4.1立体图形展开图专项测试题
立体图形的展开图-
2.希望同学们在平时生活中多观察物体,留心身 边的事物, 使自己的空间想象能力在潜移默化中 得到提高.
课外练习:
1.制作几何立体图形:(任选一题) (1) 利用硬纸片制作一个长20cm,宽10cm,高8cm 的长方体盒子. (2) 制作一个四棱锥,要求:底面是边长为20cm的正 方形,侧面是等边三角形. 2.如右图所示,它是正方体的平面展开图,每个面都标 有字母,面A,面B,面D的对面分别是哪个面?
F E (18) A B C D D E F A B C
(20)
E A B C D F
(19)
;
https:/// 包双龙
;
不过如此嘛/":壹:本:读:3w//"确定不过如此/"马开笑着着它们说道/"但要确定想给你们每人壹佫耳光却能轻易做到/"庞绍等人原本还担心马开不确定七皇子壹群人の对手/虽然以前马开确定它们壹群人中最强人物/可许久未见/也不知道马开确定不确定还能超越它们/特别确定庞绍/尽管对马 开の强悍记忆幽深/但最近实力大涨/也让它信心暴涨/要不然也不会在梁善面前说出要好好和马开比试の话/但所有の担心随着马开这句话说出来/它们瞬间就消失咯/马开确定什么人它们很清楚/既然马开敢说出这句话/那肯定就有手段对付它们/"呵呵/真确定好笑/世上自信の人太多咯/但很多 自信都确定自负の代言词/"七皇子不屑/马开虽然当初也算在帝都有名/可它却不知道/唯有跟随者它の壹群贵族/心中却有些害怕/当年马开留给它们の记忆太深咯/到现在就还有几分后怕/但想到它们实力都变强不少/又有七皇子坐镇/心中の恐惧瞬间消失咯/它们站出来喝斥道/马开/你算什么 东西/见到皇子殿下还不行礼/马开扫咯对方壹眼/这确定壹佫贵族子弟/它印象也不确定很深/只记得当初被它和庞绍
4.1.1立体图形与平面图形(原卷版)
4.1.1 立体图形与平面图形2.了解多面体可由平面图形围成,进一步认识立体图形与平面图形之间的关系3.通过丰富的实例,认识点、线、面、体,初步感受它们之间的关系.逐步由感性认识上升到对抽象的数学图形的认识,从而提高空间想象能力和几何直观能力知识点一立体图形的认识几何图形是从实物中抽象出的各种图形,分为立体图形和平面图形有些几何图形的各部分不都在同一平面内,它们是立体图形合并同类项解方程的方法与步骤几种常见的立体图形如下表:图例即学即练(2022上·广东河源·七年级校考期中)观察下列实物模型,其整体形状给我们以圆柱的形象的是()A.B.C .D.知识点二平面图形有些几何图形的各部分都在同一平面内,它们是平面图形名称图形名称图形直线射线线段三角形长方形正方形梯形平行四边形圆扇形一些简单的平面图形可以组合成许多优美的图案,如某些国家的国旗、各种银行标志、由各种形状的地砖铺成的漂亮的地面等。
即学即练(2023上·山东济南·七年级校考阶段练习)下列平面图形中,是棱柱的展开图的是()A.B.C.D.知识点三从不同方向看物体一般地,从立体图形的正面、左面、上面三个角度观察立体图形,往往会得到不同形状的平面图形看得见的轮廓线画实线,看不见的轮廓线画虚线.从不同方向看同一物体,所看到的平面图形可能不同,也可能相同。
2.分别从正面左面和上面看几种常见几何体得到的平面图形即学即练(2023上·山东青岛·七年级统考期中)如图所示的几何体是由5个大小相同的小正方体搭成的,从上面看到的几何体的形状图是()A.B.C.D.知识点四立体图形的展开图有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形.这样的平面图形称为相应立体图形的展开图。
对于同一个立体图形,展开图不是唯一的,按不同的方式展开,可以得到不同的平面图形,如正方体的展开图就有以下11种情况,可分为四类:(1)“二二二”型(2)“三三”型(3)“一三二”型(4)“一四一”型注意:不能作为正方体展开图的有以下几种常见情况:(1)“五子连”型,四个以上的正方形排成一排,如或等。
山东省人教版七年级上册第四章几何图形初步认识--立体图形展开图与正方体展开图专项练习
立体图形展开图与正方体展开图跟踪训练一.选择题(共23小题)1.下列各图不是正方体表面展开图的是()A.B.C.D.2.如图的正方体盒子的外表面上画有3条粗黑线,将这个正方体盒子的表面展开(外表面朝上),展开图可能是()A.B.C.D.3.将图1的正四角锥ABCDE沿着其中的四个边剪开后,形成的展开图为图2.判断下列哪一个选项中的四个边可为此四个边?()A.AC、AD、BC、DE B.AB、BE、DE、CD C.AC、BC、AE、DE D.AC、AD、AE、BC4.如图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中小正方形顶点A,B围成的正方体上的距离是()A.0 B.1 C.D.5.下列图形中,是圆锥侧面展开图的是()A.B.C.D.6.下列图形中,能通过折叠围成一个三棱柱的是()A.B.C.D.7.下列四张正方形硬纸片,剪去阴影部分后,如果沿虚线折叠,可以围成一个封闭的长方体包装盒的是()A.B.C.D.8.如图是一个正方体纸盒,在其中的三个面上各画一条线段构成△ABC,且A、B、C分别是各棱上的中点.现将纸盒剪开展成平面,则不可能的展开图是()A.B.C.D.9.韩老师特制了4个同样的立方块,并将它们如图A放置,然后又如图B放置,则图B 中四个底面正方形中的点数之和为()A.11 B.13 C.14 D.1610.图(1)是一个小正方体的表面展开图,小正方体从图(2)所示的位置依次翻到第1格、第2格、第3格、第4格,这时小正方体朝上一面的字是()A.梦B.水C.城D.美11.如图是画有一条对角线的平行四边形纸片ABCD,用此纸片可以围成一个无上下底面的三棱柱纸筒,则所围成的三棱柱纸筒可能是()A. B.C.D.12.将如图所示的圆心角为90°的扇形纸片AOB围成圆锥形纸帽,使扇形的两条半径OA 与OB重合(接缝粘贴部分忽略不计),则围成的圆锥形纸帽是()A.B.C.D.13.下列四个展开图中能够构成如图所示模型的是()A.B.C.D.14.如图是一个由六个小正方体组合而成的几何体,每个小正方体的六个面上都分别写着﹣1,0,1,﹣2,3,﹣4六个数字,现在能看到的数字全部标在面上,那么现在图中所有看不见的面上的数字和是()A.﹣15 B.10 C.8 D.﹣1215.如图是一个正方体的表面展开图,则这个正方体是()A.B.C.D.16.如图(1)是一个小正方体的表面展开图,小正方体从图(2)所示位置依次翻转到第1格、第2格、第3格,这时小正方体朝上一面的字是()A.腾B.飞C.燕D.山17.美术课上,老师要求同学们将如图所示的白纸只沿虚线剪开,用裁开的纸片和白纸上的阴影部分围成一个立体模型,然后放在桌面上,下面四个示意图中,只有一个符合上述要求,那么这个示意图是()A.B.C.D.18.如图,哪一个是左边正方体的展开图()A.B.C.D.19.下列四个图形中,每个小正方形都标上了颜色.若要求一个正方体两个相对面上的颜色都一样,那么不可能是这一个正方体的展开图的是()A.B.C.D.20.下列平面图中不能围成正方体的是()A. B.C.D.21.一个正方体的平面展开图如图所示,将它折成正方体后“建”字对面是()A.和B.谐C.凉D.山22.把图①的纸片折成一个三棱柱,放在桌面上如图②所示,则从左侧看到的面为()A.Q B.R C.S D.T23.如图是某一立方体的侧面展开图,则该立方体是()A.B.C.D.二.填空题(共10小题)24.如果圆柱的侧面展开图是相邻两边长分别为6,16π的长方形,那么这个圆柱的体积等于.25.如图,5个边长相等的小正方形拼成一个平面图形,小丽手中还有一个同样的小正方形,她想将它与图中的平面图形拼接在一起,从而可以构成一个正方体的平面展开图,则小丽总共能有种拼接方法.26.圆锥有个面,它的侧面展开图是.27.将正方体骰子(相对面上的点数分别为1和6、2和5、3和4)放置水平桌面上,如图1.在图2中,将骰子向右翻滚90°,然后在桌面上按逆时针方向旋转90°,则完成一次变换.若骰子的初始位置为图1所示的状态,那么按上述规则连续完成10次变换后,骰子朝上一面的点数是.28.如图是一个正方体的展开图,标注了字母A的面是正方体的正面,如果正方体的左面与右面所标注代数式的值相等,则x的值是.29.如图,矩形①、②、③、④都是圆柱的侧面展开图.这些圆柱的底面半径与高最接近相等的一个是(填序号).30.如图,MN是圆柱底面的直径,NO是圆柱的高,在圆柱的侧面上,过点M,P.有一条绕了四周的路径最短的金属丝,现将圆柱侧面沿NO剪开,所得的侧面展开图可以是:(填序号).31.底面直径为m的圆柱体(如图),沿它的一条母线AB(也就是圆柱的高,且AB=h)剪开展平,则圆柱侧面展开后的面积为.32.如图是一个切去了一个角的正方体纸盒,切面与棱的交点A、B、C均是棱的中点,现将纸盒剪开展成平面,则展开图可能是(错填得0分,少填酌情给分)33.如图(1),一个正方体的三个面上分别写有1、2、3,与它们相对的三个面上依次写有6、5、4.这个正方体的每一条棱处各嵌有一根金属条,每根金属条的质量数(单位:克)等于过该棱的两个面上所写数的平均数.(1)这个正方体各棱上所嵌金属条的质量总和为克.(2)沿这个正方体的某些棱(连同嵌条)剪开,得到图(2)所示的展开图,其周边棱上金属条质量之和的最小值为克.在图(2)中把这个正方体的六个面上原有的数字写出来(注:写字的这一面是原正方体的外表面).三.解答题(共7小题)34.操作探究:在一个正四面体(四个面都是等边三角形)上钻透一个圆孔,由于钻孔的位置不同,在四面体的展开图(如图四个连续的三角形)上看到的弧线或圆的数目也不同.探究:有几种“钻透”的情况?画出它们的展开图,并标出相应的弧线或圆.(要求:至少画出两种情况)35.现实生活中,我们常常能见到一些精美的纸质包装盒.现有一正方体形状的无盖纸盒,在盒底上印有一个兑奖的标志“吉”字,如图1所示.现请同学们用剪刀沿这个正方体纸盒的棱将这个纸盒剪开,使之展开成一平面图形.那么,能剪出多少种不同情况的展开图呢?请把剪开后展成的平面图形画出来,要求展开图中的标志“吉”字是正立着的.(其中一种的展开情况如图2,至少再画出六种不同情况的展开图)36.如图,正方体的每个面上都写有一个有理数,已知三对相对的两个面上的两个数之和相等,若15,9,﹣4的对面的数分别是x,y,z,求2x﹣3y+z的值.37.如图,在无阴影的方格中选出两个画出阴影,使它们与图中四个有阴影的正方形一起可以构成正方体表面的不同展开图(填出三种答案).38.小明在学习了《展开与折叠》这一课后,明白了很多几何体都能展开成平面图形.于是他在家用剪刀展开了一个长方体纸盒,可是一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的①和②.根据你所学的知识,回答下列问题:(1)小明总共剪开了条棱.(2)现在小明想将剪断的②重新粘贴到①上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒,你认为他应该将剪断的纸条粘贴到①中的什么位置?请你帮助小明在①上补全.(3)小明说:他所剪的所有棱中,最长的一条棱是最短的一条棱的5倍.现在已知这个长方体纸盒的底面是一个正方形,并且这个长方体纸盒所有棱长的和是880cm,求这个长方体纸盒的体积.39.以下哪些图形经过折叠可以围成一个棱柱?40.如图所示是长方体的表面展开图,折叠成一个长方体.(1)与字母F重合的点有哪几个?(2)若AD=4AB,AN=3AB,长方形DEFG的周长比长方形ABMN的周长少8,求原长方体的容积.参考答案与试题解析一.选择题(共23小题)1.解:A、是正方体表面展开图,不符合题意;B、是正方体表面展开图,不符合题意;C、是正方体表面展开图,不符合题意;D、有“田”字格,不是正方体表面展开图,符合题意.故选:D.2.解:根据正方体的表面展开图,两条黑线在一列,故A错误,且两条相邻成直角,故B 错误,正视图的斜线方向相反,故C错误,只有D选项符合条件,故选D3.解:将图1的正四角锥ABCDE沿着其中的四个边剪开后,形成的展开图为图2.四个边可为AC、AD、BC、DE.故选:A.4.解;AB是正方体的边长,AB=1,故选:B.5.解:圆锥的侧面展开图是光滑的曲面,没有棱,只是扇形.故选:B.6.解:A、另一底面的三角形是直角三角形,两底面的三角形不全等,故本选项错误;B、折叠后两侧面重叠,不能围成三棱柱,故本选项错误;C、折叠后能围成三棱柱,故本选项正确;D、折叠后两侧面重叠,不能围成三棱柱,故本选项错误.故选C.7.解:A、剪去阴影部分后,组成无盖的正方体,故此选项不合题意;B、剪去阴影部分后,无法组成长方体,故此选项不合题意;C、剪去阴影部分后,能组成长方体,故此选项正确;D、剪去阴影部分后,无法组成长方体,故此选项不合题意;故选:C.8.解:选项A、C、D折叠后都符合题意,只有选项B折叠后两个画一条线段与另一个画一条线段的三角形不交于一个顶点,•与正方体三个画一条线段的三角形交于一个顶点不符.故选B.9.解:根据四个图形的点数,可推断出来,点4对面是点2;点5对面是点1;点6对面是点3.则图B中四个底面正方形中的点数是1,3,6,6,1+3+6+6=16,则图B中四个底面正方形中的点数之和为16.故选D.10.解:第一次翻转梦在下面,第二次翻转中在下面,第三次翻转国在下面,第四次翻转城在下面,城与梦相对,故选:A.11.解:亲自动手折一折,再发挥空间想象力,可以得出正确的结果是C.故选C.12.解:A、B一定重合,与A、B相邻的两个阴影一定在A所在的母线重合,而另一端一定与圆锥的底面相交,即靠近A、B两点的两个空白部分无法围成环并且紧贴底面.故选B.13.解:选项A、B中折叠后带图案的三个面不能相交于同一个点,与原立方体不符;选项D中折叠后图案的位置不符,所以正确的是C.故选C.14.解:(﹣1+0+1﹣2+3﹣4)×6﹣(1+3﹣4+0+3﹣1+0﹣4+1﹣2+1﹣1+0)=﹣15.故选A.15.解:通过具体折叠结合图形的特征,判断图中的线段折叠后只能平行,所以折叠成正方体后的立体图形是B.故选B.16.解:由图1可得,“祝”和“飞”相对;“愿”和“山”相对;“燕”和“腾”相对;由图2可得,小正方体从图2的位置依次翻到第3格时,“祝”在下面,则这时小正方体朝上面的字是“飞”.故选B.17.解:动手操作折叠成正方体的形状放置到白纸的阴影部分上,所得正方体中的阴影部分应紧靠白纸,故选:B.18.解:根据有图案的表面之间的位置关系,正确的展开图是D.故选D.19.解:选项C中红色面和绿色面都是相邻的,故不可能是一个正方体两个相对面上的颜色都一样,故选C.20.解:A、围成几何体时,有两个面重合,故不能围成正方体.B、C、D均能围成正方体.故选A.21.解:对于正方体的平面展开图中相对的面一定相隔一个小正方形,由图形可知,与“建”字相对的字是“山”.故选D.22.解:由图可得,宽为3的长方形是R,则从左侧看到的面为B.故选B.23.解:A、两个圆所在的面是相对的,不相邻,故A错误;B、C中空白的圆圈不与白色的三角形相邻,故B、C错误;D、正确.故选D.24.解:①底面周长为6高为16π,π×()2×16π=π××16π=144;②底面周长为16π高为6,π×()2×6=π×64×6=384π.答:这个圆柱的体积可以是144或384π.故答案为:144或384π.25.解:如图所示:故小丽总共能有4种拼接方法.故答案为:4.26.解:圆锥有二个面组成,它的侧面展开图是扇形.故答案为:二,扇形.27.解:根据题意可知连续3次变换是一循环.所以10÷3=3…1.所以是第1次变换后的图形,即按上述规则连续完成10次变换后,骰子朝上一面的点数是5.故应填:5.28.解:正方体的表面展开图,相对的面之间一定相隔一个正方形,∵标注了字母A的面是正面,∴左右面是标注了x2与3x﹣2的面,∴x2=3x﹣2,解得x1=1,x2=2.故答案为:1或2.29.解:由题意得,底面半径与高最接近相等应该是宽等于长的π倍,则底面半径与高最接近相等的一个是④.30.解:圆柱侧面沿NO剪开,根据两点之间线段最短,剪开后所得的侧面是长方形,P点在展开图中长边的中点处,金属丝是线段,且从P点开始到M点为止.故选②.31.解:圆柱的侧面积=π•mh.故答案为:π•mh.32.解:选项A、C、D折叠后都符合题意;只有选项B折叠后两个画一条线段与另一个画一条线段的三角形不交于一个顶点,•与正方体三个画一条线段的三角形交于一个顶点不符.故答案为:ACD.33.解:(1)正方体各棱的质量为:(1+2)÷2=1.5克,(1+3)÷2=2克,(1+4)÷2=2.5克,(1+5)÷2=3克,(6+2)÷2=4克,(6+3)÷2=4.5克,(6+4)÷2=5克,(6+5)÷2=5.5克,(2+3)÷2=2.5克,(3+4)÷2=3.5克,(4+5)÷2=4.5克,(2+5)÷2=3.5克.1.5+2+2.5+3+4+4.5+5+5.5+2.5+3.5+4.5+3.5=42克.故这个正方体各棱上所嵌金属条的质量总和为42克;(2)如图所示:3+4.5+5+4.5+4=21克,42﹣21=21克.故答案为:42,21.34.解:有3种“钻透”的情况,作图(其中两种情况:面面、点面)如下:35.解:能剪出8种不同情况的展开图,作图如下:36.解:∵x+15=y+9=z﹣4,∴x﹣y=﹣6,y﹣z=﹣13.∴2x﹣3y+z=2(x﹣y)﹣(y﹣z)=1.故2x﹣3y+z的值为:1.37.解:根据正方体的展开图作图:38.解(1)小明共剪了8条棱,故答案为:8.(2)如图,四种情况.(3)∵长方体纸盒的底面是一个正方形,∴设最短的棱长高为acm,则长与宽相等为5acm,∵长方体纸盒所有棱长的和是880cm,∴4(a+5a+5a)=880,解得a=20cm,∴这个长方体纸盒的体积为:20×100×100=200000立方厘米.39.解:(1)中间是三个矩形,矩形两边分别是四边形,故(1)不能围成棱柱;(2)中间是四个矩形,矩形两边分别是四边形,故(2)能围成棱柱;(3)中间是四个矩形,矩形一边有两个四边形,另一边没有四边形,故(3)不能为成棱柱;(4)中间是三个矩形,矩形两边分别是四边形,故(4)不能围成棱柱;答:(2)经过折叠可以围成一个棱柱.40.解:(1)与F重合的点是B.(2)设长方体的长、宽、高分别为x、y、z.根据题意得:解得:.∴原长方体的容积=4×8×12=384.。
4.1.1.3立体图形的表面展开图
圆 展开
柱
展开
圆锥
展开
长方体
长方体的展开图
底面
侧侧 侧
面面 面
长 方
底面
底 侧面 面
体
侧 侧 侧侧
面 面 面面
底面
下面图形都是由4个三边都相等的三角形组成 的,哪一个可以折叠成多面体呢?动手做做看。
(1)
(2)
(3)
下面4个图是一些多面体的表面展 开图,你能说出这些多面体的名字吗?
正方体
坚 持就是
胜 利
下列的三幅平面图是三棱柱的表面展开 图的有( )
甲
乙
丙
形展如开有图的,一形上种状面牛?的把奶图它形包们分装用别盒线是连如下起面图来哪所。个示立。体图 为了生产这种包装盒,需要先画
出展开图纸样。如图给出的三种
纸样1 ,它们2都正确吗?3
4
A甲
B
C
乙
丙D
下面几个图形是一些常见几何体的展开图, 你能正确说出这些几何体的名字么?
长方体
四棱锥
三棱柱
考考你的空间想象力:
下列图形是哪些多面体的展开图?
(1)
长方体
(Байду номын сангаас) (3)
三棱柱 五棱锥
下面是一些立体图形的展开图,用它们能围成什么样的 立体图形,把它们画在一张硬纸片上,剪下来,折叠、粘 贴,看看得到的图形和你想象的是否相同.
zxxk
学.科.网
制作立体模型的方法:
1.画出展开图;
么规律? 2、小组讨论这些正方体展开图可以分为几类
?哪几号展开图可以分为一类,为什么?
-
-
相 对 两 面 不 相 连
上左
下右
立体图形的展开图(有答案)
如图:一只圆桶的下方有一只壁虎, 上方有一只蚊子,壁虎要想尽快吃到 蚊子,应该走哪条路径?
蚊子
●
你有何高 招?
壁虎 ●
● 蚊子
壁虎 ●
蚊子
●
●
壁虎
4、1、1立体图形的展开图
学习目标:
• 1、理解常见几何体的展开图; • 2、能根据展开图想象相应的几何体.
• 学习重点:
• 了解直棱柱、圆柱、圆锥的展开图
• 8、将三角形绕直线L旋转一周,可以得到如 下图所示立体图形的是(B).
A
B
C
D
课后小测 4.1.2 点、线、面、体
如图,是一个正方体的平面展开图, 每个面内部标注了字母,
则展开前与面E相对的是( D )
A.面A B.面B C.面C D.面D
A
DC E
BF
考考你
有一个正方体,在它的各个面上分别涂了 白、红、黄、兰、绿、黑六种颜色。甲、乙、 丙三位同学从三个不同的角度去观察此正方体, 结果如下图,问这个正方体各个面的对面的颜 色是什么?
1
祝
23 45 6
前你 似程
锦
ABC DE F
考考你
1、如果Y: 棒
2、“坚”在下,“就”在后,胜利在哪 里?
坚
持就是
胜
利
考考你 2.下图是一个正方体的展开图,标注了字母A 的面是正方体的正面,如果正方体的左面与右面
所标注代数式的值相等,求 x 的值.
• 学习难点:
• 根据展开图想象相应的几何体.
说一说 在生活中, 制作这些美丽的包装盒 ,我们需 要知道些什么呢? 讨论:如何制作正 方体的墨水盒?
常常需要了解整个立体图形在同一个平面 内展开的形状(即立体图形的平面展开图), 根据它的平面展开图来裁剪纸张。
立体图形的表面展开图测试卷(含答案)初中数学
立体图形的表面展开图测试卷一、选择题(共10小题,每小题3分,满分30分)1.下列物体的形状类似于球的是()A.茶杯B.羽毛球C.乒乓球D.白炽灯泡2.如图把一个圆绕虚线旋转一周,得到的几何体是()A.B.C.D.3.如图,四个几何体分别为长方体、圆柱体、球体和三棱柱,这四个几何体中有三个的某一种视图都是同一种几何图形,则另一个几何体是()A.长方体B.圆柱体C.球体D.三棱柱4.如图是一个正四面体,它的四个面都是正三角形,现沿它的三条棱AC、BC、CD剪开展成平面图形,则所得的展开图是()A.B.C.D.5.如图1,是一个正方体的侧面展开图,小正方体从图2的位置依次翻到第1格、第2格、第3格、这时小正方体朝上面的字是()A.和B.谐C.社D.会6.如图,用一个平面去截长方体,则截面形状为()A.B.C.D.7.如下图是一块带有圆形空洞和方形空洞的小木板,则下列物体中既可以堵住圆形空洞,又可以堵住方形空洞的是()A.B.C.D.8.一个几何体是由若干个相同的正方体组成的,其主视图和左视图如图所示,则这个几何体最多可由多少个这样的正方体组成()A.12个B.13个C.14个D.18个9.如图是由几个小立方块所搭成的几何体的俯视图,小正方形体的数字表示该位置小立方块的个数,则该几何体的主视图是()A.B.C.D.10.一个几何体的三视图如图所示,则这个几何体是()A.B.C.D.二、填空题(共10小题,每小题3分,满分30分)11.一个棱柱有12个顶点,所有侧棱长的和是48cm ,则每条侧棱长是_________cm .12.如图所示,是一个立体图形的展开图,请写出这个立体图形的名称:_________.13.展览厅内要用相同的正方体木块搭成一个三视图如图的展台,则此展台共需这样的正方体_________块.14.如图是一个几何体的三视图,根据图中标注的数据可求出这个几何体的体积为_________.15.如图,一个立体图形由四个相同的小立方体组成.图1是分别从正面看和从左面看这个立体图形得到的平面图形,那么原立体图形可能是图2中的_________.(把下图中正确的立体图形的序号都填在横线上)16.下面4个图形均由6个相同的小正方形组成,折叠能围成一个正方体的是_________.17.图1是一个一面靠墙水平摆放的小正方体木块,图2、图3是由这样的小正方体木块靠墙叠放而成,按照这样的规律叠放下去,第5个叠放的图形中,小方体木块的个数是_________个.18.立方体木块的六个面分别标有数字1、2、3、4、5、6,如图,是从不同方向观察这个立方体木块看到的数字情况,数字1和5对面的数字的和是_________.19.如图,是一个直三棱柱的表面展开图,其中,黄色和绿色的部分都是边长等于1的正方形.问这个直三棱柱的体积是_________.20.一只蚂蚁从如图所示的正方体的一顶点A沿着棱爬向B,只能经过三条棱,共有_________种走法.三、解答题(共8小题,满分60分)21.下列三个图形都是由其中一个半圆经过变化而得到的,请分别说出每个图形最简单的变化过程.22.请画出下列几何体的主视图、左视图、俯视图.23.如图所示,是一个由小立方块搭成的几何体的俯视图,小正方体中的数字表示在该位置的小立方块的个数,试画出它的主视图与左视图.24.用白萝卜等材料做一个正方体,并把正方体表面涂上颜色.(1)把正方体的棱二等分,然后沿等分线把正方体切开,得到8个小正方体.观察其中三面被涂色的有a 个,如图①,那么a等于_________;(2)把正方体的棱三等分,然后沿等分线把正方体切开,得到27个小正方体.观察其中三面被涂色的有a个,各面都没有涂色的b个,如图②,那么a+b=_________;(3)把正方体的棱四等分,然后沿等分线把正方体切开,得到64个小正方体.观察其中两面被涂成红色有c个,各面都没有涂色的b个,如图③,那么b+c=_________.25.用一个平面去截一个几何体,截得的多边形可能有哪几种?请把结果画出来.26.如图(1)、(2)都是几何体的平面展开图,先想一想,再折一折,然后说出图(1)、(2)折叠后的几何体名称、底面形状、侧面形状、棱数、侧棱数与顶点数.27.如图,可用一个正方形制作成一副“七巧板”,利用“七巧板”能拼出各种各样的图案,根据“七巧板”的制作过程,请你解答下列问题.(1)“七巧板”的七个图形,可以归纳为三种不同形状的平面图形,即一块正方形,一块_________和五块_________.(2)请按要求将七巧板的七块图形重新拼接(不重叠,并且图形中间不留缝隙),在下面空白处画出示意图.①拼成一个等腰直角三角形;②拼成一个长与宽不等的长方形;③拼成一个六边形.(3)发挥你的想象力,用七巧板拼成一个图案,在下面空白处画出示意图,并在图案旁边写出简明的解说词.28.仔细观察下面的正四面体、正六面体、正八面体,解决下列问题:(1)填空:①正四面体的顶点数V=_________,面数F=_________,棱数E=_________.②正六面体的顶点数V=_________,面数F=_________,棱数E=_________.③正八面体的顶点数V=_________,面数F=_________,棱数E=_________.(2)若将多面体的顶点数用V表示,面数用F表示,棱数用E表示,则V、F、E之间的数量关系可用一个公式来表示,这就是著名的欧拉公式,请写出欧拉公式:_________.(3)如果一个多面体的棱数为30,顶点数为20,那么它有多少个面?参考答案与试题解析一、1-5.CBCBD 6-10.BBBAC二、11. 8 12. 圆锥13. 10 14. 24π15. ①②④16. ①②17.35 18. 719.20. 6三、21.22.(6分)请画出下列几何体的主视图、左视图、俯视图.23.解:如图所示:24.8 9 3225.解:截面的形状可能是三角形、四边形、五边形、六边形,如图所示.26.解:图(1)折叠后是长方体,底面是正方形,侧面是长方形,有12条棱,4条侧棱,8个顶点.图(2)折叠后是六棱柱,底面是六边形,侧面是长方形,有18条棱,6条侧棱,12个顶点.27.解:(1)平行四边形、等腰直角三角形;(2)如图所示:(3)如图所示:让我们舞起来吧!28.解:(1)①4,4,6;②8,6,12;③6,8,12;(2)V、F、E之间的数量关系是:V+F﹣E=2;(3)设面数为F,则20+F﹣30=2,解得F=12,答:它有12个面.。
2020中考立体图形的展开图专题复习题及答案
立体图形的展开图(时间:100分钟总分:100分)一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个是符合题目要求的)1.如左图所示的圆台中,可由右图中的()图形绕虚线旋转而成.2.如图所示图形中,不是正方体的展开图的是()3.如图所示,经折叠可以围成一个棱柱的是()4.如图1是一个正方体纸盒的展开图,若在其中的三个正方形A、B、C内分别填入适当的数,使得它们折成正方体后相对的面上互为相反数,则填入正方形A、B、C 的三个数依次是()A.-1,2,0 B.0,2,-1 C.2,0,-1 D.2,-1,0(1) (2) (3)5.用平面去截正方体,截出的平面图形中不可能是()A.梯形B.六边形C.五边形D.七边形6.某物体的三视图是如图(2)所示的图形,那么该图形的形状是()A.长方体B.圆锥体C.正方体D.圆柱体7.棱长是1cm的小立方体组成如图(3)所示的几何体,那么这个几何体的表面积是()A.36cm2B.33cm2C.30cm2D.27cm2 8.将一个正方体的盒子沿棱剪开成如图4所示的平面图形,至少需要剪()•刀A.5 B.6 C.7 D.8(4) (5) (6)9.把10个相同的小正方体按如图5所示的位置堆放,•它的外表含有若干个小正方形,如果将图中标字母A的一个小正方形搬去,•这时外表含有的小正方形个数与搬运前比较是()A.不增不减B.减少一个C.减少2个D.减少3个10.从n边形的同一个顶点可以引()条对角线n n D.n(n-3)A.n-3 B.n-2 C.(3)2二、填空题(本大题共8题,每题3分,共24分)11.从四边形的同一个顶点可以引一条对角线,将四边形分割成2个三角形,则从n边形的同一个顶点引对角线可以将n边形分割成_________个三角形.12.日常生活中,部分几何体的三视图都是同一种图形,•试举一例这样的几何体_______.13.一个正方体的棱长为5cm,则这个正方体的侧面积是_________.14.圆锥的侧面与底面的相交线是________.15.如图6,含有开心表情图形“”的正方形有________.16.图7中左边的图形是右边物体的三视图中的__________.(7) (8) (9)17.如图8,正方形ABCD─A1B1C1D1中,连接AB1,AC,B1C,则△AB1C的形状是______.18.一串有黑有白,其排列有一定规律的珠子,被盒子遮住一部分(如图9),•则这串珠子被盒子遮住的部分有________颗.三、解答题(本大题共46分,19~23题每题6分,24题、25题每题8分.解答题应写出文字说明、证明过程或演算步骤)19.如图所示是由几个小正方体所组成的几何体的俯视图,•正方体中的数字表示在该位置的小立方体的个数,请在图中画出这个几何体的主视图和左视图.主视图左视图20.平面图形经过旋转可以形成几何体,请将图•用线将对应的图形连接起来.21.如图,是由几个小正方体所组成的几何体,请画出这个几何体的三视图.22.如图,这两个几何体各由几个面组成?面与面相交成几条线?它们是直线还是曲线?23.一个透明的几何体如图,粗线表示一根嵌在几何体内的铁丝,右边是它的主视图,请你画出它的左视图和俯视图,并用彩笔标明铁丝位置.24.如图是一个正方体的展开图,每个面都标注了字母.(1)如果面A在多面体的底部,上面是哪一个面?(2)如果F在前面,从左看是面B,上面是哪一面?(3)从右面看到面C,面D在后面,上面是哪一面?25.如图是由些大小相同的小正方体组成的简单几何体的主视图和俯视图.(1)请你画出这个几何体的一种左视图;(2)若组成这个几何体的小正方体的块数为n,你写出n的所有可能值.答案:一、选择题1.A 2.C 3.C 4.A 5.D 6.D 7.C 8.C 9.A 10.A二、填空题11.(n-2)12.球13.100cm214.圆15.3个16.左视图17.等边三角形• 18.27三、解答题19.解:主视图:左视图:20.解:略.21.解:主视图:左视图:俯视图:22.解:圆台由三个面组成,面与面相交成两条曲线,六棱柱由8个面组成,面与面相交成18条直线.23.解:左视图:俯视图:24.解:(1)面F.(2)面E.(3)面F.25.解:(1)有5种情况:(2)8、9、10、11.。
人教版初中数学课标版七年级上册第四章4.1.1 立体图形的展开图
正 方 体 (1)
(4) 三 棱 柱
(2) 圆 柱
(5) 圆 锥
长方体
(3)
4
基础练习——有了基础才有“大厦”
如图,把相应的立体图形与它的展开图用线连起来。
?
﹙7﹚
﹙8﹚ ?
5
快乐探究——探究才有创新
1.用剪刀将正方体沿棱剪开,不破坏各面的完整,剪后的结 果是一个平面图形(注意不要剪断)。
2.小组内成员之间尽量以不同的方式剪开正方体。
小壁虎遇难题:
一面长方形的墙壁,壁虎在下方,蚊 子在上方,饥饿的壁虎想尽快的吃掉上 方的蚊子,该怎么走呢?
蚊子
●
●
壁虎
1
小壁虎遇难题:
有一天壁虎在圆桶的下方,发现上方有一只蚊子,饥饿的 它要想尽快吃到蚊子,又该怎么走呢?
● 蚊子
你有何高 招?
壁虎 ●
2
3
尝试体验——动手才能提高能力
下面是一些立体图形的展开图,猜猜用它们 能围成什么样的立体图形,再动手折叠,看 看得到的图形和你想象的是否相同。
3.在独立完成和小组协作中,千万要注意安全,避免受伤。
6
快乐探究——探究才有创新
一
四1
一 型
一 三 二 型
二 二 二 型
2
34
7
8
10 三
三 型
5
6
9
11
7
基础练习——有了基础才有“大厦”
如图,把相应的立体图形与它的展开图用线连起来。
﹙7﹚ ﹙8﹚
8
9
-
10
11
快乐探究——探究才有创新
正方体相对两个面在其展开图中的
直击中考——原来中考是这么考的
人教版数学七年级上册第4章4.1几何图形同步练习(解析版)(附模拟试卷含答案)
人教版数学七年级上册第4章4.1几何图形同步练习一、单选题(共10题;共20分)1、一个几何体的边面全部展开后铺在平面上,不可能是()A、一个三角形B、一个圆C、三个正方形D、一个小圆和半个大圆2、下列图形中,是棱锥展开图的是()A、B、C、D、3、下列图形是四棱柱的侧面展开图的是()A、B、C、D、4、将选项中的四个正方体分别展开后,所得的平面展开图与如图不同的是()A、B、C、D、5、如图是一个正方体的表面展开图,这个正方体可能是()A、B、C、D、6、一个几何体的展开图如图所示,这个几何体是()A、棱柱B、棱锥C、圆锥D、圆柱7、将一个正方体的表面沿某些棱剪开,展成一个平面图形,至少要剪开()条棱.A、3B、5C、7D、98、在下面的图形中,不可能是正方体的表面展开图的是()A、B、C、D、9、如图所示的正方体,如果把它展开,可以得到()A、B、C、D、10、下列四个图形中是如图展形图的立体图的是()A、B、C、D、二、填空题(共3题;共4分)11、一个棱锥的棱数是24,则这个棱锥的面数是________.12、如图中的几何体有________个面,面面相交成________线.13、如图是棱长为2cm的正方体,过相邻三条棱的中点截取一个小正方体,则剩下部分的表面积为________cm2.三、计算题(共4题;共20分)14、一个长方形的两边分别是2cm、3cm,若将这个长方形绕一边所在直线旋转一周后是一个什么几何体?请求出这个几何体的底面积和侧面积.15、已知有一个长为5cm,宽为3cm的长方形,若以这个长方形的一边所在的直线为轴,将它旋转一周,你能求出所得的几何体的表面积吗?16、有一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱.现在有一个长为6cm,宽为5cm的长方形,分别绕它的长、宽所在直线旋转一周,得到不同的圆柱,它们的体积分别是多大?17、我们知道,将一个长方形绕它的一边旋转一周得到的几何体是圆柱,现有一个长是5cm,宽是3cm的长方形,分别绕它的长和宽所在的直线旋转一周,得到不同的圆柱几何体,分别求出它们的体积.四、解答题(共3题;共15分)18、请你用式子表示如图所示的长方体形无盖纸盒的容积(纸盒厚度忽略不计)和表面积.这些式子是整式吗?如果是,请你分别指出它们是单项式,还是多项式.19、将一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱,现在有一个长为4厘米,宽为3厘米的长方形,分别绕它的长、宽所在的直线旋转一周,得到不同的圆柱体,它们的体积分别是多大?20、如图所示为一个正方体截去两个角后的立体图形,如果照这样截取正方体的八个角,则新的几何体的棱有多少条?请说明你的理由.答案解析部分一、单选题1、【答案】B【考点】几何体的展开图【解析】【解答】解:正四面体展开是个3角形;顶角为90度,底角为45度的两个正三棱锥对起来的那个6面体展开可以是3个正方形;一个圆锥展开可以是一个小圆+半个大圆.故选B.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.2、【答案】C【考点】几何体的展开图【解析】【解答】解:A、是三棱柱的展开图,故此选项错误; B、是一个平面图形,故此选项错误;C、是棱锥的展开图,故此选项正确;D、是圆柱的展开图,故此选项错误.故选:C.【分析】根据图形结合所学的几何体的形状得出即可.3、【答案】A【考点】几何体的展开图【解析】【解答】解:由分析知:四棱柱的侧面展开图是四个矩形组成的图形.故选:A.【分析】根据四棱柱的侧面展开图是矩形图进行解答即可.4、【答案】B【考点】几何体的展开图【解析】【解答】解:观察图形可知,将选项中的四个正方体分别展开后,所得的平面展开图与如图不同的选项B.故选:B.【分析】立体图形的侧面展开图,体现了平面图形与立体图形的联系.立体图形问题可以转化为平面图形问题解决.5、【答案】B【考点】几何体的展开图【解析】【解答】解:由题意,得四个小正方形组合成一个正方体的面,是阴影,是空白,故选:B.【分析】根据展开图折叠成几何体,四个小正方形组合成一个正方体的面,可得答案.6、【答案】B【考点】几何体的展开图【解析】【解答】解:圆锥的侧面展开图是扇形,底面是圆,故选:B.【分析】根据圆锥的展开图,可得答案.7、【答案】C【考点】几何体的展开图【解析】【解答】解:∵正方体有6个表面,12条棱,要展成一个平面图形必须5条棱连接,∴至少要剪开12﹣5=7条棱,故选:C.【分析】根据正方体的棱的条数以及展开后平面之间应有棱连着,即可得出答案.8、【答案】B【考点】几何体的展开图【解析】【解答】解:由四棱柱四个侧面和上下两个底面的特征可知,A,C,D选项可以拼成一个正方体,而B选项,上底面不可能有两个,故不是正方体的展开图.故选:B.【分析】由平面图形的折叠及正方体的展开图解题.9、【答案】D【考点】几何体的展开图【解析】【解答】解:如图所示的正方体,如果把它展开,可以得到.故选:D.【分析】根据题干,3个黑色图形经过1个顶点,由此可以判断选项D是这个正方体的展开图.10、【答案】A【考点】几何体的展开图【解析】【解答】解:因为含小黑正方形的面不能与含大黑正方形的面相邻,两个小黑正方形不能在同一行,所以B,C不是左边展形图的立体图;两个小黑正方形在大黑正方形的对面”,那么A图中,正好是大黑正方形在上面,那么小黑正方形就在底面,A符合;故选:A.【分析】因为含小黑正方形的面不能与含大黑正方形的面相邻,两个小黑正方形不能在同一行,据此判断.二、填空题11、【答案】13【考点】认识立体图形【解析】【解答】解:由题意,得侧棱=底棱=12,棱锥是十二棱锥,十二棱锥有十二个侧面,一个底面,故答案为:13.【分析】根据棱锥的侧棱与底棱相等,可得棱锥,根据棱锥的特征,可得答案.12、【答案】3;曲【考点】认识立体图形【解析】【解答】解:图中的几何体叫做圆台,它是由3个面围成的,面与面相交所成的线是曲线.故答案为:3, 曲.【分析】由圆台的概念和特征即可解.图中的几何体叫做圆台,它是由3个面围成的,面与面相交所成的线是曲线.13、【答案】24【考点】几何体的表面积,截一个几何体【解析】【解答】解:过相邻三条棱的中点截取一个小正方体,则剩下部分的表面积为2×2×6=24cm2.故答案为:24.【分析】由于是在正方体的顶点上截取一个小正方体,去掉小正方形的三个面的面积,同时又多出小正方形的三个面的面积,表面积没变,由此求得答案即可.三、计算题14、【答案】解:这个长方形绕一边所在直线旋转一周后是圆柱.当2cm是底面半径时,圆柱的底面积是πr2=22π=4π(cm2),圆柱的侧面积是2πrh=2π×2×3=12π(cm2);当3cm是底面半径时,圆柱的底面积是πr2=32π=9π(cm2),圆柱的侧面积是2πrh=2π×3×2=12π(cm2).【考点】点、线、面、体,有理数的乘法【解析】【分析】根据长方形绕一边旋转一周,可得圆柱.分类讨论:2cm是底面半径,3cm是底面半径,根据圆的面积公式,可得圆柱的底面积,根据圆柱的侧面积公式,可得答案.15、【答案】几何体的表面积为48πcm2或80πcm2.【考点】认识立体图形,点、线、面、体,几何体的表面积【解析】【解答】当以5cm的边为轴旋转一周时,圆柱的表面积=2×π×32+2π×3×5=18π+30π=48πcm2;当以3cm的边为轴旋转一周时,圆柱的表面积=2×π×52+2π×5×3=50π+30π=80πcm2.所以答案为:几何体的表面积为48πcm2或80πcm2.【分析】以5cm的边为轴旋转一周得到的是一个底面半径为3cm,高为5cm的圆柱;以3cm边为轴旋转一周得到的是一个底面半径为5cm,高为3cm的圆柱.16、【答案】解:绕长所在的直线旋转一周得到圆柱体积为:π×52×6=150π(cm3);绕宽所在的直线旋转一周得到圆柱体积为:π×62×5=180π(cm3).答:它们的体积分别是150π(cm3)和180π(cm3).【考点】点、线、面、体,有理数的乘方【解析】【分析】根据圆柱体的体积=底面积×高求解,注意底面半径和高互换得圆柱体的两种情况.17、【答案】【解答】解:分两种情况:①绕长所在的直线旋转一周得到圆柱体积为:π×32×5=45π(cm3);②绕宽所在的直线旋转一周得到圆柱体积为:π×52×3=75π(cm3).故它们的体积分别为45πcm3或75πcm3.【考点】点、线、面、体【解析】【分析】根据圆柱体的体积=底面积×高求解,注意底面半径和高互换得圆柱体的两种情况.四、解答题18、【答案】解:根据题意得:长方体的体积为abc;表面积为ab+2(ac+bc),体积结果为单项式;表面积结果为多项式【考点】单项式,多项式,几何体的表面积【解析】【分析】根据长方体的体积=长×宽×高,表面积等于2(长×宽+长×高+宽×高),列出关系式即可做出判断.19、【答案】解:绕长所在的直线旋转一周得到圆柱体积为:π×32×4=36πcm3.绕宽所在的直线旋转一周得到圆柱体积:π×42×3=48πcm3【考点】点、线、面、体【解析】【分析】圆柱体的体积=底面积×高,注意底面半径和高互换得圆柱体的两种情况.20、【答案】解:∵一个正方体有12条棱,一个角上裁出3条棱,即8个角共3×8条棱,∴12+3×8=36条.故新的几何体的棱有36条【考点】截一个几何体【解析】【分析】一个正方体有12条棱,一个角上裁出3条棱,即8个角共3×8条棱,相加即可.2019-2020学年七年级数学上学期期末模拟试卷一、选择题1.如图所示,已知∠AOC=∠BOD=80°,∠BOC=30°,则∠AOD的度数为( )A.160°B.110°C.130°D.140°2.如图,直线与相交于点,平分,且,则的度数为()A. B. C. D.3.如图,C,D,E是线段AB的四等分点,下列等式不正确的是()A.AB=4AC B.CE=12AB C.AE=34AB D.AD=12CB4.如图,电子蚂蚁P、Q在边长为1个单位长度的正方形ABCD的边上运动,电子蚂蚁P从点A出发,以个单位长度/秒的速度绕正方形作顺时针运动,电子蚂蚁Q从点A出发,以个单位长度/秒的速度绕正方形作逆时针运动,则它们第2017次相遇在()A.点AB.点BC.点CD.点D5.如图,两个面积分别为35,23的图形叠放在一起,两个阴影部分的面积分别为a,b(n>6),则a-b的值为()A.6B.8C.9D.126.下列计算正确的是( )A .x 2+x 2=x 4B .(x ﹣y)2=x 2﹣y 2C .(﹣x)2•x 3=x 5D .(x 2y)3=x 6y 7.请通过计算推测32018的个位数是( )A .1B .3C .7D .98.已知|m -2|+(n -1)2=0,则关于x 的方程2m +x =n 的解是( )A.x =-4B.x =-3C.x =-2D.x =-19.若x=-3是方程2(x-m )=6的解,则m 的值为( )A.6B.6-C.12D.12-10.一个有理数的平方等于它本身,那么这个有理数是( )A .0B .1C .±1 D.0或111.5的相反数是( ) A.15B.5C.15-D.﹣512.2322...233 (3)m n ⨯⨯⨯+++个个=( ) A.23n m B.m 23n C.32m n D.23m n二、填空题 13.已知△ABC 的高AD 于AB 、AC 的夹角分别是60°和20°,则∠BAC 的度数是_____________.14.在直角三角形中,一个锐角比另一个锐角的3倍还多10,则较小的锐角度数是_______.15.若代数式 4x 8- 与 3x 22+ 的值互为相反数,则x 的值是____.16.如图,数轴上点A 、B 、C 所对应的数分别为a 、b 、c ,化简|a|+|c ﹣b|﹣|a+b ﹣c|=__.17.将图1中的正方形剪开得到图2,图2中共有4个正方形,将图2中一个正方形剪开得到图3,图3中共有7个正方形,将图3中一个正方形剪开得到图4,图4中共有10个正方形⋯⋯如此下去,则图2019中共有正方形的个数为______.18.如图所示,有一个盛有水的圆柱体玻璃容器,它的底面半径为10cm,容器内水的高度为12cm,将一根半径为2cm的玻璃棒垂直插入水中后,容器里的水升高了_____cm.19.-24=________.20.若a和b是互为相反数,则a+b=_______三、解答题21.王老师到市场买菜,发现如果把10千克的菜放到秤上,指示盘上的指针转了180°,如图.第二天王老师就给同学们出了两个问题:(1)如果把0.6千克的菜放在秤上,指针转过多少角度?(2)如果指针转了7°12′,这些菜有多少千克?22.已知O为直线AB上的一点,∠COE是直角,OF平分∠AOE.(1)如图1,若∠COF=34°,则∠BOE=______;(2)如图1,若∠BOE=80°,则∠COF=______;(3)若∠COF=m°,则∠BOE=______度;∠BOE与∠COF的数量关系为______.(4)当∠COE绕点O逆时针旋转到如图2的位置时,(3)中∠BOE与∠COF的数量关系是否仍然成立?请说明理由.23.下面是马小哈同学做的一道题:解方程:212134 x x-+=-解:①去分母,得 4(2x﹣1)=1﹣3(x+2)②去括号,得 8x﹣4=1﹣3x﹣6③移项,得8x+3x=1﹣6+4④合并同类项,得 11x=﹣1⑤系数化为1,得x=-111, (1)上面的解题过程中最早出现错误的步骤是(填代号) (2)请在本题右边正确的解方程:x-12224x x -+=-. 24.解方程或计算:(1)30564x x --= (2)13142x xx ---=- (3)3425203+3542︒'⨯︒''' (4) 220161416(2)(1)2-+÷-⨯--25.已知多项式A 、B ,其中 ,某同学在计算A+B 时,由于粗心把A+B 看成了A-B 求得结果为,请你算出A+B 的正确结果。
七年级上册数学《4.1几何图形》测试题
《4.1几何图形》测试题一、选择题1.从上向下看图,应是右图中所示的( )考查说明:本题考查从不同方向观察立体图形.答案与解析:D.此题要发挥空间想象力.2.如图,四个图形是由立体图形展开得到的,相应的立体图形是顺次是A.正方体、圆柱、三棱柱、圆锥B.正方体、圆锥、三棱柱、圆柱C.正方体、圆柱、三棱锥、圆锥D.正方体、圆柱、四棱柱、圆锥考查说明:本题考查立体图形和它的平面展开图.答案与解析:A. 此题要发挥空间想象力.3.将图中左边的图形折成一个立方体, 判断下图右边的四个立方体哪个是由左边的图形折成的.()考查说明:本题主要考查立体图形与平面展开图的关系.答案与解析:B. 此题要发挥空间想象力和动手操作能力.4.将一个正方体沿某些棱展开后,能够得到的平面图形是()考查说明:本题主要考查正方体与平面展开图的关系.答案与解析:选C.遵循正方体展开图规律“一线不过四、田、凹应弃之”,发挥想象,动手操作,得答案.5.将一个直角三角形绕它的最长边(斜边)旋转一周,得到的几何体是考查说明:本题考查平面图形与立体图形的关系.答案与解析:选D.直角三角形绕斜边旋转一周得到的是有公共底面的两个圆锥.二、填空题6.棱柱的面与面相交成_________;点动成;线动成________;面动成______;考查说明:本题考查点、线、面、体间的关系.答案与解析:线,线,面,体.7.如图,为一个多面体的表面展开图,每个面内都标注了数字.若数字为的面是底面,则朝上一面所标注的数字为____________.考查说明:本题主要考查长方体与平面展开图的关系.答案与解析:2. 此题要发挥空间想象力和动手操作能力.构成“目”和“Z”形的两面是相对的面,即3与5是对面,4与1是对面,6与2是对面.三、解答题8.棱长为a的正方体摆放成如图的形状,问:(1)有几个正方体.(2)摆放成如图形式后,表面积是多少?考查说明:本题考查从不同方向观察立体图形及正方体组合图形的表面积.答案与解析:(1)10个.(2)36a2. 第一层有1个,第二层有1+2个,第三层有1+2+3个,共有10个.从六个方向去看这个立体图形得到的是6个相同的平面图形,每个平面图形是6个边长为a的正方形,面积为6a2.,所以表面积为36a2.。
立体图形展开图及摆放练习
立体图形展开图及摆放练习
1. 把正方体的表面沿某些棱剪开展成一个平面图形(如右下图),请根据各面上的图案
判断这个正方体是( )
2. 在正方体的表面上画有如图(1)中所示的粗线,图(2)时其展开图的示意图,但只在
A 面上画有粗线,那么将图(1)中剩余两个面中的粗线画入图(2)中,画法正确的是
( )
图(1) 图(2)
A B C D
3. 将右图所示的硬纸片围成正方体纸盒(接缝粘贴部分忽略不计),则围成的正方体纸盒是
( )
4.如图,是由一些大小相同的小正方体组成的几何体的主视图和俯视图,则组成这个几何体
的小正方体最多块数是( ).
A.9
B.10
C.11
D.12 A
(4)(5)5.一个几何体由一些大小相同的小正方体组成,如图是它的主视图和俯视图,那么组成该几何体所需小正方体的个数最少为().
A.3
B.4
C.5
D.6
6.
7.将如图正方体的相邻两面上各画分成九个全等的小正方形,并分别标上O、×两符号.若下列有一图形为此正方体的展开图,则此图为()
A、B、C、D、
(1). C(2). A (3).A (4).C (5) B (7). C。
初一数学立体图形的表面展开图试题
初一数学立体图形的表面展开图试题1.(2014•长春)下列图形中,是正方体表面展开图的是()A.B.C.D.【答案】C【解析】利用正方体及其表面展开图的特点解题.解:A、B、D经过折叠后,下边没有面,所以不可以围成正方体,C能折成正方体.故选:C.点评:本题考查了正方体的展开图,解题时牢记正方体无盖展开图的各种情形.2.(2014•梧州)在下列立体图形中,侧面展开图是矩形的是()A.B.C.D.【答案】B【解析】根据几何体的展开图:棱台的侧面展开图是四个梯形,圆柱的侧面展开图是矩形,棱锥的侧面展开图是三个三角形,圆锥的侧面展开图示扇形,可得答案.解:A、侧面展开图是梯形,故A错误;B、侧面展开图是矩形,故B正确;C、侧面展开图是三角形,故C错误;D、侧面展开图是扇形,故D错误;故选:B.点评:本题考查了几何体的展开图,记住常用几何体的侧面展开图是解题关键.3.(2014•贵阳)一个正方体的表面展开图如图所示,六个面上各有一字,连起来的意思是“预祝中考成功”,把它折成正方体后,与“成”相对的字是()A.中B.功C.考D.祝【答案】B【解析】利用正方体及其表面展开图的特点解题.解:这是一个正方体的平面展开图,共有六个面,其中面“成”与面“功”相对,面“预”与面“祝”相对,“中”与面“考”相对.故选:B.点评:本题考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.4.(2014•汕尾)如图是一个正方体展开图,把展开图折叠成正方体后,“你”字一面相对面上的字是()A.我B.中C.国D.梦【答案】D【解析】利用正方体及其表面展开图的特点解题.解:这是一个正方体的平面展开图,共有六个面,其中面“我”与面“中”相对,面“的”与面“国”相对,“你”与面“梦”相对.故选:D.点评:本题考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.5.(2014•鞍山)如图是每个面上都有一个汉字的正方体的一种展开图,那么在原正方体的表面上,与汉字“魅”相对的面上的汉字是()A.我B.爱C.辽D.宁【答案】D【解析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“我”与“力”是相对面,“爱”与“辽”是相对面,“魅”与“宁”是相对面.故选D.点评:本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.6.(2014•恩施州)正方体的六个面分别标有1,2,3,4,5,6六个数字,如图是其三种不同的放置方式,与数字“6”相对的面上的数字是()A.1B.5C.4D.3【答案】B【解析】正方体的六个面分别标有1,2,3,4,5,6六个数字,这六个数字一一对应,通过三个图形可看出与3相邻的数字有2,4,5,6,所以与3相对的数是1,然后由第二个图和第三个图可看出与6相邻的数有1,2,3,4,所以与6相对的数是5.解:由三个图形可看出与3相邻的数字有2,4,5,6,所以与3相对的数是1,由第二个图和第三个图可看出与6相邻的数有1,2,3,4,所以与6相对的数是5.故选B.点评:本题主要考查了正方体相对两个面上的文字,利用三个数相邻的两个图形进行判断即可.7.(2014•秦淮区一模)如图所示的展开图能折叠成的长方体是()A.B.C.D.【答案】C【解析】利用正方体及其表面展开图的特点依次分析选项可得答案.注意本题两个白面是相对的两个面.解:根据题中展开图可知,长方体两端是黑色的小正方形,且两个黑面是相对的两个面,两个白面也是相对的两个面.故选C.点评:注意正方体的空间图形,从相对面入手,分析及解答问题.8.(2014•宜兴市模拟)如图所示为一无盖长方体盒子的展开图(重叠部分不计),可知该无盖长方体的容积为()A.4B.6C.8D.12【答案】C【解析】根据观察、计算,可得长方体的长、宽、高,根据长方体的体积公式,可得答案.解:长方体的高是1,宽是3﹣1=2,长是6﹣2=4,长方体的容积是4×2×1=8,故选:C.点评:本题考查了几何体的展开图,展开图折叠成几何体,得出长方体的长、宽、高是解题关键.9.(2014•新泰市模拟)如图把左边的图形折叠起来围成一个正方体,应该得到图中的()A.B.C.D.【答案】D【解析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.解:正方体的表面展开图,相对的面之间一定相隔一个正方形,∴有蓝圆圈与灰色圆圈的两个面是相对面,故A、B选项错误;又有蓝色圆圈的面与红色三角形的面相邻时应该是三角形的直角边所在的边与蓝色圆圈的面相邻,即折叠后有蓝色圆圈的面应是左面或下面,所以C选项不符合,故C选项错误;D选项符合.故选D.点评:本题主要考查了正方体的展开折叠问题,要注意相对两个面上的图形,从相对面入手,分析及解答问题比较方便.10.(2014•曾都区模拟)下面的展开图能拼成如图立体图形的是()A.B.C.D.【答案】B【解析】根据三棱柱表面展开图的特点解题,三棱柱,展开图应该是:三个长方形,两个三角形,两个三角形位于三个长方形两侧,根据四个选项,依次进行折叠,利用排除法可得答案.解:立体图形是三棱柱,展开图应该是:三个长方形,两个三角形,两个三角形位于三个长方形两侧;A答案折叠后两个长方形重合,故排除;C、D折叠后三角形都在一侧,故排除;故选:B.点评:此题主要考查了展开图折叠成几何体,通过结合立体图形与平面图形的相互转化,去理解和掌握几何体的展开图,要注意多从实物出发,然后再从给定的图形中辨认它们能否折叠成给定的立体图形.。
4.1.2 从不同方向看立体图形与立体图形的展开图(分层作业)【解析版】
4.1.2 从不同方向看立体图形与立体图形的展开图分层作业....【答案】C....【答案】D【分析】根据圆柱的展开图的特征可直接得到答案.【详解】解:圆柱由上下底面的圆以及侧面组成,展开后上下底面的圆在侧面的两侧,侧面展开为长方形,故选D.【点睛】本题考查了几何体的展开图,熟悉圆柱的展开图特征是解答此题的关键.A.B.C.D.【答案】D【分析】通过展开图的面数,展开图的各个面的形状进行判断即可.【详解】解:从展开图可知,该几何体有七个面,两个五边形的底面,五个长方形的侧面,因此该几何体是五棱柱,故选:D.【点睛】本题考查棱柱的展开与折叠,掌握棱柱展开图的特征是正确判断的关键.4.如图是由7个相同的小正方体搭成的几何体,则从正面看该几何体得到的平面图形是()A.B.C.D.【答案】A【分析】根据从不同角度看几何体即可判定.【详解】解:从正面看分三层,从上至下依次是一个,二个,三个小正方形,故选:A.【点睛】本题考查了从不同角度看几何体,解题的关键是理解几何体的特征.5.下列图形中,不是正方体平面展开图的是( )A.B.C.D.【答案】D【分析】根据正方体的展开图,逐项分析判断即可求解.【详解】解:由四棱柱四个侧面和上下两个底面的特征可知,A,B,C选项可以拼成一个正方体;而D选项,上底面不可能有两个,故不是正方体的展开图.故选:D.【点睛】本题主要考查的是正方体的展开图,熟记不能折叠的“凹”,“田”两种特殊形态是解题的关键.6.下列几何体都是由大小相同的小正方体组成的,其中从正面看到的平面图形与从左面看到的平面图形相同的几何体是()A.B.C.D.【答案】C【分析】利用图形的三视图分析即可求出正确答案.【详解】解:由题意可知:A、从正面和左面看到的平面图形分别为和,故不相同,不符合题意;B、从正面和左面看到的平面图形和,故不相同,不符合题意;C、从正面和左面看到的平面图形分别为和,故相同,符合题意;D、从正面和左面看到的平面图形和,故不相同,不符合题意;故选:C.【点睛】本题考查简单图形的几何视图,解题的关键是能够掌握简单组合图形的几何视图.A.只有从左面看到的形状图没有发生变化B.从正面看到的和从上面看到的形状图没有发生变化C.从左面看到的和从上面看到的形状图没有发生变化D.只有从正面看到的形状图没有发生变化【答案】C【点睛】本题考查了从不同方向看几何体,能简单画出从不同的方向看到的几何体的形状是解本题的关键.8.棱柱的表面展开图是两个相同的形和一些形;圆柱的表面展开图是两个相同的一个形;圆锥的表面展开图是一个和一个形.【答案】多边长方圆长方圆【答案】社【分析】利用正方体及其表面展开图的特点解题即可;【详解】解:这是一个正方体的平面展开图,共有六个面,其中【答案】9【分析】根据题意得第一层有4桶,第二层最少有(1)如果A面在长方体的底部,那么(2)这个长方体的体积为【答案】F6【分析】(1)根据展开图,可得几何体,面,可得答案;【点睛】本题考查了几何体的展开图,利用了几何体展开图组成几何体时面与面之间的关系.13.如图是由九块积木搭成,这几块积木都是相同的正方体,请画出从正面、左面、上面看到的这个几何体的形状图.【答案】见解析【分析】由已知条件可知,主视图有4列,每列正方形的的数目从左往右分别为1,3,1,1;左视图有3列,每列正方形的的数目从左往右分别为3,2,1;俯视图有4列,每列正方形的的数目从左往右分别为1,3,1,1,即可画出从正面、左面、上面看到的这个几何体的形状图.【详解】由已知条件可知,主视图有4列,每列正方形的的数目从左往右分别为1,3,1,1;左视图有3列,每列正方形的的数目从左往右分别为3,2,1;俯视图有4列,每列正方形的的数目从左往右分别为1,3,1,1.如下图所示:【点睛】本题考查了从不同方向看组合体,直接画出不同方向看到的图形是解题的关键.14.一个几何体由若干大小相同的小立方块搭成,从上面看到的这个几何体的形状图如图所示,其中小正方形中的数字表示在该位置小立方块的个数.请你画出从正面和从左面看到的这个几何体的形状图.【答案】作图见解析【分析】根据从上面看组合体得到的形状图及相应数字可以想象该组合体的空间立体结构,进而得到从正面看与从左面看的形状图.【点睛】本题主要考查从三个方面看组合体得到的形状图,从上面看得到组合体的形状图出发,结合数字空间想象出组合体的空间立体结构是解决问题的关键.15.下图是一个正方体的表面展开图,已知在原正方体中,相对面上的数的和为【答案】9-【分析】观察得到相对面,利用互为相反数的两个数相加得【详解】解:将这个展开图折成正方体,则面,.(1)求出至少用布料多少平方厘米?A.15-B.10【答案】C【分析】先根据正方体的表面展开图,找出相对的面,然后根据正方体中相对的面上的数字或代数式互为相反数,列出方程求出x、y的值,即可得出【详解】由正方体的表面展开图,可知:解得:5x=,=2y-.∴()xy=´-=-.5210故选C.【点睛】本题主要考查了正方体的表面展开图及相反数的概念,准确找出正方体中相对的面上的数字或代数式,再根据相反数的概念列出方程是解题的关键.18.小明用纸(如图)折成一个正方体的盒子,里面装入礼物,混放在下面的盒子里,请观察,礼物所在的盒子是( )A.B.C.D.【答案】B【分析】根据正方体展开图的11种特征,此平面图为正方体展开图的“141--”型,折成正方体后,涂色三角形与斜线三角形有一条直角边重合,据此即可作出选择.【详解】解:把折成一个正方体的盒子是:故选:B【点睛】本题主要考查了正方体展开图,关键弄清这个正方体展开图折成正方体后,涂色三角形与斜线三角形有一条直角边重合。
七年级上册数学学案设计4.1.1第2课时从不同的方向看立体图形和立体图形的展开图(附模拟试卷含答案)
第四章几何图形初步4.1 几何图形4.1.1 几何图形与平面图形第2课时从不同的方向看立体图形和立体图形的展开图学习目标:1.从不同方向观察一个物体,体会其观察结果的不一样性.2.能画出从不同方向看一些基本几何体或其简单组合得到的平面图形.3.初步建立空间观念.学习重点:识别并会画出从不同方向看简单几何体所得到的平面图形.学习难点:识别并会画出从不同方向看简单组合体所得到的平面图形.使用要求:1.阅读课本P1192.尝试完成教材P120练习第1题;3.限时15分钟完成本导学案(合作或独立完成均可);4.课前在小组内交流展示.一、自主学习:1.观察你身边的一个物体,试着从不同的角度去看它,你看到的形状是一样的吗?2.下面这几个几何体,试着从不同角度去看看,你得到了怎样的几何图形?【老师提示】:我们从不同的方向观察同一个物体时,可能看到不同的图形.为了能完整确切地表达物体的形状和大小,必须从多方面观察物体.在几何中,我们通常选择从正面、从左面、从上面三个方向来观察物体.通过这样的观察,就能把一个立体图形用几个平面图形来描述.3.分别正面、左面、上面再来观察上面的三个几何体,把观察的结果与同学交流.二、合作探究:1.分别从正面、左面、上面三个方向观察下面的几何体,把观察到的图形画出来.(1)从正面看从左面看从上面看(2)从正面看从左面看从上面看(3)从正面看从左面看从上面看2.先阅读P119的教材再完成P119的探究.(1)小组合作,可用正立体积木摆出书上的立体图形,再观察.(2)改变正立体积木的摆放位置,你摆我答,合作学习.(3)观察身边的几何体,如文具盒、同学的水杯等物品,与同学交流分别从正面、左面、上面所看到的几何图形.【老师提示】对于一些立体图形的问题,常把它们转化为平面图形来研究和处理. 3.P120练习第1题.3.苏东坡有一首诗《题西林壁》“横看成岭侧成峰,远近高低各不同.不识庐山真面目,只缘身在此山中.”为什么横看成岭侧成峰?这有怎样的数学道理?三、学习小结:四、作业:P123习题4.1第4、9、10、13题.(准备长方体形状的包装盒至少一个)2019-2020学年七年级数学上学期期末模拟试卷一、选择题1.下列各组图形中都是平面图形的是( )A .三角形、圆、球、圆锥B .点、线段、棱锥、棱柱C .角、三角形、正方形、圆D .点、角、线段、长方体2.如图,甲从A 点出发向北偏东70°走到点B ,乙从点A 出发向南偏西15°方向走到点C ,则∠BAC 的度数是( )A.125°B.160°C.85°D.105°3.把图1所示的正方体的展开图围成正方体(文字露在外面),再将这个正方体按照图2,依次翻滚到第1格,第2格,第3格,第4格,此时正方体朝上一面的文字为( )A.富B.强C.文D.民4.解方程()4.50.79x x +=,最简便的方法应该首先( )A.去括号B.移项C.方程两边同时乘10D.方程两边同时除以4.55.若方程3x -5=1与方程2102a x --=有相同的解,则a 的值为( ) A.2B.0C.32D.12- 6.方程2395123x x x +--=+去分母得( ) A.3(2x+3)-x=2(9x-5)+6 B.3(2x+3)-6x=2(9x-5)+1C.3(2x+3)-x=2(9x-5)+1D.3(2x+3)-6x=2(9x-5)+6 7.下面合并同类项正确的是( )A.23325x x x +=B.2221a b a b -=C.0ab ab --=D.220xy xy -+= 8.下列各式中,与xy 2是同类项的是( )A .-2xy 2B .2x 2yC .xyD .x 2y 29.已知整数a 0,a 1,a 2,a 3,a 4,…,满足下列条件:a 0=0,a 1=﹣|a 0+1|,a 2=﹣|a 1+2|,a 3=﹣|a 2+3|,…,以此类推,a 2019的值是( )A.﹣1009B.﹣1010C.﹣2018D.﹣2020 10.小明做了以下4道计算题:①(-1)2010=2010;②0-(-1)=-l ;③-+=-;④÷(-)=-1. 其中做对的共有 A .1道 B .2道 C .3道 D .4道11.在下列各数: ()2-+, 23-, 413⎛⎫- ⎪⎝⎭, 325⎛⎫- ⎪⎝⎭, ()01-, 3-中,负有理数的个数是( )A .2个 B .3个 C .4个 D .512.﹣1+3的结果是( )A .﹣4B .4C .﹣2D .2二、填空题13.将一副三角板如图放置,若∠AOD=30°,则∠BOC=______.14.已知AOB 100∠=,BOC 60∠=,OM 平分AOB ∠,ON 平分BOC ∠,那么MON ∠等于______度.15.一件上衣按成本价提高50%后标价为105元,这件上衣的成本价为_____元.16.已知关于x 的一元一次方程1x-3=4x+3b 2017的解为x=4,那么关于y 的一元一次方程1y-1-3=4y-1+3b 2017()()的解y=____. 17.小明在做解方程的作业时,不小心将方程中的一个常数污染得看不清楚,方程是:122y y +=--¤ .小明翻看了书后的答案,此方程的解是y= 12- ,则这个常数是_______. 18.将多项式xy 3-x 2y+2x 3-5y 2按字母x 降幂排列是:______.19.-4的倒数是________,相反数是_______.绝对值是_________.20.﹣(﹣82)=_____;﹣(+3.73)=_____;﹣(﹣27)=_____.三、解答题21.已知:AOD 160∠=,OB ,OM ,ON 是AOD ∠内的射线.()1如图1,若OM 平分AOB ∠,ON 平分BOD.∠当射线OB 绕点O 在AOD ∠内旋转时,MON ∠=______度.()2OC 也是AOD ∠内的射线,如图2,若BOC 20∠=,OM 平分AOC ∠,ON 平分BOD ∠,当BOC ∠绕点O 在AOD ∠内旋转时,求MON ∠的大小. ()3在()2的条件下,若AOB 10∠=,当BOC ∠在AOD ∠绕O 点以每秒2的速度逆时针旋转t 秒,如图3,若AOM ∠:DON 2∠=:3,求t 的值.22.如图,某景区内的环形路是边长为1200米的正方形ABCD ,现有1号、2号两辆游览车分别从出口A 和景点C 同时出发,1号车沿A→B→C→D→A 路线、2号车沿C→B→A→D→C 路线连续循环行驶,供游客随时免费乘车(上、下车的时间忽略不计),两车速度均为300米/分.(1)如图1,设行驶时间为t 分(0≤t≤8)①1号车、2号车离出口A 的路程分别为_____米,_____米;(用含t 的代数式表示)②当两车相距的路程是600米时,求t 的值;(2)如图2,游客甲在BC 上的一点K (不与点B 、C 重合)处候车,准备乘车到出口A ,设CK=x 米. 情况一:若他刚好错过2号车,则他等候并搭乘即将到来的1号车;情况二:若他刚好错过1号车,则他等候并搭乘即将到来的2号车.请判断游客甲在哪种情况下乘车到出口A 用时较多?(含候车时间)23.在某市一项城市美化工程招标时,有甲、乙两个工程队投标.经测算:甲队单独完成这项工程需要60天;若由甲队先做20天,剩下的工程由甲、乙一起做24天可完成.(1)乙队单独完成这项工程需要多少天?(2)已知甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱,还是由甲、乙两队全程一起做完成该工程省钱?24.某中学七年级一班有44人,某次活动中分为四个组,第一组有a人,第二组比第一组的一半多5人,第三组人数等于前两组人数的和.(1)求第四组的人数(用含a的代数式表示).(2)试判断a=12时,是否满足题意.25.以直线AB上点O为端点作射线OC,使∠BOC=60°,将直角△DOE的直角顶点放在点O处.(1)如图1,若直角△DOE的边OD放在射线OB上,则∠COE= ;(2)如图2,将直角△DOE绕点O按逆时针方向转动,使得OE平分∠AOC,说明OD所在射线是∠BOC的平分线;(3)如图3,将直角△DOE绕点O按逆时针方向转动,使得∠COD=15∠AOE.求∠BOD的度数.26.先化简,再求值(1)求代数式14(4a2-2a-8)-(12a-1),其中a=1;(2)求代数式12x-2(x-13y2)+(-32x+13y2)的值,其中x=23,y=-2.27.已知|x+1|+(y+2)2=0,求x+y的值.28.计算:-3- 2 +(-4)-(-1).【参考答案】***一、选择题1.C2.A3.A4.D5.A6.D7.D8.A9.B10.B11.C12.D二、填空题13.150°14. SKIPIF 1 < 0 或80解析:20或8015.70元16.517.118.2x3-x2y+xy3-5y219.- SKIPIF 1 < 0 , 4, 4;解析:-14, 4, 4;20.﹣3.73 SKIPIF 1 < 0解析:﹣3.73 2 7三、解答题21.(1) 80;(2) 70°;(3)t为21秒.22.2400﹣300t23.(1)90天.(2)由甲乙两队全程合作完成该工程省钱.24.(1)(34-3a)(2)a=12时,第四组的人数为-2,不符合题意25.(1)30;(2)答案见解析;(3)65°或52.5°.26.(1)-1(2)227.﹣3.28.-82019-2020学年七年级数学上学期期末模拟试卷一、选择题1.如图,C ,D 是线段 AB 上两点,若 CB=4cm ,DB=7cm ,且 D 是 AC 的中点,则 AB 的长等于( )A.6cmB.7cmC.10cmD.11cm2.题目文件丢失!3.如图,点C 、D 是线段AB 上的两点,点D 是线段AC 的中点.若AB=10cm ,BC=4cm ,则线段DB 的长等于( )A.2cmB.3cmC.6cmD.7cm4.某车间有34名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮和3个小齿轮配成一套,问分别安排多少名工人加工大小齿轮,才能刚好配套?若设加工大齿轮的工人有x 名,则可列方程为( )A .3×10x=2×16(34﹣x)B .3×16x=2×10(34﹣x)C .2×16x=3×10(34﹣x)D .2×10x=3×16(34﹣x)5.将一个周长为42cm 的长方形的长减少3cm ,宽增加2cm ,能得到一个正方形.若设长方形的长为xcm ,根据题意可列方程为( )A .x+2=(21﹣x )﹣3B .x ﹣3=(21﹣x )﹣2C .x ﹣2=(21﹣x )+3D .x ﹣3=(21﹣x )+26.学友书店推出售书优惠方案:①一次性购书不超过100元,不享受优惠;②一次性购书超过100元,但不超过200元,一律打9折;③一次性购书超过200元,一律打8折.如果小明同学一次性购书付款162元,那么他所购书的原价为( )A .180元B .202.5元C .180元或202.5元D .180元或200元7.某天数学课上老师讲了整式的加减运算,小颖回到家后拿出自己的课堂笔记,认真地复习老师在课堂上所讲的内容,她突然发现一道题目:()()2222223355a ab ba ab b a +---++= 26b -,空格的地方被墨水弄脏了,请问空格中的一项是( )A.+2abB.+3abC.+4abD.-ab 8.已知a+b =4,c ﹣d =3,则(b+c )﹣(d ﹣a )的值等( )A .1B .﹣1C .7D .﹣79.单项式4223ab c -的系数与次数分别是( ) A .2,5- B .2,5 C .2,63- D .2,73- 10.下列各式从左到右的变形错误的是( )A .(y ﹣x )2=(x ﹣y )2B .﹣a ﹣b=﹣(a+b )C .(a ﹣b )3=﹣(b ﹣a )3D .﹣m+n=﹣(m+n )11.﹣(﹣2)等于( )A.﹣2B.2C.12D.±212.下列运算结果为正数的是()A.-22 B.(-2)2 C.-23 D.(-2)3二、填空题13.将一副三角板如图放置,若∠AOD=30°,则∠BOC=______.14.已知x﹣2y+3=8,则整式x﹣2y的值为_____.15.某次数学测验中有16道选择题,评分办法:答对一道得6分,答错一道扣2分,不答得0分.某学生有一道题未答,那么这个同学至少要答对________道题,成绩才能在60分以上.16.请写出一个系数含π,次数为3的单项式,它可以是________.17.在两个形状、大小完全相同的大长方形内,分别互不重叠地放入四个如图③的小长方形后得图①和图②,已知大长方形的长为a,两个大长方形未被覆盖部分,分别用阴影表示,则图①阴影部分周长与图②阴影部分周长的差是______.(用含a的代数式表示)18.若||2a=,则a=__________.19.比较大小:23⎛⎫-+ ⎪⎝⎭___34--.(选用>、<、=号填写)20.已知∠A=35°10′48″,则∠A的余角是__________.三、解答题21.已知:如图,直线AB、CD相交于点O,EO⊥CD于O.(1)若∠AOC=36°,求∠BOE的度数;(2)若∠BOD:∠BOC=1:5,求∠AOE的度数;(3)在(2)的条件下,请你过点O画直线MN⊥AB,并在直线MN上取一点F(点F与O不重合),然后直接写出∠EOF的度数.22.如图,O为直线AB上一点,∠AOC=50°20′,OD平分∠AOC,∠DOE=90°.(1)求∠DOB的度数;(2)请你通过计算说明OE是否平分∠COB.23.如图,AB=12cm,点C是线段AB上的一点,BC=2AC.动点P从点A出发,以3cm/s的速度向右运动,到达点B后立即返回,以3cm/s的速度向左运动;动点Q从点C出发,以1cm/s的速度向右运动.设它们同时出发,运动时间为ts.当点P与点Q第二次重合时,P、Q两点停止运动.(1)AC=__cm,BC=__cm;(2)当t为何值时,AP=PQ;(3)当t为何值时,PQ=1cm.24.小明家使用的是分时电表,按平时段(6:00﹣22:00)和谷时段(22:00一次日6:00)分别计费,平时段每度电价为0.61元,谷时段每度电价为0.30元,小明将家里2005年1月至5月的平时段和谷时段的用电量分别用折线图表示(如图),同时将前4个月的用电量和相应电费制成表格(如表)根据上述信息,解答下列问题:(1)计算5月份的用电量和相应电费,将所得结果填入表1中;(2)小明家这5个月的月平均用电量为度;(3)小明家这5个月的月平均用电量呈 趋势(选择“上升”或“下降”);这5个月每月电费呈 趋势(选择“上升”或“下降”);(4)小明预计7月份家中用电量很大,估计7月份用电量可达500度,相应电费将达243元,请你根据小明的估计,计算出7月份小明家平时段用电量和谷时段用电量.25.先化简,再求值:[(x ﹣y )2+(x+y )(x ﹣y )]÷2x,其中x =﹣1,y =2.26.先化简,再求值:2(﹣3xy+52x 2)+5(2xy ﹣x 2),其中x =﹣2,y =12. 27.计算:28.(1)计算1114125522-+---();(2)计算()()32112321133⎛⎫-+⨯-⨯-÷- ⎪⎝⎭.【参考答案】***一、选择题1.C2.B3.D4.B5.D6.C7.A8.C9.D10.D11.B12.B二、填空题13.150°14.15.1216.πx3或πr2h 或 SKIPIF 1 < 0πr2h(答案不唯一)解析:πx 3或πr 2h 或13πr 2h(答案不唯一)17. SKIPIF 1 < 0解析:1 a 218. SKIPIF 1 < 0解析:219.>.20.54°49′12″三、解答题21.(1)54°;(2)120°;(3)∠EOF的度数为30°或150°.22.(1) 154°50′;(2)见解析23.824.(1)65+45=110,46.95;(2)99;(3)上升;下降;(4)平时段300度,谷时用200度.25.x-y,-3.26.4xy,-4.27.-128.(1)-2;(2)-14.。
4.1立体图形展开图专项测试题
4。
1立体图形的展开图专项测试题1.下图中,圆锥的侧面展开图是()2。
在下面的图形中,是正方体表面展开图的是( )。
3。
下列图形中,经过折叠可围成棱柱的是()4。
下图是()的展开图。
A 棱柱B 棱锥C 圆柱 C 圆锥5.下面四个图形中,是三棱柱的平面展开图的是( )6.小丽制作了一个对面图案均相同的正方体礼品盒(如下左图所示),则这个正方体礼品盒的平面展开图可能是( )7。
如图所示是体的展开图.8。
如图是一个正方体的表面展开图,则图中“冷"字所在面的对面所标的字是9.下列图形中可能折叠成正方体的有 个10.如图,点A B ,分别是棱长为2的正方体左、右两侧面的中心,一蚂蚁从点A 沿其表面爬到点B 的最短路程是11。
水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示,如图是一个正方体的表面展开图,若图中“2"在正方体的前面,则这个正方体的后面是12.将一个正方体的表面沿某些棱剪开,得到一个平面图形,要剪开_____条棱.13。
画一个长方体的平面展开图.14。
下图是一个正方体的展开图,若a 表示前面,b 表示右面,e 表示下面,试判定另三个面c、d、f在正方体中的位置。
15.如图所示,用A,B表示正方体相邻的两个面,用字母C表示A的对面,•请在下面的正方体展开图中填写相应字母.16.如图所示,是正方体纸盒的平面展开图,请把—10,8,10,-8,—2,2分别填入六个不同的正方形中,使得按虚线折成正方体后,相对面上的两个数都互为相反数.(填写出一种方案即可)参考答案1.D;2.B;3.B;4.C;5.A;6。
A;7。
六棱锥;8.应;9.1;10。
4;11.0;12.7;13。
答案不唯一,如:14. c表示上面, d在左面, f在后面。
15。
如图所示.CC C CC16.答案不唯一,如:如图所示.10-10-2-828备用题1.如图中每个小四边形皆为大小一样的正方形,可以作为一个正方体平面展开图的是( )C2。
立体图形的展开图专题训练
立体图形的展开图一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个是符合题目要求的)1.如左图所示的圆台中,可由右图中的()图形绕虚线旋转而成.2.如图所示图形中,不是正方体的展开图的是()3.如图所示,经折叠可以围成一个棱柱的是()4.如图1是一个正方体纸盒的展开图,若在其中的三个正方形A、B、C内分别填入适当的数,使得它们折成正方体后相对的面上互为相反数,则填入正方形A、B、C的三个数依次是()A.-1,2,0 B.0,2,-1 C.2,0,-1 D.2,-1,0(1) (2) (3)5.用平面去截正方体,截出的平面图形中不可能是()A.梯形B.六边形C.五边形D.七边形6.某物体的三视图是如图(2)所示的图形,那么该图形的形状是()A.长方体B.圆锥体C.正方体D.圆柱体7.棱长是1cm的小立方体组成如图(3)所示的几何体,那么这个几何体的表面积是()A.36cm2B.33cm2C.30cm2D.27cm28.将一个正方体的盒子沿棱剪开成如图4所示的平面图形,至少需要剪()•刀A.5 B.6 C.7 D.8(4) (5) (6)9.把10个相同的小正方体按如图5所示的位置堆放,•它的外表含有若干个小正方形,如果将图中标字母A的一个小正方形搬去,•这时外表含有的小正方形个数与搬运前比较是()A.不增不减B.减少一个C.减少2个D.减少3个10.从n边形的同一个顶点可以引()条对角线A.n-3 B.n-2 C.(3)2n nD.n(n-3)二、填空题(本大题共8题,每题3分,共24分)11.从四边形的同一个顶点可以引一条对角线,将四边形分割成2个三角形,则从n边形的同一个顶点引对角线可以将n边形分割成_________个三角形.12.日常生活中,部分几何体的三视图都是同一种图形,•试举一例这样的几何体_______.13.一个正方体的棱长为5cm,则这个正方体的侧面积是_________.14.圆锥的侧面与底面的相交线是________.15.如图6,含有开心表情图形的正方形有________.16.图7中左边的图形是右边物体的三视图中的__________.(7) (8) (9)17.如图8,正方形ABCD─A1B1C1D1中,连接AB1,AC,B1C,则△AB1C的形状是______.18.一串有黑有白,其排列有一定规律的珠子,被盒子遮住一部分(如图9),•则这串珠子被盒子遮住的部分有________颗.三、解答题(本大题共46分,19~23题每题6分,24题、25题每题8分.解答题应写出文字说明、证明过程或演算步骤)19.如图所示是由几个小正方体所组成的几何体的俯视图,•正方体中的数字表示在该位置的小立方体的个数,请在图中画出这个几何体的主视图和左视图.主视图左视图20.平面图形经过旋转可以形成几何体,请将图•用线将对应的图形连接起来.21.如图,是由几个小正方体所组成的几何体,请画出这个几何体的三视图.22.如图,这两个几何体各由几个面组成?面与面相交成几条线?它们是直线还是曲线?23.一个透明的几何体如图,粗线表示一根嵌在几何体内的铁丝,右边是它的主视图,请你画出它的左视图和俯视图,并用彩笔标明铁丝位置.24.如图是一个正方体的展开图,每个面都标注了字母.(1)如果面A在多面体的底部,上面是哪一个面?(2)如果F在前面,从左看是面B,上面是哪一面?(3)从右面看到面C,面D在后面,上面是哪一面?25.如图是由些大小相同的小正方体组成的简单几何体的主视图和俯视图.(1)请你画出这个几何体的一种左视图;(2)若组成这个几何体的小正方体的块数为n,你写出n的所有可能值.。
立体图形的展开与折叠综合测试题
立体图形的展开与折叠综合测试题一、选择题(每小题3分,共30分)1. 【导学号31100748】下列几何图形中为圆柱体的是()A B C D2. 【导学号31100613】在下列立体图形中,只要两个面就能围成的是()A.长方体B.圆柱C.圆锥D.球3. 【导学号31100765】如图是一个三棱柱笔筒,则该物体的主视图是()A B C D 第3题图4. 【导学号31100997】如图是一个正方体,则它的表面展开图可以是()A B C D 第4题图5. 【导学号31100764】下列选项中的图形,绕其虚线旋转一周能得到如图所示的图形的是()A B C D 第5题图6. 【导学号31100217】房间窗户的边框形状是矩形,在阳光的照射下边框在房间地面上形成了投影,则投影的形状可能是()A.三角形B.平行四边形C.圆D.梯形7. 【导学号31100750】我们常用“y随x的增大而增大(或减小)”来表示两个变量之间的变化关系.有这样一个情境:如图,小王从点A经过路灯C的正下方沿直线走到点B,他与路灯C的距离y随他与点A之间的距离x的变化而变化.下列函数中y与x之间的变化关系,最有可能与上述情境类似的是()A.y=x B.y=x+3C.y=3xD.y=(x-3)2+3第7题图8. 【导学号31100769】一个几何体的三视图如图所示,则该几何体的表面积为()A.4π B.3πC.2π+4 D.3π+4第8题图第10题图9. 【导学号31100752】一个直角三角形的三条边分别为3,4,5,将这个三角形绕它的直角边所在直线旋转一周得到的几何体的体积是()A.12π B.16πC.12π或16π D.36π或48π10. 【导学号31100742】如图是由一些完全相同的小正方体搭成的几何体的主视图和左视图,组成这个几何体的小正方体的个数最少是()A.5个B.6个C.7个D.8个二、填空题(每小题4分,共32分)11. 【导学号31100759】把如图形状的硬纸板折成一个四棱锥,那么与E点重合在一起的是_____________.第11题图第12题图12. 【导学号31100996】如图是一个三棱柱,它的正投影是下图中的________(填序号).13. 【导学号31100763】星期天,小明和小华在村后的小山岭上玩,突然,小明说“我捡到了一块非常好看的石头,它类似于我们刚学过的棱柱.”小华问:“几棱柱啊?”小明说:我说不上来,只知道它有9个面,14个顶点,21条棱.小华说:“我知道了,它是_______棱柱.”14. 【导学号31100957】图①是一个正方体的展开图,该正方体从图②所示的位置依次翻到第1格、第2格、第3格、第4格、第5格,此时这个正方体朝上一面的字是__________.①②第14题图15.【导学号31100751】如图,一块直角三角形板ABC,∠ACB=90°,BC=12cm,AC=8cm,测得BC边的中心投影B1C1长为24cm,则A1B1长为____________cm.第15题图第16题图16. 【导学号31100757】如图是由若干个棱长为1cm的小正方体堆砌而成的几何体,那么其三视图中面积最小的是_________cm217. 【导学号31100745】如图是一个几何体的三视图,已知左视图是一个等边三角形,根据图中尺寸(单位:cm),这个几何体的体积为__________cm3;表面积为__________cm2.第17题图第18题图18. 【导学号31100744】如图是一个由若干个正方体搭建而成的几何体的主视图与左视图,那么下列图形中可以作为该几何体的俯视图的序号是:_____________.三、解答题(共58分)19.【导学号31100741】(10分)画出下面几何体的三种视图.第19题图20.【导学号31100755】(12分)在一次数学活动课上,李老师带领学生去测教学楼的高度.在阳光下,测得身高1.65米的黄丽同学(BC)的影长BA为1.1米,与此同时,测得教学楼DE的影长DF为12.1米,如图.(1)请你在图中画出此时教学楼DE在阳光下的投影DF;(2)请你根据已测得的数据,求出教学楼DE的高度(精确到0.1米).第20题图21.【导学号31100369】(12分)如图,某同学想测量旗杆的高度,他在某一时刻测得1m长的竹竿竖直放置时影长为1.5m,在同一时刻测量旗杆的影长时,因旗杆靠近一楼房,影子不全落在地面上,有一部分落在墙上,他测得落在地面上的影长为21m,留在墙上的影高为2m,求旗杆的高度.第21题图22.【导学号31100304】(12分)如图是一个包装纸盒的三视图(单位:cm)(1)该包装纸盒的几何形状是__________;(2)画出该纸盒的平面展开图.,精确到个位)(3)计算制作一个纸盒所需纸板的面积.(3 1.73第22题图23.【导学号31100879】(12分)如图,某光源下有三根杆子,甲杆GH的影子GM,乙杆EF的影子一部分是照在地面上的EA,一部分是照在斜坡AB上的AD.(1)请在图中画出形成影子的光线,确定光源所在的位置R,并画出丙杆PQ在地面上的影子.(2)在(1)的结论下,若过点F的光线FD⊥AB,斜坡与地面夹角为60°,AD=1米,AE=2米,请求出乙杆EF的高度.(结果保留根号)第23题图立体图形的展开与折叠综合测试题一、1.C 2.C 3.C 4.B 5.C 6.B 7.D 8.D 9.C 10.A二、11. A和C 12. ②13. 七14. 我15.81316. 3 17. 3318+2318. ①②③三、19. 解:20.解:(1)连接AC,过点E作EF∥AC交AD于点F,则DF即为所求,如图所示.第20题图(2)由题意,得1.121.165.1DE =,解得DE=18.15≈18.2.所以教学楼DE 的高度约为18.2米. 21.解:过C 作CE ⊥AB 于E ,如图.∵CD ⊥BD ,AB ⊥BD ,∴∠EBD=∠CDB=∠CEB=90°.∴四边形CDBE 为矩形,则BD=CE=21,CD=BE=2. 设AE=xm ,则1:1.5=x:21,解得x=14. 故旗杆高AB=AE+BE=14+2=16(m ).第21题图 第22题图22. 解:(1)正六棱柱(2)如图所示:(3)由图可知正六棱柱的侧面是边长为5的正方形,上、下底面是边长为5的正六边形, 侧面面积:6×5×5=150(cm 2),底面积:2×6×21×5×235=753,制作一个纸盒所需纸板的面积:150753+≈280(cm 2). 23. 解:(1)如图,QN 即为PQ 在地面的影子.(2)分别延长FD 、EA 交于点S.在Rt △ADS 中,∠ADS=90°,∠DAS=60°,所以∠S=30°. 又AD=1,∴AS=2.∴ES=AS+AE=2+2=4.在Rt △EFS 中,∠FES=90°,EF=ES•tan ∠FSE=4•tan30°=4×33=433(米). 所以乙杆EF 的高度为433米.第23题图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.1立体图形的展开图专项测试题
1.下图中,圆锥的侧面展开图是()
2.在下面的图形中,是正方体表面展开图的是( ).
3.下列图形中,经过折叠可围成棱柱的是()
4.下图是()的展开图。
A 棱柱
B 棱锥
C 圆柱 C 圆锥
5.下面四个图形中,是三棱柱的平面展开图的是()
6.
小
丽
制作了一个对面图案均相同的正方体礼品盒(如下左图所示),则这个正方体礼品盒的平面展开图可能是()
7.如图所示是体的展开图.
8.如图是一个正方体的表面展开图,则图中“冷”字所在面的对面所标的字是
9.下列图形中可能折叠成正方体的有 个
10.如图,点A B ,分别是棱长为2的正方体左、
右两侧面的中心,一蚂蚁从点A 沿其表面爬到点B 的最短路程是
11.水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示,如图是一个正方体的表面展开图,若图中“2”在正方体的
前面,则这个正方体的后面是
12.将一个正方体的表面沿某些棱剪开,得到一个平面图形,要剪开_____条棱.
13.画一个长方体的平面展开图.
14.下图是一个正方体的展开图,若a 表示前面,b 表示右面,e 表示下面,试判定另三个面
c、d、f在正方体中的位置。
15.如图所示,用A,B表示正方体相邻的两个面,用字母C表示A的对面,•请在下面的正方体展开图中填写相应字母.
16.如图所示,是正方体纸盒的平面展开图,请把-10,8,10,-8,-2,2分别填入六个不同的正方形中,使得按虚线折成正方体后,相对面上的两个数都互为相反数.(填写出一种方案即可)
参考答案
1.D;
2.B;
3.B;
4.C;
5.A;
6.A;
7. 六棱锥;
8.应;
9.1;10.4;11.0;12.7;
13.答案不唯一,如:
14. c表示上面, d在左面, f在后面.
15.如图所示.
C
C C C
C
16.答案不唯一,如:如图所示.
10-10
-2-828
备用题 1.如图中每个小四边形皆为大小一样的正方形,可以作为一个正方体平面展开图的是( ) C
2. 如图所示,不能通过折叠围成一个无盖盒子的是( )C
3.如图,下列图形经过折叠后都可以围成一个棱柱吗?请在横线上写“是”或“不是”。
答案:不是,是,是;
4.如图所示,这些图形是哪些几何体的平面展开图:
答案:(1)立方体 (2)长方体 (3)圆锥 (4)三棱柱 (5)圆柱
5. 如图是一个正方体的展开图,每个面都标注了字母.
(1)如果面A 在多面体的底部,上面是哪一个面?
(2)如果F在前面,从左看是面B,上面是哪一面?
(3)从右面看到面C,面D在后面,上面是哪一面?解:(1)面F.(2)面E.(3)面F.。