,所以王老师说他搞错了(2)设单价为8元的书买了X本,则单价为12元的书买了(105-X)本,笔记本的单价为Y元8X+12(105-X)+Y=1500-4181260-4X+Y=10824X-Y=178因为Y小于10所以4XI大于178而且小于188X大于44.5小于47X =45或者46当X=45时Y=2当X=46时Y=626.解:(1)解方程2650x x -+=,得125,1x x ==(1分)由m<n ,有m =1,n =5 所以点A 、B 的坐标分别为A (1,0),B (0,5).(2分) 将A (1,0),B (0,5)的坐标分别代入2y x bx c =-++.得105b c c -++==⎧⎨⎩解这个方程组,得45b c =-=⎧⎨⎩所以,抛物线的解析式为245y x x =--+(3分)(2)由245y x x =--+,令y =0,得2450x x --+= 解这个方程,得125,1x x =-= 所以C 点的坐标为(-5,0).由顶点坐标公式计算,得点D (-2,9).(4分) 过D 作x 轴的垂线交x 轴于M . 则1279(52)22DMC S ∆=⨯⨯-= 12(95)142MDBO S =⨯⨯+=梯形,1255522BOC S ∆=⨯⨯=(5分) 所以,2725141522BCD DMC BOCMDBO S S S S ∆∆∆=+-=+-=梯形.(6分) (3)设P 点的坐标为(a ,0) 因为线段BC 过B 、C 两点,所以BC 所在的值线方程为y =x+5.那么,PH 与直线BC 的交点坐标为E(a ,a+5),(7分)PH 与抛物线245y x x =--+的交点坐标为2(,45)H a a a --+.(8分) 由题意,得①32EH EP =,即23(45)(5)(5)2a a a a --+-+=+ 解这个方程,得32a =-或5a =-(舍去)(9分) ②23EH EP =,即22(45)(5)(5)3a a a a --+-+=+ 解这个方程,得23a =-或5a =-(舍去) P 点的坐标为3(,0)2-或2(,0)3-.(10分)。

2013重庆市中考数学最新模拟题(一)

2013重庆市中考数学最新模拟题(一)

间为 t 分,当时间从 3:00 开始到 3:30 止,图中能大致表示 y 与 t 之间的函数关系的图象是( )
A.
B.
C.
D.
11.如图,用火柴棍摆出一列正方形图案,第①个图案用火柴棍的个数为 4 根,第②个图案用火柴棍的个数 为 12 根,第③个图案用火柴棍的个数为 24 根,若按这种方式摆下去,摆出第⑨个图案用火柴棍的个数为 ()
度数是( )
A.45o
B.55o
C.65o
D.75o
7.如图,点 A、B、C 是⊙O 上三点,∠AOC=130°,则∠ABC 等于( )
1
--
A. 50°
B.60°
C.65°
D.70°
8.如图,在 Rt△ABC 中,CD 是斜边 AB 上的中线,若 CD=5,AC=6,则 tanB 的值是( )
A.45
4
--
23.为了了解同学们最喜欢的运动品牌,某市场咨询公司到我们年级对“耐克、阿迪达斯、李宁和匹克”四种 运动品牌进行了调查,每个同学只选一种自己喜欢的品牌,喜欢的人数比为 5:4:2:1,其中喜欢“匹克”的 有 5 人。根据调查情况绘制了两个不完整的统计图:
概率是
.
18.某单位职工参加市工会组织的健身操比赛进行列队,已知 6 人一列少 2 人,5 人一列多 2 人,4 人一列
不多不少,请问这个单位参加健身操比赛的职工至少有
人。
三、解答题:(本大题 2 个小题,每个小题 7 分,共 14 分)
1 19.计算:|-3|+(π-2013)0 - 25+(-3)-1+2tan45o
B.35
C.43
D.34
A
D
B

2013级重庆名校中考数学模拟试卷三拉分题部分(含答案)

2013级重庆名校中考数学模拟试卷三拉分题部分(含答案)

7题图2013级重庆中考数学模拟试卷三拉分题部分一、单项选择题:(本大题10个小题,每小题4分,共40分)7、已知二次函数)0(2≠++=a c bx ax y 的图象如图所示,下列结论正确的是( ) A. 0>ac ; B. 0<bc C. 120<<ab -D. 0<c b a +-8. 下图是由一些火柴棒搭成的图案:按照这种方式摆下去, 摆第6个图案用多少根火柴棒:( )A .24 B. 25 C.26 D.279.小明和同学们到南山公园上去玩,从安康水库出发先爬山前进了2000米,玩了一段时间,发现已经错过了一个好景点,于是又下山返回1000米到这个景点,又玩了一会儿之后就回到安康水库公园玩,则他们离起点安康水库的距离s 与时间t 的关系示意图是( )10.现规定一种运算:a ※b=ab+a-b ,其中a 、b 为常数,则2※3+m ※1=6,则不等式223+x <m 的解集是 ( ) A. x <2- B. x <1- C. x <0 D. x >2二、填空题:(本大题6个小题,每小题4分,共24分)15、已知关于x 的方程(a+2)x 2-3x+ 1=0,如果从-2,-1,0,1,2五个数中任取一个数作为此方程的a ,那么所得方程有实数根的概率是16.晨光文具店有一套体育用品:1个篮球,1个排球和1个足球,一套售价300元,也可以单独出售,小攀同学共有50元、20元、10元三种面额钞票各若干张.如果单独出售,每个球只能用到同一种面额的钞票去购买.若小面额的钱的张数恰等于另两种面额钱张数的乘积,那么所有可能中单独购买三个球中所用到的钱最少的一个球是 元。

四、解答题:(本大题4个小题,每小题10分,共40分) 21. 先化简,再求值:222221(),11a a a a a a a -+-÷-+- 其中a 是方程09222=--x x 的解.8题图tAB CD22、如图,在平面直角坐标系中,二次函数bxx y +-=223经过点O 、A 、B 三点,且A 点坐标为(4,0),B 的坐标为(m ,32),点C 是抛物线在第三象限的一点,且横坐标为-2. (1)求抛物线的解析式和直线BC 的解析式。

2013年重庆市中考数学模拟试卷及答案(word解析版)

2013年重庆市中考数学模拟试卷及答案(word解析版)

重庆市2013年中考数学模拟试卷一、选择题(40分)1.(4分)(2013•重庆模拟)在三个数0.5,,|﹣|中,最大的数是()|﹣=,=,2最大.B424.(4分)(2013•重庆模拟)如图,直线AB∥CD,∠1=60°,∠2=50°,则∠E=()6.(4分)(2013•重庆模拟)小明从家里骑自行车到学校,每小时骑15km,可早到10分钟,每小时骑12km就会迟到5分钟.问他家到学校的路程是多少km?设他家到学校的路程是.小时,小时,+=.7.(4分)(2013•重庆模拟)若关于y的一元二次方程ky2﹣4y﹣3=3y+4有实根,则k的取>﹣﹣﹣>﹣﹣8.(4分)(2013•重庆模拟)用边长相等的黑色正三角形与白色正六边形镶嵌图案,按图①②③所示的规律依次下去,则第n个图案中,所包含的黑色正三角形和白色正六边形的个数总和是()9.(4分)(2013•重庆模拟)一列货运火车从南安站出发,匀加速行驶一段时间后开始匀速行驶,过了一段时间,火车到达下一个车站停下,装完货以后,火车又匀加速行驶,一段时B10.(4分)(2013•重庆模拟)如图,在矩形ABCD中,AB=1,BC=2,将其折叠使AB落在对角线AC上,得到折痕AE,那么BE的长度为()B根据相似的性质可得出:=BE=EF=×AC=FE=x=××二、填空题(24分)11.(4分)(2013•重庆模拟)今年我国西南五省市发生旱灾,尤其以云南省受灾最为严重,云南的经济损失已经超过170亿元,那么170亿元用科学记数法表示为 1.7×1010元.12.(4分)(2013•重庆模拟)我国青海玉树发生地震后,我校学生纷纷献出爱心为灾区捐则这六个班级捐款数的中位数为980元.13.(4分)(2013•重庆模拟)若m<0,则=﹣m.,而=14.(4分)(2013•重庆模拟)已知x1,x2是方程x2+3x﹣4=0的两个根,那么:x21+x22=17.==﹣=15.(4分)(2013•重庆模拟)在直角坐标系中,点A()关于原点对称的点的坐标是(,﹣).)关于原点对称的点的坐标是(,﹣),﹣)16.(4分)(2013•重庆模拟)某房地产公司销售电梯公寓、花园洋房、别墅三种类型的房屋,在去年的销售中,花园洋房的销售金额占总销售金额的35%.由于两会召开国家对房价实施调控,今年电梯公寓和别墅的销售金额都将比去年减少15%,因而房地产商决定加大花园洋房的销售力度.若要使今年的总销售金额比去年增长5%,那么今年花园洋房销售金额应比去年增加42.1%.(结果保留3个有效数字)三、解答题(24分)17.(6分)(2013•重庆模拟)计算:.18.(6分)(2013•重庆模拟)如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.求证:∠B=∠E.19.(6分)(2013•重庆模拟)解不等式:≥,并把解集在数轴上表示出来.20.(6分)(2013•重庆模拟)解方程:2x2﹣3x﹣1=0.=四、解答题(40分)21.(10分)(2013•重庆模拟)先化简,再求值:,其中a是方程x2+3x+1=0的根.;=22.(10分)(2013•重庆模拟)如图,已知直线y1=﹣2x经过点P(﹣2,a),点P关于y 轴的对称点P′在反比例函数y2=(k≠0)的图象上.(1)求点P′的坐标;(2)求反比例函数的解析式,并直接写出当y2<2时自变量x的取值范围.(,解得:;23.(10分)(2013•重庆模拟)某校学生会准备调查六年级学生参加“武术类”、“书画类”、“棋牌类”、“器乐类”四类校本课程的人数.(1)确定调查方式时,甲同学说:“我到六年级(1)班去调查全体同学”;乙同学说:“放学时我到校门口随机调查部分同学”;丙同学说:“我到六年级每个班随机调查一定数量的同学”.请指出哪位同学的调查方式最合理.并绘制了如图所示的统计表和扇形统计图.请你根据以上图表提供的信息解答下列问题:①a=100,b=0.15;②在扇形统计图中,器乐类所对应扇形的圆心角的度数是144°;③若该校六年级有学生560人,请你估计大约有多少学生参加武术类校本课程.24.(10分)(2013•重庆模拟)如图,梯形ABCD中,AD∥BC,AB=DC=10cm,AC交BD 于G,且∠AGD=60°,E、F分别为CG、AB的中点.(1)求证:△AGD为正三角形;(2)求EF的长度.EF=五、解答题(22分)25.(10分)(2013•重庆模拟)草莓营养丰富、味道鲜美.据以往经验,重庆某草莓种植基地每年的上半年草莓的售价y(元/千克)与月份x之间满足一次函数关系.月销售量P(千克)与月份x之间的相关数据售量P(千克)与月份x之间的函数关系式;(2)草莓在上半年的哪个月出售,可使销售金额W(元)最大?最大是多少元?并求出此时草莓的销售量;(3)由于气候适宜,该种植基地今年收获了10000千克的草莓,并按(2)问中求出的销售量售出新鲜草莓.剩下的草莓与白糖、柠檬汁按4:2:1的比例制成草莓酱并按每瓶500克的方式装瓶出售(制作过程中的损耗忽略不计).已知每瓶草莓酱的批发价是20元,大型超市的零售价比批发价高m%,大型商场的零售价比超市的零售价又提高了m%.该基地将这批瓶装草莓酱平均分成两部分,分别在大型超市、大型商场出售后销售总额达到了35万元.求m的值.(结果保留整数)(参考数据:)(﹣,(﹣﹣﹣=36000m%=或m%=≈26.(12分)(2013•重庆模拟)如图,已知点A,B分别在x轴和y轴上,且OA=OB=,点C的坐标是C()AB与OC相交于点G.点P从O出发以每秒1个单位的速度从O运动到C,过P作直线EF∥AB分别交OA,OB或BC,AC于E,F.解答下列问题:(1)直接写出点G的坐标和直线AB的解析式.(2)若点P运动的时间为t,直线EF在四边形OACB内扫过的面积为s,请求出s与t的函数关系式;并求出当t为何值时,直线EF平分四边形OACB的面积.(3)设线段OC的中点为Q,P运动的时间为t,求当t为何值时,△EFQ为直角三角形.,OA=OB=333,x+3OA=OB=3=6•OP=====HG××(t+,.的面积时有:﹣t﹣××﹣时,直线OP=OQ=×=t=)=,t=或。

重庆市2013年初中毕业暨高中招生考试数学模拟试题

重庆市2013年初中毕业暨高中招生考试数学模拟试题

重庆市2013年初中毕业暨高中招生考试数学模拟试题4(本试题共五个大题,26个小题,满分150分,时间120分钟)参考公式:抛物线y =ax 2+bx +c(a ≠0)的顶点坐标为)44,2(2a b ac a b --对称轴公式为ab x 2-=一、选择题:(本大题共10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号填在括号..中。

1、在:0,-2,1,这四个数中,绝对值最小的数是( ) A .0 B .-2 C .1 D .2、我国在2009到2011三年中,各级政府投入医疗卫生领域资金达8 500亿元人民币.将“8 500亿元”用科学记数法表示为( )A .8.5×1010元B .8.5×1011元C .8.5×1012元D .8.5×109元 3、由左图所示的地板砖各两块所铺成的下列图案中,,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .4、如图是一个由多个小正方形堆积而成的几何体的俯视图,图中所示数字为该位置正方体数,则这左视图( )A .B .C .D .5、某品牌服装原价173元,连续两次降价x%后售价价为127,下面所列方程中正确的是( )A .173(1+x%)2=127 B .173(1-2x%)=127C .173(1-x%)2=127D .127(1+x%)2=173 6、已知,是二元一次方程组的解,则a-b 的值为( )A .-1B .1C . 2D .3 7、如图,在梯形ABCD 中,AB ∥CD,∠A=60°,∠B=30°,若AD=CD=6,则AB 的长等于( ) A 、9 B 、12 C 、6+3 D 、188、如图,△ABC 内接于⊙O ,∠A=50°,∠ABC=60°,BD 是⊙O 的直径,交C 点E ,连DC ,则EB 等( )A .70°B .110°C .90°D .120°第7题 第8题9、苹果公司(Apple )推出的iPad 平板电脑在全球热卖,尤其是它的操作简便深获人们的喜爱。

2013年重庆市中考数学模拟试卷

2013年重庆市中考数学模拟试卷

2013年重庆市中考数学模拟试卷(1)一、选择题:1.(3分)计算:﹣22+(﹣2)3=( )A . 12B . ﹣12C . ﹣10D . ﹣42.(3分)计算(4a2)3的结果是( )A . 64a6B . 12a5C . 64a5D . 12a63、不等式042≥-x 的解集在数轴上表示正确的是( )A B C D4、二元一次方程组的解是( )A .B .C .D .5、如图,已知直线AB ∥CD ,∠DCF=110°且AE=AF ,则∠A 等于( )A . 30°B . 40°C . 50°D . 70°6.下列调查中,适合用普查的是( )①要了解某厂生产的一批灯泡的使用寿命; ②要了解某个球队的队员的身高;③要了解某班学生在半期考试中的数学成绩; ④要了解某市市民收看某频道的电视节目的情况.A . ①②B . ③④C . ①④D .②③ 7、计算28-的结果是( )A 、6B 、6 C 、2 D 、2 8.如图,A 、C 、B 是⊙O 上三点,若∠AOC=40°,则∠ABC 的度数是( ) 0-220A.10°B.20°C.40°D.80°9、某班九名同学在篮球场进行定点投篮测试,每人投篮五次,投中的次数统计如下:4,3,2,4,4,1,5,0,3,则这组数据的中位数、众数分别为()A.3. 4B.4. 3C.3. 3D.4. 410、已知关于x的方程x2﹣(2k﹣1)x+k2=0有两个不相等的实数根,那么k的最大整数值是()A.﹣2B.﹣1C.0D.111.一艘轮船在一笔直的航线上往返于甲、乙两地.轮船先从甲地顺流而下航行到乙地,在乙地停留一段时间后,又从乙地逆流而上航行返回到甲地(轮船在静水中的航行速度始终保持不变).设轮船从甲地出发后所用时间为t(h),轮船离甲地的距离为s(km),则s与t的函数图象大致是()A.B.C.D.12.(4分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论正确的是()A.a c<0B.a b>0C.4a+b=0D.a﹣b+c>0二、填空题:13、将抛物线y=﹣(x﹣1)2﹣2向左平移1个单位,再向上平移1个单位,则平移后抛物线的表达式6 2817题14、若单项式3x2yn 与-2xmy3是同类项,则m+n=??.在平面内,⊙O 的半径为??cm ,点P 到圆心O 的距离为??cm ,则点P 与⊙O 的位置关系是??????????????????????如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如( ,),( ,),( , ),( , ),( , ),( , )…根据这个规律,第 个点的横坐标为??????????????????????.把一个转盘平均分成三等份,依次标上数字 、??、??.用力转动转盘两次,将第一次转动停止后指针指向的数字记作x ,第二次转动停止后指针指向的数字的一半记作y 以长度为x 、y 、4的三条线段为边长能构成三角形的概率为_____________.18某商人经营甲、乙两种商品,每件甲种商品的利润率为40%,每件乙种商品的利润率为60%,当售出的乙种商品的件数比甲种商品的件数多50%时,这个商人得到的总利润率是50%;当售出的乙种商品的件数比甲种商品的件数少50%时,这个商人得到的总利润率为_____ ____.(利润率=利润÷成本)三、解答题:17.计算:2sin45_18.如图,在四边形ABCD 中,对角线AC ,BD 交于点E ,∠BAC=90°,∠CED=45°,∠DCE=30°,DE=√2BE=√2求CD 的长和四边形ABCD 的面积21、化简,再求值:.先化简,再求值:aa a a a a 4)4822(222-÷-+-+,其中a 满足方程0142=++a a .22.一项工程,甲,乙两公司合做,12天可以完成,共需付施工费102000元;如果甲,乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元.(1)甲,乙两公司单独完成此项工程,各需多少天?(2)若让一个公司单独完成这项工程,哪个公司的施工费较少?23.某公司组织部分员工到一博览会的A 、B 、C 、D 、E 五个展馆参观,公司所购门票种类、数量绘制成的条形和扇形统计图如图所示.请根据统计图回答下列问题:(1)将条形统计图和扇形统计图在图中补充完整;(2)若B 馆门票仅剩下一张,而员工小明和小华都想要,他们决定采用抽扑克牌的方法来确定,规则是:“将同一副牌中正面分别标有数字1,2,3,4的四张牌洗匀后,背面朝上放置在桌面上,每人随机抽一次且一次只抽一张;一人抽后记下数字,将牌放回洗匀背面朝上放置在桌面上,再由另一人抽.若抽出的两次数字之积为偶数则小明获得门票,反之小华获得门票.”请用画树状图或列表的方法计算出小明和小华获得门票的概率,并说明这个规则对双方是否公平.24.已知,Rt△ABC中,∠ACB=90°,∠CAB=30°.分别以AB、AC为边,向形外作等边△ABD和等边△ACE.(1)如图1,连接线段BE、CD.求证:BE=CD;(2)如图2,连接DE交AB于点F.求证:F为DE中点.25如图,已知正比例函数和反比例函数的图象都经过点A(3,3).(1)求正比例函数和反比例函数的解析式;(2)把直线OA向下平移后与反比例函数的图象交于点B(6,m),求m的值和这个一次函数的解析式;(3)第(2)问中的一次函数的图象与x轴、y轴分别交于C、D,求过A、B、D 三点的二次函数的解析式;(4)在第(3)问的条件下,二次函数在第一象限的图象上是否存在点E,使四边形OECD的面积S1与四边形OABD的面积S满足:S1=S?若存在,求点E的坐标;若不存在,请说明理由.26.已知:RT△ABC与RT△DEF中,∠ACB=∠EDF=90°,∠DEF=45°,EF=8cm,AC=16cm,BC=12cm.现将RT△ABC和RT△DEF按图1的方式摆放,使点C与点E 重合,点B、C(E)、F在同一条直线上,并按如下方式运动.运动一:如图2,△ABC从图1的位置出发,以1cm/s的速度沿EF方向向右匀速运动,DE与AC相交于点Q,当点Q与点D重合时暂停运动;运动二:在运动一的基础上,如图3,RT△ABC绕着点C顺时针旋转,CA与DF交于点Q,CB与DE交于点P,此时点Q在DF上匀速运动,速度为,当QC⊥DF 时暂停旋转;运动三:在运动二的基础上,如图4,RT△ABC以1cm/s的速度沿EF向终点F匀速运动,直到点C与点F重合时为止.设运动时间为t(s),中间的暂停不计时,解答下列问题(1)在RT△ABC从运动一到最后运动三结束时,整个过程共耗时_________ s;(2)在整个运动过程中,设RT△ABC与RT△DEF的重叠部分的面积为S(cm2),求S与t之间的函数关系式,并直接写出自变量t的取值范围;(3)在整个运动过程中,是否存在某一时刻,点Q正好在线段AB的中垂线上,若存在,求出此时t的值;若不存在,请说明理由.。

(经典)最新2013年重庆中考数学模拟试题

(经典)最新2013年重庆中考数学模拟试题

(经典)最新2013年重庆中考数学模拟试题(120分钟完卷 共150分) 姓名_________得分_______一、选择题:(本大题10个小题,每小题4分,共40分) 1.下列给数中最小的一个( )A . 0B .3C .13D .-32.计算232(3)x x ⋅-的结果是( )A .56x -B .56x C .62x - D .62x3.⊙O 的半径为5,圆心O 到直线a 的距离为3,则直线a 与⊙O 的位置关系是( ) A .相交 B .相切 C .相离 D .无法确定4.使分式24xx -有意义的x 的取值范围是( )A .x =2B .x ≠2C .x =-2D .x ≠-25.不等式组2030x x ->-<⎧⎨⎩的解集是( )A .x>2B .x<3C .2<x<3D .无解6.如图,⊙O 的直径CD 过弦EF 的中点G ,∠EOD =40°,则∠DCF 等于( ) A .80° B .50° C .40° D .20°7.右图是由几个小立方块搭成的几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,那么这个几何体的主视图是( )A .B .C . D8.某超级市场失窃,大量的商品在夜间被罪犯用汽车运走。

三个嫌疑犯被警察局传讯,警察局已经掌握了以下事实:(1)罪犯不在A 、B 、C 三人之外;(2)C 作案时总得有A 作从犯;(3)B 不会开车。

在此案中能肯定的作案对象是( )A .嫌疑犯AB .嫌疑犯BC .嫌疑犯CD .嫌疑犯A 和C9.如图,A B C D ,,,为O 的四等分点,动点P 从圆心O 出发,沿O C D O ---路线作匀速运动,设运动时间为t (s ).()APB y =∠,则下列图象中表示y 与t 之间函数关系最恰当的是( )10. 福娃们在一起探讨研究下面的题目:A B C DOP B .ty 045 90 D .t y 045 90 A . ty45 90 C .ty 045 90 2 1 3函数2y x x m =-+(m 为常数)的图象如左图, 如果x a =时,0y <;那么1x a =-时, 函数值( ) A .0y < B .0y m << C .y m > D .y m =x yO x 1 x 2贝贝:我注意到当0x =时,0y m =>. 晶晶:我发现图象的对称轴为12x =. 欢欢:我判断出12x a x <<. 迎迎:我认为关键要判断1a -的符号. 妮妮:m 可以取一个特殊的值.二、填空题:(本大题10个小题,每小题3分,共30分)11.据中新社报道:2010年我国粮食产量将达到540000000000千克,用科学记数法表示这个粮食产量为_______________千克.12.△ABC 中,AB =6,AC =4,∠A=45°,则△ABC 的面积为_________. 13.圆柱的底面周长为2π,高为1,则圆柱的侧面展开图的面积为_______. 14.如图,M 为双曲线y =x1上的一点,过点M作x轴、y轴的垂线,分别交直线y=-x+m 于D 、C 两点,若直线y=-x+m 与y轴交于点A,与x轴相交于点B .则AD ·BC 的值为 .15. 现有A 、B 两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).用小莉掷A 立方体朝上的数字为x 、小明掷B 立方体朝上的数字为x 来确定点P (x ,y ),那么它们各掷一次所确定的点P 落在已知抛物线24y x x =-+上的概率为16.一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用,已知甲、乙、丙三辆车每次运货量不变,且甲、乙两车每次运货物的吨数之比为1:3;若甲、丙两车合运相同次数运完这批货物时,甲车共运了120吨,若乙、丙两车合运相同次数运完这批货物时,乙车共运了180吨.则这批货物共______吨. 三、解答题:(本大题4个小题,共24分) 17.计算:12tan 60(51)3--︒+-+-;18.由山脚下的一点A 测得山顶D 的仰角是45°,从A 沿倾斜角为30°的山坡前进1500米到B ,再次测得山顶D 的仰角为60°,求山高CD .19. 解不等式组313112123x x x x +<-⎧⎪++⎨+⎪⎩≤,并写出它的所有整数20. 如图:在矩形ABCD 中,点E 在CB 的延长线上,CE =AC ,连结AE , 点F 是AE 的中点,连结BF 、DF ,求证:BF⊥DF四.解答题:(本大题4个小题,共40分)21.先化简,再求值:222221(),11a a a a a a a -+-÷-+- 其中a是方程2702x x --=的解.22. 某班有50名同学,男、女生人数各占一半,在本周操行评定中操行得分情况如图(1)统计表中所示,图(2)是该班本周男生操行得分的条形统计图: 操行分得分1分 2分 3分 4分 5分 人数24304图(1) (1)补全统计表和条形统形图; (2)计算全班同学的操行平均得分; (3)若要在操行得分为5分的4名同学中选出两名同学作“本周明星”,用画树状图或列表的方法求 出选为“本周明星”的正好是一名男同学和一名女同学的概率。

2013年重庆中考数学模拟考试试题(七)

2013年重庆中考数学模拟考试试题(七)

FE DCBAGF EDA2013级重庆中考数学模拟试题一、选择题(本大题12个小题,每小题4分,共48分) 1. )7(4-- 等于( )A . 3B . 11C . -3D .-11 2. 下列运算正确的是( )A .3362x x x += B .824x x x ÷= C .mnn m xx x =∙ D .()4520xx -= 1.3. ⊙O 的圆心O 到点P 的距离为5,⊙O 的直径为8,则点P 与⊙O 的位置关系为( ) A .点P 在⊙O 上 B .点P 在⊙O 内 C .点P 在⊙O 外 D .不确定4. 将一副三角板如图放置,使点A 在DE 上,∠B=45°, ∠E=30°,BC DE ∥,则AFC ∠的度数为( ) A.45° B. 50° C. 60° D. 75°5. 不等式组的解集是( )6. 下列说法正确的是( )A .随机事件发生的可能性是50%B .一组数据2,2,3,6的众数和中位数都是2C .为了解某市5万名学生中考数学成绩,可以从中抽取10名学生作为样本D .若甲组数据的方差20.31S =甲,乙组数据的方差20.02S =乙, 则乙组数据比甲组数据稳定7. 如图,⊙O 的直径CD=20,AB 是⊙O 的弦,AB⊥CD 于M ,OM :OD=3:5.则AB 的长是( ) A .8 B .12C .16D .8.如图,△ABC 中,∠C =90°,AB =13,BC =5,则sin A 的值是( ) A .513B .1213C .512D .1359.,在□ABCD 中,AB=5,BC=8,∠ABC ,∠BCD 的角平分线分别交AD 于E 和F ,BE 与CF 交于点G ,则△EFG 与△BCG 面积之比是( ) A .5:8 B .25:64 C .1:4 D .1:168题图……图2图3图1图410.图1中的正方形剪开得到图2,图2中共有4个正方形;将图2中一个正方形剪开得到图3,图3中共有7个正方形;将图3中一个正方形剪开得到图4,图4中共有10个正方形;……;如此下去.则图10中正方形的个数是( )A .28B .29C .31D .3211.小蕾今天到学校参加考试,从家里出发走10分钟到离家500米的地方吃早餐,吃早餐用了20分钟,再用10分钟赶到离家1000米的学校参加考试.这一过程中,能反映小蕾离家的距离y (米)与时间x (分钟)的函数关系的大致图象是( )12.已知二次函数y=ax2+bx+c 的图象如图所示, 它与x 轴的两个交点分别为(-1,0),(3,0).对于下列命题:①b -2a=0;②abc <0;③a -2b+4c <0;④8a+c >0.其中正确的有( )A .3个B .2个C .1个D .0个二、填空题:(本大题6个小题,每小题4分,共24分)13.“激情盛会,和谐亚洲”第16届亚运会曾经在广州举行,广州亚运城的建筑面积约是358000平方米,将358000用科学记数法表示为_______; 14.因式分解:22ab ab a -+ =15.重庆一中某班在开学摸底体育考试1分钟跳绳测试中,其中8名学生的成绩(次)分别为:175,162,150,205,186,188,190,192,则这组数据的中位数为 _________ . 16. 在半径为1cm 的圆中,圆心角为90°的扇形的弧长是 cm.12题图17.将长度为10厘米的线段截成两条线段a 、b (a 、b 长度均为整数).如果截成的a 、b 长度分别相同算作同一种截法(如:a=9,b=1和a=1,b=9为同一种截法),那么以截成的a 、b 为对角线,以另一条c=3厘米长的线段为一边,能画出平行四边形的概率是 .18.某校初三在综合实践活动中举行了“应用数学”智能比赛,按分数高低取前60名获奖,原定一等奖5人,二等奖15人,三等奖40人,现调整为一等奖10人,二等奖20人,三等奖30人.调整后一等奖平均分降低3分,二等奖平均分降低2分,三等奖平均分降低1分.如果原来二等奖比三等奖平均分数多7分,则调整后一等奖比二等奖平均分数多 分. 三、解答题:(本大题2个小题,每小题7分,共14分)19.︒+-+--+---30sin )1()21()3(427201333π20.如图,A 、C 、F 、B 在同一直线上,AC=BF ,AE=BD ,且AE ∥BD . 求证:EF∥CD.四、解答题:(本大题4个小题,每小题10分,共40分)21.先化简,再求值:221443(1)21x x x x x x x -+-÷+-+--,其中x 是不等式2513x x -<-的最小整数解.22.为了拉动内需,全国各地汽车购置税补贴活动在2009年正式开始.某经销商在政策出台前一个月共售出某品牌汽车的手动型和自动型共960台,政策出台后的第一个月售出这两种型号的汽车共1228台,其中手动型和自动型汽车的销售量分别比政策出台前一个月增长30%和25%. (1) 在政策出台前一个月,销售的手动型和自动型汽车分别为多少台?(2) 若手动型汽车每台价格为8万元,自动型汽车每台价格为9万元.根据汽车补贴政策,政府按每台汽车价格的5%给购买汽车的用户补贴,问政策出台后的第一个月,政府对 这l228台汽车用户共补贴了多少万元?23. 第十二届全国人大代表选举的基本原则是:城乡同比选举,实现人人平等、地区平等、民族平等.据新华网2月28日公布,全国5个少数民族自治区的人大代表如下:(1)这五个地区代表人数的中位数是____________. (2)全国4个直辖市及港、澳、台 地区的代表人数的平均数是 55.8 人 ,请补全折线统计图 (作图要求用签字笔).(3)3月17日,第十二届全国人大代表第一次会 议闭幕后,五个少数民族自治区各派一名代表参加四个直辖市及港澳台代表团的交流 活动,重庆代表团将从中选取两名代表参加活动.请你用列表法或画树状图的方法,求出所选代表恰好同时是广西代表和宁夏代表的概率.24.如图,在矩形ABCD 中,点M 、N 在线段AD 上,60MBC NCB ∠=∠=︒,点E 、F 分别为线段CN 、BC 上的点,连接EF 并延长,交MB 的延长线于点G ,EF=FG .(1)点K 为线BM 的中点,.若线段AK=2,MN=3,求矩形ABCD 的面积; (2)求证:MB=NE+BG .5961四个直辖市及港澳台代表人数折线统计图港澳台北京天津上海重庆人数(人)地区656055504540Cx五、解答题:(本大题2个小题,每小题12分共24分)25.将直角边长为6的等腰Rt △AOC 放在如图所示的平面直角坐标系中,点O 为坐标原点,点C 、A 分别在x 、y 轴的正半轴上,一条抛物线经过点A 、C 及点B(–3,0). (1)求该抛物线的解析式;(2)若点P 是线段BC 上一动点,过点P 作AB 的平行线交AC 于点E ,连接AP ,当△APE 的面积最大时,求点P 的坐标;(3)在第一象限内的该抛物线上存在一点G ,使△AGC 的面积与(2)中△APE 的最大面积相等.试求出点G 的坐标.4.一动点P从点B出发,沿BC方向以每秒1个单位长度的速度匀26.如图,在Rt△ABC中,AB=AC=2速运动,到达点C即停止.在整个运动过程中,过点P作PD⊥BC与Rt△ABC的直角边相交于点D,延长PD至点Q,使得PD=QD,以PQ为斜边在PQ左侧作等腰直角三角形PQE.设运动时间为t秒(t>0).(1)在整个运动过程中,设△ABC与△PQE重叠部分的面积为S,请直接写出S与t之间的函数关系式以及相应的自变量t的取值范围;(2)当点D在线段AB上时,连结AQ、AP,是否存在这样的t,使得△APQ成为等腰三角形?若存在,求出对应的t的值;若不存在,请说明理由;(3)当t=4秒时,以PQ为斜边在PQ右侧作等腰直角三角形PQF,将四边形PEQF绕点P旋转,PE与线段AB相交于点M,PF与线段AC相交于点N.试判断在这一旋转过程中,四边形PMAN的面积是否发生变化?若发生变化,求出四边形PMAN的面积y与PM的长x之间的函数关系式以及相应的自变量x的取值范围;若不发生变化,求出此定值.C26题图26题备用图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013年重庆市中考数学模拟试卷(1)
一、选择题:
23
A B C D
4、二元一次方程组
的解是( )
①要了解某厂生产的一批灯泡的使用寿命; ②要了解某个球队的队员的身高;
7、计算28-的结果是( )
A 、6
B 、6
C 、2
D 、2
8.如图,A 、C 、B 是⊙O 上三点,若∠AOC=40°,则∠ABC 的度数是( )
A .3. 4
B .4. 3
C .3. 3
D .4. 4
10、已知关于x 的方程x 2
﹣(2k ﹣1)x+k 2
=0有两个不相等的实数根,那么k 的最大整数值是( )
-220
11.一艘轮船在一笔直的航线上往返于甲、乙两地.轮船先从甲地顺流而下航行到乙地,在乙地停留一段时间后,又从乙地逆流而上航行返回到甲地(轮船在静水中的航行速度始终保持不变).设轮船从甲地出发后所用时间为t
12.(4分)二次函数y=ax+bx+c(a≠0)的图象如图所示,则下列结论正确的是()
二、填空题:
2
17.把一个转盘平均分成三等份,依次标上数字2、6、8.用力转动转盘两次,将第一次转动停止后指针指向的数字记作x,第二次转动停止后指针指向的数字的一半记作y以长度为x、y、4的三条线段为边长能构成三角形的概率为_____________.
18某商人经营甲、乙两种商品,每件甲种商品的利润率为40%,每件乙种商品的利润率为60%,当售出的乙种商品的件数比甲种商品的件数多50%时,这个商人得到的总利润率是50%;当售出的乙种商品的件数比甲种商品的件数少50%时,这个商人得到的总利润率为_____ ____.(利润率=利润÷成本)
三、解答题:
17.计算:2sin45_
18.如图,在四边形ABCD 中,对角线AC ,BD 交于点E ,∠BAC=90°,∠CED=45°,∠DCE=30°,DE=√2 BE=√2求CD 的长和四边形ABCD 的面积
21、化简,再求值:.先化简,再求值:a
a a a a a 4)4822(22
2-÷-+-+,其中a 满足方程0142
=++a a .
22.一项工程,甲,乙两公司合做,12天可以完成,共需付施工费102000元;如果甲,乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元. (1)甲,乙两公司单独完成此项工程,各需多少天?
(2)若让一个公司单独完成这项工程,哪个公司的施工费较少?
23.某公司组织部分员工到一博览会的A 、B 、C 、D 、E 五个展馆参观,公司所购门票种类、数量绘制成的条形和扇形统计图如图所示.
请根据统计图回答下列问题:
(1)将条形统计图和扇形统计图在图中补充完整;
(2)若B馆门票仅剩下一张,而员工小明和小华都想要,他们决定采用抽扑克牌的方法来确定,规则是:“将同一副牌中正面分别标有数字1,2,3,4的四张牌洗匀后,背面朝上放置在桌面上,每人随机抽一次且一次只抽一张;一人抽后记下数字,将牌放回洗匀背面朝上放置在桌面上,再由另一人抽.若抽出的两次数字之积为偶数则小明获得门票,反之小华获得门票.”请用画树状图或列表的方法计算出小明和小华获得门票的概率,并说明这个规则对双方是否公平.
24.已知,Rt△ABC中,∠ACB=90°,∠CAB=30°.分别以AB、AC为边,向形外作等边△ABD和等边△ACE.(1)如图1,连接线段BE、CD.求证:BE=CD;
(2)如图2,连接DE交AB于点F.求证:F为DE中点.
25如图,已知正比例函数和反比例函数的图象都经过点A(3,3).
(1)求正比例函数和反比例函数的解析式;
(2)把直线OA向下平移后与反比例函数的图象交于点B(6,m),求m的值和这个一次函数的解析式;
(3)第(2)问中的一次函数的图象与x轴、y轴分别交于C、D,求过A、B、D三点的二次函数的解析式;(4)在第(3)问的条件下,二次函数在第一象限的图象上是否存在点E,使四边形OECD的面积S1与四边形OABD
的面积S满足:S1=S?若存在,求点E的坐标;若不存在,请说明理由.
26.已知:RT△ABC与RT△DEF中,∠ACB=∠EDF=90°,∠DEF=45°,EF=8cm,AC=16cm,BC=12cm.现将RT△ABC 和RT△DEF按图1的方式摆放,使点C与点E重合,点B、C(E)、F在同一条直线上,并按如下方式运动.
运动一:如图2,△ABC从图1的位置出发,以1cm/s的速度沿EF方向向右匀速运动,DE与AC相交于点Q,当点Q与点D重合时暂停运动;
运动二:在运动一的基础上,如图3,RT△ABC绕着点C顺时针旋转,CA与DF交于点Q,CB与DE交于点P,此时点Q在DF上匀速运动,速度为,当QC⊥DF时暂停旋转;
运动三:在运动二的基础上,如图4,RT△ABC以1cm/s的速度沿EF向终点F匀速运动,直到点C与点F重合时为止.
设运动时间为t(s),中间的暂停不计时,
解答下列问题
(1)在RT△ABC从运动一到最后运动三结束时,整个过程共耗时_________ s;
(2)在整个运动过程中,设RT△ABC与RT△DEF的重叠部分的面积为S(cm2),求S与t之间的函数关系式,并直接写出自变量t的取值范围;
(3)在整个运动过程中,是否存在某一时刻,点Q正好在线段AB的中垂线上,若存在,求出此时t的值;若不存在,请说明理由.。

相关文档
最新文档